JP6515509B2 - ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME - Google Patents
ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME Download PDFInfo
- Publication number
- JP6515509B2 JP6515509B2 JP2014241836A JP2014241836A JP6515509B2 JP 6515509 B2 JP6515509 B2 JP 6515509B2 JP 2014241836 A JP2014241836 A JP 2014241836A JP 2014241836 A JP2014241836 A JP 2014241836A JP 6515509 B2 JP6515509 B2 JP 6515509B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- hydrogen generation
- platinum
- hydrogen
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
本発明は水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用する水素発生用電極およびその製造方法並びにこれを用いた電気分解方法に関するものである。 The present invention relates to an electrode for hydrogen generation used for electrolysis of water or electrolysis of an aqueous solution of an alkali metal chloride such as sodium chloride, a method for producing the same, and an electrolysis method using the same.
水又はアルカリ金属塩化物水溶液電解工業は電力多消費型産業であり、省エネルギー化のために様々な技術開発が行われている。その省エネルギー化の手段とは、理論分解電圧、液抵抗、隔膜抵抗、陽極過電圧、及び、陰極過電圧などで構成される電解電圧を実質的に低減することである。特に、過電圧の低減に関しては、その過電圧値が電極の触媒材料や電極表面のモルフォロジーに左右されることから、その改良についてこれまで多くの研究開発が行われてきた。イオン交換膜法食塩電解においては、陽極過電圧の低減に盛んな研究開発が行われてきた結果、陽極過電圧が低く、耐久性に優れた寸法安定性電極[例えば、ペルメレック電極社製のDSE電極(登録商標)]が完成し、既に食塩電解工業を初め広い電解工業分野で利用されている。 The water or alkali metal chloride aqueous solution electrolysis industry is a power-intensive industry, and various technological developments are being carried out for energy saving. The means of energy saving is to substantially reduce the electrolytic voltage composed of theoretical decomposition voltage, liquid resistance, diaphragm resistance, anodic overvoltage, cathodic overvoltage and the like. In particular, with regard to the reduction of the overvoltage, many researches and developments have been made on the improvement since the overvoltage value depends on the catalyst material of the electrode and the morphology of the electrode surface. Ion Exchange Membrane Method In salt electrolysis, research and development has been actively carried out to reduce anodic overvoltage, and as a result, a dimensionally stable electrode having a low anodic overvoltage and excellent durability [for example, DSE electrode manufactured by Permerek Electrodes ( ] Has been completed, and has already been used in the field of electrolytic industry, including the salt electrolytic industry.
一方、陰極過電圧を低減するための水素発生用電極、いわゆる活性陰極に関してもこれまで多くの提案がなされている。一般的に水素過電圧を低下させる手段としては、担持触媒の活性向上と反応比表面積の増加であり、活性向上には、導電性基材上に特定組成の金属混合物、金属合金、金属酸化物あるいはこれらの混合物からなる高活性触媒の担持、比表面積増加はその担持方法により向上させており、主な担持方法としては、触媒成分や金属塩を溶解させた浴から触媒成分を電析させる電気めっき法、金属塩溶液に触媒物質を分散させた浴から触媒成分を電気泳動電着させる分散めっき法、溶融状態の触媒物質を基材に直接溶射する溶射法、金属塩の溶液などを塗布、焼成する熱分解法が挙げられる。 On the other hand, many proposals have been made regarding a hydrogen generation electrode for reducing cathodic overvoltage, so-called active cathode. Generally, the means for lowering the hydrogen overpotential is to improve the activity of the supported catalyst and increase the reaction specific surface area, and to improve the activity, metal mixtures of specific compositions, metal alloys, metal oxides or the like on conductive substrates The loading of a highly active catalyst composed of these mixtures and the increase in specific surface area are improved by the loading method, and the main loading method is electroplating that deposits catalyst components from a bath in which catalyst components and metal salts are dissolved. Method, dispersion plating method in which catalyst component is electrophoresed from a bath in which catalyst material is dispersed in metal salt solution, thermal spraying method in which catalyst material in molten state is directly sprayed on substrate, metal salt solution etc. is applied and fired Thermal decomposition methods.
従来、鉄陰極の約400mVという水素過電圧より低い水素過電圧の電極として、例えば、電気めっき法で導電性基材表面に、ニッケルと鉄、コバルト、インジウムとの組み合わせに加えてアミノ酸、カルボン酸、アミンなどの有機化合物を含んだ物質を担持したものが開示されている(特許文献1)。しかし、これらは担持物を非常に厚くすることが必要なため、めっき応力による電極の変形や担持物の剥離が起こりやすいことや、これらの卑金属は活性が低いため、卑金属の合金化による活性向上だけでは水素過電圧を低下させる効果としては不十分なものであった。 Conventionally, as an electrode of hydrogen overpotential lower than about 400 mV of hydrogen of iron cathode, for example, in combination with nickel, iron, cobalt, indium, amino acid, carboxylic acid, amine on conductive substrate surface by electroplating method The thing which carry | supported the substance containing organic compounds, such as, is disclosed (patent document 1). However, since it is necessary to make the support very thick, deformation of the electrode due to plating stress and peeling of the support are likely to occur, and since the activity of these base metals is low, the activity is improved by alloying the base metal. Alone was not enough to reduce the hydrogen overvoltage.
また、ニッケルとモリブデンからなる合金層をアークイオンプレーティング法で担持したものが開示されている(特許文献2)が、初期水素過電圧は十分低いものの長期電解運転における水素過電圧上昇、いわゆる耐久性に課題があった。 In addition, although an alloy layer comprising nickel and molybdenum is supported by the arc ion plating method (Patent Document 2), although the initial hydrogen overvoltage is sufficiently low, the hydrogen overvoltage rises in long-term electrolytic operation, so-called durability There was a problem.
一方、ニッケルおよび/又はコバルトと、アルミニウム、亜鉛、マグネシウム、シリコンから選ばれる成分、および白金等の貴金属から選ばれる3成分合金からなる水素発生用電極が開示されている(特許文献3)。この電極では、前記3成分からなる合金からアルミニウム、亜鉛、マグネシウム、シリコンから選ばれる成分を溶出・除去しラネー型ニッケルおよび/又はラネー型コバルト触媒を水素発生用電極に使用することを骨子としたもので、貴金属成分をモル比で0.4未満微量添加することによって、ニッケルおよび/又はコバルトが水酸化ニッケルあるいは水酸化コバルトに変質することによる電極活性の劣化を阻止することで耐久性向上を図ったものである。しかし、この電極はニッケルおよび/又はコバルトの比表面積の増加によって水素過電圧を低減しているため、触媒から成分を除去する工程が必要なことや、担持物を数十〜数百μmまで厚くする必要があり、製作コストが非常に高いなどの問題があった。なお、特許文献3には、貴金属成分をモル比で0.4以上にしても、水素発生過電圧の低減効果は無いと記載されている。 On the other hand, an electrode for hydrogen generation is disclosed which is composed of a ternary alloy selected from nickel and / or cobalt, a component selected from aluminum, zinc, magnesium, silicon, and a noble metal such as platinum (Patent Document 3). In this electrode, the main point is to use Raney-type nickel and / or Raney-type cobalt catalyst as an electrode for hydrogen generation by eluting and removing components selected from aluminum, zinc, magnesium and silicon from the alloy consisting of the three components. In addition, by adding a trace amount of a precious metal component in a molar ratio of less than 0.4, durability can be improved by preventing deterioration of electrode activity due to deterioration of nickel and / or cobalt to nickel hydroxide or cobalt hydroxide. It is intended. However, since this electrode reduces the hydrogen overpotential by increasing the specific surface area of nickel and / or cobalt, a process for removing the component from the catalyst is necessary, and the thickness of the support is increased to several tens to several hundreds of μm. The problem is that the cost of production is very high. In addition, it is described in patent document 3 that there is no reduction effect of hydrogen generation | occurence | production overvoltage, even if a noble metal component is 0.4 or more by molar ratio.
この他に、白金族金属酸化物とNi等の酸化物との混合物や複合酸化物を使用することが従来から提案されてきた。例えば、特許文献4には、白金族金属化合物とNi等の金属化合物の混合溶液を塗布乾燥してから該金属化合物を酸化するに十分な条件、すなわち、空気や酸素等の酸化性気流中且つ高温で加熱処理し白金族金属酸化物とNi酸化物等との混合酸化物や複合酸化物からなる電極を製造する方法が提案されている。特許文献4の実施例3には、塩化白金酸と塩化ニッケルと塩化ルテニウムの混合溶液をニッケル基材状に塗布し乾燥した後、470〜480℃で熱分解して製作した白金とニッケルとルテニウムの酸化物が被覆された水素発生用電極が開示されており、特許文献4に記載された熱力学計算による実際の絶対再現性電圧から過電圧に換算すると、1週目の過電圧は42mVと十分満足できるものの、電解経過と共に過電圧が上昇しており、6週目の水素発生過電圧は87mV、11週目以降は97mVである。従って、5kA/m2以上の電流密度で使用した場合、過電圧は低くとも100mV以上と予想され、改善すべき課題があった。 Besides, it has been conventionally proposed to use a mixture of a platinum group metal oxide and an oxide such as Ni or a composite oxide. For example, Patent Document 4 describes a condition sufficient for oxidizing a metal compound after applying and drying a mixed solution of a platinum group metal compound and a metal compound such as Ni, ie, in an oxidizing gas such as air or oxygen There has been proposed a method of producing an electrode comprising a mixed oxide of a platinum group metal oxide and a Ni oxide or the like, or a composite oxide, by heat treatment at a high temperature. In Example 3 of Patent Document 4, a mixed solution of chloroplatinic acid, nickel chloride and ruthenium chloride is coated on a nickel base, dried, and then pyrolyzed at 470 to 480 ° C. to manufacture platinum, nickel and ruthenium. An oxide-coated electrode for hydrogen generation is disclosed, and the first week overpotential is sufficiently satisfied with 42 mV when converted from the actual absolute repeatability voltage based on the thermodynamic calculation described in Patent Document 4 to an overvoltage. Although it can be done, the overvoltage rises with the progress of electrolysis, and the hydrogen generation overpotential at the 6th week is 87mV and 97mV after the 11th week. Therefore, when used at a current density of 5 kA / m 2 or more, the overvoltage is expected to be at least 100 mV at least, and there is a problem to be solved.
一方、上記の他にも、貴金属族元素と卑金属元素を複数組み合わせた水素発生用電極が従来から提案されている。例えば、特許文献5には、1種類の貴金属又は2種類若しくは3種類以上の貴金属の混合物若しくは合金からなる貴金属沈着物や、該貴金属沈着物にNi等の1種類又は2種類以上の卑金属を含んだ沈着物をNi等の導電性基材上に沈着させた水素発生用電極が提案されている。しかし、これらの水素発生用電極は、電解液中の鉄等の不純物による被毒を受け易いという課題を持つことが知られている(特許文献6)。 On the other hand, in addition to the above, an electrode for hydrogen generation in which a plurality of noble metal elements and base metal elements are combined is conventionally proposed. For example, Patent Document 5 includes a noble metal deposit consisting of one kind of noble metal or a mixture or alloy of two or more kinds of noble metals, and containing one kind or two or more kinds of base metals such as Ni in the noble metal deposit. An electrode for hydrogen generation has been proposed in which a deposit is deposited on a conductive substrate such as Ni. However, it is known that these hydrogen generation electrodes have a problem that they are easily poisoned by impurities such as iron in the electrolytic solution (Patent Document 6).
この様に、従来から、貴金属を担持して成る水素過電圧が低い水素発生用電極が提案されているが、白金を担持して成る水素発生用電極は電解液中に存在する微量の鉄イオンに対して敏感に被毒の影響を受け易く鉄イオン濃度が1ppm以下の微量濃度でも水素過電圧は上昇するため、電解液中に鉄イオンが混入しやすいアルカリ金属塩化物水溶液の電気分解工業等での使用に更なる改善が検討されている。 Thus, although an electrode for hydrogen generation having a low hydrogen overvoltage formed by supporting a noble metal is conventionally proposed, the electrode for hydrogen generation formed by supporting platinum corresponds to a small amount of iron ions present in the electrolyte. On the other hand, the hydrogen overpotential is susceptible to poisoning and the hydrogen overpotential is increased even if the iron ion concentration is 1 ppm or less, so that the alkali metal chloride aqueous solution which is easily mixed with iron ions in the electrolytic solution Further improvements in use are being considered.
そのため、電解液中の鉄イオンによる被毒防止を目的に幅広く検討が成され、様々な提案が成されている。例えば、低い水素過電圧を有する水素発生陰極をアルカリ金属塩化物水溶液の電気分解に用いた場合の、該陰極上への鉄の析出と陰極液中の鉄イオンとの関係を検討し、陰極液中の鉄イオン濃度が0.5ppm以下の場合には鉄の析出が防止可能であることを見出し、低水素過電圧陰極を用い、且つ、陰極液中の鉄イオン濃度を0.5ppm以下に維持しながら電解するアルカリ金属塩化物水溶液の電気分解方法が提案されて
いる(特許文献6)。かかる発明により、鉄イオンに対して敏感に被毒の影響を受ける水素発生用電極も、アルカリ金属塩化物水溶液の電気分解工業等での使用が可能になった。しかし、特許文献6の提案を実施するためには、陰極液に接する部分の少なくとも陽分極される箇所に高Ni系ステンレス或いはNi等の材料を用いたり、停止時に防食電流を流したりする等が必要であり、経済的観点から改善すべき課題があった。
Therefore, extensive studies have been made for the purpose of preventing poisoning by iron ions in the electrolyte, and various proposals have been made. For example, when a hydrogen generation cathode having a low hydrogen overpotential is used for electrolysis of an aqueous alkali metal chloride solution, the relationship between iron deposition on the cathode and iron ions in the catholyte is examined, and the cathode liquid is contained in the catholyte. It is found that precipitation of iron can be prevented when the iron ion concentration of the catalyst is 0.5 ppm or less, and a low hydrogen overvoltage cathode is used, and the iron ion concentration in the catholyte is maintained at 0.5 ppm or less. A method of electrolysis of an aqueous alkali metal chloride solution to be electrolyzed has been proposed (Patent Document 6). According to this invention, it has become possible to use an electrode for hydrogen generation, which is susceptible to poisoning to iron ions, in the electrolysis industry and the like of an aqueous solution of alkali metal chloride. However, in order to implement the proposal of Patent Document 6, a material such as high Ni-based stainless steel or Ni is used for at least the positively polarized portion of the portion in contact with the catholyte, or a corrosion current is supplied at the time of stopping There is a need and an issue to be improved from an economic point of view.
また、鉄イオンにより過電圧が上昇した水素発生用電極から鉄を除去する方法が検討され、鉄の析出で水素過電圧が悪化した水素発生用電極から鉄を除去し再利用する提案が成されてきた。例えば、表面上に析出された鉄と反応し、且つそれを可溶化する液体媒体と接触させることからなる陰極表面に析出された鉄を除去する方法が提案された(特許文献7)。この方法を用いることにより、鉄イオンにより過電圧が上昇した水素発生用電極の再利用が可能となったが、当該提案を実施するためには電気分解を頻繁に停止する必要があり、長期間連続で安定に操業することが出来ない。従って、この場合も経済的観点から改善すべき課題があった。 In addition, a method of removing iron from a hydrogen generation electrode whose overvoltage has been raised by iron ions has been studied, and proposals have been made to remove and reuse iron from a hydrogen generation electrode whose hydrogen overvoltage has deteriorated due to precipitation of iron. . For example, a method has been proposed for removing iron deposited on the surface of the cathode, which comprises contacting with the liquid medium which reacts with the iron deposited on the surface and solubilizes it (Patent Document 7). By using this method, it has become possible to reuse the hydrogen generation electrode whose overvoltage has been raised by iron ions, but in order to carry out the proposal, it is necessary to frequently stop the electrolysis, and it will be continuous for a long time Can not operate stably. Therefore, in this case also, there is a problem to be improved from the economic point of view.
さらに、水素発生用電極自体に鉄イオンが付着しがたい、或いは、付着しても性能が劣化しない特性を付与するための試みが従来から広く行われてきた。例えば、白金およびルテニウムと、金又は銀の少なくとも一方を含む触媒、或いは、さらに有機ポリマーの粒子を含む触媒を導電性基材に担持した水素発生用電極が提案された(特許文献8)。該水素発生用電極は陰極液中に鉄イオンが存在しても過電圧の上昇は極僅かであり、アルカリ金属塩化物水溶液の電気分解のエネルギー使用量を削減しうる点においては確かに優れた特性を有する水素発生用電極である。しかし、白金、金および銀は何れも高価な材料であり、これにポリテトラフルオロエチレンを含ませる場合は、なお一層、高価となる。従って、この場合もなお、経済的観点から改善すべき課題があった。 Further, attempts have been widely made in the past to impart characteristics in which iron ions are difficult to attach to the hydrogen generation electrode itself, or the performance does not deteriorate even if the iron ions adhere to the electrode. For example, a hydrogen generating electrode has been proposed in which a catalyst containing at least one of platinum and ruthenium and gold or silver, or a catalyst further containing particles of an organic polymer is supported on a conductive substrate (Patent Document 8). The electrode for hydrogen generation has a very small increase in overvoltage even when iron ions are present in the catholyte, and it is certainly excellent in that it can reduce the amount of energy used for electrolysis of an aqueous solution of alkali metal chloride. And an electrode for hydrogen generation. However, platinum, gold and silver are all expensive materials, and when including polytetrafluoroethylene, they become much more expensive. Therefore, there is still a problem to be improved from the economic point of view.
一方、白金とセリウムからなる触媒を用いた水素発生用電極が提案されている(特許文献9)。当該白金とセリウムの触媒からなる水素発生用電極は、過電圧が低く且つ鉄イオンによる影響は抑制され、アルカリ金属塩化物水溶液の電気分解用の水素発生用電極として優れた性能を示す。またさらに、白金およびセリウムに加え、ランタンとルテニウムの4成分を必須とする触媒層を用いた水素発生用電極が提案されている(特許文献10、11)。当該白金およびセリウムとランタンとルテニウムからなる触媒を用いた水素発生用電極は、白金とセリウムのみからなる触媒を用いた水素発生用電極に比べ、水素過電圧は同等、もしくは5mV低下し、且つ、1日1時間電解を停止させながら、10日の連続した電解でも水素過電圧が変わらず、触媒の消耗がなく、電極表面への付着物がないという優れた性能を持つ。 On the other hand, an electrode for hydrogen generation using a catalyst consisting of platinum and cerium has been proposed (Patent Document 9). The electrode for hydrogen generation which consists of the catalyst of the said platinum and cerium has a low overvoltage, the influence by iron ion is suppressed, and it shows the outstanding performance as an electrode for hydrogen generation for electrolysis of alkali metal chloride aqueous solution. Furthermore, in addition to platinum and cerium, an electrode for hydrogen generation using a catalyst layer essentially comprising four components of lanthanum and ruthenium has been proposed (Patent Documents 10 and 11). The hydrogen generation electrode using a catalyst consisting of platinum and cerium, lanthanum, and ruthenium has a hydrogen overpotential that is equivalent to or reduced by 5 mV as compared with a hydrogen generation electrode using a catalyst consisting only of platinum and cerium; While stopping the electrolysis for 1 hour a day, the hydrogen overvoltage does not change even in continuous electrolysis for 10 days, there is no exhaustion of the catalyst, and there is an excellent performance that there is no deposit on the electrode surface.
他に、触媒層内にルテニウム有する水素発生用陰極としては、硝酸ルテニウムとランタンのカルボン酸塩を塗布材料として作製した触媒層(特許文献12)、ルテニウム化合物とセリウム化合物の混合物をシュウ酸の存在下で熱分解することにより得られた組成物を含む水素発生用陰極(特許文献13)、酸化ルテニウムを含むニッケルめっき浴中での電解めっきにより、ニッケルと酸化ルテニウムによるめっき層を形成させ、さらにその上層に熱分解によりセリウムおよびランタンの金属又は金属酸化物からなる層を積層させた水素発生用電極(特許文献14)がある。 In addition, as a cathode for hydrogen generation having ruthenium in the catalyst layer, a catalyst layer (patent document 12) prepared using ruthenium nitrate and a carboxylate of lanthanum as a coating material, a mixture of a ruthenium compound and a cerium compound in the presence of oxalic acid A cathode for hydrogen generation (Patent Document 13) containing a composition obtained by thermal decomposition under the following conditions: Electroplating in a nickel plating bath containing ruthenium oxide to form a plating layer of nickel and ruthenium oxide; There is an electrode for hydrogen generation (Patent Document 14) in which a layer composed of metal or metal oxide of cerium and lanthanum is laminated by thermal decomposition on the upper layer thereof.
また、鉄イオンの被毒の影響が小さい水素発生用電極として、ニッケル、コバルト、銅、銀および鉄の群から選ばれる一種の金属と白金からなる白金合金、あるいは遷移金属元素と白金との非晶質物質からなる水素発生電極が提案されている(特許文献15)。 In addition, as an electrode for hydrogen generation which is less affected by poisoning of iron ions, a platinum alloy comprising one kind of metal selected from the group of nickel, cobalt, copper, silver and iron and platinum, or a non-transition metal element and platinum. A hydrogen generation electrode consisting of a crystalline substance has been proposed (Patent Document 15).
しかしながら、鉄イオンの被毒の影響がまだ大きく、逆電流耐性が十分でなく、水素発生電極の更なる改良が望まれている。 However, the influence of iron ion poisoning is still large, the reverse current resistance is not sufficient, and further improvement of the hydrogen generation electrode is desired.
以上述べてきた通り、水又はアルカリ金属塩化物水溶液電解工業の電力消費量を削減する目的で、従来から様々な水素発生用電極および水素発生用電極の使用方法が提案されてきたが、従来の水素発生用電極は水素過電圧特性と、陰極液中の鉄イオンに対する耐被毒性能や起動・停止を余儀なくされる工業的な使用において十分な耐久性を兼ね備え、工業的に満足し得る特性を持つ水素発生用電極は、依然得られていなかった。 As described above, in order to reduce the power consumption of the water or alkali metal chloride aqueous solution electrolysis industry, various methods for using hydrogen generation electrodes and hydrogen generation electrodes have conventionally been proposed. The electrode for hydrogen generation has hydrogen over voltage characteristics, sufficient resistance to poisoning to iron ions in the catholyte, and sufficient durability in industrial use where it must be started and stopped, and has industrially satisfactory characteristics. The hydrogen generation electrode has not been obtained yet.
本発明の目的は、水又はアルカリ金属塩化物水溶液電解工業等で使用可能な、水素過電圧が十分に低く、且つ、鉄イオンによる被毒の影響がなく、さらに、運転中や起動・停止中にも水素過電圧の上昇や担持物の脱落がなく、耐久性に優れた水素発生用電極、該水素発生電極の製造方法、並びに、該水素発生用電極を陰極に用いた電解方法を提供し、水又はアルカリ金属塩化物水溶液電解工業等の電力消費量を削減することにある。特に、熱分解による、白金とニッケル等の遷移金属からなる触媒が担持されて成る水素発生用活性陰極の改良を図り、水素過電圧が低く、且つ、鉄イオンによる被毒耐性や電解運転中や停止・起動操作中に流れる逆電流への耐性を向上させ、電極耐久性が向上した水素発生用電極を提供することにある。 The object of the present invention is to be used in water or alkali metal chloride aqueous solution electrolysis industry etc., hydrogen overvoltage is sufficiently low, and there is no influence of poisoning by iron ion, and furthermore, during operation or during start / stop An electrode for hydrogen generation excellent in durability without rising of hydrogen overvoltage and falling off of a support, a method of manufacturing the hydrogen generation electrode, and an electrolysis method using the hydrogen generation electrode as a cathode Alternatively, it is to reduce the power consumption of the alkali metal chloride aqueous solution electrolysis industry and the like. In particular, we will improve the active cathode for hydrogen generation by supporting a catalyst consisting of transition metals such as platinum and nickel by thermal decomposition, with low hydrogen overvoltage, and resistance to poisoning by iron ions, and during or after electrolysis operation. An object of the present invention is to provide an electrode for hydrogen generation with improved resistance to reverse current flowing during start-up operation and improved electrode durability.
本発明は、導電性基材上に、白金、ニッケルおよびルテニウムを主成分とする触媒層が担持されてなる水素発生用電極に関するものである。 The present invention relates to an electrode for hydrogen generation in which a catalyst layer containing platinum, nickel and ruthenium as main components is supported on a conductive substrate.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
導電性基材上に、白金、ニッケルおよびルテニウムからなる触媒層が担持された水素発生用電極は、例えば、導電性基材上に、白金化合物溶液とニッケル化合物溶液とルテニウム化合物溶液を塗布し、200℃以下の温度で乾燥し、その後200℃を超え700℃以下の温度で熱分解して得られた触媒層前駆体の還元処理により触媒層を形成することにより得られ、還元後の触媒層中には、白金とニッケルとルテニウムの合金が形成されている。前記触媒層は水素発生用電極として優れた性能を有する。 An electrode for hydrogen generation in which a catalyst layer consisting of platinum, nickel and ruthenium is supported on a conductive substrate, for example, applies a platinum compound solution, a nickel compound solution and a ruthenium compound solution on a conductive substrate, It is obtained by forming a catalyst layer by reduction treatment of a catalyst layer precursor obtained by drying at a temperature of 200 ° C. or less and then pyrolyzing at a temperature of more than 200 ° C. and 700 ° C., and the catalyst layer after reduction Among them, an alloy of platinum, nickel and ruthenium is formed. The catalyst layer has excellent performance as a hydrogen generation electrode.
尚、還元後の触媒層中の白金とニッケルとルテニウムの合金の割合について、詳細は不明であるが、X線回折結果によれば、大部分が白金とニッケルとルテニウムの合金であり、一部、酸化ルテニウムや酸化ニッケルとして残存し、X線ピークが存在しないアモルファス金属、または、水またはアルカリ金属水酸化物水溶液中での長時間の電解後には、白金、ニッケル及びルテニウム合金の表面上に水酸化物が形成されている可能性もあると考える。 Although the details of the ratio of the alloy of platinum, nickel and ruthenium in the catalyst layer after reduction are unknown, according to the result of X-ray diffraction, the majority is an alloy of platinum, nickel and ruthenium, Amorphous metal that remains as ruthenium oxide or nickel oxide and does not have an X-ray peak, or after prolonged electrolysis in water or aqueous alkali metal hydroxide solution, water on the surface of platinum, nickel and ruthenium alloys I think that the oxide may be formed.
また、水素過電圧が低く、逆電流耐性も優れているため、触媒層中のルテニウムの含有量は、1モル%以上55モル%以下が好ましく、1モル%以上33モル%以下の範囲が好ましく、水素過電圧が低いだけでなく、逆電流耐性にも優れているため、触媒層中のルテニウム含有量が20〜50モル%、ニッケル含有量が40〜25モル%、残部が白金であることが好ましく、触媒層中のルテニウム含有量が20〜32モル%、ニッケル含有量が40〜34モル%、残部が白金であることが好ましい。 In addition, since the hydrogen overvoltage is low and the reverse current resistance is also excellent, the content of ruthenium in the catalyst layer is preferably 1 mol% to 55 mol%, and more preferably 1 mol% to 33 mol%, Not only low hydrogen overvoltage but also excellent reverse current resistance, it is preferable that the ruthenium content in the catalyst layer is 20 to 50 mol%, the nickel content is 40 to 25 mol%, and the balance is platinum. Preferably, the ruthenium content in the catalyst layer is 20 to 32 mol%, the nickel content is 40 to 34 mol%, and the balance is platinum.
さらに、上記還元処理については、電気化学的還元であることが好ましく、水又はアルカリ金属塩化物水溶液を電気分解するときの電気化学的還元であることがより好ましい。 Furthermore, the reduction treatment is preferably electrochemical reduction, more preferably electrochemical reduction when water or an aqueous solution of an alkali metal chloride is electrolyzed.
本発明で用いる導電性基材は、例えばニッケル、鉄、銅、チタンやステンレス合金鋼が挙げられ、特にアルカリ性溶液に対して耐食性の優れたニッケルが好ましい。導電性基材の形状は、特に限定されるものではなく、一般に電解槽の電極に合せた形状でよく、例えば平板、曲板等が使用可能である。 The conductive substrate used in the present invention includes, for example, nickel, iron, copper, titanium and stainless alloy steels, and in particular, nickel having excellent corrosion resistance to an alkaline solution is preferable. The shape of the conductive substrate is not particularly limited, and in general, it may be a shape in accordance with the electrode of the electrolytic cell, and for example, a flat plate, a curved plate or the like can be used.
また、本発明で用いる導電性基材は、多孔板が好ましく、例えば、エキスパンドメタル、パンチメタル、網等が使用できる。 The conductive substrate used in the present invention is preferably a porous plate, and for example, expanded metal, punched metal, net or the like can be used.
本発明の水素発生用電極を製造する方法は、導電性基材上に、白金とニッケルとルテニウムからなる触媒層を担持することが出来ればどの様な製造方法でもよい。例えば、電気めっき法、分散めっき法、溶射法、熱分解法、アークイオンプレーティング法などを用いることができる。しかし、これらの既知の製造方法を用いる場合、導電性基材上に白金とニッケルとルテニウムからなる触媒層を担持するためには、製造条件や原料を鋭意検討し設定する必要がある。単に既知の製造方法を適用しただけでは、本発明が提供する、導電性基材上に、白金とニッケルとルテニウムからなる触媒層を担持した水素発生用電極を製造することは出来ない。 The method for producing the hydrogen generation electrode of the present invention may be any production method as long as a catalyst layer comprising platinum, nickel and ruthenium can be supported on the conductive substrate. For example, an electroplating method, a dispersion plating method, a thermal spraying method, a thermal decomposition method, an arc ion plating method or the like can be used. However, when using these known manufacturing methods, in order to support a catalyst layer consisting of platinum, nickel and ruthenium on a conductive substrate, it is necessary to carefully study and set manufacturing conditions and raw materials. It is not possible to produce the electrode for hydrogen generation supporting the catalyst layer consisting of platinum, nickel and ruthenium on the conductive substrate provided by the present invention simply by applying the known production method.
以下、本発明が提供する、導電性基材上に、白金とニッケルとルテニウムからなる触媒層を担持した水素発生用電極を製造する具体的方法を、熱分解法を例に説明する。 Hereinafter, a thermal decomposition method will be described as an example of a specific method for producing a hydrogen generation electrode in which a catalyst layer consisting of platinum, nickel and ruthenium is supported on a conductive substrate provided by the present invention.
本発明で言う熱分解法とは、基材上に、白金化合物溶液とニッケル化合物溶液とルテニウム化合物溶液を塗布し、乾燥し、熱分解を行う一連の操作を言う。 The thermal decomposition method referred to in the present invention refers to a series of operations of applying a platinum compound solution, a nickel compound solution and a ruthenium compound solution on a substrate, drying and thermal decomposition.
導電性基材は、予め基材表面を粗面化することが好ましい。これは、粗面化によって接触表面積を大きくでき、基材と担持物の密着性が向上するためである。粗面化の手段としては特に限定されず、公知の方法、例えばサンドブラスト処理、蓚酸、塩酸溶液などによりエッチング処理し、水洗、乾燥する方法を用いることができる。 The conductive substrate is preferably roughened in advance. This is because roughening can increase the contact surface area, and the adhesion between the substrate and the carrier is improved. The means for surface roughening is not particularly limited, and a known method such as sand blasting, etching with boric acid or hydrochloric acid solution, washing with water and drying can be used.
本発明の水素発生用電極の製造方法に用いる白金化合物は、塩化白金酸、ジニトロジアミン白金などを用いることができる。特にアンミン錯体を形成するジニトロジアンミン白金を用いると、還元処理後の白金合金の結晶子径を例えば200オングストローム以下まで微細化し、反応比表面積を増大させられるため好ましい。これは、前記ジニトロジアミン白金は熱分解温度が約550℃と高いために、熱分解中の白金の凝集を抑制し、熱分解後に白金とニッケルとルテニウムが均一に混合した被膜が得られ、還元処理により微細な結晶子径の合金が得られるためと推定される。 As a platinum compound used in the method for producing an electrode for hydrogen generation of the present invention, chloroplatinic acid, dinitrodiamine platinum and the like can be used. In particular, it is preferable to use dinitrodiammine platinum which forms an ammine complex because the crystallite diameter of the platinum alloy after reduction treatment can be refined to, for example, 200 angstroms or less, and the reaction specific surface area can be increased. This is because the dinitrodiamine platinum has a high thermal decomposition temperature of about 550 ° C., thereby suppressing aggregation of platinum during thermal decomposition, and a film in which platinum, nickel and ruthenium are uniformly mixed after thermal decomposition is obtained, and reduction It is presumed that the treatment results in an alloy with a fine crystallite diameter.
一方、本発明の製造方法に用いるニッケル化合物およびルテニウム化合物としては特に限定されず、硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩、スルファミン酸塩などを用いることができる。 On the other hand, the nickel compound and the ruthenium compound used in the production method of the present invention are not particularly limited, and nitrate, sulfate, chloride, carbonate, acetate, sulfamate and the like can be used.
さらに、白金化合物とニッケル化合物とルテニウム化合物を溶解させる場合の溶媒としては、担持物の表面積を高めるためには、これらの原料が完全に溶解できるものが好ましく、水あるいは硝酸、塩酸、硫酸、酢酸溶液などの無機酸、さらにメタノール、エタノール、プロパノール、ブタノールなどの有機溶媒、あるいはこれらを混合物として用いることもできる。また、塗布液中へ基材金属の溶解を抑制する目的で塗布液のpHを調製して用いてもよく、担持物の表面積を高めるためにリシン、クエン酸などの錯塩を添加し、ニッケルおよびルテニウムを錯体化させてもよい。 Furthermore, as a solvent for dissolving the platinum compound, the nickel compound and the ruthenium compound, in order to increase the surface area of the support, those in which these raw materials can be completely dissolved are preferable. Water or nitric acid, hydrochloric acid, sulfuric acid, acetic acid Inorganic acids such as solutions, organic solvents such as methanol, ethanol, propanol, butanol or the like, or mixtures thereof may also be used. Also, the pH of the coating solution may be adjusted and used for the purpose of suppressing the dissolution of the base metal into the coating solution, and complex salts such as lysine and citric acid may be added to increase the surface area of the support, nickel and The ruthenium may be complexed.
前記化合物溶液を導電性基材に塗布する方法は、白金化合物溶液とニッケル化合物溶液とルテニウム化合物溶液を別々に刷毛などを用いて導電性基材に塗布してもよいし、白金化合物とニッケル化合物とルテニウム化合物の混合溶液を調製し、刷毛などを用いて導電性基材に塗布してもよい。また、前記の刷毛塗り以外にスプレー法、ディップコート法など、全ての既知の方法を好適に用いることができる。 In the method of applying the compound solution to the conductive substrate, the platinum compound solution, the nickel compound solution and the ruthenium compound solution may be separately applied to the conductive substrate using a brush or the like, or the platinum compound and the nickel compound A mixed solution of the compound and the ruthenium compound may be prepared and applied to the conductive substrate using a brush or the like. In addition to the brushing, all known methods such as a spray method and a dip coating method can be suitably used.
塗布後の乾燥温度は200℃以下の温度で5〜60分間行えばよく、150℃以下の乾燥温度が好ましい。 The drying temperature after application may be 5 to 60 minutes at a temperature of 200 ° C. or less, preferably 150 ° C. or less.
乾燥後の熱分解温度は200℃を超え700℃以下の範囲で5〜60分間行えばよいが、好ましくは350℃を超え500℃以下の範囲で行うとよい。例えば、ジニトロジアミン白金溶液を用いた場合、ジニトロジアミン白金の熱分解温度は550℃であり、500℃以下で熱分解を行うことで白金のシンタリングが抑制され、水素過電圧がより一層低い水素発生用電極を得ることができる。 The thermal decomposition temperature after drying may be in the range of more than 200 ° C. and 700 ° C. or less for 5 to 60 minutes, preferably in the range of more than 350 ° C. and 500 ° C. or less. For example, when a dinitrodiamine platinum solution is used, the thermal decomposition temperature of the dinitrodiamine platinum is 550 ° C., and by performing thermal decomposition at 500 ° C. or less, sintering of platinum is suppressed, and hydrogen overvoltage is even lower Electrode can be obtained.
上記の塗布、乾燥、および熱分解の一連の操作を1回又は数回繰り返す。熱分解操作を繰り返す回数は特に限定されないが、低い水素過電圧を得るためには還元処理後の合金の担持量で0.5g/m2以上となるまで熱分解操作を繰り返すことが好ましく、1g/m2以上となるまで熱分解操作を繰り返すことがさらに好ましい。 The above-described coating, drying, and thermal decomposition sequence is repeated once or several times. The number of times the thermal decomposition operation is repeated is not particularly limited, but in order to obtain a low hydrogen overvoltage, it is preferable to repeat the thermal decomposition operation until the supported amount of the alloy after reduction treatment is 0.5 g / m 2 or more, 1 g / It is further preferable to repeat the thermal decomposition operation until it becomes m 2 or more.
熱分解した後、担持物(触媒層前駆体)を金属状態に還元、合金化させることを目的とした還元処理を行う。還元処理方法は特に限定されないが、ヒドラジン、ギ酸、蓚酸などの還元力の強い物質との接触による化学還元法、白金とニッケルとルテニウムに対し、還元電位を与える電気化学還元法を用いることができる。 After the thermal decomposition, a reduction treatment for reducing and alloying the support (catalyst layer precursor) to a metallic state is performed. The reduction method is not particularly limited, but chemical reduction by contact with a substance having strong reducing power such as hydrazine, formic acid or oxalic acid, or electrochemical reduction which gives reduction potential to platinum, nickel and ruthenium can be used. .
例えば、電気化学還元法は白金とニッケルとルテニウムからなる担持物(触媒層前駆体)の還元に必要な電位を与える方法である。水溶液中の白金とニッケルとルテニウムの標準電極電位はすでに開示されており(「電気化学便覧」 第5版 丸善出版 第92〜95頁)、還元に必要な電位は標準電極電位から見積もることが可能である。 For example, the electrochemical reduction method is a method of providing a potential necessary for reduction of a support (catalyst layer precursor) composed of platinum, nickel and ruthenium. Standard electrode potentials of platinum, nickel and ruthenium in an aqueous solution have already been disclosed ("Electrochemical Handbook" 5th Edition Maruzen Publications page 92 to 95), and the potential required for reduction can be estimated from the standard electrode potential It is.
熱分解後の担持物(触媒層前駆体)を金属状態に還元、合金化させるにあたり、電気化学的還元法が、電解をしながら熱分解後の担持物(触媒層前駆体)を金属状態に還元、合金化が実施でき、電解とは別に上記担持物還元処理をしなくても済むので、便利である。 In reducing and alloying the pyrolyzed support (catalyst layer precursor) to the metallic state, the electrochemical reduction method converts the pyrolyzed support (catalyst layer precursor) to the metallic state while performing electrolysis. It is convenient because reduction and alloying can be performed, and there is no need to carry out the above-mentioned support reduction treatment separately from electrolysis.
この電気化学的還元処理は、通常、水又はアルカリ金属塩化物水溶液中での電気化学的還元処理で実施される。 This electrochemical reduction treatment is usually carried out by an electrochemical reduction treatment in water or an aqueous alkali metal chloride solution.
この様にして得られる本発明の水素発生用電極は、水又は食塩などのアルカリ金属塩化物水溶液の電気分解用途において水素発生用電極として用いると、低水素過電圧が得られると共に、陰極液中に鉄イオンを混入させない特別な工夫をすることなく低過電圧特性を長期間安定に維持し、且つ、停止や再起動操作時に触媒が剥離や脱落を生じることもない、すなわち、水素過電圧性能と耐久性に極めて優れた水素発生用電極である。 When the electrode for hydrogen generation of the present invention obtained in this manner is used as an electrode for hydrogen generation in the electrolysis application of an aqueous solution of an alkali metal chloride such as water or sodium chloride, a low hydrogen overpotential is obtained, and The low over-voltage characteristics are stably maintained for a long period without special iron ion mixing, and the catalyst does not come off or come off during stop or restart operation, that is, hydrogen over-voltage performance and durability Very good electrode for hydrogen generation.
従って、水又は食塩などのアルカリ金属塩化物水溶液の電気分解工業分野において、水素発生用電極を本発明が提供する水素発生用電極に変更するのみで、当該電気分解工業の所要エネルギーを容易に低減可能となる。 Therefore, in the field of electrolysis of an aqueous solution of alkali metal chloride such as water or sodium chloride, the energy required for the electrolysis industry can be easily reduced simply by changing the electrode for hydrogen generation to the electrode for hydrogen generation provided by the present invention. It becomes possible.
尚、水又は食塩などのアルカリ金属塩化物水溶液の電気分解工業とは、水素発生用電極を陰極として使用し、隔膜を挟んで陽極を配置した電解槽で水又はアルカリ金属塩化物水溶液を電気分解し、前記陰極上から水素ガスおよびアルカリ金属水酸化物水溶液を生成し、陽極上から酸素ガス又は塩素ガスを生成する所謂、食塩電解が代表的な電気分解工業の例である。 In the electrolysis industry of aqueous solution of alkali metal chloride such as water or sodium chloride, the electrode for hydrogen generation is used as a cathode and the water or the aqueous solution of alkali metal chloride is electrolyzed in an electrolytic cell in which an anode is disposed with a diaphragm interposed. The so-called sodium chloride electrolysis, which produces hydrogen gas and an aqueous solution of alkali metal hydroxide from the cathode and oxygen gas or chlorine gas from the anode, is a typical example of electrolysis industry.
その隔膜として、電流効率や低い電解槽電圧によるエネルギー効率の面で、陽イオン交換膜を使用することが好ましい。 As the diaphragm, it is preferable to use a cation exchange membrane in terms of current efficiency and energy efficiency due to low electrolytic cell voltage.
本発明の導電性基材上に、白金、ニッケルおよびルテニウムを主成分とする触媒層が担持されてなる水素発生用電極は、低い水素過電圧性能を有し、且つ、耐久性に優れた水素発生用電極であり、その電極は、導電性基板上に触媒層前駆体を形成後、還元処理を行い前記触媒層を形成させる簡便な方法により製造可能であり、この様にして得られる本発明の水素発生用電極は、従来の白金系触媒の欠点とされていた電解液中の鉄イオンの被毒によって、水素過電圧が上昇することがなく、さらに、電解運転中や停止・起動操作中に流れる逆電流により触媒が剥離・脱落することもない。そのため、白金が本来有する低水素過電圧特性を長期間に渡り安定に維持でき、特に年間数回の停止、再起動の際に流れる逆電流や陰極液中への鉄混入が余儀なくされる水又はアルカリ金属水溶液の電気分解工業等の所要エネルギーを大幅に削減可能である。 An electrode for hydrogen generation, in which a catalyst layer composed mainly of platinum, nickel and ruthenium is supported on the conductive substrate of the present invention, has low hydrogen overpotential performance and is excellent in durability. The electrode can be manufactured by a simple method of forming a catalyst layer precursor by forming a catalyst layer precursor on a conductive substrate and forming the catalyst layer, and thus obtained according to the present invention The hydrogen generation electrode does not increase the hydrogen overvoltage due to the poisoning of iron ions in the electrolytic solution, which is considered to be a drawback of the conventional platinum-based catalyst, and flows during the electrolytic operation or during the stop / start operation. The catalyst does not come off or drop off due to the reverse current. Therefore, it is possible to stably maintain the low hydrogen overvoltage characteristic inherent to platinum over a long period of time, especially water or alkali which is forced to be mixed with iron in the reverse current or catholyte flowing several times a year during stopping and restarting. It is possible to greatly reduce the energy required for the electrolysis industry of metal aqueous solutions.
以下の実施例により、本発明を具体的に説明する。 The invention is illustrated by the following examples.
尚、各評価は下記に示す方法で実施した。
(水素過電圧測定)
32wt%水酸化ナトリウム水溶液の電解液(容量約1L)を用いて、対極にNi、温度88℃、電流密度6.0kA/m2の条件で10分間、水電解を行い、カレントインタラプター法により、水素過電圧を測定した。
(鉄被毒耐性評価)
上記方法で水素過電圧を測定した後、32wt%水酸化ナトリウム水溶液の電解液(容量約100mL)中に鉄標準液(関東化学株式会社製、Fe:1000mg/l)を添加し鉄濃度が10ppmになるようにし、その電解液中で対極にNi、電流密度6.0kA/m2という条件で2時間水電解をさせ、再び上記方法で水素過電圧を測定し、先に測定した水素過電圧との差を求め、その値を鉄被毒による過電圧上昇値とし、この過電圧上昇値により、鉄被毒耐性評価を実施した。
(逆電流耐性評価)
上記方法で水素過電圧を測定した後、0.5M硫酸ナトリウム中で、対極にPt、参照電極に飽和カロメル電極、走査電位−1.0Vから0.6V vs SCE、走査速度50mV/s、初期電位0.1V vs SCE、サイクル数250サイクルという条件でサイクリックボルタンメトリーを行い、再び上記方法で水素過電圧を測定し、先に測定した水素過電圧との差を求め、その値を逆電流による過電圧上昇値とし、この過電圧上昇値により、逆電流耐性評価を実施した。
In addition, each evaluation was implemented by the method shown below.
(Hydrogen overvoltage measurement)
Using a 32 wt% sodium hydroxide aqueous solution (approximately 1 L volume), perform water electrolysis on the counter electrode for 10 minutes under the conditions of Ni, temperature 88 ° C., current density 6.0 kA / m 2 by the current interrupter method. , Hydrogen over voltage was measured.
(Iron poisoning resistance evaluation)
After measuring the hydrogen overpotential by the above method, add iron standard solution (Kanto Chemical Co., Ltd., Fe: 1000 mg / l) into the electrolyte (volume: about 100 mL) of 32 wt% sodium hydroxide aqueous solution to make the iron concentration 10 ppm. In the electrolyte, water is electrolyzed for 2 hours under the condition of Ni and current density 6.0 kA / m 2 in the electrolyte, hydrogen over voltage is measured again by the above method, and the difference from the hydrogen over voltage previously measured. The iron poisoning resistance evaluation was carried out using this value as the overvoltage rise value due to iron poisoning.
(Reverse current resistance evaluation)
After measuring the hydrogen overpotential by the above method, in 0.5M sodium sulfate, Pt as a counter electrode, saturated calomel electrode as a reference electrode, scanning potential -1.0 V to 0.6 V vs SCE, scanning
また、上記方法で水素過電圧を測定したものと、上記方法で水素過電圧の測定の後にサイクリックボルタンメトリー測定を実施し再び水素過電圧を測定したものを、王水で溶解させ、ICP発光分析装置(パーキンエルマー社製、型式optima3000)を用いて担持量を求め、それらの値から白金量の変化率を求め、その値を逆電流による白金の残存率とした。 In addition, the hydrogen overvoltage is measured by the above method and the cyclic voltammetry measurement is performed after the measurement of the hydrogen overvoltage by the above method, and the hydrogen overvoltage is measured again and dissolved with aqua regia, and an ICP emission analyzer (Perkin The supported amount was determined using an Elmer company, model optima 3000), the rate of change of the amount of platinum was determined from these values, and the value was used as the rate of remaining platinum due to reverse current.
実施例1
導電性基材として、ニッケルエキスパンドメッシュ(5.0×5.0cm)を用い、粗面化処理として、10wt%の塩酸溶液を用いて温度50℃で15分間エッチングした後、水洗、乾燥した。
Example 1
As a conductive base material, nickel expanded mesh (5.0 × 5.0 cm) was used, and etching was carried out at a temperature of 50 ° C. for 15 minutes using a 10 wt% hydrochloric acid solution as roughening treatment, followed by washing with water and drying.
次いで、ジニトロジアンミン白金硝酸溶液(田中貴金属製)と硝酸ニッケル6水和物と硝酸ルテニウムの硝酸溶液(田中貴金属製)と水を用いて、白金が34モル%、ニッケルが34モル%とルテニウムが32モル%の塗布液を調製した。 Then, using dinitrodiammine platinum nitric acid solution (Tanaka precious metal product), nickel nitrate hexahydrate and nitric acid solution of ruthenium nitrate (Tanaka precious metal product) and water, 34 mole% platinum, 34 mole% nickel and ruthenium A 32 mol% coating solution was prepared.
触媒層中の白金とニッケルとルテニウムの含有量は、白金化合物溶液とニッケル化合物溶液とルテニウム化合物溶液中の塗布溶液中の白金、ニッケル及びルテニウムの含有量(モル%)で決定される。 The contents of platinum, nickel and ruthenium in the catalyst layer are determined by the contents (mol%) of platinum, nickel and ruthenium in the coating solution in the platinum compound solution, the nickel compound solution and the ruthenium compound solution.
次いで、この塗布液を前記ニッケルエキスパンドメッシュに刷毛を用い全面に塗布し、熱風式乾燥機内で80℃15分間乾燥後、箱型マッフル炉(アドバンテック東洋製 型式KM−600、内容積27L)を用いて空気流通下のもと500℃で15分熱分解した。この一連の操作を5回繰り返した。 Next, the coating solution is applied to the entire surface of the nickel expanded mesh using a brush, dried at 80 ° C. for 15 minutes in a hot air dryer, and then using a box muffle furnace (Advantec Toyo K. KM-600, internal volume 27 L) The mixture was pyrolyzed at 500 ° C. for 15 minutes under air flow. This series of operations was repeated five times.
上記の様に得られた水素発生用電極を、32wt%水酸化ナトリウム水溶液の電解液(容量約1L)を用いて、対極にNi、温度88℃、電流密度6.0kA/m2の条件で10分間、水電解を行った後に、水素発生電極を取り出して、乾燥し、そのX線回折を実施した時のX線回折チャートを図1に示す。 The hydrogen generation electrode obtained as described above was subjected to the conditions of Ni at a temperature of 88 ° C. and a current density of 6.0 kA / m 2 using a 32 wt% sodium hydroxide aqueous solution (approximately 1 L in volume) as the counter electrode. After conducting water electrolysis for 10 minutes, the hydrogen generation electrode was taken out, dried, and the X-ray diffraction chart when the X-ray diffraction was carried out is shown in FIG.
この図1から、白金とニッケルとルテニウムの合金が主ピークであるが、RuO2及びNiOのピークも存在している事が明らかとなった。 From this FIG. 1, it is clear that although the alloy of platinum, nickel and ruthenium is the main peak, the peaks of RuO 2 and NiO are also present.
水素過電圧測定を行うと、水素過電圧は74.5mVであり、さらに、鉄被毒による過電圧上昇量は17.8mV、逆電流による過電圧上昇量は2.0mV、逆電流による白金の残存率は100%であった。この結果は表1に示す。 When hydrogen over voltage measurement is performed, the hydrogen over voltage is 74.5mV, the excess voltage increase due to iron poisoning is 17.8mV, the excess voltage increase due to reverse current is 2.0mV, and the residual ratio of platinum due to reverse current is 100 %Met. The results are shown in Table 1.
実施例2−4
実施例1において、白金、ニッケルとルテニウムの組成をそれぞれ表1に記載の組成とした以外は実施例1と同様の操作で電極を作製した。
Example 2-4
An electrode was produced in the same manner as in Example 1 except that the compositions of platinum, nickel and ruthenium in Example 1 were changed to the compositions shown in Table 1, respectively.
実施例2では、水素過電圧測定を行うと水素過電圧は75.7mVであり、さらに、鉄被毒による過電圧上昇量は13.3mV、逆電流による過電圧上昇量は15.9mVであった。この結果は表1に示す。 In Example 2, the hydrogen overvoltage was 75.7 mV when hydrogen overvoltage was measured, and the amount of increase in overvoltage due to iron poisoning was 13.3 mV, and the amount of increase in overvoltage due to reverse current was 15.9 mV. The results are shown in Table 1.
実施例3では、水素過電圧測定を行うと水素過電圧は79.0mVであり、さらに、鉄被毒による過電圧上昇量は14.1mV、逆電流による過電圧上昇量は26.2mVであった。この結果は表1に示す。 In Example 3, the hydrogen overvoltage was 79.0 mV when hydrogen overvoltage was measured, and the amount of increase in overvoltage due to iron poisoning was 14.1 mV, and the amount of increase in overvoltage due to reverse current was 26.2 mV. The results are shown in Table 1.
実施例4では、水素過電圧測定を行うと水素過電圧は73.2mVであり、さらに、鉄被毒による過電圧上昇量は16.0mV、逆電流による過電圧上昇量は12.4mVであった。この結果は表1に示す。 In Example 4, the hydrogen overvoltage was 73.2 mV when hydrogen overvoltage was measured, and the amount of increase in overvoltage due to iron poisoning was 16.0 mV, and the amount of increase in overvoltage due to reverse current was 12.4 mV. The results are shown in Table 1.
比較例1
実施例1において、ジニトロジアンミン白金硝酸溶液と硝酸ニッケル6水和物と水を用いて、白金が50モル%、ニッケルが50モル%の塗布液を調製し、これを塗布した以外は、実施例1と同様の操作で電極を作製した。
Comparative Example 1
In Example 1, using a dinitrodiammine platinum nitric acid solution, nickel nitrate hexahydrate and water, a coating solution having 50 mol% of platinum and 50 mol% of nickel was prepared and coated except for using this. An electrode was produced in the same manner as in 1.
水素過電圧測定を行うと、水素過電圧は82.9mVであり、さらに、鉄被毒による過電圧上昇量は20.0mV、逆電流による過電圧上昇量は16.4mV、逆電流による白金の残存率は93%であった。この結果は表1に示す。 When hydrogen over voltage measurement is performed, the hydrogen over voltage is 82.9 mV, the over voltage increase by iron poisoning is 20.0 mV, the over voltage increase by reverse current is 16.4 mV, and the residual ratio of platinum by reverse current is 93 %Met. The results are shown in Table 1.
比較例2
実施例1において、ジニトロジアンミン白金硝酸溶液と硝酸ルテニウムの硝酸溶液と水を用いて、白金が50モル%、ルテニウムが50モル%の塗布液を調製し、これを塗布した以外は、実施例1と同様の操作で電極を作製した。
Comparative example 2
Example 1 Example 1 was repeated except that a coating solution containing 50 mol% of platinum and 50 mol% of ruthenium was prepared using a dinitrodiammine platinum nitric acid solution, a nitric acid solution of ruthenium nitrate, and water. The electrode was produced by the same operation as in.
水素過電圧測定を行うと、水素過電圧は88.7mVであった。この結果は表1に示す。 When hydrogen over voltage measurement was performed, the hydrogen over voltage was 88.7 mV. The results are shown in Table 1.
加えて、すべての実施例において、鉄被毒による過電圧上昇量は比較例1での結果より低い値となり、かつ、実施例1−2において、逆電流による過電圧上昇量は比較例1での結果より低い値となっていた。また、実施例1の白金残存率は比較例1に比べ高い値となっていた。よって、本発明の水素発生用電極は優れた水素過電圧性能と鉄被毒および逆電流に対する耐久性を有することが上記表1に示されている。
In addition, in all the Examples, the amount of increase in overvoltage due to iron poisoning is a lower value than the result in Comparative Example 1, and in Example 1-2, the amount of increase in overvoltage due to reverse current is the result in Comparative Example 1 It was a lower value. In addition, the platinum residual rate in Example 1 was higher than that in Comparative Example 1. Accordingly, it is shown in Table 1 that the electrode for hydrogen generation of the present invention has excellent hydrogen over-voltage performance and durability against iron poisoning and reverse current.
この中でも、水素過電圧が低い実施例1〜2および実施例4が好ましく、Ruの含有量が20〜55モル%、Niが40〜34モル%、残部がPtである組成の触媒層が担持されてなる水素発生用電極が好ましい。 Among these, Examples 1 to 2 and Example 4 having low hydrogen overvoltage are preferable, and a catalyst layer having a composition in which the content of Ru is 20 to 55 mol%, Ni is 40 to 34 mol%, and the balance is Pt An electrode for hydrogen generation is preferred.
本発明の水素発生用電極は、水の電気分解又は食塩などのアルカリ金属塩化物水溶液の
電気分解に使用でき、食塩電解工業を初めてとして広範な電解工業に利用される可能性を
有する。
The electrode for hydrogen generation of the present invention can be used for the electrolysis of water or the electrolysis of an aqueous solution of an alkali metal chloride such as sodium chloride, and has the possibility of being used for a wide range of electrolysis industry as the sodium chloride electrolysis industry is the first.
1:基板(ニッケル)に帰属するピーク
2:合金(白金−ニッケル−ルテニウム合金)に帰属するピーク
3:RuO2に帰属するピーク
4:NiOに帰属するピーク
1: Peak attributed to substrate (nickel) 2: Peak attributed to alloy (platinum-nickel-ruthenium alloy) 3: Peak attributed to RuO 2 : Peak attributed to NiO
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014241836A JP6515509B2 (en) | 2013-12-26 | 2014-11-28 | ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013270496 | 2013-12-26 | ||
JP2013270496 | 2013-12-26 | ||
JP2014241836A JP6515509B2 (en) | 2013-12-26 | 2014-11-28 | ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015143388A JP2015143388A (en) | 2015-08-06 |
JP6515509B2 true JP6515509B2 (en) | 2019-05-22 |
Family
ID=53888612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014241836A Active JP6515509B2 (en) | 2013-12-26 | 2014-11-28 | ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6515509B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109790634B (en) * | 2017-08-11 | 2021-02-23 | 株式会社Lg化学 | Electrode for electrolysis and preparation method thereof |
KR101950465B1 (en) * | 2017-08-11 | 2019-05-02 | 주식회사 엘지화학 | Electrode for electrolysis and preparation method thereof |
JP7347098B2 (en) * | 2019-10-10 | 2023-09-20 | 株式会社豊田中央研究所 | Electrode for reduction reaction, method for manufacturing electrode for reduction reaction, and reaction device using electrode for reduction reaction |
CN114717601B (en) * | 2022-05-17 | 2024-01-30 | 临沂大学 | Three-phase interface composite integrated alkaline water electrolysis hydrogen production electrode and preparation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA785588B (en) * | 1977-12-09 | 1979-09-26 | Gen Electric | Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane |
JPS6013074B2 (en) * | 1978-02-20 | 1985-04-04 | クロリンエンジニアズ株式会社 | Electrolytic cathode and its manufacturing method |
IT8025483A0 (en) * | 1980-10-21 | 1980-10-21 | Oronzio De Nora Impianti | ELECTROCDES FOR SOLID ELECTROLYTE CELLS APPLIED ON THE SURFACE OF ION EXCHANGE MEMBRANES AND PROCEDURE FOR THE PREPARATION AND USE OF THE SAME. |
NO156420C (en) * | 1980-04-22 | 1987-09-16 | Johnson Matthey Co Ltd | CATHODE SUITABLE FOR USE IN A REACTION DEVELOPING HYDROGEN, PROCEDURE FOR THE PREPARATION OF THIS, AND THE USE OF THE CATODO. |
CA1246008A (en) * | 1983-05-31 | 1988-12-06 | R. Neal Beaver | Electrode with nickel substrate and coating of nickel and platinum group metal compounds |
IN164233B (en) * | 1984-12-14 | 1989-02-04 | Oronzio De Nora Impianti | |
US5035789A (en) * | 1990-05-29 | 1991-07-30 | The Dow Chemical Company | Electrocatalytic cathodes and methods of preparation |
JP4882218B2 (en) * | 2004-04-23 | 2012-02-22 | 東ソー株式会社 | Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same |
-
2014
- 2014-11-28 JP JP2014241836A patent/JP6515509B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015143388A (en) | 2015-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015098058A1 (en) | Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith | |
US7959774B2 (en) | Cathode for hydrogen generation | |
US3751296A (en) | Electrode and coating therefor | |
CN102762776B (en) | Activated cathode for hydrogen evolution | |
JP4882218B2 (en) | Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same | |
CN1938453B (en) | Electrode for generating hydrogen, manufacturing method therefor and electrolysis method using it | |
JP6515509B2 (en) | ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME | |
TW201231727A (en) | Electrode for electrolysis, electrolytic cell and production method for electrode for electrolysis | |
JP6609913B2 (en) | Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same | |
JP2006193768A (en) | Cathode for hydrogen generation | |
JPH0633492B2 (en) | Electrolytic cathode and method of manufacturing the same | |
CN113242915B (en) | Electrode for electrolysis | |
JP6753195B2 (en) | Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode | |
JP2006118022A (en) | Electrode for generating hydrogen, precursor of electrode for generating hydrogen, manufacturing method therefor, and electrolysis method using it | |
WO2020110527A1 (en) | Hydrogen generation electrode, method of producing same, and hydrogen production method | |
JP6878917B2 (en) | Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it | |
JP3658823B2 (en) | Electrode for electrolysis and method for producing the same | |
JP6926782B2 (en) | Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode | |
JP5271429B2 (en) | Cathode for hydrogen generation | |
Mörttinen | Dimensionally stable anodes and their possibilities in neutral electrolytic pickling | |
TW202407156A (en) | Hydrogen generating electrode and manufacturing method thereof to provide a hydrogen generating electrode that can effectively reduce the cell voltage when the hydrogen generating electrode is assembled into an electrolytic cell and effectively suppress peeling and falling off of the electrode catalyst caused by reverse current when electrolysis is stopped | |
JPWO2012029162A1 (en) | Method for producing electrode for hydrogen generation and electrode for hydrogen generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180904 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190401 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6515509 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |