[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6521307B2 - Method and apparatus for measuring biological property values using near infrared spectroscopy - Google Patents

Method and apparatus for measuring biological property values using near infrared spectroscopy Download PDF

Info

Publication number
JP6521307B2
JP6521307B2 JP2015146414A JP2015146414A JP6521307B2 JP 6521307 B2 JP6521307 B2 JP 6521307B2 JP 2015146414 A JP2015146414 A JP 2015146414A JP 2015146414 A JP2015146414 A JP 2015146414A JP 6521307 B2 JP6521307 B2 JP 6521307B2
Authority
JP
Japan
Prior art keywords
value
absorbance
biological
measuring
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015146414A
Other languages
Japanese (ja)
Other versions
JP2017023508A (en
Inventor
晶文 池羽田
晶文 池羽田
安紘 上平
安紘 上平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2015146414A priority Critical patent/JP6521307B2/en
Publication of JP2017023508A publication Critical patent/JP2017023508A/en
Application granted granted Critical
Publication of JP6521307B2 publication Critical patent/JP6521307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、近赤外分光法を用いて血糖値などの生体特性値を測定する方法及び装置に関するものである。   The present invention relates to a method and apparatus for measuring biological property values such as blood glucose levels using near infrared spectroscopy.

生体特性値の測定は、一般に採血を伴うものであり、例えば、人の血糖値を測定する方法としては、採血した血液を用いて血糖に対するグルコース酸化酵素の反応を電気化学的に定量し、血糖値に換算するグルコースセンサー法が確立している。   The measurement of biological property values generally involves blood collection. For example, as a method of measuring blood glucose level in a human, the reaction of glucose oxidase to blood glucose is electrochemically quantified using blood collected, and blood glucose is measured A glucose sensor method has been established to convert to a value.

これに対して、採血に伴う苦痛や採血針による感染等の問題を解決するために、非侵襲的に生体特性値を測定する方法が提案されており、その一つに近赤外分光法を用いた測定方法が知られている。これは、近赤外領域の波長の光を生体(人体)の特定箇所に照射し、生体からの拡散反射光又は透過光を分光器にて測定し、その拡散反射光又は透過光の吸光度(スペクトル)から血糖値などの生体特性値を算出しようとするものである。   On the other hand, in order to solve problems such as pain associated with blood collection and infection with a blood collection needle, methods of non-invasively measuring biological property values have been proposed, and one of them is near infrared spectroscopy. The measuring method used is known. This is to irradiate the light of the wavelength of near infrared region to a specific part of the living body (human body), measure the diffuse reflection light or the transmitted light from the living body with a spectroscope, and absorb the absorbance of the diffuse reflected light or the transmitted light ( It is intended to calculate biological characteristic values such as blood sugar level from the spectrum).

血糖値の測定では、特定波長920nm付近と特定波長982nm付近を含む近赤外領域の波長の光を指などに照射して、その吸光度を求め、その値から血糖値を測定する方法が知られている。また、下記特許文献1に記載のものでは、複数の異なる波長からなる光を人体に照射して得られる人体からの透過光量から人体の血糖値を非侵襲的に測定することが提案されている。   In the measurement of blood glucose level, a method is known in which light of a wavelength in the near infrared region including a specific wavelength of 920 nm and a specific wavelength of 982 nm is irradiated to a finger or the like to obtain its absorbance and measure the blood glucose level from that value. ing. Moreover, in the thing of following patent document 1, measuring non-invasively the blood glucose level of a human body from the transmitted light amount from the human body obtained by irradiating the light which consists of several different wavelengths to a human body is proposed. .

特許第4052461号公報Patent No. 4052461 gazette

生体特性値の測定では、被測定対象である生体の状態に対応して、生体特性値が時間経過によってどのように変化するかを測定することが重要になっている。例えば、血糖値の測定であれば、食後の血糖値の時間経過による変化が分かれば、食後の血糖値上昇を抑えることができる食材を見つけて、肥満の防止や糖尿病の予防など、健康管理に役立てることが可能になる。   In the measurement of biological property values, it is important to measure how the biological property values change with the passage of time in accordance with the state of the living body to be measured. For example, in the case of measurement of blood glucose level, if changes in blood glucose levels after meals are known, food ingredients that can suppress the rise in blood glucose levels after meals are found, and health management such as prevention of obesity or diabetes is prevented. It can be useful.

生体特性値の時間経過による変化を測定する場合、採血した血液を用いて測定しようすると、一定時間毎(例えば、数十分毎)に採血を行わなければならないので、測定対象者に多大な負担を掛けてしまう問題が生じる。前述した従来技術のように、非侵襲的な測定方法が確立すれば、この問題は解決するが、近赤外分光法によって生体特性値の時間経過による変化を求めようとすると、生体特性値に関連する吸光度を得る特定波長の選択が困難になり、正確な値を求めることができない問題が生じる。   When measuring changes in biological property values with the passage of time, it is necessary to collect blood every fixed time (for example, every several tens of minutes) when trying to measure using collected blood, a large burden on the subject of measurement There is a problem that you If the noninvasive measurement method is established like the prior art mentioned above, this problem will be solved, but if it is going to obtain the change over time of the biological property value by near infrared spectroscopy, the biological property value will be It becomes difficult to select a specific wavelength for obtaining the related absorbance, and there arises a problem that an accurate value can not be determined.

血糖値などの生体特性値を近赤外分光法によって求める場合に、被測定対象の個体毎に、或いは同じ個体であっても測定する状態やその日間差によって、生体特性値に関連する吸光度を得る特定波長が異なる波長になることが分かってきた。このため、従来技術のように、特定波長を固定値として吸光度を求め、その吸光度と生体特性値との相関を求めようとしても、個体差や日間差、測定部位の体温変化や発汗状態などの状態差、測定部位における生体組織内での光路変化などによって、正確な値を得ることができず、実測値との間に大きな差が出てしまう問題があった。   When biological property values such as blood glucose levels are determined by near infrared spectroscopy, the absorbance related to the biological property values is determined according to the state to be measured for each individual to be measured or even the same individual and the difference between the days. It has been found that the particular wavelengths obtained are different. For this reason, as in the prior art, even when trying to determine the absorbance with a specific wavelength as a fixed value and determine the correlation between the absorbance and the biological characteristic value, individual differences and differences between days, body temperature changes at the measurement site, sweating conditions, etc. There is a problem that an accurate value can not be obtained due to a state difference, an optical path change in a living tissue at a measurement site, or the like, and a large difference with an actual measurement value occurs.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、近赤外分光法を用いた新たな生体特性値の測定方法を提案し、精度の高い生体特性値の測定を可能にすること、生体特性値の時間経過による変化を測定対象者への負担を減らしながら精度良く測定することができること、などが本発明の目的である。   The present invention takes an example of the problem to address such a problem. That is, a method of measuring a new biological property value using near-infrared spectroscopy is proposed, and measurement of the biological property value with high accuracy is enabled, and a change of the biological property value with the passage of time to the person to be measured. It is an object of the present invention to be able to measure with high accuracy while reducing the burden.

このような目的を達成するために、本発明による近赤外分光法を用いた生体特性値測定方法及び測定装置は、以下の構成を具備するものである。   In order to achieve such an object, the method and apparatus for measuring biological characteristic values using near-infrared spectroscopy according to the present invention have the following configurations.

生体特性値の時間経過に伴う変化を測定する近赤外分光法を用いた生体特性値測定方法であって、複数の経過時間において、生体に近赤外光を照射し、生体からの拡散反射光又は透過光を受光して、近赤外の設定波長範囲で複数の波長毎の吸光度を求め、前記複数の経過時間において得た生体測定値の実測値に対して吸光度の相関が高い波長を特定し、特定した波長の吸光度から前記実測値を算出する計算式を導出し、他の経過時間において、生体に近赤外光を照射し、生体からの拡散反射光又は透過光を受光して、特定した波長の吸光度を求めて、前記計算式から生体特性値を算出することを特徴とする。 A near-infrared spectroscopy biological characteristic value measuring method using the measuring changes with time of the biological characteristic values, in a plurality of elapsed time, is irradiated with near-infrared light to the raw body, diffusion from a living body Reflected light or transmitted light is received to determine the absorbance for each of a plurality of wavelengths in the near-infrared set wavelength range, and a wavelength having a high correlation of absorbance with the measured value of the biological measurement value obtained in the plurality of elapsed times To calculate the measured value from the absorbance of the specified wavelength, and at other elapsed times, irradiate the living body with near infrared light and receive diffuse reflected light or transmitted light from the living body It is characterized in that the absorbance of the specified wavelength is determined, and the biological characteristic value is calculated from the calculation formula.

生体特性値の時間経過に伴う変化を測定する近赤外分光法を用いた生体特性値測定装置において、入力された生体特性値の実測値と近赤外分光装置が求めた吸光度とを演算処理する演算処理部を備え、前記演算処理部は、生体特性値の時間経過に伴う変化を測定するに際して、複数の経過時間において、実測された生体特性値の実測値と、近赤外の設定波長範囲で複数の波長毎に求めた吸光度とから、前記実測値に対して吸光度の相関が高い波長を特定し、特定した波長の吸光度から前記実測値を算出する計算式を導出し、他の経過時間において、特定した波長の吸光度と前記計算式から生体特性値を算出することを特徴とする近赤外分光法を用いた生体特性値測定装置。   In a biological property value measuring apparatus using near infrared spectroscopy that measures changes with time of biological property values, arithmetic processing is performed on the measured values of the input biological property values and the absorbance obtained by the near infrared spectroscope. When the arithmetic processing unit measures changes in the biological characteristic value with the passage of time, the measured values of the biological characteristic value measured in a plurality of elapsed times and the set wavelength of the near infrared light From the absorbance determined for each of a plurality of wavelengths in the range, a wavelength having a high correlation of absorbance with the measured value is identified, and a calculation formula for calculating the measured value from the absorbance of the identified wavelength is derived. A biological property value measuring apparatus using near-infrared spectroscopy, which calculates a biological property value from the absorbance of a specified wavelength and the formula in time.

このような特徴を有する本発明は、生体特性値の時間経過に伴う変化を測定するに際して、一連の測定毎に最適な波長を特定して吸光度を求め、その吸光度との相関で生体特性値を求めることができるので、近赤外分光法によって精度の高い生体特性値の測定を行うことができる。また、生体特性値の時間経過に伴う変化を、一部実測値を得ること無く測定することができるので、採血などに伴う測定対象者の負担を減らしながら、精度良く測定することができる。   In the present invention having such characteristics, when measuring the change over time of the biological characteristic value, the optimum wavelength is specified for each series of measurement to obtain the absorbance, and the biological characteristic value is determined by the correlation with the absorbance. As it can be determined, it is possible to measure biological characteristic values with high accuracy by near infrared spectroscopy. In addition, since the change of the biological characteristic value with the passage of time can be measured without obtaining a part of the actual measurement value, it is possible to accurately measure while reducing the burden on the person to be measured associated with blood collection and the like.

また、本発明によると、個体差や日間差、測定部位の体温変化や発汗状態などの状態差、測定部位における生体組織内での光路変化などがあっても、測定毎に最適な波長を特定して、生体特性値との相関が高い吸光度を求めて、それによって生体特性値を算出することができるので、いつでも、どこでも、誰に対してでも適用可能な、安定した測定精度を担保できる生体特性値測定方法及び装置を提供することができる。   Furthermore, according to the present invention, the optimum wavelength is specified for each measurement even if there are individual differences, daily differences, temperature changes in the measurement site, state differences such as sweating conditions, or changes in the optical path in living tissues at the measurement site. Then, the biological characteristic value can be calculated by obtaining the absorbance having a high correlation with the biological characteristic value, whereby a living body capable of securing stable measurement accuracy applicable to anyone anytime, anywhere, and anyone A characteristic value measuring method and apparatus can be provided.

本発明の実施形態に係る生体特性値測定装置の構成例を示した説明図である。It is an explanatory view showing an example of composition of a living body characteristic value measuring device concerning an embodiment of the present invention. 演算処理部によって求められる生体特性値の測定結果を示した説明図である。It is explanatory drawing which showed the measurement result of the biological property value calculated | required by the arithmetic processing part. 演算処理部に入力されるデータを示した説明図である。It is explanatory drawing which showed the data input into an arithmetic processing part.

以下、図面を参照して本発明の実施形態を説明する。図1は、本発明の実施形態に係る生体特性値測定装置の構成例を示した説明図である。生体特性値測定装置1は、近赤外分光装置10と演算処理部20を備えている。近赤外分光装置10は、周知の構成であり、測光部11と分光部12と光源部13とを備えている。測光部11は、光源部13から出射される近赤外光を被測定対象(生体)Mに照射する光照射部14と、被測定対象(生体)Mからの拡散反射光又は透過光を受光する受光部15を備えている。分光部12は、受光部15で受光した光から特定波長の吸光度を求めて出力する。演算処理部20は、生体特性値の実測値が入力されると共に、分光部12から出力される吸光度の測定値が入力され、それらを演算処理することによって、実測されていない経過時間の生体特性値を計算出力する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a configuration example of a biological characteristic value measuring device according to an embodiment of the present invention. The biological characteristic value measuring device 1 includes a near infrared spectroscopy device 10 and an arithmetic processing unit 20. The near-infrared spectrometer 10 has a known configuration, and includes a photometric unit 11, a spectral unit 12, and a light source unit 13. The photometry unit 11 receives the diffusely reflected light or the transmitted light from the object to be measured (living body) M, and the light emitting unit 14 that irradiates the object to be measured (living body) M with near infrared light emitted from the light source unit 13 The light receiving unit 15 is provided. The spectroscope unit 12 obtains the absorbance of a specific wavelength from the light received by the light receiver 15 and outputs the absorbance. The arithmetic processing unit 20 receives an actual measurement value of the biological property value and receives a measured value of the absorbance output from the spectroscopic unit 12 and performs arithmetic processing on them to obtain the biological characteristic of the elapsed time not measured. Calculate and output the value.

演算処理部20の処理工程によって、本発明の実施形態に係る近赤外分光法を用いた生体特性値測定方法が実行される。以下に、演算処理部20の処理工程を説明する。   The biological characteristic value measuring method using near infrared spectroscopy according to the embodiment of the present invention is executed by the processing process of the arithmetic processing unit 20. The processing steps of the arithmetic processing unit 20 will be described below.

図2は、演算処理部20によって求められる生体特性値の測定結果を示している。ここでは、生体特性値の時間経過に伴う変化を求めており、測定開始からの経過時間t0〜t6においてどのように生体特性値が変化するかを、一部を実測値で求め、その他を計算値で求めている。ここでの実測値とは、採血による血液から測定され値などを指している。なお、実測値を求めた血液は人体に戻すことなく廃棄される。 FIG. 2 shows the measurement results of the biological property values obtained by the arithmetic processing unit 20. Here, the change with time progress of the biological property value is calculated, and a part is obtained by actual measurement to calculate how to change the biological property value at the elapsed time t0 to t6 from the start of measurement, and others are calculated. It is calculated by the value. Here, the actual measurement value refers to a value measured from blood obtained by blood collection. The blood for which the measured value has been obtained is discarded without being returned to the human body.

具体的には、経過時間t0における生体特性値の実測値A0、経過時間t1における生体特性値の実測値A1、経過時間t2における生体特性値の実測値A2、経過時間t3における生体特性値の実測値A3、経過時間t6における生体特性値の実測値A6をそれぞれ求め、各経過時間t0〜t6において近赤外分光装置が求めた吸光度と前述した実測値とから、経過時間t4における生体特性値(計算値)A4*、経過時間t5における生体特性値(計算値)A5*を算出する。 Specifically, an actual measurement value A0 of the biological property value at the elapsed time t0, an actual measurement value A1 of the biological property value at the elapsed time t1, an actual measurement value A2 of the biological property value at the elapsed time t2, and an actual measurement of the biological property value at the elapsed time t3. The measured values A3 of the biological property values at the elapsed time t6 are obtained respectively, and the biological property values at the elapsed time t4 are obtained from the absorbances obtained by the near-infrared spectrometer at each elapsed time t0 to t6 and the measured values described above Calculated value) A4 * , and a biological property value (calculated value) A5 * at elapsed time t5 are calculated.

演算処理部20には、図3に示すように、実測値A0,A1,A2,A3,A6と、吸光度Iλi tが入力される。吸光度Iλi tは、経過時間t(=t1,t2,…,t6)における波長λi(=λ1,λ2,…,λn-1,λn)の吸光度である。波長λiは、近赤外の設定波長範囲によって決められた複数の波長であり、例えば、700〜1050nmの範囲で、数〜数十nm毎に設定される波長であって、λ1=700nm,λ2=701nm,λ3=702nm,…,λn-1=1049nm,λn=1050nmのように1nm毎に設定することができる。 The arithmetic processing unit 20, as shown in FIG. 3, the measured values A0, A1, A2, A3, A6, absorbance I .lambda.i t is input. Absorbance I .lambda.i t is the elapsed time t (= t1, t2, ... , t6) Wavelength .lambda.i in (= λ1, λ2, ..., λn-1, λn) is absorbance. The wavelength λi is a plurality of wavelengths determined by the set wavelength range of near-infrared light, for example, a wavelength set every few to several tens of nm in the range of 700 to 1050 nm, and λ1 = 700 nm, λ2 It can be set every 1 nm, such as = 701 nm, λ 3 = 702 nm, ..., λ n -1 = 1049 nm, λ n = 1050 nm.

演算処理部20は、波長λi毎に、(吸光度,実測値)の相関係数を求める。すなわち、波長λi毎に、(Iλi t0,A0),(Iλi t1,A1),(Iλi t2,A2),(Iλi t3,A3),(Iλi t6,A6)の相関係数を求める。そして、相関係数が高い波長λiを一つ又は複数特定する。ここで相関係数が高いとは、相関係数の絶対値が0.7以上、或いは、最も高い相関係数の絶対値(最大値)−0.1以上に設定することができる。 The arithmetic processing unit 20 obtains a correlation coefficient of (absorbance, actual measurement value) for each wavelength λi. That is, for each wavelength .lambda.i, correlation coefficient (I λi t0, A0), (I λi t1, A1), (I λi t2, A2), (I λi t3, A3), (I λi t6, A6) Ask for Then, one or more wavelengths λi having high correlation coefficients are identified. Here, that the correlation coefficient is high can be set to an absolute value of the correlation coefficient of 0.7 or more, or an absolute value (maximum value) of the highest correlation coefficient-0.1 or more.

相関係数が高い波長をλtとすると、波長λtの吸光度Iλt tから実測値を算出する計算式を導出する。複数の波長λtを特定した場合には、特定された各波長の吸光度にその波長の相関関係を乗じて足し合わせた値(重み付き和)を説明変数(X)、生体特性値を目的変数(Y)として、Y=a・X+bが成り立つ係数aと切片bの値を推定する単回帰を行い、このY=a・X+bによって吸光度を生体特性値に変換する計算式にする。 Assuming that a wavelength having a high correlation coefficient is λt, a formula for calculating an actual measurement value from the absorbance I λt t of the wavelength λt is derived. When multiple wavelengths λt are specified, the value (weighted sum) obtained by multiplying the absorbance of each specified wavelength by the correlation of the wavelengths and adding them together is the explanatory variable (X), and the biological property value is the target variable ( As Y), simple regression is performed to estimate the value of the coefficient a and the intercept b for which Y = a · X + b holds, and the formula is used to convert the absorbance into a biological property value by this Y = a · X + b.

そして、Iλt t4,Iλt t5を説明変数Xに代入して、Y=a・X+bから、経過時間t4,t5における生体特性値A4*,A5*を算出する。このような生体特性値の測定方法によると、生体特性値の経過時間に伴う変化を測定するに際して、採血などを伴う実測値の取得を経過時間の一部に止めることができ、その他の経過時間での測定を、採血などを伴わない計算値で補うことができるので、測定対象者への負担を減らしながら、精度の高い測定を実現することができる。 Then, I λt t4 and I λt t5 are substituted for the explanatory variable X, and biological characteristic values A4 * and A5 * at elapsed times t4 and t5 are calculated from Y = a · X + b. According to such a method of measuring a biological characteristic value, when measuring a change in the biological characteristic value with elapsed time, acquisition of an actual measurement value accompanied by blood collection can be stopped at a part of the elapsed time, and other elapsed time Since the measurement in the above can be compensated by a calculated value not accompanied by blood collection etc., highly accurate measurement can be realized while reducing the burden on the person to be measured.

なお、前述した説明では、吸光度から生体特性値を求める例を示しているが、それに換えて、吸光度の変化量から生体特性値の変化量を求めるようにしてもよい。吸光度から生体特性値を求める場合や吸光度の変化量から生体特性値を求める場合には、1回の測定で得られた波長毎の吸光度に対して、光拡散状態の違いによる吸光度の加算的・乗算的変動を除去するために、予めSavitzky-Golay法による2次微分処理を施すことが好ましい。また、2次微分処理の他に、SC(Multiplicative Scatter Correction)やSNV(Standard Normal Variate)といった方法を採用することもできる。   In the above description, the example of obtaining the biological property value from the absorbance is shown, but instead of that, the amount of change in the biological property value may be obtained from the amount of change in absorbance. When obtaining the biological property value from the absorbance or when obtaining the biological property value from the amount of change in the absorbance, the sum of the absorbance due to the difference in the light diffusion state with respect to the absorbance for each wavelength obtained in one measurement In order to remove the multiplicative fluctuation, it is preferable to perform the second derivative processing in advance by the Savitzky-Golay method. In addition to the second derivative processing, methods such as SC (Multiplicative Scatter Correction) and SNV (Standard Normal Variate) can also be adopted.

以下、生体特性値の例として人の血糖値を取り上げ、食後の時間経過に伴う血糖値変化から、食品のGI測定を行う例を説明する。   Hereinafter, an example of taking a blood glucose level of a person as an example of the biological characteristic value and measuring GI of a food based on a change in blood glucose level along with a time course after eating will be described.

GI(グリセミックス・インデックス)は、食後血糖値の上昇度を示す指標であり、食品毎にGIを求めて低GI食品を特定することで、肥満や糖尿病の予防・改善の観点から食生活を見直す上で有効な指標とされている。GIは、GI=(検査食のIAUC/基準食のIAUC)×100で定義されており、多数の被験者による経口糖質負荷試験で求められる。ここで、IAUCは、食後2時間までの血糖値上昇曲線下面積を指しており、食後から2時間までの時間経過に伴う血糖値変化(血糖値変化量)を求めることが、GI測定には不可欠になっている。   GI (glycemix index) is an index showing the degree of increase in postprandial blood glucose levels, and by searching for GI for each food and specifying a low GI food, eating habits from the viewpoint of prevention and improvement of obesity and diabetes It is considered to be an effective indicator for reviewing. GI is defined as GI = (IAUC of test food / IAUC of reference food) × 100, and is determined by an oral glucose tolerance test by a large number of subjects. Here, IAUC refers to the area under the blood sugar level rising curve up to 2 hours after a meal, and it is possible to obtain the blood sugar level change (blood sugar level change amount) with time lapse from 2 hours after a meal to 2 hours It is essential.

検査食又は基準食のIAUCを一つ求めるためには、1人の被験者で食前(空腹時)からの血糖値変化量ΔBGtを、経過時間t=0(空腹時),15,30,45,60,90,120minの7回測定することが必要になる。そのために、前述した生体特性値測定装置1を用いた測定を行い、被験者が検査食又は基準食を食べてから経過時間t=0(空腹時),15,30,45,60,90,120minにおいて、波長λ毎に空腹時からの吸光度変化量(2次微分値)ΔIλを求める。但し、λ=700,701,…851,852,…,1050nmとする。また同時に、経過時間60minと90minを除いて、被験者に対して採血を行い、経過時間t=0(空腹時),15,30,45,120minにおける血糖値実測値を測定する。血糖値実測値は、経過時間毎に採血した血液に対してグルコースセンサー法で測定する。 In order to obtain one IAUC of the test food or the reference food, the blood glucose level change amount ΔBGt from before eating (fasting) in one subject, elapsed time t = 0 (fasting), 15, 30, 45, Seven measurements of 60, 90, and 120 min are required. For that purpose, measurement is performed using the above-described biological characteristic value measuring apparatus 1, and after the subject eats the test food or the reference food, the elapsed time t = 0 (fasting), 15, 30, 45, 60, 90, 120 min. At each wavelength λ, the amount of change in absorbance from fasting (second derivative value) ΔI λ is determined. However, it is assumed that λ = 700, 701, ... 851, 852, ..., 1050 nm. At the same time, blood is collected from the subject except for elapsed times of 60 min and 90 min, and measured blood glucose levels at elapsed times t = 0 (fasting), 15, 30, 45, and 120 min. The measured blood glucose level is measured by the glucose sensor method on the blood collected at each elapsed time.

これによって、演算処理部20には、経過時間t=0,15,30,45,120min毎に測定された実測値の血糖値変化量ΔBGtと経過時間t=0,15,30,45,60,90,120min毎に測定された吸光度変化量ΔIλが入力される。演算処理部20は、この入力データに基づいて、血糖値変化量ΔBGtと吸光度変化量ΔIλの相関係数rを波長λ毎に求めて、相関の高い波長λ*を特定する。ここでは、吸光度変化量として2次微分値を適用しているので、血糖値変化量ΔBGtと吸光度変化量ΔIλの相関係数rは負の値になる。相関の高い波長λ*としては、相関係数rの負の最大値+0.1以下に対応する波長λ*を単数又は複数特定する。 As a result, the arithmetic processing unit 20 calculates the blood glucose level change amount ΔBGt of the measured value measured every elapsed time t = 0, 15, 30, 45, 120 min and the elapsed time t = 0, 15, 30, 45, 60. , amount of change in absorbance was measured every 90,120min ΔI λ is input. The arithmetic processing unit 20 determines the correlation coefficient r of the blood sugar value change amount ΔBGt and the absorbance change amount ΔI λ for each wavelength λ based on the input data, and specifies the wavelength λ * having a high correlation. Here, since the second derivative value is applied as the absorbance change amount, the correlation coefficient r between the blood glucose level change amount ΔBGt and the absorbance change amount ΔI λ becomes a negative value. Of a high wavelength lambda * correlation, corresponding wavelength lambda * a to s specified below negative maximum value +0.1 of the correlation coefficient r.

演算処理部20は、特定した波長λ*における吸光度変化量ΔIλ* t(t=0,15,30,45,120min)と実測値の血糖値変化量ΔBGt(t=0,15,30,45,120min)から、血糖値変化量ΔBGtを目的変数(Y)とし、吸光度変化量ΔIλ*を説明変数(X)とする計算式を導出する。具体的には、目的変数(Y)と説明変数(X)の単回帰分析を行い、Y=a+b・Xのa及びbを求める。ここで、波長λ*を複数特定した場合には、説明変数(X)を吸光度変化量ΔIλ*の重み付き和(Σr*・ΔIλ*、r*はλ*毎の相関係数)とする。 The arithmetic processing unit 20 measures the amount of change in absorbance ΔI λ * t (t = 0, 15, 30, 45, 120 min) at the specified wavelength λ * and the amount of change in blood glucose value ΔBGt (t = 0, 15, 30, From 45, 120 min), a calculation formula is derived in which the blood glucose level change amount ΔBGt is the target variable (Y) and the absorbance change amount ΔI λ * is the explanatory variable (X). Specifically, single regression analysis of the objective variable (Y) and the explanatory variable (X) is performed to obtain a and b of Y = a + b · X. Here, when a plurality of wavelengths λ * are specified, the explanatory variable (X) is a weighted sum of absorbance change amounts ΔI λ * (Σr * · ΔI λ * , r * is a correlation coefficient for each λ * ) Do.

この計算式(Y=a+b・X)を用いて、X=ΔIλ*(t=60min)を代入して、Y=ΔBGt(t=60min)を求め、X=ΔIλ*(t=90min)を代入して、Y=ΔBGt(t=90min)を求める。これによって、一部は実測値であって、一部は計算値である血糖値変化量ΔBGtを、経過時間t=0(空腹時),15,30,45,60,90,120minの7回測定することができ、この測定結果から検査食又は基準食のIAUCを求めることができる。 Using this formula (Y = a + b · X), X = ΔI λ * (t = 60 min) is substituted to obtain Y = ΔBGt (t = 60 min), and X = ΔI λ * (t = 90 min) To obtain Y = .DELTA.BGt (t = 90 min). Thereby, the blood glucose level change amount ΔBGt, which is a part of the actual measurement value and a part of the calculation value, is calculated seven times, with an elapsed time t = 0 (fasting), 15, 30, 45, 60, 90, 120 min. It is possible to measure, and from this measurement result, it is possible to determine the IAUC of the test food or the reference food.

以上説明したように、本発明の実施形態に係る測定方法及び測定装置によると、生体特性値の時間経過に伴う変化を測定するに際して、一連の測定毎に最適な波長を特定して吸光度を求め、その吸光度との相関で生体特性値を求めることができるので、近赤外分光法によって精度の高い生体特性値の測定を行うことができる。また、生体特性値の時間経過に伴う変化を、一部実測値を得ること無く測定することができるので、採血などに伴う測定対象者の負担を減らしながら、精度良く生体特性値を測定することができる。   As described above, according to the measuring method and measuring apparatus according to the embodiment of the present invention, when measuring the change over time of the biological property value, the optimum wavelength is specified to determine the absorbance for each series of measurement. Since the biological characteristic value can be determined by the correlation with the absorbance, it is possible to measure the biological characteristic value with high accuracy by near infrared spectroscopy. In addition, since changes in the biological characteristic value with the passage of time can be measured without obtaining a part of the actual measurement value, it is possible to accurately measure the biological characteristic value while reducing the burden on the person to be measured accompanying blood collection and the like. Can.

特に、食品分野での糖尿病や肥満の予防・改善、医療分野での糖尿病患者の血糖値管理などで注目されているGI(グリセミックス・インデックス)の測定では、食品のGIを求めるために、検査食や基準食を被験者が実際に摂取して、摂取後の血糖値変化を測定する経口糖質負荷試験を行う必要があり、その際、従来は一つのIAUC(食後2時間までの血糖値上昇曲線下面積)を得るために2時間のうちに7回の採血が必要であったが、本発明の測定方法を用いると、この採血の回数を一部省いて、実測値を計算値に置き換え、しかも精度の高いIAUCを求めることができる。これにより、GI測定において被験者の負担を軽減することが可能になる。   In particular, GI (glycemix index) measurement, which is attracting attention for prevention and improvement of diabetes and obesity in the food field, and blood sugar level control of diabetes patients in the medical field, is an examination to find out GI of food. It is necessary for the subject to actually ingest the food and reference food and to carry out an oral glucose tolerance test to measure changes in blood glucose level after intake, in which case conventionally one IAUC (increase in blood glucose level up to 2 hours after a meal) In order to obtain the area under the curve, 7 blood samples were required within 2 hours, but when using the measurement method of the present invention, some of the blood samples were omitted and the actual values were replaced with calculated values. In addition, it is possible to obtain a highly accurate IAUC. This makes it possible to reduce the burden on the subject in GI measurement.

1:生体特性値測定装置,10:近赤外分光装置,11:測光部,
12:分光部,13:光源部,14:光照射部,15:受光部,
20:演算処理部,M:被測定対象
1: Biological characteristic value measuring device, 10: Near infrared spectroscopy device, 11: Photometric unit,
12: Spectroscopic part, 13: Light source part, 14: Light irradiation part, 15: Light receiving part,
20: Arithmetic processing unit, M: object to be measured

Claims (5)

生体特性値の時間経過に伴う変化を測定する近赤外分光法を用いた生体特性値測定方法であって、
複数の経過時間において、生体に近赤外光を照射し、生体からの拡散反射光又は透過光を受光して、近赤外の設定波長範囲で複数の波長毎の吸光度を求め、前記複数の経過時間における生体測定値の実測値に対して吸光度の相関が高い波長を特定し、特定した波長の吸光度から前記実測値を算出する計算式を導出し、
他の経過時間において、生体に近赤外光を照射し、生体からの拡散反射光又は透過光を受光して、特定した波長の吸光度を求めて、前記計算式から生体特性値を算出することを特徴とする近赤外分光法を用いた生体特性値測定方法。
A method of measuring a biological property value using near infrared spectroscopy, which measures a change in biological property value with time .
A plurality of elapsed time, is irradiated with near-infrared light to the raw body, by receiving diffuse reflected light or transmitted light from the living body, seeking the absorbance of each of a plurality of wavelengths in a predetermined wavelength range of the near-infrared, the plurality Identifying a wavelength at which the correlation of the absorbance is high with respect to the measured value of the biological measurement value in the elapsed time of, and deriving a calculation formula for calculating the measured value from the absorbance of the specified wavelength,
In the other elapsed time, the living body is irradiated with the near infrared light, the diffuse reflection light or the transmitted light from the living body is received, the absorbance of the specified wavelength is determined, and the biological property value is calculated from the calculation formula. A method for measuring biological property values using near-infrared spectroscopy characterized by
前記複数の波長毎の吸光度は、波長700〜1050nmの範囲で、数〜数十nm毎に求めることを特徴とする請求項1に記載された近赤外分光法を用いた生体特性値測定方法。   The biological characteristic value measuring method using near infrared spectroscopy according to claim 1, wherein the absorbance for each of the plurality of wavelengths is determined every several to several tens of nm in a wavelength range of 700 to 1050 nm. . 前記吸光度は、経過時間に対する2次微分値であることを特徴とする請求項1又は2に記載された近赤外分光法を用いた生体特性値測定方法。   The method for measuring a biological characteristic value using near infrared spectroscopy according to claim 1 or 2, wherein the absorbance is a second derivative value with respect to an elapsed time. 前記生体特性値は血糖値であり、前記実測値は、採血によるグルコースセンサー法で求められた値であることを特徴とする請求項1〜3のいずれか1項に記載された近赤外分光法を用いた生体特性値測定方法。 The near-infrared spectroscopy according to any one of claims 1 to 3, wherein the biological characteristic value is a blood glucose level, and the actual measurement value is a value obtained by a glucose sensor method using blood collection. Method of measuring biological characteristics using the method. 生体特性値の時間経過に伴う変化を測定する近赤外分光法を用いた生体特性値測定装置において、
入力された生体特性値の実測値と近赤外分光装置が求めた吸光度とを演算処理する演算処理部を備え、
前記演算処理部は、
生体特性値の時間経過に伴う変化を測定するに際して、
複数の経過時間において、実測された生体特性値の実測値と、近赤外の設定波長範囲で複数の波長毎に求めた吸光度とから、前記実測値に対して吸光度の相関が高い波長を特定し、特定した波長の吸光度から前記実測値を算出する計算式を導出し、
他の経過時間において、特定した波長の吸光度と前記計算式から生体特性値を算出することを特徴とする近赤外分光法を用いた生体特性値測定装置。
In a biological characteristic value measuring apparatus using near infrared spectroscopy which measures a change over time of the biological characteristic value,
It has an arithmetic processing unit that performs arithmetic processing on the measured values of the input biological property values and the absorbance determined by the near infrared spectrometer.
The arithmetic processing unit
When measuring the change over time of the biological characteristic value,
Identify the wavelength with high correlation of absorbance with the actual measurement value from the actual measurement value of the measured biological property value and the absorbance calculated for each of multiple wavelengths in the near-infrared setting wavelength range in multiple elapsed times Derive a formula for calculating the actual measurement value from the absorbance of the specified wavelength,
A biological characteristic value measuring apparatus using near infrared spectroscopy, wherein a biological characteristic value is calculated from the absorbance of the specified wavelength and the formula at other elapsed times.
JP2015146414A 2015-07-24 2015-07-24 Method and apparatus for measuring biological property values using near infrared spectroscopy Active JP6521307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015146414A JP6521307B2 (en) 2015-07-24 2015-07-24 Method and apparatus for measuring biological property values using near infrared spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015146414A JP6521307B2 (en) 2015-07-24 2015-07-24 Method and apparatus for measuring biological property values using near infrared spectroscopy

Publications (2)

Publication Number Publication Date
JP2017023508A JP2017023508A (en) 2017-02-02
JP6521307B2 true JP6521307B2 (en) 2019-05-29

Family

ID=57948891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015146414A Active JP6521307B2 (en) 2015-07-24 2015-07-24 Method and apparatus for measuring biological property values using near infrared spectroscopy

Country Status (1)

Country Link
JP (1) JP6521307B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230380727A1 (en) * 2020-11-24 2023-11-30 Suntory Holdings Limited Health support device, health support method, and recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215679A (en) * 1996-02-09 1997-08-19 Matsushita Electric Works Ltd Concentration measuring apparatus for humor component
JPH10190A (en) * 1996-06-14 1998-01-06 Matsushita Electric Works Ltd Measuring device for properties of organism tissue
JP2001120520A (en) * 1999-10-22 2001-05-08 Mitsui Mining & Smelting Co Ltd Cartridge for measuring blood sugar level
JP2014018478A (en) * 2012-07-19 2014-02-03 Panasonic Corp Method and device for blood sugar level measurement

Also Published As

Publication number Publication date
JP2017023508A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US7343185B2 (en) Measurement of body compounds
Maruo et al. In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy
KR102303829B1 (en) Noninvasive apparatus for testing glycated hemoglobin and noninvasive method for testing glycated hemoglobin
JP6606082B2 (en) Glucose concentration determination method and glucose concentration measurement device
US8406839B2 (en) Method and apparatus for determining blood analytes
EP0828533B1 (en) Method and apparatus for rapid non-invasive determination of blood composition parameters
WO2003079900A1 (en) Noninvasive blood component value measuring instrument and method
WO1993016629A1 (en) Non-invasive device and method for determining concentrations of various components of blood or tissue
KR20170126310A (en) Method and apparatus for predicting analyte concentration
CA2382113A1 (en) Method of calibrating a spectroscopic device
US6919566B1 (en) Method of calibrating a spectroscopic device
JP2008541793A (en) Method for predicting a person's blood sugar level
JP5536337B2 (en) System and method for estimating the concentration of a substance in a body fluid
Uwadaira et al. Logistic regression analysis for identifying the factors affecting development of non-invasive blood glucose calibration model by near-infrared spectroscopy
JP2014018478A (en) Method and device for blood sugar level measurement
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
JP6521307B2 (en) Method and apparatus for measuring biological property values using near infrared spectroscopy
WO2019208561A1 (en) Blood component in-blood concentration measurement method, in-blood concentration measurement device and program
JP2019198547A (en) Blood component measurement method, device and program
Shapovalov et al. A non-invasive method for spectroscopic blood glucose monitoring
JP2017060640A (en) Determination method and determination device
JP2020171452A (en) Glucose amount calculation method
JP5881058B2 (en) Method for measuring body fat in small animals
Maruo et al. Noninvasive blood glucose monitoring by novel optical-fiber probe
JP2010029399A (en) Noninvasive blood glucose level measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6521307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250