JP6521307B2 - Method and apparatus for measuring biological property values using near infrared spectroscopy - Google Patents
Method and apparatus for measuring biological property values using near infrared spectroscopy Download PDFInfo
- Publication number
- JP6521307B2 JP6521307B2 JP2015146414A JP2015146414A JP6521307B2 JP 6521307 B2 JP6521307 B2 JP 6521307B2 JP 2015146414 A JP2015146414 A JP 2015146414A JP 2015146414 A JP2015146414 A JP 2015146414A JP 6521307 B2 JP6521307 B2 JP 6521307B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- absorbance
- biological
- measuring
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004071 biological effect Effects 0.000 title claims description 44
- 238000000034 method Methods 0.000 title claims description 25
- 238000004497 NIR spectroscopy Methods 0.000 title claims description 22
- 238000002835 absorbance Methods 0.000 claims description 56
- 239000008280 blood Substances 0.000 claims description 49
- 210000004369 blood Anatomy 0.000 claims description 49
- 238000005259 measurement Methods 0.000 claims description 45
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 28
- 239000008103 glucose Substances 0.000 claims description 28
- 238000012545 processing Methods 0.000 claims description 23
- 238000004364 calculation method Methods 0.000 claims description 6
- 235000013305 food Nutrition 0.000 description 15
- 235000012054 meals Nutrition 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 208000008589 Obesity Diseases 0.000 description 3
- 235000020824 obesity Nutrition 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 235000005686 eating Nutrition 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007410 oral glucose tolerance test Methods 0.000 description 2
- 230000035900 sweating Effects 0.000 description 2
- 208000031636 Body Temperature Changes Diseases 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 235000006694 eating habits Nutrition 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 230000000291 postprandial effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本発明は、近赤外分光法を用いて血糖値などの生体特性値を測定する方法及び装置に関するものである。 The present invention relates to a method and apparatus for measuring biological property values such as blood glucose levels using near infrared spectroscopy.
生体特性値の測定は、一般に採血を伴うものであり、例えば、人の血糖値を測定する方法としては、採血した血液を用いて血糖に対するグルコース酸化酵素の反応を電気化学的に定量し、血糖値に換算するグルコースセンサー法が確立している。 The measurement of biological property values generally involves blood collection. For example, as a method of measuring blood glucose level in a human, the reaction of glucose oxidase to blood glucose is electrochemically quantified using blood collected, and blood glucose is measured A glucose sensor method has been established to convert to a value.
これに対して、採血に伴う苦痛や採血針による感染等の問題を解決するために、非侵襲的に生体特性値を測定する方法が提案されており、その一つに近赤外分光法を用いた測定方法が知られている。これは、近赤外領域の波長の光を生体(人体)の特定箇所に照射し、生体からの拡散反射光又は透過光を分光器にて測定し、その拡散反射光又は透過光の吸光度(スペクトル)から血糖値などの生体特性値を算出しようとするものである。 On the other hand, in order to solve problems such as pain associated with blood collection and infection with a blood collection needle, methods of non-invasively measuring biological property values have been proposed, and one of them is near infrared spectroscopy. The measuring method used is known. This is to irradiate the light of the wavelength of near infrared region to a specific part of the living body (human body), measure the diffuse reflection light or the transmitted light from the living body with a spectroscope, and absorb the absorbance of the diffuse reflected light or the transmitted light ( It is intended to calculate biological characteristic values such as blood sugar level from the spectrum).
血糖値の測定では、特定波長920nm付近と特定波長982nm付近を含む近赤外領域の波長の光を指などに照射して、その吸光度を求め、その値から血糖値を測定する方法が知られている。また、下記特許文献1に記載のものでは、複数の異なる波長からなる光を人体に照射して得られる人体からの透過光量から人体の血糖値を非侵襲的に測定することが提案されている。
In the measurement of blood glucose level, a method is known in which light of a wavelength in the near infrared region including a specific wavelength of 920 nm and a specific wavelength of 982 nm is irradiated to a finger or the like to obtain its absorbance and measure the blood glucose level from that value. ing. Moreover, in the thing of following
生体特性値の測定では、被測定対象である生体の状態に対応して、生体特性値が時間経過によってどのように変化するかを測定することが重要になっている。例えば、血糖値の測定であれば、食後の血糖値の時間経過による変化が分かれば、食後の血糖値上昇を抑えることができる食材を見つけて、肥満の防止や糖尿病の予防など、健康管理に役立てることが可能になる。 In the measurement of biological property values, it is important to measure how the biological property values change with the passage of time in accordance with the state of the living body to be measured. For example, in the case of measurement of blood glucose level, if changes in blood glucose levels after meals are known, food ingredients that can suppress the rise in blood glucose levels after meals are found, and health management such as prevention of obesity or diabetes is prevented. It can be useful.
生体特性値の時間経過による変化を測定する場合、採血した血液を用いて測定しようすると、一定時間毎(例えば、数十分毎)に採血を行わなければならないので、測定対象者に多大な負担を掛けてしまう問題が生じる。前述した従来技術のように、非侵襲的な測定方法が確立すれば、この問題は解決するが、近赤外分光法によって生体特性値の時間経過による変化を求めようとすると、生体特性値に関連する吸光度を得る特定波長の選択が困難になり、正確な値を求めることができない問題が生じる。 When measuring changes in biological property values with the passage of time, it is necessary to collect blood every fixed time (for example, every several tens of minutes) when trying to measure using collected blood, a large burden on the subject of measurement There is a problem that you If the noninvasive measurement method is established like the prior art mentioned above, this problem will be solved, but if it is going to obtain the change over time of the biological property value by near infrared spectroscopy, the biological property value will be It becomes difficult to select a specific wavelength for obtaining the related absorbance, and there arises a problem that an accurate value can not be determined.
血糖値などの生体特性値を近赤外分光法によって求める場合に、被測定対象の個体毎に、或いは同じ個体であっても測定する状態やその日間差によって、生体特性値に関連する吸光度を得る特定波長が異なる波長になることが分かってきた。このため、従来技術のように、特定波長を固定値として吸光度を求め、その吸光度と生体特性値との相関を求めようとしても、個体差や日間差、測定部位の体温変化や発汗状態などの状態差、測定部位における生体組織内での光路変化などによって、正確な値を得ることができず、実測値との間に大きな差が出てしまう問題があった。 When biological property values such as blood glucose levels are determined by near infrared spectroscopy, the absorbance related to the biological property values is determined according to the state to be measured for each individual to be measured or even the same individual and the difference between the days. It has been found that the particular wavelengths obtained are different. For this reason, as in the prior art, even when trying to determine the absorbance with a specific wavelength as a fixed value and determine the correlation between the absorbance and the biological characteristic value, individual differences and differences between days, body temperature changes at the measurement site, sweating conditions, etc. There is a problem that an accurate value can not be obtained due to a state difference, an optical path change in a living tissue at a measurement site, or the like, and a large difference with an actual measurement value occurs.
本発明は、このような問題に対処することを課題の一例とするものである。すなわち、近赤外分光法を用いた新たな生体特性値の測定方法を提案し、精度の高い生体特性値の測定を可能にすること、生体特性値の時間経過による変化を測定対象者への負担を減らしながら精度良く測定することができること、などが本発明の目的である。 The present invention takes an example of the problem to address such a problem. That is, a method of measuring a new biological property value using near-infrared spectroscopy is proposed, and measurement of the biological property value with high accuracy is enabled, and a change of the biological property value with the passage of time to the person to be measured. It is an object of the present invention to be able to measure with high accuracy while reducing the burden.
このような目的を達成するために、本発明による近赤外分光法を用いた生体特性値測定方法及び測定装置は、以下の構成を具備するものである。 In order to achieve such an object, the method and apparatus for measuring biological characteristic values using near-infrared spectroscopy according to the present invention have the following configurations.
生体特性値の時間経過に伴う変化を測定する近赤外分光法を用いた生体特性値測定方法であって、複数の経過時間において、生体に近赤外光を照射し、生体からの拡散反射光又は透過光を受光して、近赤外の設定波長範囲で複数の波長毎の吸光度を求め、前記複数の経過時間において得た生体測定値の実測値に対して吸光度の相関が高い波長を特定し、特定した波長の吸光度から前記実測値を算出する計算式を導出し、他の経過時間において、生体に近赤外光を照射し、生体からの拡散反射光又は透過光を受光して、特定した波長の吸光度を求めて、前記計算式から生体特性値を算出することを特徴とする。 A near-infrared spectroscopy biological characteristic value measuring method using the measuring changes with time of the biological characteristic values, in a plurality of elapsed time, is irradiated with near-infrared light to the raw body, diffusion from a living body Reflected light or transmitted light is received to determine the absorbance for each of a plurality of wavelengths in the near-infrared set wavelength range, and a wavelength having a high correlation of absorbance with the measured value of the biological measurement value obtained in the plurality of elapsed times To calculate the measured value from the absorbance of the specified wavelength, and at other elapsed times, irradiate the living body with near infrared light and receive diffuse reflected light or transmitted light from the living body It is characterized in that the absorbance of the specified wavelength is determined, and the biological characteristic value is calculated from the calculation formula.
生体特性値の時間経過に伴う変化を測定する近赤外分光法を用いた生体特性値測定装置において、入力された生体特性値の実測値と近赤外分光装置が求めた吸光度とを演算処理する演算処理部を備え、前記演算処理部は、生体特性値の時間経過に伴う変化を測定するに際して、複数の経過時間において、実測された生体特性値の実測値と、近赤外の設定波長範囲で複数の波長毎に求めた吸光度とから、前記実測値に対して吸光度の相関が高い波長を特定し、特定した波長の吸光度から前記実測値を算出する計算式を導出し、他の経過時間において、特定した波長の吸光度と前記計算式から生体特性値を算出することを特徴とする近赤外分光法を用いた生体特性値測定装置。 In a biological property value measuring apparatus using near infrared spectroscopy that measures changes with time of biological property values, arithmetic processing is performed on the measured values of the input biological property values and the absorbance obtained by the near infrared spectroscope. When the arithmetic processing unit measures changes in the biological characteristic value with the passage of time, the measured values of the biological characteristic value measured in a plurality of elapsed times and the set wavelength of the near infrared light From the absorbance determined for each of a plurality of wavelengths in the range, a wavelength having a high correlation of absorbance with the measured value is identified, and a calculation formula for calculating the measured value from the absorbance of the identified wavelength is derived. A biological property value measuring apparatus using near-infrared spectroscopy, which calculates a biological property value from the absorbance of a specified wavelength and the formula in time.
このような特徴を有する本発明は、生体特性値の時間経過に伴う変化を測定するに際して、一連の測定毎に最適な波長を特定して吸光度を求め、その吸光度との相関で生体特性値を求めることができるので、近赤外分光法によって精度の高い生体特性値の測定を行うことができる。また、生体特性値の時間経過に伴う変化を、一部実測値を得ること無く測定することができるので、採血などに伴う測定対象者の負担を減らしながら、精度良く測定することができる。 In the present invention having such characteristics, when measuring the change over time of the biological characteristic value, the optimum wavelength is specified for each series of measurement to obtain the absorbance, and the biological characteristic value is determined by the correlation with the absorbance. As it can be determined, it is possible to measure biological characteristic values with high accuracy by near infrared spectroscopy. In addition, since the change of the biological characteristic value with the passage of time can be measured without obtaining a part of the actual measurement value, it is possible to accurately measure while reducing the burden on the person to be measured associated with blood collection and the like.
また、本発明によると、個体差や日間差、測定部位の体温変化や発汗状態などの状態差、測定部位における生体組織内での光路変化などがあっても、測定毎に最適な波長を特定して、生体特性値との相関が高い吸光度を求めて、それによって生体特性値を算出することができるので、いつでも、どこでも、誰に対してでも適用可能な、安定した測定精度を担保できる生体特性値測定方法及び装置を提供することができる。 Furthermore, according to the present invention, the optimum wavelength is specified for each measurement even if there are individual differences, daily differences, temperature changes in the measurement site, state differences such as sweating conditions, or changes in the optical path in living tissues at the measurement site. Then, the biological characteristic value can be calculated by obtaining the absorbance having a high correlation with the biological characteristic value, whereby a living body capable of securing stable measurement accuracy applicable to anyone anytime, anywhere, and anyone A characteristic value measuring method and apparatus can be provided.
以下、図面を参照して本発明の実施形態を説明する。図1は、本発明の実施形態に係る生体特性値測定装置の構成例を示した説明図である。生体特性値測定装置1は、近赤外分光装置10と演算処理部20を備えている。近赤外分光装置10は、周知の構成であり、測光部11と分光部12と光源部13とを備えている。測光部11は、光源部13から出射される近赤外光を被測定対象(生体)Mに照射する光照射部14と、被測定対象(生体)Mからの拡散反射光又は透過光を受光する受光部15を備えている。分光部12は、受光部15で受光した光から特定波長の吸光度を求めて出力する。演算処理部20は、生体特性値の実測値が入力されると共に、分光部12から出力される吸光度の測定値が入力され、それらを演算処理することによって、実測されていない経過時間の生体特性値を計算出力する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a configuration example of a biological characteristic value measuring device according to an embodiment of the present invention. The biological characteristic
演算処理部20の処理工程によって、本発明の実施形態に係る近赤外分光法を用いた生体特性値測定方法が実行される。以下に、演算処理部20の処理工程を説明する。
The biological characteristic value measuring method using near infrared spectroscopy according to the embodiment of the present invention is executed by the processing process of the
図2は、演算処理部20によって求められる生体特性値の測定結果を示している。ここでは、生体特性値の時間経過に伴う変化を求めており、測定開始からの経過時間t0〜t6においてどのように生体特性値が変化するかを、一部を実測値で求め、その他を計算値で求めている。ここでの実測値とは、採血による血液から測定された値などを指している。なお、実測値を求めた血液は人体に戻すことなく廃棄される。
FIG. 2 shows the measurement results of the biological property values obtained by the
具体的には、経過時間t0における生体特性値の実測値A0、経過時間t1における生体特性値の実測値A1、経過時間t2における生体特性値の実測値A2、経過時間t3における生体特性値の実測値A3、経過時間t6における生体特性値の実測値A6をそれぞれ求め、各経過時間t0〜t6において近赤外分光装置が求めた吸光度と前述した実測値とから、経過時間t4における生体特性値(計算値)A4*、経過時間t5における生体特性値(計算値)A5*を算出する。 Specifically, an actual measurement value A0 of the biological property value at the elapsed time t0, an actual measurement value A1 of the biological property value at the elapsed time t1, an actual measurement value A2 of the biological property value at the elapsed time t2, and an actual measurement of the biological property value at the elapsed time t3. The measured values A3 of the biological property values at the elapsed time t6 are obtained respectively, and the biological property values at the elapsed time t4 are obtained from the absorbances obtained by the near-infrared spectrometer at each elapsed time t0 to t6 and the measured values described above Calculated value) A4 * , and a biological property value (calculated value) A5 * at elapsed time t5 are calculated.
演算処理部20には、図3に示すように、実測値A0,A1,A2,A3,A6と、吸光度Iλi tが入力される。吸光度Iλi tは、経過時間t(=t1,t2,…,t6)における波長λi(=λ1,λ2,…,λn-1,λn)の吸光度である。波長λiは、近赤外の設定波長範囲によって決められた複数の波長であり、例えば、700〜1050nmの範囲で、数〜数十nm毎に設定される波長であって、λ1=700nm,λ2=701nm,λ3=702nm,…,λn-1=1049nm,λn=1050nmのように1nm毎に設定することができる。
The
演算処理部20は、波長λi毎に、(吸光度,実測値)の相関係数を求める。すなわち、波長λi毎に、(Iλi t0,A0),(Iλi t1,A1),(Iλi t2,A2),(Iλi t3,A3),(Iλi t6,A6)の相関係数を求める。そして、相関係数が高い波長λiを一つ又は複数特定する。ここで相関係数が高いとは、相関係数の絶対値が0.7以上、或いは、最も高い相関係数の絶対値(最大値)−0.1以上に設定することができる。
The
相関係数が高い波長をλtとすると、波長λtの吸光度Iλt tから実測値を算出する計算式を導出する。複数の波長λtを特定した場合には、特定された各波長の吸光度にその波長の相関関係を乗じて足し合わせた値(重み付き和)を説明変数(X)、生体特性値を目的変数(Y)として、Y=a・X+bが成り立つ係数aと切片bの値を推定する単回帰を行い、このY=a・X+bによって吸光度を生体特性値に変換する計算式にする。 Assuming that a wavelength having a high correlation coefficient is λt, a formula for calculating an actual measurement value from the absorbance I λt t of the wavelength λt is derived. When multiple wavelengths λt are specified, the value (weighted sum) obtained by multiplying the absorbance of each specified wavelength by the correlation of the wavelengths and adding them together is the explanatory variable (X), and the biological property value is the target variable ( As Y), simple regression is performed to estimate the value of the coefficient a and the intercept b for which Y = a · X + b holds, and the formula is used to convert the absorbance into a biological property value by this Y = a · X + b.
そして、Iλt t4,Iλt t5を説明変数Xに代入して、Y=a・X+bから、経過時間t4,t5における生体特性値A4*,A5*を算出する。このような生体特性値の測定方法によると、生体特性値の経過時間に伴う変化を測定するに際して、採血などを伴う実測値の取得を経過時間の一部に止めることができ、その他の経過時間での測定を、採血などを伴わない計算値で補うことができるので、測定対象者への負担を減らしながら、精度の高い測定を実現することができる。 Then, I λt t4 and I λt t5 are substituted for the explanatory variable X, and biological characteristic values A4 * and A5 * at elapsed times t4 and t5 are calculated from Y = a · X + b. According to such a method of measuring a biological characteristic value, when measuring a change in the biological characteristic value with elapsed time, acquisition of an actual measurement value accompanied by blood collection can be stopped at a part of the elapsed time, and other elapsed time Since the measurement in the above can be compensated by a calculated value not accompanied by blood collection etc., highly accurate measurement can be realized while reducing the burden on the person to be measured.
なお、前述した説明では、吸光度から生体特性値を求める例を示しているが、それに換えて、吸光度の変化量から生体特性値の変化量を求めるようにしてもよい。吸光度から生体特性値を求める場合や吸光度の変化量から生体特性値を求める場合には、1回の測定で得られた波長毎の吸光度に対して、光拡散状態の違いによる吸光度の加算的・乗算的変動を除去するために、予めSavitzky-Golay法による2次微分処理を施すことが好ましい。また、2次微分処理の他に、SC(Multiplicative Scatter Correction)やSNV(Standard Normal Variate)といった方法を採用することもできる。 In the above description, the example of obtaining the biological property value from the absorbance is shown, but instead of that, the amount of change in the biological property value may be obtained from the amount of change in absorbance. When obtaining the biological property value from the absorbance or when obtaining the biological property value from the amount of change in the absorbance, the sum of the absorbance due to the difference in the light diffusion state with respect to the absorbance for each wavelength obtained in one measurement In order to remove the multiplicative fluctuation, it is preferable to perform the second derivative processing in advance by the Savitzky-Golay method. In addition to the second derivative processing, methods such as SC (Multiplicative Scatter Correction) and SNV (Standard Normal Variate) can also be adopted.
以下、生体特性値の例として人の血糖値を取り上げ、食後の時間経過に伴う血糖値変化から、食品のGI測定を行う例を説明する。 Hereinafter, an example of taking a blood glucose level of a person as an example of the biological characteristic value and measuring GI of a food based on a change in blood glucose level along with a time course after eating will be described.
GI(グリセミックス・インデックス)は、食後血糖値の上昇度を示す指標であり、食品毎にGIを求めて低GI食品を特定することで、肥満や糖尿病の予防・改善の観点から食生活を見直す上で有効な指標とされている。GIは、GI=(検査食のIAUC/基準食のIAUC)×100で定義されており、多数の被験者による経口糖質負荷試験で求められる。ここで、IAUCは、食後2時間までの血糖値上昇曲線下面積を指しており、食後から2時間までの時間経過に伴う血糖値変化(血糖値変化量)を求めることが、GI測定には不可欠になっている。 GI (glycemix index) is an index showing the degree of increase in postprandial blood glucose levels, and by searching for GI for each food and specifying a low GI food, eating habits from the viewpoint of prevention and improvement of obesity and diabetes It is considered to be an effective indicator for reviewing. GI is defined as GI = (IAUC of test food / IAUC of reference food) × 100, and is determined by an oral glucose tolerance test by a large number of subjects. Here, IAUC refers to the area under the blood sugar level rising curve up to 2 hours after a meal, and it is possible to obtain the blood sugar level change (blood sugar level change amount) with time lapse from 2 hours after a meal to 2 hours It is essential.
検査食又は基準食のIAUCを一つ求めるためには、1人の被験者で食前(空腹時)からの血糖値変化量ΔBGtを、経過時間t=0(空腹時),15,30,45,60,90,120minの7回測定することが必要になる。そのために、前述した生体特性値測定装置1を用いた測定を行い、被験者が検査食又は基準食を食べてから経過時間t=0(空腹時),15,30,45,60,90,120minにおいて、波長λ毎に空腹時からの吸光度変化量(2次微分値)ΔIλを求める。但し、λ=700,701,…851,852,…,1050nmとする。また同時に、経過時間60minと90minを除いて、被験者に対して採血を行い、経過時間t=0(空腹時),15,30,45,120minにおける血糖値実測値を測定する。血糖値実測値は、経過時間毎に採血した血液に対してグルコースセンサー法で測定する。
In order to obtain one IAUC of the test food or the reference food, the blood glucose level change amount ΔBGt from before eating (fasting) in one subject, elapsed time t = 0 (fasting), 15, 30, 45, Seven measurements of 60, 90, and 120 min are required. For that purpose, measurement is performed using the above-described biological characteristic
これによって、演算処理部20には、経過時間t=0,15,30,45,120min毎に測定された実測値の血糖値変化量ΔBGtと経過時間t=0,15,30,45,60,90,120min毎に測定された吸光度変化量ΔIλが入力される。演算処理部20は、この入力データに基づいて、血糖値変化量ΔBGtと吸光度変化量ΔIλの相関係数rを波長λ毎に求めて、相関の高い波長λ*を特定する。ここでは、吸光度変化量として2次微分値を適用しているので、血糖値変化量ΔBGtと吸光度変化量ΔIλの相関係数rは負の値になる。相関の高い波長λ*としては、相関係数rの負の最大値+0.1以下に対応する波長λ*を単数又は複数特定する。
As a result, the
演算処理部20は、特定した波長λ*における吸光度変化量ΔIλ* t(t=0,15,30,45,120min)と実測値の血糖値変化量ΔBGt(t=0,15,30,45,120min)から、血糖値変化量ΔBGtを目的変数(Y)とし、吸光度変化量ΔIλ*を説明変数(X)とする計算式を導出する。具体的には、目的変数(Y)と説明変数(X)の単回帰分析を行い、Y=a+b・Xのa及びbを求める。ここで、波長λ*を複数特定した場合には、説明変数(X)を吸光度変化量ΔIλ*の重み付き和(Σr*・ΔIλ*、r*はλ*毎の相関係数)とする。
The
この計算式(Y=a+b・X)を用いて、X=ΔIλ*(t=60min)を代入して、Y=ΔBGt(t=60min)を求め、X=ΔIλ*(t=90min)を代入して、Y=ΔBGt(t=90min)を求める。これによって、一部は実測値であって、一部は計算値である血糖値変化量ΔBGtを、経過時間t=0(空腹時),15,30,45,60,90,120minの7回測定することができ、この測定結果から検査食又は基準食のIAUCを求めることができる。 Using this formula (Y = a + b · X), X = ΔI λ * (t = 60 min) is substituted to obtain Y = ΔBGt (t = 60 min), and X = ΔI λ * (t = 90 min) To obtain Y = .DELTA.BGt (t = 90 min). Thereby, the blood glucose level change amount ΔBGt, which is a part of the actual measurement value and a part of the calculation value, is calculated seven times, with an elapsed time t = 0 (fasting), 15, 30, 45, 60, 90, 120 min. It is possible to measure, and from this measurement result, it is possible to determine the IAUC of the test food or the reference food.
以上説明したように、本発明の実施形態に係る測定方法及び測定装置によると、生体特性値の時間経過に伴う変化を測定するに際して、一連の測定毎に最適な波長を特定して吸光度を求め、その吸光度との相関で生体特性値を求めることができるので、近赤外分光法によって精度の高い生体特性値の測定を行うことができる。また、生体特性値の時間経過に伴う変化を、一部実測値を得ること無く測定することができるので、採血などに伴う測定対象者の負担を減らしながら、精度良く生体特性値を測定することができる。 As described above, according to the measuring method and measuring apparatus according to the embodiment of the present invention, when measuring the change over time of the biological property value, the optimum wavelength is specified to determine the absorbance for each series of measurement. Since the biological characteristic value can be determined by the correlation with the absorbance, it is possible to measure the biological characteristic value with high accuracy by near infrared spectroscopy. In addition, since changes in the biological characteristic value with the passage of time can be measured without obtaining a part of the actual measurement value, it is possible to accurately measure the biological characteristic value while reducing the burden on the person to be measured accompanying blood collection and the like. Can.
特に、食品分野での糖尿病や肥満の予防・改善、医療分野での糖尿病患者の血糖値管理などで注目されているGI(グリセミックス・インデックス)の測定では、食品のGIを求めるために、検査食や基準食を被験者が実際に摂取して、摂取後の血糖値変化を測定する経口糖質負荷試験を行う必要があり、その際、従来は一つのIAUC(食後2時間までの血糖値上昇曲線下面積)を得るために2時間のうちに7回の採血が必要であったが、本発明の測定方法を用いると、この採血の回数を一部省いて、実測値を計算値に置き換え、しかも精度の高いIAUCを求めることができる。これにより、GI測定において被験者の負担を軽減することが可能になる。 In particular, GI (glycemix index) measurement, which is attracting attention for prevention and improvement of diabetes and obesity in the food field, and blood sugar level control of diabetes patients in the medical field, is an examination to find out GI of food. It is necessary for the subject to actually ingest the food and reference food and to carry out an oral glucose tolerance test to measure changes in blood glucose level after intake, in which case conventionally one IAUC (increase in blood glucose level up to 2 hours after a meal) In order to obtain the area under the curve, 7 blood samples were required within 2 hours, but when using the measurement method of the present invention, some of the blood samples were omitted and the actual values were replaced with calculated values. In addition, it is possible to obtain a highly accurate IAUC. This makes it possible to reduce the burden on the subject in GI measurement.
1:生体特性値測定装置,10:近赤外分光装置,11:測光部,
12:分光部,13:光源部,14:光照射部,15:受光部,
20:演算処理部,M:被測定対象
1: Biological characteristic value measuring device, 10: Near infrared spectroscopy device, 11: Photometric unit,
12: Spectroscopic part, 13: Light source part, 14: Light irradiation part, 15: Light receiving part,
20: Arithmetic processing unit, M: object to be measured
Claims (5)
複数の経過時間において、生体に近赤外光を照射し、生体からの拡散反射光又は透過光を受光して、近赤外の設定波長範囲で複数の波長毎の吸光度を求め、前記複数の経過時間における生体測定値の実測値に対して吸光度の相関が高い波長を特定し、特定した波長の吸光度から前記実測値を算出する計算式を導出し、
他の経過時間において、生体に近赤外光を照射し、生体からの拡散反射光又は透過光を受光して、特定した波長の吸光度を求めて、前記計算式から生体特性値を算出することを特徴とする近赤外分光法を用いた生体特性値測定方法。 A method of measuring a biological property value using near infrared spectroscopy, which measures a change in biological property value with time .
A plurality of elapsed time, is irradiated with near-infrared light to the raw body, by receiving diffuse reflected light or transmitted light from the living body, seeking the absorbance of each of a plurality of wavelengths in a predetermined wavelength range of the near-infrared, the plurality Identifying a wavelength at which the correlation of the absorbance is high with respect to the measured value of the biological measurement value in the elapsed time of, and deriving a calculation formula for calculating the measured value from the absorbance of the specified wavelength,
In the other elapsed time, the living body is irradiated with the near infrared light, the diffuse reflection light or the transmitted light from the living body is received, the absorbance of the specified wavelength is determined, and the biological property value is calculated from the calculation formula. A method for measuring biological property values using near-infrared spectroscopy characterized by
入力された生体特性値の実測値と近赤外分光装置が求めた吸光度とを演算処理する演算処理部を備え、
前記演算処理部は、
生体特性値の時間経過に伴う変化を測定するに際して、
複数の経過時間において、実測された生体特性値の実測値と、近赤外の設定波長範囲で複数の波長毎に求めた吸光度とから、前記実測値に対して吸光度の相関が高い波長を特定し、特定した波長の吸光度から前記実測値を算出する計算式を導出し、
他の経過時間において、特定した波長の吸光度と前記計算式から生体特性値を算出することを特徴とする近赤外分光法を用いた生体特性値測定装置。 In a biological characteristic value measuring apparatus using near infrared spectroscopy which measures a change over time of the biological characteristic value,
It has an arithmetic processing unit that performs arithmetic processing on the measured values of the input biological property values and the absorbance determined by the near infrared spectrometer.
The arithmetic processing unit
When measuring the change over time of the biological characteristic value,
Identify the wavelength with high correlation of absorbance with the actual measurement value from the actual measurement value of the measured biological property value and the absorbance calculated for each of multiple wavelengths in the near-infrared setting wavelength range in multiple elapsed times Derive a formula for calculating the actual measurement value from the absorbance of the specified wavelength,
A biological characteristic value measuring apparatus using near infrared spectroscopy, wherein a biological characteristic value is calculated from the absorbance of the specified wavelength and the formula at other elapsed times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015146414A JP6521307B2 (en) | 2015-07-24 | 2015-07-24 | Method and apparatus for measuring biological property values using near infrared spectroscopy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015146414A JP6521307B2 (en) | 2015-07-24 | 2015-07-24 | Method and apparatus for measuring biological property values using near infrared spectroscopy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017023508A JP2017023508A (en) | 2017-02-02 |
JP6521307B2 true JP6521307B2 (en) | 2019-05-29 |
Family
ID=57948891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015146414A Active JP6521307B2 (en) | 2015-07-24 | 2015-07-24 | Method and apparatus for measuring biological property values using near infrared spectroscopy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6521307B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230380727A1 (en) * | 2020-11-24 | 2023-11-30 | Suntory Holdings Limited | Health support device, health support method, and recording medium |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09215679A (en) * | 1996-02-09 | 1997-08-19 | Matsushita Electric Works Ltd | Concentration measuring apparatus for humor component |
JPH10190A (en) * | 1996-06-14 | 1998-01-06 | Matsushita Electric Works Ltd | Measuring device for properties of organism tissue |
JP2001120520A (en) * | 1999-10-22 | 2001-05-08 | Mitsui Mining & Smelting Co Ltd | Cartridge for measuring blood sugar level |
JP2014018478A (en) * | 2012-07-19 | 2014-02-03 | Panasonic Corp | Method and device for blood sugar level measurement |
-
2015
- 2015-07-24 JP JP2015146414A patent/JP6521307B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017023508A (en) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7343185B2 (en) | Measurement of body compounds | |
Maruo et al. | In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy | |
KR102303829B1 (en) | Noninvasive apparatus for testing glycated hemoglobin and noninvasive method for testing glycated hemoglobin | |
JP6606082B2 (en) | Glucose concentration determination method and glucose concentration measurement device | |
US8406839B2 (en) | Method and apparatus for determining blood analytes | |
EP0828533B1 (en) | Method and apparatus for rapid non-invasive determination of blood composition parameters | |
WO2003079900A1 (en) | Noninvasive blood component value measuring instrument and method | |
WO1993016629A1 (en) | Non-invasive device and method for determining concentrations of various components of blood or tissue | |
KR20170126310A (en) | Method and apparatus for predicting analyte concentration | |
CA2382113A1 (en) | Method of calibrating a spectroscopic device | |
US6919566B1 (en) | Method of calibrating a spectroscopic device | |
JP2008541793A (en) | Method for predicting a person's blood sugar level | |
JP5536337B2 (en) | System and method for estimating the concentration of a substance in a body fluid | |
Uwadaira et al. | Logistic regression analysis for identifying the factors affecting development of non-invasive blood glucose calibration model by near-infrared spectroscopy | |
JP2014018478A (en) | Method and device for blood sugar level measurement | |
JP5521199B2 (en) | Concentration determination apparatus, concentration determination method, and program | |
JP6521307B2 (en) | Method and apparatus for measuring biological property values using near infrared spectroscopy | |
WO2019208561A1 (en) | Blood component in-blood concentration measurement method, in-blood concentration measurement device and program | |
JP2019198547A (en) | Blood component measurement method, device and program | |
Shapovalov et al. | A non-invasive method for spectroscopic blood glucose monitoring | |
JP2017060640A (en) | Determination method and determination device | |
JP2020171452A (en) | Glucose amount calculation method | |
JP5881058B2 (en) | Method for measuring body fat in small animals | |
Maruo et al. | Noninvasive blood glucose monitoring by novel optical-fiber probe | |
JP2010029399A (en) | Noninvasive blood glucose level measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6521307 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |