JP6516603B2 - Etching method and etching apparatus - Google Patents
Etching method and etching apparatus Download PDFInfo
- Publication number
- JP6516603B2 JP6516603B2 JP2015140232A JP2015140232A JP6516603B2 JP 6516603 B2 JP6516603 B2 JP 6516603B2 JP 2015140232 A JP2015140232 A JP 2015140232A JP 2015140232 A JP2015140232 A JP 2015140232A JP 6516603 B2 JP6516603 B2 JP 6516603B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- etching
- flow rate
- hydrogen bromide
- etching method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005530 etching Methods 0.000 title claims description 120
- 238000000034 method Methods 0.000 title claims description 65
- 239000007789 gas Substances 0.000 claims description 164
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims description 87
- 229910000042 hydrogen bromide Inorganic materials 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 10
- 229910001882 dioxygen Inorganic materials 0.000 claims description 10
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 21
- 229920005591 polysilicon Polymers 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- 229910003691 SiBr Inorganic materials 0.000 description 3
- 229910020177 SiOF Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Description
本発明は、エッチング方法及びエッチング装置に関する。 The present invention relates to an etching method and an etching apparatus.
臭化水素(HBr)ガス、三フッ化窒素(NF3)ガス及び酸素(O2)ガスを供給し、それらのガスから生成されたプラズマにより、多結晶シリコンを含む被エッチング層をエッチングするエッチング方法が提案されている(例えば、特許文献1を参照)。 Etching that etches a layer to be etched containing polycrystalline silicon by supplying hydrogen bromide (HBr) gas, nitrogen trifluoride (NF 3 ) gas and oxygen (O 2 ) gas and plasma generated from these gases A method has been proposed (see, for example, Patent Document 1).
しかしながら、エッチングによりシリコン膜にホールを形成する場合、アスペクト比が、例えば15以上に高くなると、エッチングしたホールの先がよれる現象(以下、「ツイスティング(Twisting)」という。)が発生し、エッチング形状が悪くなる。近年、特にデバイスの微細化及び高アスペクト比のエッチングに対する需要によりツイスティングの課題がますます顕在化している。 However, when forming a hole in a silicon film by etching, if the aspect ratio is increased to, for example, 15 or more, a phenomenon in which the tip of the etched hole is deflected (hereinafter referred to as "Twisting") occurs. The etched shape becomes worse. In recent years, the need for device refinement and high aspect ratio etching in particular has made the task of twisting more and more apparent.
上記課題に対して、一側面では、本発明は、エッチング形状を良好にすることを目的とする。 With respect to the above-mentioned subject, in one side, the present invention aims to make etching shape good.
上記課題を解決するために、一の態様によれば、基板上に形成されたシリコン膜をエッチングするエッチング方法であって、臭化水素(HBr)ガス、三フッ化窒素(NF3)ガス及び酸素(O2)ガスを含むガスをチャンバ内に供給し、供給したガスから生成されたプラズマによりシリコン膜をエッチングする複数の工程を有し、前記複数の工程において前記臭化水素ガスの流量を段階的に減少させ、前記酸素ガスの流量を、前記臭化水素ガスの減少に応じて調整する、エッチング方法が提供される。 According to one aspect of the present invention, there is provided an etching method for etching a silicon film formed on a substrate, comprising: hydrogen bromide (HBr) gas, nitrogen trifluoride (NF 3 ) gas, and The method includes a plurality of steps of supplying a gas containing oxygen (O 2 ) gas into the chamber and etching the silicon film by plasma generated from the supplied gas, wherein the flow rate of the hydrogen bromide gas is An etching method is provided in which the flow rate of the oxygen gas is gradually decreased and the flow rate of the oxygen gas is adjusted according to the decrease of the hydrogen bromide gas.
一の側面によれば、エッチング形状を良好にすることができる。 According to one aspect, the etching shape can be improved.
以下、本発明を実施するための形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の構成については、同一の符号を付することにより重複した説明を省く。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, substantially the same configuration is given the same reference numeral to omit redundant description.
[エッチング装置の全体構成]
まず、本発明の一実施形態にかかるエッチング装置1の一例について、図1を参照して説明する。図1は、本実施形態にかかるエッチング装置1の縦断面の一例を示す。本実施形態にかかるエッチング装置1は、チャンバ10内に載置台20とガスシャワーヘッド25とを対向配置した平行平板型のプラズマ処理装置(容量結合型プラズマ処理装置)である。載置台20は、半導体ウェハなどの被処理基板(以下、単に「ウェハW」という。)を保持する機能を有するとともに下部電極として機能する。ガスシャワーヘッド25は、ガスをチャンバ10内にシャワー状に供給する機能を有するとともに上部電極として機能する。
[Overall configuration of etching apparatus]
First, an example of an
チャンバ10は、例えば表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなり、円筒形である。チャンバ10は、電気的に接地されている。載置台20は、チャンバ10の底部に設置され、ウェハWを載置する。ウェハWは、エッチング対象である基板の一例であり、ウェハWには、ポリシリコン膜上にマスクが形成されている。
The
載置台20は、たとえばアルミニウム(Al)やチタン(Ti)、炭化ケイ素(SiC)等から形成されている支持体104と、載置台20の上面を形成し、ウェハを静電吸着するための静電チャック106が設けられた構成をしている。静電チャック106は、例えばアルミナ(Al2O3)などの誘電体からなる絶縁体106bの間にチャック電極106aを挟み込んだ構造になっている。
The mounting table 20 forms a
チャック電極106aには直流電圧源112が接続され、直流電圧源112からチャック電極106aに直流電流が供給される。これにより、クーロン力によってウェハWが静電チャック106の表面に吸着される。
A direct
支持体104の内部には、冷媒流路104aが形成されている。冷媒流路104aには、冷媒入口配管104b及び冷媒出口配管104cが接続されている。チラー107から出力された例えば冷却水やブライン等の冷却媒体は、冷媒入口配管104b、冷媒流路104a及び冷媒出口配管104cを循環する。これにより、載置台20及び静電チャック106は冷却される。
A
伝熱ガス供給源85は、ヘリウムガス(He)やアルゴンガス(Ar)等の伝熱ガスをガス供給ライン130に通して静電チャック106上のウエハWの裏面に供給する。かかる構成により、静電チャック106は、冷媒流路104aに循環させる冷却媒体と、ウエハWの裏面に供給する伝熱ガスとによって温度制御される。この結果、ウェハを所定の温度に制御することができる。また、加熱源を使用することでウエハWを加熱する構成にしても良い。
The heat transfer
載置台20には、2周波重畳電力を供給する電力供給装置30が接続されている。電力供給装置30は、第1周波数のプラズマ生起用の高周波電力HF(High Frequency)を供給する第1高周波電源32と、第1周波数よりも低い第2周波数のバイアス用の高周波電力LF(Low Frequency)を供給する第2高周波電源34とを有する。第1高周波電源32は、第1整合器33を介して載置台20に電気的に接続される。第2高周波電源34は、第2整合器35を介して載置台20に電気的に接続される。第1高周波電源32は、例えば、100MHzのプラズマ励起用の高周波電力HFを載置台20に印加する。第2高周波電源34は、例えば、13.56MHzのバイアス用の高周波電力LFを載置台20に印加する。なお、本実施形態では、高周波電力HFは載置台20に印加されるが、ガスシャワーヘッド25に印加してもよい。
The mounting table 20 is connected to a
第1整合器33は、第1高周波電源32の内部(または出力)インピーダンスに負荷インピーダンスを整合させる。第2整合器35は、第2高周波電源34の内部(または出力)インピーダンスに負荷インピーダンスを整合させる。第1整合器33は、チャンバ10内にプラズマが生成されているときに第1高周波電源32の内部インピーダンスと負荷インピーダンスとが見かけ上一致するように機能する。第2整合器35は、チャンバ10内にプラズマが生成されているときに第2高周波電源34の内部インピーダンスと負荷インピーダンスとが見かけ上一致するように機能する。
The
ガスシャワーヘッド25は、その周縁部を絶縁する絶縁部材を介してチャンバ10の天井部の開口を閉塞するように取り付けられている。ガスシャワーヘッド25は、図1に示すように電気的に接地してもよい。また、可変直流電源を接続してガスシャワーヘッド25に所定の直流(DC)電圧が印加されるようにしてもよい。
The
ガスシャワーヘッド25には、ガスを導入するガス導入口45が形成されている。ガスシャワーヘッド25の内部にはガス導入口45から分岐したセンタ側の拡散室50a及びエッジ側の拡散室50bが設けられている。ガス供給源15から出力されたガスは、ガス導入口45を介して拡散室50a、50bに供給され、それぞれの拡散室50a、50bにて拡散されて多数のガス供給孔55から載置台20に向けて導入される。
A
チャンバ10の底面には排気口60が形成されており、排気口60にに排気管を介して接続された排気装置65によってチャンバ10内が排気される。これにより、チャンバ10内を所定の真空度に維持することができる。チャンバ10の側壁にはゲートバルブGが設けられている。ゲートバルブGの開閉によりチャンバ10からウェハWの搬入及び搬出が行われる。
An
エッチング装置1には、装置全体の動作を制御する制御部100が設けられている。制御部100は、CPU(Central Processing Unit)105、ROM(Read Only Memory)110及びRAM(Random Access Memory)115を有している。CPU105は、これらの記憶領域に格納された各種レシピに従って、後述されるエッチング等の所望の処理を実行する。レシピにはプロセス条件に対する装置の制御情報であるプロセス時間、圧力(ガスの排気)、高周波電力や電圧、各種ガス流量、チャンバ内温度(上部電極温度、チャンバの側壁温度、静電チャック温度など)、チラー107の温度などが記載されている。なお、これらのプログラムや処理条件を示すレシピは、ハードディスクや半導体メモリに記憶されてもよい。また、レシピは、CD−ROM、DVD等の可搬性のコンピュータにより読み取り可能な記憶媒体に収容された状態で記憶領域の所定位置にセットするようにしてもよい。
The
エッチング処理時には、ゲートバルブGの開閉が制御され、ウェハWがチャンバ10に搬入され、載置台20に載置される。直流電圧源112からチャック電極106aに直流電流が供給されることにより、クーロン力によってウェハWが静電チャック106に吸着され、保持される。
During the etching process, the opening and closing of the gate valve G is controlled, and the wafer W is carried into the
次いで、エッチングガス、プラズマ励起用の高周波電力HF及びバイアス用の高周波電力LFがチャンバ10内に供給され、プラズマが生成される。生成されたプラズマによりウェハWにプラズマエッチング処理が施される。
Then, an etching gas, a high frequency power HF for plasma excitation, and a high frequency power LF for biasing are supplied into the
エッチング処理後、直流電圧源112からチャック電極106aにウェハWの吸着時とは正負が逆の直流電圧HVを印加してウェハWの電荷を除電し、ウェハWを静電チャック106から剥がす。ゲートバルブGの開閉が制御され、ウェハWがチャンバ10から搬出される。
After the etching process, the
[エッチング方法]
本発明の一態様のエッチング方法について説明する。例えば、図2(a)に示すように、シリコン酸化膜(Si02)をマスク11として被エッチング対象膜であるポリ(多結晶)シリコン膜12をエッチングする。ただし、被エッチング対象膜は、ポリシリコン膜12に限られず、例えばアモルファスシリコン膜、単結晶層であってもよい。被エッチング対象膜は、シリコン酸化膜やシリコン窒化膜(SiN)であってもよい。マスク11は、酸化膜であってもよいし、窒化膜であってもよい。ポリシリコン膜12の下地膜13としては、例えば、シリコン酸化膜、シリコン窒化膜等が挙げられる。
[Etching method]
The etching method of one embodiment of the present invention is described. For example, as shown in FIG. 2A, the poly (polycrystalline)
図2(a)は、エッチング前の基板上に形成された膜の構成の一例を示し、図2(b)は、エッチング後にポリシリコン膜12に形成されたホールのエッチング形状の断面の一例を示す。
FIG. 2 (a) shows an example of the structure of a film formed on a substrate before etching, and FIG. 2 (b) shows an example of the cross section of the etching shape of holes formed in the
アスペクト比は、ポリシリコン膜12のトップCD(top CD)とポリシリコン膜12の深さDとの比として定義される。例えば、アスペクト比が15〜20程度では、図2(b)のように良好なエッチング形状が得られる場合であっても、近年要求されるアスペクト比25〜30では、良好なエッチング形状が得られないことがある。特に30以上では顕著である。その結果、図2(c)に示すように、エッチングしたホールの先(ホールの底側)がよれる(屈曲、曲がる)現象であるツイスティング(Twisting)が発生する。以下に、比較例と本実施形態のプロセス条件を比較しながら、ツイスティングの課題を解決するためのプロセス条件と該プロセス条件に基づく本発明の一態様のエッチング方法について説明する。
The aspect ratio is defined as the ratio of the top CD of the
図2(a)の膜構成のエッチングでは、ポリシリコン膜12をエッチングするメインエッチング及び下地膜13をエッチングするオーバエッチングが行なわれる。エッチングガスには、例えば臭化水素(HBr)ガス、三フッ化窒素(NF3)ガス及び酸素ガス(O2)が用いられる(第1のプロセス条件)。第1のプロセス条件のこれらのガスから生成されたプラズマによりマスク11を介してポリシリコン膜12がエッチングされる。続けて、第1のプロセス条件で下地膜13をエッチングするオーバエッチングを行う。本実施形態にかかるエッチング方法は、例えば3D NANDフラッシュメモリ等の三次元積層半導体メモリの製造において好適である。
In the etching of the film configuration of FIG. 2A, the main etching for etching the
なお、本実施形態にかかるエッチング方法は、CF4ガス及びO2ガスから生成されたプラズマにより、マスク11を介してポリシリコン膜12上の自然酸化膜を除去する工程を10秒程実行した後、続けてポリシリコン膜12をエッチングする。
The etching method according to the present embodiment is performed after about 10 seconds of removing the native oxide film on the
[比較例にかかるエッチング方法]
以下に、比較例にかかるエッチング方法について説明する。比較例においてポリシリコン膜12をエッチングする際のプロセス条件の一例を以下に示す。
・圧力 80mT(10.7Pa)
・高周波電力HF 400W
・高周波電力LF 2350W パルス波(周波数0.1kHz、Duty比30%)
・ガス HBr/NF3/O2
・エッチング時間 90秒
・載置台20の温度 65℃
比較例にかかるエッチングでは、ポリシリコン膜12がメインエッチングされた後、下地膜13が例えば30%程度オーバエッチングされる。比較例では、図3(a)に示すようにメインエッチング及びオーバエッチングにおいてHBrガス、NF3ガス及びO2ガスはすべて一定の流量で供給される。
[Etching method according to comparative example]
The etching method according to the comparative example will be described below. An example of process conditions at the time of etching the
・ Pressure 80mT (10.7Pa)
・ High frequency power HF 400W
・ High frequency power LF 2350 W pulse wave (frequency 0.1 kHz,
・ Gas HBr / NF 3 / O 2
Etching time 90 seconds Temperature of mounting table 20 65 ° C.
In the etching according to the comparative example, after the
上記プロセス条件によるプラズマエッチングでは、アスペクト比が15程度の場合、図2(b)に示すように、ポリシリコン膜12のエッチング形状はほぼ垂直に加工される。ところが、アスペクト比が、例えば20と高くなると、図2(c)に示すようなツイスティングが発生し、エッチング形状が悪くなる。
In the plasma etching under the above process conditions, when the aspect ratio is about 15, as shown in FIG. 2B, the etching shape of the
図4(a)は、上記プロセス条件における比較例にかかるエッチング結果の一例を示す。図4(a)に示すように、アスペクト比が15以下ではツイスティングは問題とならない程度であるが、アスペクト比が15を超えてくるとツイスティング発生し始め、アスペクト比が25以上になるとツイスティングが顕在化する。特に近年のデバイスの微細化に伴い、アスペクト比が25以上のエッチングにおけるツイスティングの課題は許容できない程度になってきている。 FIG. 4A shows an example of the etching result according to the comparative example under the above process conditions. As shown in FIG. 4 (a), twisting is not a problem when the aspect ratio is 15 or less, but twisting starts to occur when the aspect ratio exceeds 15, and when the aspect ratio is 25 or more Sting becomes apparent. In particular, with the recent miniaturization of devices, the problem of twisting in etching with an aspect ratio of 25 or more has become an unacceptable level.
ツイスティングの原因の一つは、以下の反応式(1)で示されるシリコンSiとエッチング工程中に生成される反応生成物であるSiBrxOyやSiOFx等が過剰にホールの側壁に付着することでイオンの方向性が妨げられ、変化することによるものと考えられる。 One of the causes of twisting is that silicon Si represented by the following reaction formula (1) and SiBr x O y , SiOF x, etc., which are reaction products generated during the etching process, are excessively attached to the side walls of the holes. It is thought that the directionality of ion is disturbed by doing and changing.
Si+HBr+O2+NF3→SiFxBry↑+SiF4↑+NH3↑+SiBrxOy↓+SiOFx↓・・・(1)
反応式(1)によれば、SiFxBry、SiF4、NH3は揮発性の物質であり、チャンバ10外に排気されるが、SiBrxOy、SiOFxは、堆積性の物質であり、ホールの側部等に付着する。
Si + HBr + O 2 + NF 3 → SiF x Br y + + SiF 4 + + NH 3 + + SiBr x O y + + SiOF x・ ・ ・ (1)
According to Reaction Scheme (1), SiF x Br y , SiF 4,
上記プロセス条件では載置台20の温度が65℃であった。これに対して、載置台20の温度を100℃の高温に制御し、上記プロセス条件のうちの他の条件は変えずにメインエッチング→オーバエッチングを実行したところ、ホールの壁部等に付着する堆積物の量は少なくなり、ホールのエッチングが進み、ホールの側部が広がるボーイング(Bowing)が発生してしまい、良好なエッチング形状が得られなかった。 The temperature of the mounting table 20 was 65 ° C. under the above process conditions. On the other hand, when the temperature of the mounting table 20 is controlled to a high temperature of 100 ° C. and the main etching → over etching is performed without changing the other conditions among the above process conditions, it adheres to the wall of the hole The amount of deposit decreased, etching of the hole proceeded, and bowing occurred in which the side of the hole spread, and a good etched shape was not obtained.
[本実施形態にかかるエッチング方法]
そこで、本実施形態にかかるエッチング方法では、上記プロセス条件のうち載置台20の温度を100℃に制御することに加えて、図3(b)に示すように、エッチング工程中にガスの流量を変動させる。具体的には、NF3ガスの流量を一定に制御しつつ、HBrガス及びO2ガスの流量を変動させる。
[Etching method according to the present embodiment]
Therefore, in the etching method according to the present embodiment, in addition to controlling the temperature of the mounting table 20 to 100 ° C. in the above process conditions, as shown in FIG. Vary. Specifically, the flow rates of HBr gas and O 2 gas are varied while controlling the flow rate of NF 3 gas constant.
本実施形態のエッチング方法では、図2(b)に示すように、ポリシリコン膜12のメインエッチングを概ね三等分した第1〜第3ステップと、下地膜13のオーバエッチングの第4ステップとの4ステップに分けて各ガス流量が制御される。ガスの流量制御は、制御部100により行われる。
In the etching method of the present embodiment, as shown in FIG. 2B, the first to third steps obtained by roughly dividing the main etching of the
具体的には、図3(b)の第1ステップでは、HBrガス、NF3ガス及びO2ガスの流量は初期値に設定される。HBrガスは、主にエッチングを促進するためのガスであり、メインのエッチングガスである。NF3ガスは、主にマスク11に付着する堆積物を除去するためのガスである。O2ガスは、主にマスク11やポリシリコン膜12のホールの壁部を保護するためのガスである。
Specifically, in the first step of FIG. 3B, the flow rates of HBr gas, NF 3 gas, and O 2 gas are set to initial values. HBr gas is a gas mainly for promoting etching, and is a main etching gas. The NF 3 gas is a gas mainly for removing deposits adhering to the
ボーイングは、HBrガスの流量が増加すると発生しやすく、また、O2ガスに対するHBrガスの流量比が高くなると発生しやすい。そこで、ポリシリコン膜12のエッチングにおいてボーイングを抑制するために、HBrガスの流量を減らすだけでなく、HBrガスに対するO2ガスの流量比を高めることが好ましい。
Boeing tends to occur as the flow rate of HBr gas increases, and also tends to occur as the flow rate ratio of HBr gas to O 2 gas increases. Therefore, in order to suppress bowing in the etching of the
具体的には、図3(b)に示すように、第1及び第2ステップにおけるHBrガスの流量は、第3及び第4ステップにおけるHBrガスの流量よりも多くなるように制御する。これにより、第1及び第2ステップにおいてエッチングを促進させる。また、HBrガスの流量は、第2ステップ〜第4ステップにおいて段階的に減少するように制御する。これにより、段階的にエッチングを抑制し、ホールに形成されるボーイングを抑制する。第1と第2ステップにおけるHBrガスの流量は、同じであっても良く、段階的に減少及び増加するようにして良い。 Specifically, as shown in FIG. 3B, the flow rate of HBr gas in the first and second steps is controlled to be larger than the flow rate of HBr gas in the third and fourth steps. This promotes etching in the first and second steps. Further, the flow rate of the HBr gas is controlled to decrease stepwise in the second step to the fourth step. Thus, the etching is suppressed stepwise and the bowing formed in the holes is suppressed. The flow rate of HBr gas in the first and second steps may be the same, and may be decreased and increased stepwise.
更に、第2ステップにおけるO2ガスの流量は、第1ステップにおけるO2ガスの流量よりも増加するように制御することで、HBrガスに対するO2ガスの流量比を高め、ポリシリコン膜12に形成されたホールの壁部を保護するようにする。 Furthermore, by controlling the flow rate of the O 2 gas in the second step to be higher than the flow rate of the O 2 gas in the first step, the flow ratio of the O 2 gas to the HBr gas is increased, and Protect the wall of the formed hole.
更に、第3及び第4ステップにおけるO2ガスの流量は、第2ステップにおけるO2ガスの流量よりも若干少なくする。また、第3及び第4ステップにおけるO2ガスの流量は、第2ステップにおけるO2ガスの流量と同じにしても良いし、段階的に減少するようにしても良く、増加するようにしても良い。また、ここで、第2ステップ〜第4ステップにおいてHBrガスの流量が段階的に減少している。これにより、第2ステップ〜第4ステップにおいてHBrガスに対するO2ガスの流量比は段階的に高くなる。これにより、ボーイングをより効果的に抑制することができる。 Furthermore, the flow rate of O 2 gas in the third and fourth steps is slightly smaller than the flow rate of O 2 gas in the second step. Also, the flow rate of the O 2 gas in the third and fourth steps may be the same as the flow rate of the O 2 gas in the second step, or may be decreased stepwise, or may be increased. good. In addition, here, the flow rate of the HBr gas is gradually decreased in the second step to the fourth step. Thereby, in the second to fourth steps, the flow ratio of O 2 gas to HBr gas gradually increases. This makes it possible to suppress the bowing more effectively.
このように本実施形態では、O2ガスの流量をHBrの流量に応じて変動させる。具体的には、ボーイングを抑制するためにHBrガスに対するO2ガスの流量比が徐々に高くなるように制御する。なお、図3(b)では、O2ガスは、第3及び第4ステップにおいて同じ流量に制御されているが、これに限らない。例えば、図3(c)に示すように、第1ステップ〜第4ステップまでにHBrガスに対するO2ガスの流量比を段階的に高くすることでツイスティングの発生を抑制しつつ、ボーイングも抑制することが出来る。エッチングステップは、少なくとも2ステップ以上でエッチングすることが好ましく、3ステップ以上がより好ましい。このHBrガスとO2ガスの流量比の制御は、載置台20の温度およびサンプルの構造によって変化する。 As described above, in the present embodiment, the flow rate of O 2 gas is varied according to the flow rate of HBr. Specifically, in order to suppress bowing, the flow ratio of O 2 gas to HBr gas is controlled to be gradually increased. In FIG. 3B, the O 2 gas is controlled to the same flow rate in the third and fourth steps, but is not limited thereto. For example, as shown in FIG. 3 (c), while the flow ratio of O 2 gas to HBr gas is increased stepwise from the first step to the fourth step, the occurrence of twisting is suppressed while the bowing is also suppressed. You can do it. The etching step is preferably performed in at least two steps or more, and more preferably three steps or more. The control of the flow ratio of HBr gas to O 2 gas varies depending on the temperature of the mounting table 20 and the structure of the sample.
また、NF3ガスの流量は、図3(b)に示すように全ステップにおいて一定に制御してもよい。また、これに限らず、例えば、第1及び第2ステップにおいて一定に制御し、第3及び第4ステップにおいて徐々に増加するように制御してもよい。また、NF3ガスの流量が増加することに応じてO2ガスの流量が増加するように制御してもよい。これにより、マスク11に付着する堆積物を除去しながら、ホールの側壁を保護する保護膜の形成を促進することができる。また、NF3ガスに替えてSF6(六フッ化硫黄)ガスを供給してもよい。
Further, the flow rate of the NF 3 gas may be controlled to be constant in all steps as shown in FIG. 3 (b). Also, the present invention is not limited to this. For example, control may be performed at a constant level in the first and second steps, and may be controlled to gradually increase in the third and fourth steps. In addition, the flow rate of the O 2 gas may be controlled to increase as the flow rate of the NF 3 gas increases. This can promote the formation of a protective film that protects the side walls of the holes while removing deposits attached to the
本実施形態にかかるエッチング結果の一例を図4(b)に示す。図3(a)に示すように、各ガスの流量を一定に制御し、かつ載置台20の温度を100℃に制御した比較例の結果の図4(a)の場合と比べて、ツイスティングの発生が抑制されていることがわかる。特に、図4(b)では、アスペクト比が25であってもツイスティングの発生を防止できている。 An example of the etching result according to the present embodiment is shown in FIG. Compared with the case of FIG. 4 (a) of the result of the comparative example in which the flow rate of each gas is controlled to be constant and the temperature of the mounting table 20 is controlled to 100 ° C. as shown in FIG. 3 (a) It can be seen that the occurrence of In particular, in FIG. 4B, the occurrence of twisting can be prevented even if the aspect ratio is 25.
以上に説明したように、本実施形態にかかるエッチング方法によれば、載置台20の温度を例えば100℃の高温に制御し、複数のエッチングステップ(第1〜第4ステップ)においてエッチングガスの流量を変動させる。つまり、チャンバ10内に供給するガスのうち、HBrガスを段階的に減少させる。また、本エッチング方法では、エッチングが進むにつれ、HBrガスに対するO2ガスの流量比が高くなるようにO2ガスの流量が制御される。さらに、NF3ガスの流量は全ステップにおいて一定に制御されるか、O2ガスの流量の増加に伴い増加させる。これにより、エッチングにおけるツイスティングの発生(図2(c)参照)とボーイングの発生(図5(a)参照)を抑制し、図5の(b)に示すようにポリシリコン膜12のホールのエッチング形状を概ね垂直に形成することができる。
As described above, according to the etching method of the present embodiment, the temperature of the mounting table 20 is controlled to a high temperature of, for example, 100 ° C., and the flow rate of the etching gas in the plurality of etching steps (first to fourth steps) Vary. That is, among the gases supplied into the
本実施形態にかかるエッチング方法の流れを、図6を参照しながら簡単に説明する。本処理が開始されると、制御部100は、CF4ガス及びO2ガスをチャンバ10内に供給し、CF4ガス及びO2ガスから生成されたプラズマにより基板上のマスク11の自然酸化膜を除去する(ステップS10)。
The flow of the etching method according to the present embodiment will be briefly described with reference to FIG. When this process is started, the
次に、制御部100は、HBrガス、NF3ガス及びO2ガスをチャンバ10内に供給し、HBrガス、NF3ガス及びO2ガスから生成されたプラズマによりポリシリコン膜12をエッチングする(ステップS12)。ただし、HBrガス、NF3ガス及びO2ガスに不活性ガス等の他のガスを加えてもよい。
Next, the
次に、制御部100は、エッチングの第1ステップが終了したかを判定する(ステップS14)。制御部100は、第1ステップが終了したと判定した場合、第2〜第4ステップにおいてHBrガスの流量を段階的に減少させる(ステップS16)。次に、制御部100は、第2〜第4ステップにおいてHBrガスに対するO2ガスの流量を段階的に高くし(ステップS18)、本処理を終了する。これにより、ポリシリコン膜12に形成されるホールのエッチング形状を良好にすることができる。
Next, the
[変形例]
次に、上記実施形態の変形例にかかるエッチング方法について説明する。本変形例では、ツイスティングを改善するために、バイアス用の高周波電力LFの制御領域を適正化する。
[Modification]
Next, an etching method according to a modification of the above embodiment will be described. In this modification, in order to improve twisting, the control region of the high frequency power LF for bias is optimized.
具体的には、例えば、従来のバイアス用の高周波電力LFの制御領域の上限値は1500W未満であった。これに対して、本変形例では、制御部100は、バイアス用の高周波電力LFを、従来よりも高い4000W〜10000Wの範囲で制御する。例えば、図7には、本実施形態の変形例にかかるエッチング方法とツイスティング状態の一例を示す。本変形例のエッチング方法に使用されるプロセス条件は以下である。
・圧力 30mT(4.00Pa)〜90mT(12.0Pa)
・高周波電力HF 300〜700W
・高周波電力LF 3000W、4500W、7000W(パルス波(周波数0.1kHz、Duty比20%))
・ガス HBr/NF3/O2
・エッチング時間 90秒
・載置台20の温度 65℃〜100℃
なお、バイアス用の高周波電力LFのパルス波の周波数は、0.1kHz〜50kHzの範囲でもよい。また、Duty比は、5%〜30%の範囲でもよい。
Specifically, for example, the upper limit value of the control region of the conventional high-frequency power LF for bias was less than 1500 W. On the other hand, in the present modification, the
・ Pressure 30mT (4.00Pa)-90mT (12.0Pa)
・ High frequency power HF 300 to 700 W
・ High
・ Gas HBr / NF 3 / O 2
Etching time 90 seconds Temperature of mounting table 20 65 ° C. to 100 ° C.
The frequency of the pulse wave of the high frequency power LF for bias may be in the range of 0.1 kHz to 50 kHz. Also, the duty ratio may be in the range of 5% to 30%.
図7は、バイアス用の高周波電力LFのパルス波を3000W、4500W、7000Wの各パワーで印加した場合の結果を示す。図7の横軸は、ボトムCDである。図8に示すように、ボトムCDは、ポリシリコン膜12に形成されたホールの底部の直径である。図7の横軸に示すラージ(Large)に比べてミドルは12%、スモール(Small)は25%小さい。
FIG. 7 shows the results when a pulse wave of high frequency power LF for bias is applied at each power of 3000 W, 4500 W and 7000 W. The horizontal axis of FIG. 7 is a bottom CD. As shown in FIG. 8, the bottom CD is the diameter of the bottom of the hole formed in the
図7の縦軸は、ツイスティング値である。ツイスティング値は、図8に一例を示すホールのボトムの形状(フットプリント)からホール間の距離のバラツキを偏差(3σ)により示したものである。図8の例では、バイアス用の高周波電力LFが低い場合(Low Power)、それよりもバイアス用の高周波電力LFが高い場合(High Power)と比べてツイスティング値が高くなっている。 The vertical axis in FIG. 7 is a twisting value. The twisting value is a deviation (3σ) indicating the variation of the distance between the holes from the shape (footprint) of the bottom of the hole whose example is shown in FIG. In the example of FIG. 8, the twisting value is higher when the high frequency bias power LF is low (Low Power) than when the high frequency bias power LF is higher (High Power).
図7の結果によれば、3000Wのバイアス用の高周波電力LFのパルス波を印加した場合、ボトムCDが「Small」に近くなる程、ツイスティング値は悪くなる。これは、ボトムCDが小さくなる程、プラズマ中のイオンが細いホール内を移動する際に、図9(a)の(1)に示すようにホールの底部まで届き難くなり、ホールの底部に届く前に湾曲して、ツイスティングが生じるためである。 According to the result in FIG. 7, when a pulse wave of high frequency power LF for bias of 3000 W is applied, the twisting value is worse as the bottom CD becomes closer to "Small". This is because as the bottom CD becomes smaller, as ions in the plasma move in the thin hole, it becomes difficult to reach the bottom of the hole as shown in (1) of FIG. 9 (a) and reaches the bottom of the hole This is because the twisting occurs due to the front curve.
これに対して、4500W及び7000Wのバイアス用の高周波電力LFのパルス波を印加した場合、3000Wのバイアス用の高周波電力LFのパルス波を印加した場合と比べて、ボトムCDが「Small」になってもツイスティング値は悪化し難くなっている。つまり、イオンが、ホールの底部付近で湾曲することにより生じるツイスティングが改善されている。これは、バイアス用の高周波電力LFの値を大きくしたことで、図9(b)に示すように、イオンエネルギーが高くなり、イオンの直進性を高め、ホールの底部付近に到達するイオン数を増加させることができたためである。 On the other hand, when the pulse wave of the high frequency power LF for bias of 4500 W and 7000 W is applied, the bottom CD becomes "Small" compared to the case where the pulse wave of the high frequency power LF for bias of 3000 W is applied. However, the twisting value is less likely to deteriorate. That is, the twisting caused by the ions bending near the bottom of the hole is improved. This is because the value of high frequency power LF for bias is increased, and as shown in FIG. 9B, the ion energy becomes high, the straightness of the ions is enhanced, and the number of ions reaching near the bottom of the hole is It is because it could be increased.
なお、バイアス用の高周波電力LFはパルス波であり、バイアス用の高周波電力LFが印加されるオンの間と、印加されないオフの間とが繰り返される。これにより、バイアス用の高周波電力LFがオンの間、エッチングを促進し、バイアス用の高周波電力LFがオフの間、ホール内のガスをホール外へ排気できる。これにより、図9(a)の(2)に示すマスク膜11の間口がエッチング時の反応生成物で狭くなるマスククロッギングを防止できる。また、図9(a)の(3)に示すホールの側面に反応生成物が付着してホール内の一部が狭くなるネッキングを防止できる。これにより、イオンが、よりホールの底部に到着し易くなる。
The high frequency bias power LF is a pulse wave, and the high frequency power LF for bias is applied between on and off. Thus, etching can be promoted while the high frequency bias power LF is on, and the gas in the hole can be exhausted out of the hole while the high frequency bias power LF is off. Thus, it is possible to prevent mask clogging in which the opening of the
以上に説明したように、本変形例にかかるエッチング方法によれば、4000W以上のバイアス用の高周波電力LFのパルス波を印加することで、プラズマ中のイオンエネルギーを高め、イオンをホールの底部に到達し易くする。これにより、ツイスティングを改善し、エッチング形状を良好にし、ホールのエッチングを促進させることができる。この結果、アスペクト比が20〜25、好ましくは25以上のホールや溝に良好なエッチングを施すことができる。 As described above, according to the etching method according to the present modification, by applying a pulse wave of high frequency power LF for bias of 4000 W or more, the ion energy in the plasma is increased, and the ions are at the bottom of the hole. Make it easy to reach. Thereby, twisting can be improved, the etching shape can be improved, and etching of holes can be promoted. As a result, holes or grooves having an aspect ratio of 20 to 25, preferably 25 or more can be favorably etched.
なお、本変形例にかかるエッチング方法は、図3(b)に示すように、上記実施形態のHBrガス、NF3ガス、O2ガスの制御を行いつつ、バイアス用の高周波電力LFの制御を行ってもよい。あるいは、図3(a)に示すように、上記実施形態のHBrガス、NF3ガス、O2ガスは一定に制御しつつ、バイアス用の高周波電力LFの制御を行ってもよい。 In the etching method according to the present modification, as shown in FIG. 3B, the control of the HFr gas, NF 3 gas, and O 2 gas of the above embodiment is performed while the control of the high frequency power LF for bias is performed. You may go. Alternatively, as shown in FIG. 3A, the HFr gas, the NF 3 gas, and the O 2 gas of the above embodiment may be controlled to be constant while the high frequency power LF for bias may be controlled.
以上、エッチング方法及びエッチング装置を上記実施形態により説明したが、本発明にかかるエッチング方法及びエッチング装置は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で組み合わせることができる。 As mentioned above, although the etching method and the etching apparatus were demonstrated by the said embodiment, the etching method and etching apparatus concerning this invention are not limited to the said embodiment, A various deformation | transformation and improvement are possible within the scope of the present invention It is. Matters described in the above plurality of embodiments can be combined without contradiction.
例えば、基板の温度は、100℃以上であることが好ましく、100℃〜200℃の範囲が更に好ましい。基板の温度は、載置台20の温度(表面温度)又は静電チャック106の温度であってもよい。
For example, the temperature of the substrate is preferably 100 ° C. or higher, and more preferably in the range of 100 ° C. to 200 ° C. The temperature of the substrate may be the temperature of the mounting table 20 (surface temperature) or the temperature of the
また、本発明にかかるエッチング方法を使用するエッチング装置は、容量結合型プラズマ(CCP:Capacitively Coupled Plasma)装置だけでなく、その他のエッチング装置に適用可能である。その他のエッチング装置としては、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)、ラジアルラインスロットアンテナを用いたプラズマ処理装置、ヘリコン波励起型プラズマ(HWP:Helicon Wave Plasma)装置、電子サイクロトロン共鳴プラズマ(ECR:Electron Cyclotron Resonance Plasma)装置等であってもよい。 Further, the etching apparatus using the etching method according to the present invention is applicable not only to capacitively coupled plasma (CCP: Capacitively Coupled Plasma) apparatuses but also to other etching apparatuses. Other etching apparatuses include inductively coupled plasma (ICP: Inductively Coupled Plasma), plasma processing apparatus using a radial line slot antenna, Helicon Wave Plasma (HWP) apparatus, electron cyclotron resonance plasma (ECR) An electron cyclotron resonance plasma) apparatus or the like may be used.
また、本発明にかかるエッチング装置により処理される基板は、ウェハに限られず、例えば、フラットパネルディスプレイ(Flat Panel Display)用の大型基板、EL素子又は太陽電池用の基板であってもよい。 The substrate processed by the etching apparatus according to the present invention is not limited to a wafer, and may be, for example, a large substrate for flat panel display, a substrate for EL element or solar cell.
1:エッチング装置
10:チャンバ
11:マスク
12:ポリシリコン膜
13:下地膜
15:ガス供給源
20:載置台20(下部電極)
25:ガスシャワーヘッド(上部電極)
30:電力供給装置
100:制御部
106:静電チャック
1: etching apparatus 10: chamber 11: mask 12: polysilicon film 13: underlayer 15: gas supply source 20: mounting table 20 (lower electrode)
25: Gas shower head (upper electrode)
30: power supply device 100: control unit 106: electrostatic chuck
Claims (10)
臭化水素(HBr)ガス、三フッ化窒素(NF3)ガス及び酸素(O2)ガスを含むガスをチャンバ内に供給し、供給したガスから生成されたプラズマによりシリコン膜をエッチングする複数の工程を有し、
前記臭化水素ガスの流量を、前記複数の工程のうちの最後の工程を含む2以上の工程において段階的に減少させ、
前記酸素ガスの流量を、前記臭化水素ガスの減少に応じて調整する、
エッチング方法。 An etching method for etching a silicon film formed on a substrate, comprising:
A plurality of gases including hydrogen bromide (HBr) gas, nitrogen trifluoride (NF 3 ) gas and oxygen (O 2 ) gas are supplied into the chamber and a silicon film is etched by plasma generated from the supplied gas. Have a process,
The hydrogen bromide gas flow rate is reduced stepwise in two or more steps including the last one of the plurality of steps,
Adjusting the flow rate of the oxygen gas according to the decrease of the hydrogen bromide gas;
Etching method.
請求項1に記載のエッチング方法。 Gradually increase the flow rate of the oxygen gas,
The etching method according to claim 1 .
請求項1又は2に記載のエッチング方法。 Increasing the flow ratio of oxygen gas to hydrogen bromide gas stepwise;
The etching method according to claim 1 or 2.
前記三フッ化窒素ガスの流量を増加させた場合、前記酸素ガスの流量を前記三フッ化窒素ガスの増加に応じて増加させる、
請求項1〜3のいずれか一項に記載のエッチング方法。 Make the flow rate of the nitrogen trifluoride gas constant or increase;
When the flow rate of the nitrogen trifluoride gas is increased, the flow rate of the oxygen gas is increased according to the increase of the nitrogen trifluoride gas,
The etching method according to any one of claims 1 to 3 .
請求項1〜4のいずれか一項に記載のエッチング方法。 The temperature of the substrate is adjusted to 100 ° C to 200 ° C.
The etching method as described in any one of Claims 1-4 .
請求項1〜5のいずれか一項に記載のエッチング方法。 In the plurality of steps, a pulse wave of high frequency power LF for bias of 4000 W or more is applied,
The etching method as described in any one of Claims 1-5.
請求項6に記載のエッチング方法。 The frequency of the pulse wave of the high frequency bias power is 0.1 kHz to 50 kHz, and the duty ratio is 5% to 30%.
The etching method of Claim 6 .
前記制御部は、
臭化水素(HBr)ガス、三フッ化窒素(NF3)ガス及び酸素(O2)ガスを含むガスをチャンバ内に供給し、供給したガスから生成されたプラズマによりシリコン膜をエッチングする複数の工程において前記臭化水素ガスの流量を段階的に減少させ、
前記酸素ガスの流量を、前記臭化水素ガスの減少に応じて調整する、
エッチング装置。 An etching apparatus having a control unit and etching a silicon film formed on a substrate, the etching apparatus comprising:
The control unit
A plurality of gases including hydrogen bromide (HBr) gas, nitrogen trifluoride (NF 3 ) gas and oxygen (O 2 ) gas are supplied into the chamber and a silicon film is etched by plasma generated from the supplied gas. In the process, the flow rate of the hydrogen bromide gas is reduced stepwise;
Adjusting the flow rate of the oxygen gas according to the decrease of the hydrogen bromide gas;
Etching equipment.
臭化水素(HBr)ガス、三フッ化窒素(NF3)ガス及び酸素(O2)ガスを含むガスをチャンバ内に供給し、供給したガスから生成されたプラズマによりシリコン膜をエッチングする複数の工程を有し、
前記複数の工程において前記臭化水素ガスの流量を段階的に減少させ、前記酸素ガスの流量を、前記臭化水素ガスの減少に応じて調整し、4000W以上のバイアス用の高周波電力LFのパルス波を印加する、
エッチング方法。 An etching method for etching a silicon film formed on a substrate, comprising:
A plurality of gases including hydrogen bromide (HBr) gas, nitrogen trifluoride (NF 3 ) gas and oxygen (O 2 ) gas are supplied into the chamber and a silicon film is etched by plasma generated from the supplied gas. Have a process,
The flow rate of the hydrogen bromide gas is decreased stepwise in the plurality of steps, and the flow rate of the oxygen gas is adjusted according to the decrease of the hydrogen bromide gas, and a pulse of the RF power LF for bias of 4000 W or more Apply a wave,
Etching method.
前記制御部は、
臭化水素(HBr)ガス、三フッ化窒素(NF3)ガス及び酸素(O2)ガスを含むガスをチャンバ内に供給し、供給したガスから生成されたプラズマによりシリコン膜をエッチングする複数の工程を有し、
前記複数の工程において前記臭化水素ガスの流量を段階的に減少させ、前記酸素ガスの流量を、前記臭化水素ガスの減少に応じて調整し、4000W以上のバイアス用の高周波電力LFのパルス波を印加する、
エッチング装置。 An etching apparatus having a control unit and etching a silicon film formed on a substrate, the etching apparatus comprising:
The control unit
A plurality of gases including hydrogen bromide (HBr) gas, nitrogen trifluoride (NF 3 ) gas and oxygen (O 2 ) gas are supplied into the chamber and a silicon film is etched by plasma generated from the supplied gas. Have a process,
The flow rate of the hydrogen bromide gas is decreased stepwise in the plurality of steps, and the flow rate of the oxygen gas is adjusted according to the decrease of the hydrogen bromide gas, and a pulse of the RF power LF for bias of 4000 W or more Apply a wave,
Etching equipment.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/133,314 US9865471B2 (en) | 2015-04-30 | 2016-04-20 | Etching method and etching apparatus |
TW105113217A TWI685014B (en) | 2015-04-30 | 2016-04-28 | Etching method and etching device |
KR1020160052950A KR102436237B1 (en) | 2015-04-30 | 2016-04-29 | Etching method and etching apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015093509 | 2015-04-30 | ||
JP2015093509 | 2015-04-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016213427A JP2016213427A (en) | 2016-12-15 |
JP6516603B2 true JP6516603B2 (en) | 2019-05-22 |
Family
ID=57551758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015140232A Active JP6516603B2 (en) | 2015-04-30 | 2015-07-14 | Etching method and etching apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6516603B2 (en) |
TW (1) | TWI685014B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6945388B2 (en) * | 2017-08-23 | 2021-10-06 | 東京エレクトロン株式会社 | Etching method and etching processing equipment |
JP7158252B2 (en) * | 2018-02-15 | 2022-10-21 | 東京エレクトロン株式会社 | Plasma etching method and plasma etching apparatus |
CN111066129B (en) * | 2018-06-04 | 2024-04-05 | 东京毅力科创株式会社 | Etching treatment method and etching treatment device |
CN111383880B (en) * | 2018-12-27 | 2023-03-31 | 中微半导体设备(上海)股份有限公司 | Plasma processor's mounting structure and corresponding plasma processor |
CN112466749B (en) | 2020-11-16 | 2023-11-14 | 北京北方华创微电子装备有限公司 | Etching method of silicon wafer |
KR20230165190A (en) * | 2021-04-08 | 2023-12-05 | 도쿄엘렉트론가부시키가이샤 | Etching method and plasma processing system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4504684B2 (en) * | 2001-12-27 | 2010-07-14 | 東京エレクトロン株式会社 | Etching method |
JP4184851B2 (en) * | 2003-03-31 | 2008-11-19 | 東京エレクトロン株式会社 | Plasma processing method |
US8382999B2 (en) * | 2009-03-26 | 2013-02-26 | Applied Materials, Inc. | Pulsed plasma high aspect ratio dielectric process |
JP5823160B2 (en) * | 2011-05-11 | 2015-11-25 | 東京エレクトロン株式会社 | Deposit removal method |
JP2014120661A (en) * | 2012-12-18 | 2014-06-30 | Tokyo Electron Ltd | Method of forming dummy gate |
JP6027492B2 (en) * | 2013-05-22 | 2016-11-16 | 東京エレクトロン株式会社 | Etching method and etching apparatus |
JP6180824B2 (en) * | 2013-07-02 | 2017-08-16 | 東京エレクトロン株式会社 | Plasma etching method and plasma etching apparatus |
JP6173889B2 (en) * | 2013-11-28 | 2017-08-02 | ソニーセミコンダクタソリューションズ株式会社 | Simulation method, simulation program, machining control system, simulator, process design method and mask design method |
-
2015
- 2015-07-14 JP JP2015140232A patent/JP6516603B2/en active Active
-
2016
- 2016-04-28 TW TW105113217A patent/TWI685014B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI685014B (en) | 2020-02-11 |
TW201707041A (en) | 2017-02-16 |
JP2016213427A (en) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102436237B1 (en) | Etching method and etching apparatus | |
EP3086359B1 (en) | Etching method | |
KR102584336B1 (en) | Etching method | |
JP6516603B2 (en) | Etching method and etching apparatus | |
KR102033979B1 (en) | Etching method and etching apparatus | |
US9384992B2 (en) | Plasma processing method | |
KR102320085B1 (en) | Method for manufacturing semiconductor device | |
JP6180824B2 (en) | Plasma etching method and plasma etching apparatus | |
US10854470B2 (en) | Plasma etching method | |
US20140256147A1 (en) | Plasma processing apparatus and plasma processing method | |
CN111584360B (en) | Etching method | |
US20220059361A1 (en) | Etching method and plasma processing apparatus | |
JP7222940B2 (en) | Etching method and plasma processing apparatus | |
JP2024099512A (en) | Cryogenic atomic layer etching with noble gas | |
JP5041696B2 (en) | Dry etching method | |
KR20160003624A (en) | Etching method | |
US20230238226A1 (en) | Substrate treatment apparatus and semiconductor device manufacturing method using the same | |
KR20210000274A (en) | Etching method and etching apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6516603 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |