[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6526449B2 - Road attachment detection device and road attachment detection method - Google Patents

Road attachment detection device and road attachment detection method Download PDF

Info

Publication number
JP6526449B2
JP6526449B2 JP2015044086A JP2015044086A JP6526449B2 JP 6526449 B2 JP6526449 B2 JP 6526449B2 JP 2015044086 A JP2015044086 A JP 2015044086A JP 2015044086 A JP2015044086 A JP 2015044086A JP 6526449 B2 JP6526449 B2 JP 6526449B2
Authority
JP
Japan
Prior art keywords
road
area
captured image
specific
specific shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015044086A
Other languages
Japanese (ja)
Other versions
JP2016162436A (en
Inventor
佐藤 俊雄
俊雄 佐藤
鈴木 美彦
美彦 鈴木
上野 秀樹
秀樹 上野
横井 謙太朗
謙太朗 横井
青木 泰浩
泰浩 青木
健二 君山
健二 君山
雄介 高橋
雄介 高橋
勝大 堀江
勝大 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015044086A priority Critical patent/JP6526449B2/en
Publication of JP2016162436A publication Critical patent/JP2016162436A/en
Application granted granted Critical
Publication of JP6526449B2 publication Critical patent/JP6526449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Description

本発明の実施形態は、道路附属物検出装置および道路附属物検出方法に関する。   Embodiments of the present invention relate to a road appendage detection device and a road appendage detection method.

道路標識や道路ミラー、街路灯等の道路の附属物は、道路を走行する車両にとって安全を確保するために重要である。このため、従来から、道路附属周辺の撮像画像に基づき道路附属物を検出する道路附属物検出装置が知られている。   Road accessories such as road signs, road mirrors, street lights, etc. are important to ensure safety for vehicles traveling on the road. For this reason, conventionally, a road appendage detection device is known which detects a road appendage based on a captured image around a road attachment.

特許第4394476号公報Patent No. 4394476 特許第3006471号公報Patent No. 3006471 特開2013−54522号公報JP, 2013-54522, A

このような道路附属物検出装置では、できるだけ多くの種類の道路附属物を高精度に検出することが望まれている。   In such a road attachment detection device, it is desirable to detect as many types of road attachments as possible with high accuracy.

実施形態の道路附属物検出装置は、柱領域検出部と、特定色検出部と、特定形状検出部と、判定部と、出力部と、を備える。柱領域検出部は、車両が走行する道路の撮像画像から、撮像画像の画素に基づき、検出対象の柱部分の領域である柱領域を検出する。特定色検出部は、撮像画像から、検出対象の特定色を有する領域である特定色領域を検出する。
特定形状検出部は、撮像画像から、検出対象の特定形状を有する領域である特定形状領域を検出する。判定部は、撮像画像から、柱領域と特定色領域と特定形状領域とが検出され、かつ各領域間の撮像画像上での距離が所定の距離未満である場合には、柱領域と特定色領域と特定形状領域とが示す領域が、道路の周辺に配置された道路附属物であると判定する。出力部は、道路附属物に関する情報を出力する。
The road accessory detection device according to the embodiment includes a pillar area detection unit, a specific color detection unit, a specific shape detection unit, a determination unit, and an output unit. The pillar area detection unit detects a pillar area, which is an area of a pillar portion to be detected, from the captured image of the road on which the vehicle travels, based on the pixels of the captured image. The specific color detection unit detects a specific color area that is an area having a specific color to be detected from the captured image.
The specific shape detection unit detects a specific shape area, which is an area having a specific shape to be detected, from the captured image. The determination unit detects a pillar area, a specific color area, and a specific shape area from the captured image, and the distance between the areas on the captured image is less than a predetermined distance. It is determined that the area indicated by the area and the specific shape area is a road appendage disposed around the road. The output unit outputs information on road attachments.

図1は、実施形態1の道路附属物検出装置の機能的構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of the road accessory detection device of the first embodiment. 図2は、実施形態1の道路附属物の構成の一例を示す図である。FIG. 2 is a view showing an example of the configuration of the road attachment according to the first embodiment. 図3は、実施形態1にかかる道路附属物検出処理の手順の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of a road accessory detection process according to the first embodiment. 図4は、実施形態1の柱領域検出処理の手順の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of a procedure of pillar area detection processing according to the first embodiment. 図5は、実施形態1のエッジ強調処理を説明するための一例を示す図である。FIG. 5 is a diagram illustrating an example for explaining the edge enhancement processing of the first embodiment. 図6は、実施形態1におけるエッジ特徴の画素抽出結果の一例を示す図である。FIG. 6 is a diagram showing an example of pixel extraction results of edge features in the first embodiment. 図7は、実施形態1の縦方向累積処理を説明するための図である。FIG. 7 is a diagram for explaining the vertical direction accumulation process of the first embodiment. 図8は、実施形態1にかかる特定色検出処理の手順の一例を示すフローチャートである。FIG. 8 is a flowchart illustrating an example of the procedure of the specific color detection process according to the first embodiment. 図9は、本実施形態の特定色検出処理を説明するための図である。FIG. 9 is a diagram for explaining the specific color detection process of the present embodiment. 図10は、本実施形態の特定色検出処理を説明するための図である。FIG. 10 is a diagram for explaining the specific color detection process of the present embodiment. 図11は、本実施形態の特定色検出処理を説明するための図である。FIG. 11 is a diagram for explaining the specific color detection process of the present embodiment. 図12は、実施形態1にかかる特定形状検出処理の手順の一例を示すフローチャートである。FIG. 12 is a flowchart illustrating an example of the procedure of the specific shape detection process according to the first embodiment. 図13は、実施形態1の特定形状検出処理を説明するための図である。FIG. 13 is a diagram for explaining the specific shape detection process of the first embodiment. 図14は、実施形態1の判定処理の手順の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of the procedure of the determination process of the first embodiment. 図15は、実施形態1の柱領域検出処理、特定色検出処理、特定形状検出処理の検出結果の一例を示す図である。FIG. 15 is a diagram illustrating an example of detection results of a pillar area detection process, a specific color detection process, and a specific shape detection process according to the first embodiment. 図16は、実施形態1の判定結果の例を示す図である。FIG. 16 is a diagram illustrating an example of the determination result of the first embodiment. 図17は、実施形態1の判定結果の他の例を示す図である。FIG. 17 is a diagram illustrating another example of the determination result of the first embodiment. 図18は、実施形態1の判定結果の他の例を示す図である。FIG. 18 is a diagram illustrating another example of the determination result of the first embodiment. 図19は、実施形態1の道路附属物の出力結果の例を示す図である。FIG. 19 is a diagram illustrating an example of the output result of the road appendage according to the first embodiment. 図20は、実施形態2の道路附属物検出装置の機能的構成を示すブロック図である。FIG. 20 is a block diagram showing a functional configuration of the road accessory detection device of the second embodiment. 図21は、実施形態2の形状パターンの変換の一例を示す図である。FIG. 21 is a diagram showing an example of conversion of the shape pattern of the second embodiment. 図22は、実施形態2の道路附属物検出処理の手順の一例を示すフローチャートである。FIG. 22 is a flowchart illustrating an example of a road accessory detection process according to the second embodiment. 図23は、実施形態2の円形の道路ミラーの車両からの見え方の例を示す図である。FIG. 23 is a diagram illustrating an example of how a circular road mirror of the second embodiment is viewed from a vehicle. 図24は、実施形態3の道路附属物検出装置の機能的構成を示すブロック図である。FIG. 24 is a block diagram showing a functional configuration of the road accessory detection device of the third embodiment. 図25は、実施形態3の二つの撮像カメラの撮像方向の一例を示す図である。FIG. 25 is a diagram illustrating an example of imaging directions of two imaging cameras according to the third embodiment. 図26は、実施形態3の道路附属物検出の一例を説明するための図である。FIG. 26 is a diagram for explaining an example of road accessory detection according to the third embodiment. 図27は、実施形態3の道路附属物検出処理の手順の一例を示すフローチャートである。FIG. 27 is a flowchart illustrating an example of a road accessory detection process according to the third embodiment.

以下、実施形態について説明する。   Hereinafter, embodiments will be described.

(実施形態1)
図1は、実施形態1の道路附属物検出装置の機能的構成を示すブロック図である。実施形態1の道路附属物検出装置100は、図1に示すように、撮像カメラ110と、柱領域検出部101と、特定色検出部102と、特定形状検出部103と、判定部104と、出力部105と、計時部106と、位置検出部107と、色データベース120(以下、「色DB120」という。)と、形状データベース130(以下、「形状DB130」という。)と、を主に備えている。ここで、色DB120と形状DB130は、HDD(HArd Disk Drive)やSSD(Solid State Drive)、メモリ等の記憶媒体に記憶されている。
(Embodiment 1)
FIG. 1 is a block diagram showing a functional configuration of the road accessory detection device of the first embodiment. As shown in FIG. 1, the road accessory detection apparatus 100 according to the first embodiment includes an imaging camera 110, a pillar area detection unit 101, a specific color detection unit 102, a specific shape detection unit 103, and a determination unit 104. An output unit 105, a clock unit 106, a position detection unit 107, a color database 120 (hereinafter referred to as "color DB 120"), and a shape database 130 (hereinafter referred to as "shape DB 130") are mainly provided. ing. Here, the color DB 120 and the shape DB 130 are stored in a storage medium such as a hard disk drive (HDD), a solid state drive (SSD), or a memory.

本実施形態の道路附属物検出装置100は、道路を走行する車両に搭載されて、道路附属物を検出する装置である。ここで、道路附属物とは、道路の構造の保全、安全かつ円滑な道路の交通の確保その他道路の管理上必要な施設又は工作物である(道路法第2条第2項)。このような道路附属物としては、例えば、道路標識や道路ミラー、街路灯等が挙げられるが、これらに限定されるものではない。   The road accessory detection device 100 according to this embodiment is a device that is mounted on a vehicle traveling on a road and detects a road attachment. Here, the road attachment is a facility or a work necessary for the maintenance of the structure of the road, securing of the traffic of the road safely and smoothly, and other management of the road (Road Act Article 2 Section 2). Examples of such road accessories include, but are not limited to, road signs, road mirrors, street lights and the like.

図2は、実施形態1の道路附属物の構成の一例を示す図である。道路附属物の一例である道路標識や道路ミラーは、図2に示すように、一般的に、縁領域201と、中央領域202と、柱領域203とから構成される。縁領域201は、標識やミラーの縁部の領域である。中央領域202は、標識やミラーの縁領域201より内部の部分の領域である。柱領域203は、中央領域202および縁領域201からなる部分を支える柱部分の領域である。   FIG. 2 is a view showing an example of the configuration of the road attachment according to the first embodiment. A road sign or a road mirror, which is an example of a road attachment, generally includes an edge area 201, a central area 202, and a pillar area 203, as shown in FIG. The edge area 201 is the area of the edge of a sign or mirror. The central region 202 is a region of a portion inside the edge region 201 of the marker or mirror. The pillar region 203 is a region of the pillar portion that supports the portion consisting of the central region 202 and the edge region 201.

図1に戻り、撮像カメラ110は、車両の外部または内部に設置され、走行する車両の前方の道路周辺を一定時間間隔で撮像し、撮像画像を出力する。   Returning to FIG. 1, the imaging camera 110 is installed outside or inside the vehicle, captures an area around the road ahead of the traveling vehicle at a constant time interval, and outputs a captured image.

柱領域検出部101は、撮像カメラ110で撮像された道路の周辺の撮像画像を入力し、入力された撮像画像から、撮像画像を構成する画素に基づいて、縦方向の一対の線を道路附属物の柱領域として検出する。具体的には、柱領域検出部101は、撮像画像に対してエッジ強調を行い、エッジ強調された画素からエッジ特徴を抽出し、抽出画素を撮像画像の縦方向に累積することで縦方向の一対の線からなる柱部分を検出して柱領域とし、柱領域の座標範囲を出力する。   The pillar area detection unit 101 inputs a captured image of a road around the image captured by the imaging camera 110, and adds a pair of lines in the vertical direction to the road based on the pixels constituting the captured image from the input captured image. Detect as a pillar area of an object. Specifically, the pillar region detection unit 101 performs edge enhancement on the captured image, extracts edge features from the edge-emphasized pixels, and accumulates the extracted pixels in the vertical direction of the captured image. A column portion consisting of a pair of lines is detected to form a column area, and the coordinate range of the column area is output.

特定色検出部102は、撮像カメラ110で撮像された撮像画像を入力し、撮像画像のR値、G値、B値を用いて、検出対象である道路附属物の色(特定色)を有する特定色領域を検出する。具体的には、特定色検出部102は、撮像画像の各画素のR値、G値、B値を、検出する対象の特定色に応じて予め定めた範囲と比較し、当該範囲に含まれる画素を抽出し、特定色を有する領域(特定色領域)とし、特定色領域の座標範囲を出力する。色DB120は、上記範囲を定めるR,G,B各値の最大値と最小値とが登録されている。   The specific color detection unit 102 inputs the captured image captured by the imaging camera 110, and uses the R value, the G value, and the B value of the captured image to have the color (specific color) of the road appendage to be detected. Detect a specific color area. Specifically, the specific color detection unit 102 compares the R value, the G value, and the B value of each pixel of the captured image with a predetermined range according to the specific color to be detected, and is included in the range A pixel is extracted, it is set as an area (specific color area) having a specific color, and the coordinate range of the specific color area is output. In the color DB 120, the maximum value and the minimum value of each of R, G, and B values that define the above range are registered.

特定形状検出部103は、撮像カメラ110で撮像された撮像画像を入力し、撮像画像から、検出対象である道路附属物の形状(特定形状)を有する領域である特定形状領域を検出する。具体的には、特定形状検出部103は、柱領域検出部101と同様に、撮像画像に対してエッジ強調を行い、エッジ強調された画素からエッジ特徴を抽出する。そして、特定形状検出部103は、抽出されたエッジ特徴に対して、予め定めれた道路附属物の形状パターンとパターンマッチングを行い、道路附属物の特定形状を抽出して特定形状領域とし、特定形状領域の座標範囲を出力する。ここで、形状DB130には、道路附属物ごとに、道路附属物の形状パターンが登録されている。   The specific shape detection unit 103 inputs a captured image captured by the imaging camera 110, and detects a specific shape region, which is a region having a shape (specific shape) of a road appendage to be detected, from the captured image. Specifically, the specific shape detection unit 103 performs edge enhancement on the captured image as in the pillar region detection unit 101, and extracts an edge feature from the edge-emphasized pixel. Then, the specific shape detection unit 103 performs pattern matching with a predetermined shape pattern of the road appendage on the extracted edge feature, extracts the specific shape of the road appendage, and sets it as a specific shape region, and identifies Output the coordinate range of the shape area. Here, the shape pattern of the road attachment is registered in the shape DB 130 for each road attachment.

判定部104は、柱領域検出部101により検出された柱領域と、特定色検出部102により検出された特定色領域と、特定形状検出部103により検出された特定形状領域とに基づいて、撮像画像に、道路の周辺に配置された道路附属物が存在するか否かを判定する。具体的には、判定部104は、撮像画像に、柱領域、特定色領域、特定形状領域のいずれもが検出された場合、各領域の座標範囲から、各領域間の撮像画像上での距離が所定の距離未満であるか否かを判断する。そして、判定部104は、各領域間の撮像画像上での距離が所定の距離未満である場合には、撮像画像中の柱領域と特定色領域と特定形状領域とが示す領域が道路附属物である(存在する)と判定する。一方、判定部104は、各領域間の撮像画像上での距離のいずれかが所定の距離以上である場合には、撮像画像に道路附属物は存在しないと判定する。   The determination unit 104 captures an image based on the pillar area detected by the pillar area detection unit 101, the specific color area detected by the specific color detection unit 102, and the specific shape area detected by the specific shape detection unit 103. In the image, it is determined whether there is a road attachment placed around the road. Specifically, when any of the pillar area, the specific color area, and the specific shape area is detected in the captured image, the determination unit 104 determines the distance on the captured image between the areas from the coordinate range of each area. Is determined to be less than a predetermined distance. Then, when the distance between the areas on the captured image is less than a predetermined distance, the determination unit 104 indicates that the area indicated by the pillar area, the specific color area, and the specific shape area in the captured image is a road attachment It is determined that On the other hand, when any of the distances on the captured image between the regions is equal to or greater than a predetermined distance, the determination unit 104 determines that there is no road attachment in the captured image.

また、判定部104は、柱領域、特定色領域、特定形状領域のいずれかが検出されなかった場合には、撮像画像に道路附属物は存在しないと判定する。   In addition, when any of the pillar area, the specific color area, and the specific shape area is not detected, the determination unit 104 determines that the road attachment is not present in the captured image.

計時部106は、現在時刻を計時する。位置検出部107は、GPS(Global Positioning System)等を利用して車両の現在位置を取得する。   The clock unit 106 clocks the current time. The position detection unit 107 acquires the current position of the vehicle using a GPS (Global Positioning System) or the like.

出力部105は、判定部104で道路附属物が検出された場合に、道路附属物に関する情報を、現在時刻と車両の現在位置とともに車両の中のモニタ等に出力する。   When the road attachment is detected by the determination unit 104, the output unit 105 outputs information on the road attachment to a monitor in the vehicle along with the current time and the current position of the vehicle.

次に、以上のように構成された本実施形態の道路附属物検出処理について詳細に説明する。図3は、実施形態1にかかる道路附属物検出処理の手順の一例を示すフローチャートである。ここで、図3に示すフローチャートの処理は、例えば、数秒毎などの所定時間間隔で実行される。   Next, the road accessory detection process of the present embodiment configured as described above will be described in detail. FIG. 3 is a flowchart illustrating an example of a road accessory detection process according to the first embodiment. Here, the processing of the flowchart shown in FIG. 3 is executed at predetermined time intervals such as every several seconds, for example.

まず、撮像カメラ110は、車両の前方の周囲を撮像する。柱領域検出部101、特定色検出部102および特定形状検出部103は、撮像カメラ110から撮像画像を入力する(S11)。そして、柱領域検出部101は撮像画像に対して柱領域検出処理を行う(S12)。特定色検出部102は撮像画像に対して特定色検出処理を行う(S13)。特定形状検出部103は撮像画像に対して特定形状検出処理を行う(S14)。そして、判定部104は、S12,S13,S14の検出結果に基づき、道路附属物の判定処理を行う(S15)。   First, the imaging camera 110 captures an image around the front of the vehicle. The pillar area detection unit 101, the specific color detection unit 102, and the specific shape detection unit 103 input a captured image from the imaging camera 110 (S11). Then, the pillar area detection unit 101 performs a pillar area detection process on the captured image (S12). The specific color detection unit 102 performs a specific color detection process on the captured image (S13). The specific shape detection unit 103 performs a specific shape detection process on the captured image (S14). And the determination part 104 performs the determination process of a road appendage based on the detection result of S12, S13, S14 (S15).

S12の柱領域検出処理の詳細について説明する。図4は、実施形態1の柱領域検出処理の手順の一例を示すフローチャートである。柱領域検出部101は、撮像画像に対してエッジ強調処理を行う(S31)。具体的には、柱領域検出部101は、撮像画像の各画素に対して近傍画素との差分を求める。図5は、実施形態1のエッジ強調処理を説明するための一例を示す図である。柱領域検出部101は、例えば、図5に示すように、周辺8画素に重み「−1」を乗じた画素値と、中心画素に重み「9」を乗じた画素値との和を求めることで、中心視野に輝度のピークがある画素を強調することができる。   The details of the pillar area detection process of S12 will be described. FIG. 4 is a flowchart illustrating an example of a procedure of pillar area detection processing according to the first embodiment. The pole region detection unit 101 performs edge enhancement processing on the captured image (S31). Specifically, the pillar area detection unit 101 obtains the difference between each pixel of the captured image and the neighboring pixel. FIG. 5 is a diagram illustrating an example for explaining the edge enhancement processing of the first embodiment. For example, as shown in FIG. 5, the column region detection unit 101 obtains a sum of a pixel value obtained by multiplying eight peripheral pixels by a weight “−1” and a pixel value obtained by multiplying a central pixel by a weight “9”. Then, it is possible to emphasize pixels having a luminance peak in the central visual field.

次に、柱領域検出部101は、エッジ強調された撮像画像から、エッジ特徴の画素の抽出処理を行う(S32)。具体的には、柱領域検出部101は、エッジ強調された画素に一定の閾値で二値画像としてエッジ特徴の画素を抽出する。図6は、実施形態1におけるエッジ特徴の画素抽出結果の一例を示す図である。図6において、黒色の線が抽出画素を示している。図6の例に示すように、抽出画素としては、道路附属物501だけでなく、道路の端などの画素も抽出される。   Next, the pillar area detection unit 101 performs an extraction process of pixels of the edge feature from the edge-emphasized captured image (S32). Specifically, the pillar area detection unit 101 extracts the pixel of the edge feature as a binary image with a certain threshold value to the edge-emphasized pixel. FIG. 6 is a diagram showing an example of pixel extraction results of edge features in the first embodiment. In FIG. 6, black lines indicate extracted pixels. As shown in the example of FIG. 6, not only the road attachment 501 but also pixels such as the end of the road are extracted as extraction pixels.

柱領域検出部101は、このようなエッジ特徴の画素抽出結果の画像に対して、図6に示す小領域502を移動させながら視野を設定して、縦方向累積処理を行う(S33)。図7は、実施形態1の縦方向累積処理を説明するための図である。柱領域検出部101は、図7に示すように、エッジ特徴の画素抽出結果の撮像画像に対して小領域を移動させながら視野601を設定し、視野601に対して抽出画素を縦方向に累積し、1次元の累積データ602を収集する。これにより、柱領域検出部101は、一対の線P1、P2を検出する。   The column region detection unit 101 performs the vertical direction accumulation processing on the image of the pixel extraction result of such edge features while setting the field of view while moving the small region 502 shown in FIG. 6 (S33). FIG. 7 is a diagram for explaining the vertical direction accumulation process of the first embodiment. The pillar region detection unit 101 sets the field of view 601 while moving the small region with respect to the captured image of the edge feature pixel extraction result as shown in FIG. 7 and accumulates the extracted pixels in the vertical direction with respect to the field of view 601 And one-dimensional accumulated data 602 is collected. Thereby, pillar field detection part 101 detects a pair of lines P1 and P2.

次に、柱領域検出部101は、S33により得られた累積データ602に対して、柱領域の判定を行う(S34)。具体的には、柱領域検出部101は、累積データ602の一対の線P1、P2に対して、一定の閾値Thr以上の累積値を有し、かつ、P1とP2の間隔wが所定の範囲内である場合に、一対の線P1,P2を柱領域と判定し、その座標範囲を道路附属物の柱領域の範囲として出力する。ここで、出力される座標範囲は、矩形の柱領域の左上の座標と右下の座標で示される。   Next, the pillar area detection unit 101 determines the pillar area with respect to the accumulated data 602 obtained in S33 (S34). Specifically, the pillar region detection unit 101 has a cumulative value equal to or greater than a predetermined threshold value Thr for the pair of lines P1 and P2 of the cumulative data 602, and the interval w between P1 and P2 is within a predetermined range. When it is inside, a pair of lines P1 and P2 are determined to be a pillar area, and the coordinate range is output as the range of the pillar area of the road attachment. Here, the coordinate range to be output is indicated by the upper left coordinates and the lower right coordinates of the rectangular column area.

なお、柱領域検出部101による柱領域の検出の手法は、これに限定されるものではない。例えば、予め柱のテンプレートを準備しておき、エッジ特徴の画素抽出結果の撮像画像とのマッチング手法を用いて柱領域を検出するように柱領域検出部101を構成してもよい。   In addition, the method of a pillar area | region detection by the pillar area | region detection part 101 is not limited to this. For example, a pillar template may be prepared in advance, and the pillar region detection unit 101 may be configured to detect a pillar region using a matching method with a captured image of pixel extraction results of edge features.

次に、S13の特定色検出処理の詳細について説明する。図8は、実施形態1にかかる特定色検出処理の手順の一例を示すフローチャートである。まず、特定色検出部102は、色DB120から、検出対象の色(特定色)の範囲である最小値RL、GL、BLと、最大値RH、GH、BHとを読み出して、撮像画像の各画素のR値、G値、B値を、最小値RL、GL、BLと、最大値RH、GH、BHと比較し、該当する範囲に含まれる画素を抽出する(S51)。なお、本実施形態では、R値、G値、B値を用いているが、RGBの色空間に限定されるものではない。例えば、他の表色系として、L*a*b*、xy、HSV値を用いることができる。   Next, the details of the specific color detection process of S13 will be described. FIG. 8 is a flowchart illustrating an example of the procedure of the specific color detection process according to the first embodiment. First, the specific color detection unit 102 reads, from the color DB 120, the minimum values RL, GL, and BL, and the maximum values RH, GH, and BH, which are ranges of colors (specific colors) to be detected, The R value, the G value, and the B value of the pixel are compared with the minimum values RL, GL, and BL, and the maximum values RH, GH, and BH, and pixels included in the corresponding range are extracted (S51). In the present embodiment, the R value, the G value, and the B value are used, but the present invention is not limited to the RGB color space. For example, L * a * b *, xy, and HSV values can be used as another color system.

次に、特定色検出部102は、抽出された画素において、連結している画素グループ(連結成分)を抽出する(S52)。そして、特定色検出部102は、抽出された連結成分を包含する外形の矩形を求める(S53)。特定色検出部102は、外形矩形の座標範囲を特定色の判定結果、すなわち道路附属物の特定色領域の範囲として出力する(S54)。ここで、出力される座標範囲は、外形矩形の左上の座標と右下の座標で示される。   Next, the specific color detection unit 102 extracts connected pixel groups (connected components) in the extracted pixels (S52). Then, the specific color detection unit 102 obtains a rectangle of an outer shape including the extracted connected component (S53). The specific color detection unit 102 outputs the coordinate range of the outline rectangle as the determination result of the specific color, that is, the range of the specific color area of the road appendage (S54). Here, the output coordinate range is indicated by the upper left coordinates and the lower right coordinates of the outline rectangle.

図9〜図11は、本実施形態の特定色検出処理を説明するための図である。図9は、図2に示す道路標識の例に対して、縁領域201だけが抽出対象の色であった場合の結果の例を示す。図10は、縁領域201と柱領域203が抽出対象の色であった場合の例を示す。   9 to 11 are diagrams for explaining the specific color detection process of this embodiment. FIG. 9 shows an example of the result in the case where only the edge area 201 is the color to be extracted with respect to the example of the road sign shown in FIG. FIG. 10 shows an example in which the edge area 201 and the column area 203 have the color to be extracted.

図10の例に対して、図11の破線の枠で示すように、特定色検出部102は、連結している画素グループに対して外接矩形を求め、外形矩形の座標範囲を特定色領域1101として出力する。   For the example of FIG. 10, as indicated by a broken-line frame in FIG. 11, the specific color detection unit 102 obtains a circumscribed rectangle for connected pixel groups, and specifies the coordinate range of the outer rectangle as the specific color area 1101. Output as

次に、S14の特定形状検出処理の詳細について説明する。図12は、実施形態1にかかる特定形状検出処理の手順の一例を示すフローチャートである。特定形状検出部103は、柱領域検出処理と同様に、撮像画像に対してエッジ強調処理を行い、画像の各画素に対して近傍画素との差分を求める(S71)。特定形状検出部103は、柱領域検出処理と同様に、エッジ強調された撮像画像から、エッジ特徴の画素の抽出処理を行う(S72)。   Next, the details of the specific shape detection process of S14 will be described. FIG. 12 is a flowchart illustrating an example of the procedure of the specific shape detection process according to the first embodiment. The specific shape detection unit 103 performs edge enhancement processing on the captured image as in the pillar area detection processing, and obtains a difference between each pixel of the image and its neighboring pixels (S71). The specific shape detection unit 103 performs the extraction process of the pixel of the edge feature from the captured image subjected to the edge enhancement as in the pillar area detection process (S72).

そして、特定形状検出部103は、形状DB130から検出対象の道路附属物の形状パターンを読出し、エッジ特徴の抽出結果の撮像画像に対して、形状パターンを走査しながらパターンマッチングを行う(S73)。そして、特定形状検出部103は、形状パターンと一致した領域と外接ずる矩形の座標範囲を、道路附属物の特定形状領域として判定して出力する(S74)。   Then, the specific shape detection unit 103 reads the shape pattern of the road annex to be detected from the shape DB 130, and performs pattern matching on the captured image of the extraction result of the edge feature while scanning the shape pattern (S73). Then, the specific shape detection unit 103 determines and outputs a rectangular coordinate range circumscribed with the region matching the shape pattern as the specific shape region of the road appendage (S74).

図13は、実施形態1の特定形状検出処理を説明するための図である。図13に示すように、特定形状検出部103は、撮像画像内に局所領域を視野として設定し、特定形状の形状パターン1201とマッチング処理を行う。形状パターン1201は、例えば円の部分が”1”それ以外が”0”という2値画像としてあらかじめ形状DB130に登録しておく。特定形状検出部103は、形状パターン1201のサイズを変えながら撮像画像内を移動させ、特定形状の形状パターン1201に一致する領域に外接する矩形領域1202を検出する。ここで、エッジを抽出した画像と形状パターン1201のマッチングの手法は、二値画像同士の一致度を測定する方式や、正規化相関など変動に強い方法を用いることができる。また、別の手法として、特許第5214367号公報に開示されているエッジ方向の共起ヒストグラムによるマッチングによる検出を用いるように特定形状検出部103を構成してもよい。   FIG. 13 is a diagram for explaining the specific shape detection process of the first embodiment. As shown in FIG. 13, the specific shape detection unit 103 sets a local region as a field of view in the captured image, and performs matching processing with the shape pattern 1201 of the specific shape. For example, the shape pattern 1201 is registered in advance in the shape DB 130 as a binary image in which the portion of the circle is “1” and the others are “0”. The specific shape detection unit 103 moves in the captured image while changing the size of the shape pattern 1201, and detects a rectangular region 1202 circumscribing the region matching the shape pattern 1201 of the specific shape. Here, as a method of matching between the image from which the edge is extracted and the shape pattern 1201, a method of measuring the degree of coincidence between binary images or a method resistant to fluctuation such as normalized correlation can be used. As another method, the specific shape detection unit 103 may be configured to use detection by matching with a co-occurrence histogram of edge directions disclosed in Japanese Patent No. 5214367.

次に、S15の判定処理の詳細について説明する。図14は、実施形態1の判定処理の手順の一例を示すフローチャートである。柱領域検出部101、特定色検出部102、特定形状検出部103からは、図15に示すように検出結果である各領域の座標範囲が出力される。まず、判定部104は、撮像画像に、柱領域、特定色領域、特定形状領域のすべてが検出されたか否かを判断する(S1001)。   Next, the details of the determination process of S15 will be described. FIG. 14 is a flowchart illustrating an example of the procedure of the determination process of the first embodiment. The column area detection unit 101, the specific color detection unit 102, and the specific shape detection unit 103 output the coordinate range of each area as the detection result as shown in FIG. First, the determination unit 104 determines whether or not all of the column area, the specific color area, and the specific shape area have been detected in the captured image (S1001).

柱領域、特定色領域、特定形状領域のいずれかが検出されなかった場合には(S1001:No)、判定部104は、撮像画像に道路附属物は存在しないと判定する(S1005)。   If any of the pillar area, the specific color area, and the specific shape area is not detected (S1001: No), the determination unit 104 determines that there is no road attachment in the captured image (S1005).

一方、柱領域、特定色領域、特定形状領域の全てが検出された場合には(S1001:Yes)、判定部104は、各領域の座標範囲から、各領域間の撮像画像上での距離を算出する(S1002)。そして、判定部104は、各領域間の撮像画像上での全ての距離が所定の距離未満であるか否かを判断する(S1003)。そして、各領域間の撮像画像上での全ての距離が所定の距離未満である場合には(S1003:Yes)、判定部104は、撮像画像中の柱領域と特定色領域と特定形状領域とが示す領域が道路附属物であると判定する(S1004)。一方、各領域間の撮像画像上での距離のいずれかが所定の距離以上離れている場合には(S1003:No)、判定部104は、撮像画像に道路附属物は存在しないと判定する(S1005)。   On the other hand, when all of the pillar area, the specific color area, and the specific shape area are detected (S1001: Yes), the determination unit 104 determines the distance on the captured image between the areas from the coordinate range of each area. It calculates (S1002). Then, the determination unit 104 determines whether all the distances on the captured image between the regions are less than a predetermined distance (S1003). Then, if all the distances on the captured image between the respective regions are less than the predetermined distance (S1003: Yes), the determination unit 104 determines that the pole region in the captured image, the specific color region, and the specific shape region It is determined that the area indicated by is a road attachment (S1004). On the other hand, when any of the distances on the captured image between the respective regions is separated by a predetermined distance or more (S1003: No), the determination unit 104 determines that no road attachment is present in the captured image (S1003) S1005).

図15は、実施形態1の柱領域と特定色領域と特定形状領域の検出結果の一例を示す図である。図16〜18は、実施形態1の判定結果の例を示す図である。   FIG. 15 is a diagram illustrating an example of detection results of a pillar area, a specific color area, and a specific shape area according to the first embodiment. 16 to 18 are diagrams showing an example of the determination result of the first embodiment.

図15の対象1では、柱領域と特定色領域が検出されているが、特定形状の検出結果がない例を示している。例えば、図16に示すような検出結果の例が該当し、道路附属物の判定結果は「該当無」となる。図16の例では、画像中の塗りつぶした領域が特定色を示しており、柱領域領域1401と、特定色領域1402の距離は所定距離未満で接近して抽出されているが、特定形状である円に対応する特定形状領域が検出されていない。   In the target 1 of FIG. 15, although a pillar area | region and a specific color area | region are detected, the example without a detection result of a specific shape is shown. For example, the example of a detection result as shown in FIG. 16 corresponds, and the determination result of a road attachment becomes "not applicable." In the example of FIG. 16, a filled area in the image indicates a specific color, and the distance between the pillar area 1401 and the specific color area 1402 is extracted closer than a predetermined distance, but it has a specific shape. The specific shape area corresponding to the circle is not detected.

図15の対象2では、柱領域領域、特定色領域および特定形状領域の全てが検出され、各領域が図17に示すように、所定距離未満で接近している。このため、判定部104は、道路附属物の検出結果として「該当あり」と判定する。図17では、画像中の塗りつぶした領域が特定色領域を示しており、柱領域領域1501と、特定色領域1502および特定形状領域1503が接近して抽出されている。この例では、道路ミラーのようにミラーの縁の特定色(黄)の面積が少なく、特定色領域1502が部分的に検出されている状況であるが、他の2つの特徴と合わせることで精度よく検出可能となる。   In the object 2 of FIG. 15, all of the pillar area area, the specific color area, and the specific shape area are detected, and each area approaches within a predetermined distance as shown in FIG. For this reason, the determination unit 104 determines as “corresponding” as the detection result of the road attachment. In FIG. 17, a filled area in the image indicates a specific color area, and a pillar area 1501, a specific color area 1502, and a specific shape area 1503 are extracted close to each other. In this example, the area of the specific color (yellow) of the edge of the mirror is small, as in the road mirror, and the specific color area 1502 is partially detected. It becomes detectable well.

図15の対象3では柱領域と特定色および特定形状が検出されているが、図18に示すように、各領域が所定距離以上離れていることから、判定部104は、道路附属物の検出結果として「該当無」と判定する。図18の例では、画像中の塗りつぶした領域が特定色領域1602を示しており、柱領域領域1601と特定形状領域1603は接近しているが、特定色領域1602は離れており別の対象を検出している。   Although a pillar area, a specific color, and a specific shape are detected in the target 3 in FIG. 15, as shown in FIG. 18, since the respective areas are separated by a predetermined distance or more, the determination unit 104 detects the road attachment As a result, it determines with "not applicable". In the example of FIG. 18, the filled area in the image indicates the specific color area 1602, and the column area 1601 and the specific shape area 1603 are close to each other, but the specific color area 1602 is separated and another target is separated. It is detected.

図3に戻り、判定部104による判定処理が終了すると、計時部106は現在時刻を取得する(S16)。そして、位置検出部107は、車両の現在位置を取得する(S17)。例えば、位置検出部107は、GPS衛星からGPSデータを位置情報として取得することができる。このようなGPSデータを取得して出力結果に利用することにより、道路付帯物の参照データとしてナビゲーションシステムなどでの利用も可能となる。   Returning to FIG. 3, when the determination process by the determination unit 104 is completed, the clocking unit 106 acquires the current time (S16). Then, the position detection unit 107 acquires the current position of the vehicle (S17). For example, the position detection unit 107 can acquire GPS data as position information from GPS satellites. By acquiring such GPS data and using it as an output result, it becomes possible to use it in a navigation system etc. as reference data of road accessories.

出力部105は、判定部104による判定結果と、現在時刻、現在位置をメモリ等に保存しておく。そして、出力部105は、ユーザの指示等により検出終了するか否かを判断する(S18)。出力部105が検出終了でないと判断した場合には(S18:No)、処理はS11へ戻り、S17までを繰り返し実行する。   The output unit 105 stores the determination result by the determination unit 104, the current time, and the current position in a memory or the like. Then, the output unit 105 determines whether or not the detection is ended according to the user's instruction or the like (S18). If the output unit 105 determines that the detection is not completed (S18: No), the process returns to S11 and repeatedly executes S17.

一方、出力部105が検出終了と判断した場合には(S18:Yes)、メモリ等に保存された判定結果、現在時刻、現在位置を用いて、道路附属物に関する情報としての出力結果を生成する(S19)。ここで、出力部105は、現在位置および現在時刻が所定の範囲内にある判定結果は、同一の道路附属物の判定結果であると判断して、出力結果には一つの判定結果のみを記録するように構成してもよい。出力部105は、出力結果をモニタなどに表示することにより出力する(S20)。   On the other hand, when the output unit 105 determines that the detection is completed (S18: Yes), the output result as information on the road attachment is generated using the current time and the current position as the determination result stored in the memory or the like. (S19). Here, the output unit 105 determines that the current position and the current time are within the predetermined range as the determination result of the same road attachment, and records only one determination result in the output result. It may be configured to The output unit 105 outputs the output result by displaying it on a monitor or the like (S20).

図19は、実施形態1の道路附属物の出力結果の例を示す図である。図19に示すように、出力結果には、収集日時、道路附属物の設置場所、道路附属物の種類、撮像画像等が含まれる。出力部105は、現在時刻を収集日時とし、位置情報に基づき設置場所の内容を生成し、検出された道路附属物の画像から道路附属物の種類を判断する。そして、出力部105は、収集日時、道路附属物の設置場所、道路附属物の種類、撮像画像を出力結果として生成する。   FIG. 19 is a diagram illustrating an example of the output result of the road appendage according to the first embodiment. As shown in FIG. 19, the output result includes the collection date and time, the installation location of the road attachment, the type of the road attachment, the captured image, and the like. The output unit 105 uses the current time as the collection date and time, generates the contents of the installation location based on the position information, and determines the type of road attachment from the image of the detected road attachment. Then, the output unit 105 generates the collection date and time, the installation location of the road attachment, the type of the road attachment, and the captured image as an output result.

なお、出力結果は図19に示す形式に限定されるものではなく、任意の形式で出力するように出力部105を構成することができる。例えば、車両に搭載されたナビゲーションシステム等で表示する電子地図の位置情報が示す座標位置に、検出された道路附属物の道路標識や道路ミラー等の画像を表示するように構成してもよい。   The output result is not limited to the format shown in FIG. 19, and the output unit 105 can be configured to output in any format. For example, an image such as a road sign of a detected road attachment or a road mirror may be displayed at a coordinate position indicated by position information of an electronic map displayed by a navigation system or the like mounted on a vehicle.

このように本実施形態によれば、多くの種類の道路附属物を高精度に検出することが可能となる。すなわち、従来の道路附属物検出装置では、すべての道路附属物を対象とできていない。色情報に基づき道路附属物を検出する手法では、黄色や青色の道路附属物に対しては、地面や空など背景との色差が大きくない場合が存在し、道路附属物の検出が困難となる場合がある。また、道路ミラーにおいて用いられる黄色は、ミラーの縁部分の限られた部分にしか用いられておらず、撮像画像から特徴をとらえるのは困難である。   Thus, according to this embodiment, it is possible to detect many types of road accessories with high accuracy. That is, the conventional road attachment detection device can not cover all road attachments. In the method of detecting road attachments based on color information, for yellow and blue road attachments, there are cases where the color difference from the background such as the ground or sky is not large, making it difficult to detect road attachments. There is a case. Also, the yellow color used in road mirrors is used only in a limited portion of the edge of the mirror, making it difficult to capture features from the captured image.

一方、形状に基づいて道路附属物を検出する手法では、道路附属物の取り付け角度によっては、撮像時の撮影時の形状が変化する場合もある。このため、実施形態では、道路附属物検出装置100は、柱領域、特定色領域、特定形状領域を検出して、各領域の検出結果を総合的に判断して道路附属物の判定を行っている。このため、本実施形態によれば、取り付けの柱領域と、特定色領域、特定形状領域を合わせて道路附属物を検出することができ、多くの種類の道路附属物を高精度に検出することが可能となる。   On the other hand, in the method of detecting the road attachment based on the shape, the shape at the time of imaging at the time of imaging may change depending on the attachment angle of the road attachment. For this reason, in the embodiment, the road accessory detection device 100 detects a pillar area, a specific color area, and a specific shape area, and comprehensively determines the detection result of each area to determine a road attachment. There is. For this reason, according to the present embodiment, it is possible to detect road attachments by combining the mounting pillar area, the specific color area, and the specific shape area, and to detect many types of road accessories with high accuracy. Is possible.

(実施形態2)
実施形態1では、特定形状の検出の際に、一つの道路附属物に対して一つの形状パターンを用いていたが、この実施形態2では、一つの道路附属物に対して一つの形状パターンを変化させながら用いている。
Second Embodiment
In the first embodiment, one shape pattern is used for one road attachment when detecting a specific shape, but in the second embodiment, one shape pattern is used for one road attachment. It is used while changing it.

図20は、実施形態2の道路附属物検出装置の機能的構成を示すブロック図である。実施形態2の道路附属物検出装置3000は、図20に示すように、撮像カメラ110と、柱領域検出部101と、特定色検出部102と、特定形状検出部103と、判定部104と、出力部105と、計時部106と、位置検出部107と、色DB120と、形状DB130と、特定形状変換部3010とを主に備えている。ここで、撮像カメラ110、柱領域検出部101、特定色検出部102、特定形状検出部103、判定部104、出力部105、計時部106、位置検出部107、色DB120、形状DB130の機能、構成については実施形態1と同様である。   FIG. 20 is a block diagram showing a functional configuration of the road accessory detection device of the second embodiment. As shown in FIG. 20, the road accessory detection apparatus 3000 according to the second embodiment includes an imaging camera 110, a pillar area detection unit 101, a specific color detection unit 102, a specific shape detection unit 103, and a determination unit 104. An output unit 105, a clock unit 106, a position detection unit 107, a color DB 120, a shape DB 130, and a specific shape conversion unit 3010 are mainly provided. Here, functions of the imaging camera 110, column area detection unit 101, specific color detection unit 102, specific shape detection unit 103, determination unit 104, output unit 105, clock unit 106, position detection unit 107, color DB 120, shape DB 130, The configuration is the same as that of the first embodiment.

特定形状変換部3010は、形状DB130から検出対象の特定形状の形状パターンを読み込んで形状を変換する。図21は、実施形態2の形状パターンの変換の一例を示す図である。特定形状変換部3010は、形状パターンを、車両の走行により道路附属物の見え方が異なってくることにより、見え方の変化に併せて変換する。特定形状検出部103は、特定形状変換部3010により変化していく形状パターンごとに特定形状を検出する。   The specific shape conversion unit 3010 reads the shape pattern of the specific shape to be detected from the shape DB 130 and converts the shape. FIG. 21 is a diagram showing an example of conversion of the shape pattern of the second embodiment. The specific shape conversion unit 3010 converts the shape pattern in accordance with the change in appearance as the appearance of the road attachment changes depending on the travel of the vehicle. The specific shape detection unit 103 detects a specific shape for each shape pattern that is changed by the specific shape conversion unit 3010.

図22は、実施形態2の道路附属物検出処理の手順の一例を示すフローチャートである。ここで、図22に示すフローチャートの処理は、例えば、数秒毎などの所定時間間隔で実行される。S11の撮像画像の入力からS13の特定色検出処理までは実施形態1と同様に行われる。次に、特定形状変換部3010は、形状DB130から検出対象の特定形状の形状パターンを読み込んで、1パターンだけ変換する(S91)。そして、特定形状検出部103は、1パターン変換された形状パターンにより特定形状検出処理を行う(S14)。特定形状変換部3010は、形状パターンを、S11からS17の処理を繰り返すことたびに図21に示すように1パターンずつ変換し、特定形状検出部103が特定形状を検出する。S15以降の処理は実施形態1と同様に行われる。   FIG. 22 is a flowchart illustrating an example of a road accessory detection process according to the second embodiment. Here, the processing of the flowchart shown in FIG. 22 is executed at predetermined time intervals such as every several seconds, for example. The input of the captured image in S11 to the specific color detection process in S13 are performed in the same manner as in the first embodiment. Next, the specific shape conversion unit 3010 reads the shape pattern of the specific shape to be detected from the shape DB 130, and converts only one pattern (S91). Then, the specific shape detection unit 103 performs a specific shape detection process using the shape pattern converted into one pattern (S14). The specific shape conversion unit 3010 converts the shape pattern one pattern at a time as shown in FIG. 21 each time the processing from S11 to S17 is repeated, and the specific shape detection unit 103 detects a specific shape. The processes after S15 are performed in the same manner as in the first embodiment.

形状に基づいて道路附属物を検出する手法があるが、道路附属物の取り付け角度によっては、撮像時の撮影時の形状が変化する場合もある。例えば、正面からみて円である道路ミラーは、道路の進行方向に対して斜めに取り付けるため、走行車両から観測すると楕円の画像が得られ、円の形状に基づく道路附属物の検出処理をそのまま適用できない。   Although there is a method of detecting a road attachment based on the shape, depending on the attachment angle of the road attachment, the shape at the time of imaging at the time of imaging may change. For example, since a road mirror which is a circle when viewed from the front is attached obliquely to the traveling direction of the road, an elliptical image is obtained when observed from a traveling vehicle, and the road attachment detection processing based on the shape of the circle is applied as it is Can not.

図23は、実施形態2の円形の道路ミラーの車両からの見え方の例を示す図である。道路ミラー2301は、車両からみて正面に向けて設置しておらず、車両から撮影した撮像画像では図23に示すように楕円に変形する。特定形状検出部103は、このように複数種類の形状パターンを用いて、種々の角度に設置されている道路附属物の検出を行う。   FIG. 23 is a diagram illustrating an example of how a circular road mirror of the second embodiment is viewed from a vehicle. The road mirror 2301 is not installed toward the front as viewed from the vehicle, and in a captured image captured from the vehicle, it is deformed into an ellipse as shown in FIG. The specific shape detection unit 103 detects road attachments installed at various angles using a plurality of types of shape patterns as described above.

このように実施形態では、道路附属物検出装置3000は、道路附属物に対して形状パターンを変換しながら特定形状の検出を変化させながら特定形状の検出を行っている。このため、本実施形態によれば、取り付けの柱領域と、特定色領域、特定形状領域を合わせて道路附属物を検出することができ、かつ車両の走行に応じた見え方の変化に対応することができる。従って、本実施形態によれば、多くの種類の道路附属物をより高精度に検出することができる。   As described above, in the embodiment, the road attachment detection device 3000 detects a specific shape while changing the detection of the specific shape while converting the shape pattern of the road attachment. For this reason, according to the present embodiment, it is possible to detect the road attachment by combining the mounting pillar area, the specific color area, and the specific shape area, and correspond to the change in appearance depending on the travel of the vehicle. be able to. Therefore, according to the present embodiment, many types of road attachments can be detected with higher accuracy.

なお、本実施形態では、特定形状変換部3010により一種類の形状パターンを変換していたが、一種類の形状パターンに対して予め変換後の複数の形状パターンを形状DB130に登録しておき、これを特定形状検出で用いるように形状DB130、特定形状検出部103を構成してもよい。   In the present embodiment, one type of shape pattern is converted by the specific shape conversion unit 3010, but a plurality of shape patterns after conversion for one type of shape pattern are registered in the shape DB 130 in advance, The shape DB 130 and the specific shape detection unit 103 may be configured to use this in the specific shape detection.

(実施形態3)
実施形態3は、複数の撮像カメラを車両に搭載し、車両の前方向と後方向を撮像した二つの撮像画像を用いて道路附属物を検出している。
(Embodiment 3)
In the third embodiment, a plurality of imaging cameras are mounted on a vehicle, and a road attachment is detected using two captured images obtained by imaging the front direction and the rear direction of the vehicle.

図24は、実施形態3の道路附属物検出装置の機能的構成を示すブロック図である。実施形態2の道路附属物検出装置5000は、図24に示すように、二つの撮像カメラ110a,110bと、柱領域検出部101と、特定色検出部102と、特定形状検出部103と、判定部2404と、出力部105と、計時部106と、位置検出部107と、色DB120と、形状DB130と、特定形状変換部3010とを主に備えている。   FIG. 24 is a block diagram showing a functional configuration of the road accessory detection device of the third embodiment. As shown in FIG. 24, the road accessory detection device 5000 according to the second embodiment determines two imaging cameras 110a and 110b, a pillar area detection unit 101, a specific color detection unit 102, a specific shape detection unit 103, and A unit 2404, an output unit 105, a clock unit 106, a position detection unit 107, a color DB 120, a shape DB 130, and a specific shape conversion unit 3010 are mainly included.

撮像カメラ110aは、車両の前方の道路周辺を撮像可能に車両に設置されている。撮像カメラ110bは、車両の後方の道路周辺を撮像可能に車両に設置されている。図25は、実施形態3の二つの撮像カメラ110a,110bの撮像方向の一例を示す図である。図25(a)は、撮像カメラ110aが車両2501の進行方向に光軸を合わせた前方の方向2502を撮像方向とし、撮像カメラ110bが車両2501の進行方向と180°後方の方向2503を撮像方向として設置された例を示している。   The imaging camera 110a is installed in the vehicle so as to be able to image around the road ahead of the vehicle. The imaging camera 110 b is installed in the vehicle so as to be able to image around the road behind the vehicle. FIG. 25 is a view showing an example of imaging directions of the two imaging cameras 110a and 110b of the third embodiment. In FIG. 25 (a), the imaging camera 110a uses the forward direction 2502 with the light axis aligned with the traveling direction of the vehicle 2501 as the imaging direction, and the imaging camera 110b captures the traveling direction of the vehicle 2501 and the direction 2503 behind 180 ° It shows an example installed as.

図25(b)は、撮像カメラ110bが車両2501の進行方向に対して45°斜めの方向2602を撮像方向とし、撮像カメラ110bが車両2501の進行方向の180°後方から45°斜めの方向2603を撮像方向として設置した例を示している。撮像カメラ110a,110bの撮像方向は、撮像範囲に道路周辺に設置された道路附属物が含まれるような方向であれば、図25(a),(b)のいずれでも、あるいは図25(a)、(b)以外でもよい。   In FIG. 25B, the imaging camera 110b takes a direction 2602 that is 45 ° oblique to the traveling direction of the vehicle 2501 as the imaging direction, and the imaging camera 110b does a direction 2603 that is 45 ° oblique from the rear of 180 ° of the traveling direction Shows an example in which the image pickup direction is set. The imaging direction of the imaging cameras 110a and 110b may be any of FIGS. 25 (a) and 25 (b) as long as it is a direction in which the road attachment installed around the road is included in the imaging range. It may be other than (b).

撮像カメラ110aによる撮像画像を前方撮像画像といい、撮像カメラ110bによる撮像画像を後方撮像画像という。前方撮像画像は第1の撮像画像の一例であり、後方撮像画像は第2の撮像画像の一例である。   An image captured by the imaging camera 110a is referred to as a forward captured image, and an image captured by the imaging camera 110b is referred to as a backward captured image. The front captured image is an example of a first captured image, and the rear captured image is an example of a second captured image.

柱領域検出部101、特定色検出部102、特定形状検出部103、出力部105、計時部106、位置検出部107、色DB120、形状DB130、特定形状変換部3010の機能、構成については実施形態2と同様である。   The function and configuration of the pillar area detection unit 101, the specific color detection unit 102, the specific shape detection unit 103, the output unit 105, the clock unit 106, the position detection unit 107, the color DB 120, the shape DB 130, and the specific shape conversion unit 3010 Similar to 2.

但し、柱領域検出部101は、前方撮像画像と後方撮像画像のそれぞれから、柱領域を検出する。特定色検出部102は、前方撮像画像と後方撮像画像のそれぞれから、特定色領域を検出する。より具体的には、特定色検出部102は、前方撮像画像から、道路附属物の表面の特定色を有する特定色領域を検出し、後方撮像画像から、道路附属物の裏面の特定色を有する特定色領域を検出する。表面の特定色と裏面の特定色は、道路附属物によって同一の場合もあれば異なる場合もある。また、表面の特定色領域と裏面の特定色領域も、道路附属物によって同一の場合もあれば異なる場合もある。ここで、道路附属物の表面は、第1の面の一例であり、道路附属物の裏面は、第2の面の一例である。   However, the pillar area detection unit 101 detects a pillar area from each of the front captured image and the rear captured image. The specific color detection unit 102 detects a specific color area from each of the front captured image and the rear captured image. More specifically, the specific color detection unit 102 detects a specific color area having a specific color of the surface of the road attachment from the front captured image, and has a specific color of the back of the road attachment from the rear captured image Detect a specific color area. The specific color of the front surface and the specific color of the back surface may be the same or different depending on the road attachment. In addition, the specific color area on the front surface and the specific color area on the back surface may be the same or different depending on the road attachment. Here, the surface of the road attachment is an example of a first surface, and the back surface of the road attachment is an example of a second surface.

特定形状検出部103は、前方撮像画像と後方撮像画像のそれぞれから、特定形状領域を検出する。より具体的には、特定形状検出部103は、前方撮像画像から、道路附属物の表面の特定形状を有する特定形状領域を検出し、後方撮像画像から、道路附属物の裏面の特定形状を有する特定形状領域を検出する。表面の特定形状と裏面の特定形状は、道路附属物によって同一の場合もあれば異なる場合もある。また、表面の特定形状領域と裏面の特定形状領域も、道路附属物によって同一の場合もあれば異なる場合もある。   The specific shape detection unit 103 detects a specific shape area from each of the front captured image and the rear captured image. More specifically, the specific shape detection unit 103 detects a specific shape area having a specific shape of the surface of the road attachment from the front captured image, and has a specific shape of the back surface of the road attachment from the rear captured image Detect a specific shape area. The specific shape of the front surface and the specific shape of the back surface may be the same or different depending on the road attachment. Also, the specific shape area on the front surface and the specific shape area on the back surface may be the same or different depending on the road attachment.

判定部2404は、前方撮像画像から検出された柱領域と特定色領域と特定形状領域とに基づいて、前方撮像画像に道路附属物の表面が存在するか否かの第1判定を行う。判定部2404は、後方撮像画像から検出された柱領域と特定色領域と特定形状領域とに基づいて、前方撮像画像に道路附属物の裏面が存在するか否かの第2判定を行う。ここで、第1判定と第2判定のそれぞれの手法については、実施形態2と同様である。   The determination unit 2404 performs a first determination as to whether or not the surface of the road appendage is present in the forward captured image, based on the pillar region, the specific color region, and the specific shape region detected from the forward captured image. The determination unit 2404 performs a second determination as to whether or not the reverse side of the road appendage exists in the front captured image, based on the pillar region, the specific color region, and the specific shape region detected from the rear captured image. Here, each method of the first determination and the second determination is the same as that of the second embodiment.

また、判定部2404は、第1判定の結果と第2判定の結果とから、前方撮像画像と後方撮像画像に道路附属物が存在するか否かを判定する総合判定処理を行う。より具体的には、判定部2404は、第1判定により前方撮像画像に道路附属物の表面が存在し、かつ、第2判定により後方撮像画像に道路附属物の裏面が存在すると判定された場合に、道路附属物が存在すると判定する。従って、判定部2404は、第1判定により前方撮像画像に道路附属物の表面が存在しないか、または、第2判定により後方撮像画像に道路附属物の裏面が存在しないと判定された場合に、道路附属物が存在しないと判定する。   Further, the determination unit 2404 performs an overall determination process of determining whether a road attachment is present in the front captured image and the rear captured image from the result of the first determination and the result of the second determination. More specifically, when it is determined that the surface of the road attachment is present in the front captured image by the first determination and the back surface of the road attachment is present in the rear captured image by the second determination. It is determined that there is a road attachment. Therefore, when it is determined that the surface of the road attachment does not exist in the front captured image according to the first determination or the back side of the road attachment does not exist in the rear captured image according to the second determination. It is determined that there is no road attachment.

図26は、実施形態3の道路附属物検出の一例を説明するための図である。図26では、車両2501が道路を、図26の上部から下部に向かって走行する際に、走行方向からみて左側に道路ミラー2601が斜めに設置されている例の俯瞰図を示している。   FIG. 26 is a diagram for explaining an example of road accessory detection according to the third embodiment. FIG. 26 shows an overhead view of an example in which a road mirror 2601 is installed obliquely on the left side as viewed from the traveling direction when the vehicle 2501 travels from the top to the bottom of FIG.

この場合、車両2501の走行位置でそれぞれ道路ミラー2601の見え方が変化する。図26に示すように、車両2501が道路ミラー2601から遠方の位置を走行しているときには、前方を撮像する撮像カメラ110aによる撮像画像では、道路ミラー2601の形状は楕円として撮像される(符号2602)。そして、車両2501が道路ミラー2601に接近するに従って、撮像カメラ110aによる撮像画像における道路ミラー2601の形状は、円形に変化していく(符号2603)。このとき、車両2501の後方を撮像する撮像カメラ110bでは、道路ミラー2601は撮像されない(写らない)。   In this case, the appearance of the road mirror 2601 changes at the traveling position of the vehicle 2501. As shown in FIG. 26, when the vehicle 2501 is traveling at a position far from the road mirror 2601, the shape of the road mirror 2601 is imaged as an ellipse in the image taken by the imaging camera 110a for imaging the front (reference numeral 2602). ). Then, as the vehicle 2501 approaches the road mirror 2601, the shape of the road mirror 2601 in the image captured by the imaging camera 110a changes into a circular shape (reference numeral 2603). At this time, the road mirror 2601 is not imaged (not photographed) by the imaging camera 110 b imaging the rear of the vehicle 2501.

また、車両2501が道路ミラー2601の位置を通過した後は、後方を撮像する撮像カメラ110bで道路ミラー2601の裏2604を撮影する。   In addition, after the vehicle 2501 passes the position of the road mirror 2601, the back 2604 of the road mirror 2601 is photographed by the imaging camera 110b that images the rear.

道路ミラー2601において、黄色で塗装されている領域は、ミラーの縁と裏面である。このため、車両2501が道路ミラー2601の位置を通過後に、後方を撮像する撮像カメラ110bで道路ミラー2601の裏面を撮像することにより、特定色検出部102による黄色の特定色領域の検出精度を高くすることができる。このとき、車両2501の前方を撮像する撮像カメラ110aでは、道路ミラー2601は撮像されない(写らない)。   In the road mirror 2601, the areas painted in yellow are the edge and the back of the mirror. For this reason, after the vehicle 2501 passes the position of the road mirror 2601, the detection camera 110b for picking up the rear side picks up the back of the road mirror 2601 with the imaging camera 110b. can do. At this time, the road mirror 2601 is not imaged (not photographed) by the imaging camera 110a that images the front of the vehicle 2501.

次に、以上のように構成された実施形態3の道路附属物検出処理について説明する。図27は、実施形態3の道路附属物検出処理の手順の一例を示すフローチャートである。ここで、図27に示すフローチャートの処理は、例えば、数秒毎などの所定時間間隔で実行される。   Next, the road appendage detection process of Embodiment 3 configured as described above will be described. FIG. 27 is a flowchart illustrating an example of a road accessory detection process according to the third embodiment. Here, the processing of the flowchart shown in FIG. 27 is executed at predetermined time intervals such as every several seconds, for example.

まず、車両の前方を撮像する撮像カメラ110aは、車両の前方の周囲を撮像する。柱領域検出部101、特定色検出部102および特定形状検出部103は、撮像カメラ110aから前方撮像画像を入力する(S1301)。そして、柱領域検出部101は前方撮像画像に対して柱領域検出処理を行う(S1302)。特定色検出部102は前方撮像画像に対して特定色検出処理を行う(S1303)。特定形状変換部3010は、形状DB130に保存されている形状パターンを変換する(S1304)。特定形状検出部103は、形状パターンを用いて前方撮像画像に対して特定形状検出処理を行う(S1305)。そして、判定部2404は、S1302、S1303、S1305の検出結果に基づき、道路附属物の表面の判定処理(第1判定)を行う(S1306)。S1302、S1303、S1305、S1306の各処理については実施形態1と同様に行われる。   First, the imaging camera 110a that images the front of the vehicle images the surroundings of the front of the vehicle. The pillar area detection unit 101, the specific color detection unit 102, and the specific shape detection unit 103 input a front captured image from the imaging camera 110a (S1301). Then, the pillar area detection unit 101 performs a pillar area detection process on the front captured image (S1302). The specific color detection unit 102 performs a specific color detection process on the front captured image (S1303). The specific shape conversion unit 3010 converts the shape pattern stored in the shape DB 130 (S1304). The specific shape detection unit 103 performs a specific shape detection process on the front captured image using a shape pattern (S1305). Then, based on the detection results of S1302, S1303, and S1305, the determination unit 2404 performs determination processing (first determination) of the surface of the road attachment (S1306). The processes of S1302, S1303, S1305, and S1306 are performed as in the first embodiment.

そして、判定部2404は、検出対象物が前方撮像画像の範囲外になったか否かを判断する(S1307)。すなわち、判定部2404は、車両が検出対象物(道路附属物)の位置を通過したか否かを判断する。検出対象物が前方撮像画像の範囲内にある場合には(S1307:No)、車両は検出対象物をまだ通過しておらず、処理はS1301に戻り、S1306までの処理が繰り返し実行される。   Then, the determination unit 2404 determines whether the detection target is out of the range of the front captured image (S1307). That is, the determination unit 2404 determines whether the vehicle has passed the position of the detection target (road attachment). If the detection target is within the range of the front captured image (S1307: No), the vehicle has not yet passed the detection target, the process returns to S1301, and the processing up to S1306 is repeatedly executed.

一方、検出対象物が前方撮像画像の範囲外になった場合には(S1307:Yes)、車両は検出対象物を通過しており、車両の後方を撮像する撮像カメラ110bは、車両の後方の周囲を撮像する。柱領域検出部101、特定色検出部102および特定形状検出部103は、撮像カメラ110bから後方撮像画像を入力する(S1308)。そして、柱領域検出部101は後方撮像画像に対して柱領域検出処理を行う(S1309)。特定色検出部102は後方撮像画像に対して特定色検出処理を行う(S1310)。特定形状変換部3010は、形状DB130に保存されている形状パターンを変換する(S1311)。特定形状検出部103は、形状パターンを用いて後方撮像画像に対して特定形状検出処理を行う(S1312)。そして、判定部2404は、S1309、S1310、S1312の検出結果に基づき、道路附属物の裏面の判定処理(第2判定)を行う(S1313)。S1309、S1310、S1312、S1313の各処理については実施形態1と同様に行われる。   On the other hand, when the detection target is out of the range of the front captured image (S1307: Yes), the vehicle passes through the detection target, and the imaging camera 110b for imaging the rear of the vehicle is located behind the vehicle. Take pictures of the surroundings. The pillar area detection unit 101, the specific color detection unit 102, and the specific shape detection unit 103 input a rear captured image from the imaging camera 110b (S1308). Then, the pillar area detection unit 101 performs a pillar area detection process on the rearward captured image (S1309). The specific color detection unit 102 performs a specific color detection process on the rearward captured image (S1310). The specific shape conversion unit 3010 converts the shape pattern stored in the shape DB 130 (S1311). The specific shape detection unit 103 performs a specific shape detection process on the rearward captured image using a shape pattern (S1312). Then, based on the detection results of S1309, S1310, and S1312, the determination unit 2404 performs determination processing (second determination) of the back surface of the road attachment (S1313). The processes of S1309, S1310, S1312, and S1313 are performed in the same manner as in the first embodiment.

そして、判定部2404は、検出対象物が後方撮像画像の範囲外になったか否かを判断する(S1314)。すなわち、判定部2404は、車両が検出対象物(道路附属物)の位置から遠く離れて検出不能になったか否かを判断する。検出対象物が後方撮像画像の範囲内にある場合には(S1314:No)、処理はS1308に戻り、S1313までの処理が繰り返し実行される。   Then, the determination unit 2404 determines whether the detection target is out of the range of the rear captured image (S1314). That is, determination unit 2404 determines whether the vehicle is far away from the position of the detection target (road attachment) and becomes undetectable. If the detection target is within the range of the backward captured image (S1314: No), the process returns to S1308, and the process to S1313 is repeatedly executed.

一方、検出対象物が前方撮像画像の範囲外になった場合には(S1314:Yes)、すなわち、車両が検出対象物(道路附属物)の位置から遠く離れて検出不能になった場合には、判定部2404は、第1判定(S1306)の結果と、第2判定(S1313)の結果から、道路附属物が検出されたか否かを判定する総合判定処理を行う(S1315)。   On the other hand, when the detection target is out of the range of the front captured image (S 1314: Yes), that is, when the vehicle is far away from the position of the detection target (road attachment) and becomes undetectable. The determination unit 2404 performs an overall determination process (S1315) that determines whether a road attachment has been detected from the result of the first determination (S1306) and the result of the second determination (S1313).

次に、計時部106は現在時刻を取得する(S1316)。そして、位置検出部107は、車両の現在位置を車両に搭載されたGPS等を利用して取得する(S1317)。   Next, the clock unit 106 acquires the current time (S1316). Then, the position detection unit 107 acquires the current position of the vehicle using a GPS or the like mounted on the vehicle (S1317).

出力部105は、判定部104による判定結果と、現在時刻、現在位置をメモリ等に保存しておく。そして、出力部105は、ユーザの指示等により検出終了するか否かを判断する(S1318)。出力部105が検出終了でないと判断した場合には(S1318:No)、処理はS1301へ戻り、S1317までを繰り返し実行する。   The output unit 105 stores the determination result by the determination unit 104, the current time, and the current position in a memory or the like. Then, the output unit 105 determines whether the detection is ended or not according to the user's instruction or the like (S1318). If the output unit 105 determines that the detection is not completed (S1318: No), the process returns to S1301 and repeatedly executes up to S1317.

一方、出力部105が検出終了と判断した場合には(S1318:Yes)、メモリ等に保存された判定結果、現在時刻、現在位置を用いて出力結果を生成する(S1319)。出力部105は、出力結果をモニタなどに表示することにより出力する(S1320)。   On the other hand, when the output unit 105 determines that the detection is completed (S1318: Yes), an output result is generated using the current time and the current position as the determination result stored in the memory or the like (S1319). The output unit 105 outputs the output result by displaying it on a monitor or the like (S1320).

このように本実施形態では、二つの撮像カメラ110a,110bを車両に搭載し、道路附属物検出装置5000は、車両の前方向と後方向を撮像した二つの撮像画像(前方撮像画像、後方撮像画像)を用いて道路附属物を検出している。すなわち、車両が道路附属物の位置の通過前においては、道路附属物検出装置5000は、前方撮像画像から柱検出領域、特定色領域、特定形状領域を検出して、道路附属物の表面の検出を判定する。また、車両が道路附属物の位置の通過後においては、道路附属物検出装置5000は、後方撮像画像から柱検出領域、特定色領域、特定形状領域を検出して、道路附属物の裏面の検出を判定する。そして、道路附属物検出装置5000は、道路附属物の表面と裏面の双方が検出された場合に、道路附属物が存在すると判断する。   As described above, in the present embodiment, the two imaging cameras 110a and 110b are mounted on a vehicle, and the road accessory detection device 5000 is an image obtained by imaging the front and the rear of the vehicle Road attachments are detected using images). That is, before the vehicle passes the position of the road attachment, the road attachment detection device 5000 detects the pillar detection area, the specific color area, and the specific shape area from the front captured image, and detects the surface of the road attachment. Determine In addition, after the vehicle passes the position of the road attachment, the road attachment detection device 5000 detects the pillar detection area, the specific color area, and the specific shape area from the rear captured image, and detects the back surface of the road attachment. Determine Then, the road attachment detection device 5000 determines that the road attachment is present when both of the front and back sides of the road attachment are detected.

このため、本実施形態によれば、取り付けの柱領域と、特定色領域、特定形状領域を合わせて道路附属物を検出することができ、かつ車両の走行に応じた見え方の変化に対応することができる。このため、本実施形態によれば、多くの種類の道路附属物をより高精度に検出することができる。   For this reason, according to the present embodiment, it is possible to detect the road attachment by combining the mounting pillar area, the specific color area, and the specific shape area, and correspond to the change in appearance depending on the travel of the vehicle. be able to. For this reason, according to this embodiment, many types of road attachments can be detected with higher accuracy.

なお、上記実施形態では、道路附属物検出装置100、3000、5000を車両に搭載し、道路附属物検出装置100、3000、5000は車両の走行中に撮像カメラ110で道路周辺を撮像しながら、撮像画像を逐次取得して、リアルタイムに道路附属物の存在を判定していたが、これに限定されるものではない。例えば、道路附属物検出装置100、3000、5000と撮像カメラ110とを別体として、道路附属物検出装置100、3000、5000を車両とは別個に設ける。そして、車両走行中に撮像カメラ110により道路周辺を撮像して動画として保存しておく。そして、後日、動画を取得して、柱領域、特定色領域、特定形状領域を検出して道路附属物の存在を検出するように道路附属物検出装置100、3000、5000を構成してもよい。   In the above embodiment, the road accessory detection devices 100, 3000, and 5000 are mounted on a vehicle, and the road accessory detection devices 100, 3000, and 5000 are used to capture the road surroundings with the imaging camera 110 while the vehicle is traveling. Although the captured image was sequentially acquired and the presence of the road attachment was determined in real time, it is not limited to this. For example, the road attachment detection devices 100, 3000, 5000 and the imaging camera 110 are separately provided, and the road attachment detection devices 100, 3000, 5000 are provided separately from the vehicle. Then, while the vehicle is traveling, the area around the road is imaged by the imaging camera 110 and stored as a moving image. Then, the road attachment detection apparatus 100, 3000, 5000 may be configured to obtain moving images later and detect the pillar area, the specific color area, and the specific shape area to detect the presence of the road attachment. .

また、上記実施形態では、道路附属物として、道路標識や道路ミラー、街路灯を例にあげて説明したが、これらに限定されるものではない。例えば、信号機や案内板等も道路附属物として検出するように道路附属物検出装置100、3000、5000を構成することができる。これにより、より多数の種類の道路附属物を高精度に検出することが可能となる。   Moreover, in the said embodiment, although a road sign, a road mirror, and a street light were mentioned as an example and demonstrated as a road attachment, it is not limited to these. For example, the road attachment detection apparatus 100, 3000, 5000 can be configured to detect a traffic light, a guide plate or the like as a road attachment. This makes it possible to detect more types of road accessories with high accuracy.

また、上記実施形態では、道路附属物検出装置100、3000、5000は、道路の側方に配置された道路附属物を検出していたが、これに限定されるものではない。例えば、道路の上方あるいは下方に配置された道路附属物を検出するように道路附属物検出装置100、3000、5000を構成することができる。これにより、より多数の種類の道路附属物を高精度に検出することが可能となる。   Moreover, in the said embodiment, although the road appendage detection apparatus 100, 3000, 5000 was detecting the road appendage arrange | positioned at the side of the road, it is not limited to this. For example, road attachment detection devices 100, 3000, 5000 can be configured to detect road attachments located above or below a road. This makes it possible to detect more types of road accessories with high accuracy.

また、上記実施形態では、柱領域検出部101は、撮像画像中の縦方向の一対の黒色部分を柱領域として検出しているが、これに限定されるものではない。例えば、撮像画像中の横方向の一対の黒色部分を柱領域として検出するように柱領域検出部101を構成することができる。この場合には、横方向に延在する柱により支持される案内板等も、道路附属物として高精度に検出することが可能となる。   Furthermore, in the above embodiment, the pillar area detection unit 101 detects a pair of black portions in the vertical direction in the captured image as a pillar area, but the present invention is not limited to this. For example, the pillar area detection unit 101 can be configured to detect a pair of black portions in the lateral direction in the captured image as a pillar area. In this case, a guide plate or the like supported by laterally extending columns can also be detected with high accuracy as a road attachment.

上記実施形態の道路附属物検出装置100,3000,5000は、CPUなどの制御装置と、ROM(Read Only Memory)やRAMなどの記憶装置と、HDD、SSDCDドライブ装置などの外部記憶装置と、モニタなどの表示装置と、タッチパネルや操作ボタンなどの入力装置を備えたハードウェア構成となっている。   The road accessory detection devices 100, 3000, and 5000 of the above embodiments include a control device such as a CPU, a storage device such as a ROM (Read Only Memory) or a RAM, an external storage device such as an HDD or an SSDCD drive device, and a monitor. Etc., and an input device such as a touch panel or an operation button.

なお、上記実施形態の道路附属物検出装置100,3000,5000で実行される道路附属物検出プログラムは、ROM等に予め組み込まれてコンピュータプログラムプロダクトとして提供される。   The road appendage detection program executed by the road appendage detection apparatus 100, 3000, 5000 of the above embodiment is incorporated in advance in a ROM or the like and provided as a computer program product.

上記実施形態の道路附属物検出装置100,3000,5000で実行される道路附属物検出プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録してコンピュータプログラムプロダクトとして提供するように構成してもよい。   The road attachment detection program executed by the road attachment detection apparatus 100, 3000, 5000 according to the above embodiment is a file in an installable format or an executable format, and the file is CD-ROM, flexible disk (FD), CD-R. , And may be recorded on a computer-readable recording medium such as a DVD (Digital Versatile Disk) and provided as a computer program product.

さらに、上記実施形態の道路附属物検出装置100,3000,5000で実行される道路附属物検出プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることによりコンピュータプログラムプロダクトとして提供するように構成しても良い。また、上記実施形態の道路附属物検出装置100,3000,5000で実行される道路附属物検出プログラムをコンピュータプログラムプロダクトとしてインターネット等のネットワーク経由で提供または配布するように構成しても良い。   Furthermore, a computer program by storing the road attachment detection program executed by the road attachment detection apparatus 100, 3000, 5000 of the above embodiment on a computer connected to a network such as the Internet and downloading via the network It may be configured to be provided as a product. Further, the road attachment detection program executed by the road attachment detection apparatus 100, 3000, 5000 of the above embodiment may be provided or distributed as a computer program product via a network such as the Internet.

上記実施形態の道路附属物検出装置100,3000,5000で実行される道路附属物検出プログラムは、上述した各部(柱領域検出部101、特定色検出部102、特定形状変換部3010、特定形状検出部103、判定部104、2404、出力部105、計時部106、位置検出部107)を含むモジュール構成となっており、実際のハードウェアとしてはCPUが上記ROMから道路附属物検出プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、柱領域検出部101、特定色検出部102、特定形状変換部3010、特定形状検出部103、判定部104,2404、出力部105、計時部106、位置検出部107がRAM上に生成されるようになっている。   The road appendage detection program executed by the road appendage detection apparatus 100, 3000, 5000 according to the above-described embodiment includes the above-described units (the pillar area detection unit 101, the specific color detection unit 102, the specific shape conversion unit 3010, the specific shape detection The module configuration includes the unit 103, the determination unit 104, 2404, the output unit 105, the clock unit 106, and the position detection unit 107), and the CPU reads the road attachment detection program from the ROM as actual hardware. The above-described units are loaded on the main storage device by executing the column area detection unit 101, the specific color detection unit 102, the specific shape conversion unit 3010, the specific shape detection unit 103, the determination units 104 and 2404, the output unit 105 The unit 106 and the position detection unit 107 are generated on the RAM.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

100,3000,5000 道路附属物検出装置
110,110a,110b 撮像カメラ
101 柱領域検出部
102 特定色検出部
103 特定形状検出部
104,2404 判定部
105 出力部
106 計時部
107 位置検出部
120 色DB
130 形状DB
3010 特定形状変換部
100, 3000, 5000 Road attachment detection device 110, 110a, 110b Imaging camera 101 Column area detection unit 102 Specific color detection unit 103 Specific shape detection unit 104, 2404 Determination unit 105 Output unit 106 Timekeeping unit 107 Position detection unit 120 Color DB
130 Shape DB
3010 Specific shape converter

Claims (9)

車両が走行する道路の撮像画像から、前記撮像画像の画素に基づき、検出対象の柱部分の領域である柱領域を検出する柱領域検出部と、
前記撮像画像から、前記検出対象の特定色を有する領域である特定色領域を検出する特定色検出部と、
前記撮像画像から、前記検出対象の特定形状を有する領域である特定形状領域を検出する特定形状検出部と、
前記撮像画像から、前記柱領域と前記特定色領域と前記特定形状領域とが検出され、かつ各領域間の前記撮像画像上での距離が所定の距離未満である場合には、前記柱領域と前記特定色領域と前記特定形状領域とが示す領域が、道路の周辺に配置された道路附属物であると判定する判定部と、
前記道路附属物に関する情報を出力する出力部と、
を備えた道路附属物検出装置。
A pole area detection unit that detects a pole area that is an area of a pole portion to be detected based on pixels of the captured image from a captured image of a road on which the vehicle travels;
A specific color detection unit which detects a specific color area which is an area having a specific color of the detection target from the captured image;
A specific shape detection unit that detects a specific shape region that is a region having a specific shape of the detection target from the captured image;
If the pillar area, the specific color area, and the specific shape area are detected from the captured image, and the distance between the areas on the captured image is less than a predetermined distance, A determination unit that determines that the area indicated by the specific color area and the specific shape area is a road appendage disposed around a road;
An output unit that outputs information on the road attachment;
Road attachment detection device with.
前記特定形状検出部は、前記道路附属物の形状に応じた形状パターンを、前記撮像画像を走査させながら、前記撮像画像とマッチングし、前記形状パターンを変化させながら前記撮像画像とマッチングすることを繰り返すことで、前記特定形状領域を検出する、
請求項に記載の道路附属物検出装置。
The specific shape detection unit matches a shape pattern corresponding to the shape of the road appendage with the captured image while scanning the captured image, and matches the shape image with the captured image while changing the shape pattern. Detecting the specific shape area by repeating;
The road accessory detection device according to claim 1 .
前記形状パターンを変化させる特定形状変換部、
をさらに備えた請求項に記載の道路附属物検出装置。
A specific shape conversion unit that changes the shape pattern,
The road accessory detection device according to claim 2 , further comprising:
前記撮像画像は、前記車両の前方の第1の撮像画像と前記車両の後方の第2の撮像画像とを含み、
前記柱領域検出部は、前記第1の撮像画像と前記第2の撮像画像のそれぞれから、前記柱領域を検出し、
前記特定色検出部は、前記第1の撮像画像と前記第2の撮像画像のそれぞれから、前記特定色領域を検出し、
前記特定形状検出部は、前記第1の撮像画像と前記第2の撮像画像のそれぞれから、前記特定形状領域を検出し、
前記判定部は、前記第1の撮像画像から検出された前記柱領域と前記特定色領域と前記特定形状領域とに基づいて、前記第1の撮像画像に前記道路附属物が存在するか否かの第1判定を行い、前記第2の撮像画像から検出された前記柱領域と前記特定色領域と前記特定形状領域とに基づいて、前記第2の撮像画像に前記道路附属物が存在するか否かの第2判定を行い、前記第1判定の結果と前記第2判定の結果とから、前記第1の撮像画像と前記第2の撮像画像に前記道路附属物が存在するか否かを判定する、
請求項1〜3のいずれか一つに記載の道路附属物検出装置。
The captured image includes a first captured image in front of the vehicle and a second captured image in back of the vehicle,
The pillar region detection unit detects the pillar region from each of the first captured image and the second captured image,
The specific color detection unit detects the specific color area from each of the first captured image and the second captured image,
The specific shape detection unit detects the specific shape area from each of the first captured image and the second captured image.
The determination unit determines whether the road appendage is present in the first captured image based on the pillar area, the specific color area, and the specific shape area detected from the first captured image. Whether the road attachment is present in the second captured image based on the pillar area, the specific color area, and the specific shape area detected from the second captured image. A second determination as to whether the road attachment exists in the first captured image and the second captured image based on the result of the first determination and the result of the second determination judge,
The road accessory detection device according to any one of claims 1 to 3 .
前記特定色検出部は、前記第1の撮像画像から、前記道路附属物の第1の面の特定色を有する前記特定色領域を検出し、前記第2の撮像画像から、前記道路附属物の第2の面の特定色を有する前記特定色領域を検出し、
前記特定形状検出部は、前記第1の撮像画像から、前記道路附属物の第1の面の特定形状を有する前記特定形状領域を検出し、前記第2の撮像画像から、前記道路附属物の第2の面の特定形状を有する前記特定形状領域を検出し、
前記判定部は、前記第1判定として、前記第1の撮像画像に前記道路附属物の第1の面が存在するか否かを判定し、前記第2判定として、前記第2の撮像画像に前記道路附属物の第2の面が存在するか否かを判定し、前記第1判定により前記第1の撮像画像に前記道路附属物の第1の面が存在し、かつ、前記第2判定により前記第2の撮像画像に前記道路附属物の第2の面が存在すると判定された場合に、前記道路附属物が存在すると判定する、
請求項に記載の道路附属物検出装置。
The specific color detection unit detects the specific color area having the specific color of the first surface of the road appendage from the first captured image, and detects the road appendage from the second captured image. Detecting the specific color area having the specific color of the second surface;
The specific shape detection unit detects the specific shape region having the specific shape of the first surface of the road appendage from the first captured image, and detects the road appendage from the second captured image. Detecting the specific shape area having a specific shape of the second surface;
The determination unit determines, as the first determination, whether or not a first surface of the road appendage is present in the first captured image, and, as the second determination, determines the second captured image. It is determined whether or not the second surface of the road attachment is present, and according to the first determination, the first surface of the road attachment is present in the first captured image, and the second determination is made. Determining that the road attachment is present when it is determined that the second surface of the road attachment is present in the second captured image,
The road accessory detection device according to claim 4 .
前記判定部は、前記柱領域、前記特定色領域、前記特定形状領域のいずれも検出され、かつ各領域間の前記撮像画像上での距離のいずれかが前記所定の距離以上である場合には、前記撮像画像に前記道路附属物は存在しないと判定する、
請求項に記載の道路附属物検出装置。
The determination unit detects any of the pillar area, the specific color area, and the specific shape area, and any one of the distances between the areas on the captured image is equal to or more than the predetermined distance. Determining that the road attachment is not present in the captured image;
A road accessory detection device according to claim 5 .
前記判定部は、前記柱領域、前記特定色領域、前記特定形状領域のいずれかが検出されなかった場合には、前記撮像画像に前記道路附属物は存在しないと判定する、
請求項1〜6のいずれか一つに記載の道路附属物検出装置。
The determination unit determines that the road attachment does not exist in the captured image, when any one of the pillar area, the specific color area, and the specific shape area is not detected.
The road accessory detection device according to any one of claims 1 to 6 .
前記車両が走行する道路の周辺を撮像して前記撮像画像を得る撮像部、
をさらに備えた請求項1〜のいずれか一つに記載の道路附属物検出装置。
An imaging unit configured to capture an area around a road on which the vehicle travels to obtain the captured image;
The road attachment detection device according to any one of claims 1 to 7 , further comprising:
車両が走行する道路の周辺の撮像画像から、前記撮像画像の画素に基づき、検出対象の柱部分の領域である柱領域を検出し、
前記撮像画像から、前記検出対象の特定色を有する領域である特定色領域を検出し、
前記撮像画像から、前記検出対象の特定形状を有する領域である特定形状領域を検出し、
前記撮像画像から、前記柱領域と前記特定色領域と前記特定形状領域とが検出され、かつ各領域間の前記撮像画像上での距離が所定の距離未満である場合には、前記柱領域と前記特定色領域と前記特定形状領域とが示す領域が、道路の周辺に配置された道路附属物であると判定し、
前記道路附属物に関する情報を出力する、
ことを含む道路附属物検出方法。
A pillar area which is an area of a pillar portion to be detected is detected from a pickup image of a periphery of a road on which a vehicle travels, based on pixels of the pickup image,
Detecting a specific color area which is an area having a specific color of the detection target from the captured image;
Detecting a specific shape area, which is an area having a specific shape of the detection target, from the captured image;
If the pillar area, the specific color area, and the specific shape area are detected from the captured image, and the distance between the areas on the captured image is less than a predetermined distance, It is determined that the area indicated by the specific color area and the specific shape area is a road appendage disposed around a road,
Output information about the road attachment,
Road attachment detection method including.
JP2015044086A 2015-03-05 2015-03-05 Road attachment detection device and road attachment detection method Active JP6526449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044086A JP6526449B2 (en) 2015-03-05 2015-03-05 Road attachment detection device and road attachment detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044086A JP6526449B2 (en) 2015-03-05 2015-03-05 Road attachment detection device and road attachment detection method

Publications (2)

Publication Number Publication Date
JP2016162436A JP2016162436A (en) 2016-09-05
JP6526449B2 true JP6526449B2 (en) 2019-06-05

Family

ID=56845408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044086A Active JP6526449B2 (en) 2015-03-05 2015-03-05 Road attachment detection device and road attachment detection method

Country Status (1)

Country Link
JP (1) JP6526449B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417080B2 (en) 2017-10-06 2022-08-16 Nec Corporation Object detection apparatus, object detection method, and computer-readable recording medium
JP7115903B2 (en) * 2017-12-07 2022-08-09 株式会社ミツトヨ Reading device for the measured values of analog measuring tools
US10825216B2 (en) * 2017-12-07 2020-11-03 Mitutoyo Corporation Apparatus for reading value measured with analog measuring tool
CN111488411B (en) * 2019-01-28 2023-03-21 阿里巴巴集团控股有限公司 Road facility construction method and device, rendering method, medium and terminal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654186A (en) * 1992-08-03 1994-02-25 Ricoh Co Ltd Image recognizing device
JP3178305B2 (en) * 1995-06-29 2001-06-18 オムロン株式会社 Image processing method and apparatus, copier, scanner and printer equipped with the same
JP3419968B2 (en) * 1995-09-12 2003-06-23 株式会社東芝 Image recognition device and method
JP4902453B2 (en) * 2007-07-27 2012-03-21 パイオニア株式会社 Traffic regulation information generation apparatus and traffic regulation information generation program
JP5573266B2 (en) * 2010-03-19 2014-08-20 アイシン・エィ・ダブリュ株式会社 Vehicle object image recognition apparatus, vehicle object image recognition method, and computer program
JP6102602B2 (en) * 2013-07-23 2017-03-29 ソニー株式会社 Image processing apparatus, image processing method, image processing program, and imaging apparatus

Also Published As

Publication number Publication date
JP2016162436A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6526449B2 (en) Road attachment detection device and road attachment detection method
JP2005268847A (en) Image generating apparatus, image generating method, and image generating program
JP6194604B2 (en) Recognizing device, vehicle, and computer executable program
JP2011170599A (en) Outdoor structure measuring instrument and outdoor structure measuring method
JP2015009646A (en) Driving support device
JP6278790B2 (en) Vehicle position detection device, vehicle position detection method, vehicle position detection computer program, and vehicle position detection system
JP5539250B2 (en) Approaching object detection device and approaching object detection method
JP2008004989A (en) Vehicle perimeter display apparatus
JP2010026601A (en) Vehicle periphery monitoring device
JP6634502B2 (en) Image processing apparatus, image processing method, and image processing program
JP6477348B2 (en) Self-position estimation apparatus and self-position estimation method
JP6375911B2 (en) Curve mirror detector
JP6802999B2 (en) Compartment line detection system
JP5862217B2 (en) Marker detection and tracking device
JP5106771B2 (en) Road marking measuring device
JP2007195061A (en) Image processor
JP3994954B2 (en) Object detection apparatus and object detection method
JP2009193130A (en) Vehicle surrounding monitoring device, vehicle, program for vehicle surrounding monitoring and vehicle surrounding monitoring method
JP4752319B2 (en) Image recognition apparatus and image recognition method
JP4855342B2 (en) Object classification device, parking space detection device, object classification method, parking space detection method, and program
JP2010009372A (en) Vehicle periphery monitoring device
JP2008146132A (en) Image detection device, program, and image detection method
JP2007026400A (en) Object detection/recognition system at place with sharp difference in illuminance using visible light and computer program
JP5911623B1 (en) Detection device and detection method for road joints
JP2004310282A (en) Vehicle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 6526449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150