[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6506924B2 - Paint containing conductive diamond powder, electrode and dental treatment tool for electrode formation - Google Patents

Paint containing conductive diamond powder, electrode and dental treatment tool for electrode formation Download PDF

Info

Publication number
JP6506924B2
JP6506924B2 JP2014154449A JP2014154449A JP6506924B2 JP 6506924 B2 JP6506924 B2 JP 6506924B2 JP 2014154449 A JP2014154449 A JP 2014154449A JP 2014154449 A JP2014154449 A JP 2014154449A JP 6506924 B2 JP6506924 B2 JP 6506924B2
Authority
JP
Japan
Prior art keywords
electrode
bddp
substrate
ion exchange
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014154449A
Other languages
Japanese (ja)
Other versions
JP2016030806A (en
Inventor
藤嶋 昭
昭 藤嶋
剛 落合
剛 落合
祥子 田子
祥子 田子
近藤 剛史
剛史 近藤
一人 里村
一人 里村
一男 広田
一男 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSURUMI UNIVERSITY
Tokyo University of Science
Kanagawa Institute of Industrial Science and Technology
Original Assignee
TSURUMI UNIVERSITY
Tokyo University of Science
Kanagawa Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSURUMI UNIVERSITY, Tokyo University of Science, Kanagawa Institute of Industrial Science and Technology filed Critical TSURUMI UNIVERSITY
Priority to JP2014154449A priority Critical patent/JP6506924B2/en
Priority to PCT/JP2015/071505 priority patent/WO2016017694A1/en
Publication of JP2016030806A publication Critical patent/JP2016030806A/en
Application granted granted Critical
Publication of JP6506924B2 publication Critical patent/JP6506924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Metallurgy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Paints Or Removers (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Description

本発明は、電極形成用導電性ダイヤモンド粉末含有塗料、電極及び歯科治療器具に関する。   The present invention relates to a conductive diamond powder-containing paint for forming an electrode, an electrode and a dental treatment tool.

水又は水溶液を電解してオゾンや過酸化物を生成させ、これを殺菌等に用いることが知られている。例えば、特許文献1及び非特許文献1には、導電性ダイヤモンドで形成した陽極を有する電解ユニットで原料水を電解して生成するオゾンや過酸化物を含有する電解水を殺菌に用いることが記載されている。原料水として食塩水を用いると塩素が生成し、次亜塩素酸イオンを含む水溶液が得られる場合もある。導電性ダイヤモンドで形成した陽極は、基材の表面に導電性ダイヤモンド(BDD)薄膜を化学的気相合成(CVD)法により形成して得たものである。   It is known to electrolyze water or an aqueous solution to produce ozone or peroxide and use it for sterilization and the like. For example, Patent Document 1 and Non-patent Document 1 describe that electrolytic water containing ozone or peroxide generated by electrolyzing raw material water in an electrolytic unit having an anode formed of conductive diamond is used for sterilization. It is done. When a saline solution is used as the raw material water, chlorine is generated, and an aqueous solution containing hypochlorite ion may be obtained. The anode formed of conductive diamond is obtained by forming a conductive diamond (BDD) thin film on the surface of a substrate by a chemical vapor deposition (CVD) method.

殺菌は生活のあらゆる場面で利用されている。特に医療分野では重要な技術である。例えば、殺菌を必要とする分野として口腔内の炎症を抑える必要がある歯科治療の分野がある。口腔領域の疾病治療の中でも、細菌が絡んでいる疾病の治療の主要なものには齲蝕治療、歯周病治療、根管治療がある。   Sterilization is used in every aspect of life. In particular, it is an important technology in the medical field. For example, as a field requiring sterilization, there is a field of dental treatment where inflammation in the oral cavity needs to be suppressed. Among the treatment of diseases in the oral region, the main treatments for diseases involving bacteria are caries treatment, periodontal treatment and root canal treatment.

齲蝕はストレプトコッカス・ミュータンス(Streptococcus mutans)菌などで起こることが知られており、S. ミュータンス(S.mutanns)菌を齲蝕部位で滅菌して単に充填材料を充填すれば、通常歯科治療で行われている感染歯質を削除するための窩洞形成をしないで充填することが可能となり、患者の苦痛を和らげるばかりでなく歯科医の負担も大幅に軽減する。また歯質を削らないですむので、歯質の保存的観点からも朗報となる。場合によっては歯髄を抜髄することなく充填ができるので、生きたままの歯を保てるという長所もある。   Caries is known to occur in Streptococcus mutans bacteria etc. If S. mutans bacteria is sterilized at the caries site and simply filled with filling material, it is usually used for dental treatment. It is possible to fill without cavity formation to remove the infected tooth quality that is being performed, and not only relieve the pain of the patient but also greatly reduce the burden on the dentist. Moreover, since it is not necessary to cut the tooth quality, it is good news from the viewpoint of preservation of the tooth quality. In some cases, since filling can be performed without extracting the dental pulp, there is also an advantage that the teeth can be kept alive.

一方、歯質の周りの歯周領域の軟組織が深く歯牙から剥離し、ポケットと言われる深い溝を形成し、そこに嫌気性菌であるポルフィロモナス・ジンジバリス(Porphyromonas gingivalis)などの歯周病菌が繁殖し破骨細胞を活性化させ骨吸収を引き起こすのが歯周病である。これにはポケット内の歯周病菌を滅菌することが必要であるが、抗菌剤などが処方されたり、歯石などを除去する治療が広く行われている。この場合も抗生剤に頼ることなく殺菌、滅菌ができれば抗生剤の局所療法をしないでよく、患者にとっても朗報となる。   On the other hand, soft tissue in the periodontal region around dentin exfoliates deeply from the tooth and forms a deep groove called pocket, and periodontitis bacteria such as Porphyromonas gingivalis, which is an anaerobic bacterium, there. It is periodontal disease that proliferates, activates osteoclasts and causes bone resorption. For this purpose, it is necessary to sterilize periodontitis bacteria in the pocket, but an antibacterial agent is prescribed, and treatments for removing tartar and the like are widely used. In this case as well, if sterilization and sterilization can be performed without resorting to antibiotics, topical antibiotics for antibiotics may not be used, which is also good news for patients.

根管治療は、通常は、根管を適度な大きさに拡大し、あるいは金属製ファイル等による汚染歯質の機械的除去を行い、ついで次亜塩素酸ナトリウム水溶液あるいは過酸化水素水で根管内を滅菌しEDTAなどで洗浄した後、ガッタパーチャポイントと根管用シーラーを用いた根管充填法により行われる。その結果、根管用シーラーを用いて根管を充填し、根管内を無菌状態にすることが理想である。しかし、ヒトの歯の根管の内径は根管拡大した場合でも、通常0.4mm−0.5mm程度であり、かつ側枝といわれる複雑に根管が発達しており、エンテロコッカス・フェカリス(Enterococcus faecalis)などに感染した根管ではその全体を殺菌することが困難である。同様な理由で根管用シーラーを隙間なく充填することは容易ではない。また薬剤を用いた殺菌法では薬剤の副作用は常に考えなければならない問題である。そのため、現在行われている通常の根管治療法では、根管内に細菌が残留し、炎症等の原因になる場合があり、1回の根管充填により根管内を無菌化することは容易ではなかった。   In root canal treatment, usually, the root canal is enlarged to a suitable size, or mechanical removal of contaminated tooth substance with a metal file or the like is performed, and then the sodium canal is treated with an aqueous solution of sodium hypochlorite or hydrogen peroxide solution. After sterilizing the inside and washing with EDTA etc., it is performed by the root canal filling method using gutta percha point and sealer for root canal. As a result, it is ideal that the root canal be filled using a root canal sealer to make the root canal sterile. However, the inner diameter of the root canal of human teeth is usually about 0.4 mm-0.5 mm even when the root canal is enlarged, and the root canal is developed complicatedly called side branch, and Enterococcus faecalis (Enterococcus faecalis) etc. It is difficult to sterilize the whole of the infected canals. It is not easy to fill the root canal sealer without any gap for the same reason. Moreover, in the sterilization method using a drug, the side effect of the drug is a problem that must always be considered. Therefore, in the conventional root canal treatment currently performed, bacteria may remain in the root canal and cause inflammation etc. It is impossible to sterilize the root canal by filling the root canal once It was not easy.

特開2006-346203号公報JP, 2006-346203, A 特開2013-76130号公報JP, 2013-76130, A

Electrochemistry, 81(8), 627-633(2013)Electrochemistry, 81 (8), 627-633 (2013)

本発明者らは、前述の齲蝕、歯周病、根管治療などの歯科治療における殺菌を電解法を利用して行うことを企画して検討を行った。具体的には、針状や板状の基材にCVDにより導電性ダイヤモンド(BDD)薄膜を被覆した陽極を含み、かつ歯科治療の中でも特に細管である根管内に挿入可能な寸法と構造を有する電解ユニットを作製し、この電解ユニットを用いて電解を行い、殺菌力がある電解水を生成させて、殺菌する方法を検討した。その結果、電解水を生成させることは可能であったが、BDD薄膜の基材に対する接着強度が弱く、電解ユニットを作製する際に、一部が基材から剥離してしまうことも判明した。針状の基材は、直径が約0.5mmの可撓性針状物であり、基材が撓んだ際にBDD薄膜が剥離しやすかった。さらに、電解により酸素等の気体が発生し、基材とBDD薄膜との界面で気体が発生する場合にもBDD薄膜の剥離が見られた。根管治療のために拡大した根管でさえその内径が0.4mm程度であることもあり、さらに細い電極を作製する必要があった。   The present inventors planned and examined performing sterilization in dental treatment such as the above-mentioned caries, periodontal disease, and root canal treatment using electrolytic method. Specifically, the needle-like or plate-like base material includes an anode in which a conductive diamond (BDD) thin film is coated by CVD and has dimensions and a structure which can be inserted into a root canal which is a capillary particularly among dental treatments. The electrolysis unit which it has is produced, It electrolyzes using this electrolysis unit, The electrolyzed water which has bactericidal power was produced | generated, and the method to disinfect was examined. As a result, it was possible to generate electrolytic water, but it was also found that the adhesion strength of the BDD thin film to the base material was weak, and part of it peeled off from the base material when producing the electrolytic unit. The needle-like substrate was a flexible needle having a diameter of about 0.5 mm, and the BDD thin film easily peeled off when the substrate was bent. Further, peeling of the BDD thin film was also observed when gas such as oxygen was generated by electrolysis and gas was generated at the interface between the base and the BDD thin film. Even the enlarged root canal for the treatment of the root canal has an inner diameter of about 0.4 mm, and it was necessary to make an even thinner electrode.

また、BDD粉末と樹脂バインダとの混合物からなる被膜を用いた電極が、特許文献2に記載されている。特許文献2に記載の電極は、BDD粉末と絶縁性バインダとを含有するBDDインクをカーボンペーストに堆積させた電極である。特許文献2の実施例に記載の導電性ダイヤモンド電極は、BDD粉末とポリエステル樹脂とを、ポリエステル樹脂の体積に対するBDD粉末体積比を18〜89%の間で変化させたBDDインクを用いて作製されたものである。本発明者らはこの実施例の記載に基づいてBDDインクを作製し、針状の基材にBDD粉末とポリエステル樹脂とからなる被覆を有する電極を作製し、この電極を利用して根管内に電解水を生成させて、根管内の殺菌について検討した。その結果、BDD粉末含有量が高い被覆の場合、根管内において電解水を生成させることは可能であった。しかし、電解により酸素等の気体が発生し、その衝撃や負荷によってBDD粉末含有薄膜の剥離が観察された。   Further, Patent Document 2 describes an electrode using a film made of a mixture of BDD powder and a resin binder. The electrode described in Patent Document 2 is an electrode in which a BDD ink containing a BDD powder and an insulating binder is deposited on a carbon paste. The conductive diamond electrode described in the example of Patent Document 2 is produced using a BDD ink in which the BDD powder and polyester resin are varied between 18 and 89% of the volume ratio of BDD powder to the volume of polyester resin. It is The present inventors made a BDD ink based on the description of this example, and produced an electrode having a coating consisting of BDD powder and a polyester resin on a needle-like base material, and using this electrode, the root canal Electrolyzed water was generated to study sterilization in the root canal. As a result, in the case of a coating with a high BDD powder content, it was possible to generate electrolyzed water in the root canal. However, gas such as oxygen was generated by the electrolysis, and peeling of the BDD powder-containing thin film was observed by the impact and load.

そこで、本発明は、基材表面との接着強度が高く、可撓性針状物または可撓性針状物に準ずる基材表面に被覆し、基材が撓んだ際及び電解により酸素等の気体が発生した際にも剥離し難い薄膜を提供できる電極形成用導電性塗料を提供すること、及びこの塗料を用いて形成した、剥離し難い導電性薄膜を有する電極を提供することを目的とする。さらに本発明は、上記電極を用いた電解ユニット及びこの電解ユニットを用いた歯科治療器具を提供することも目的とする。   Therefore, the present invention has high adhesion strength to the surface of the substrate, and covers the surface of the substrate conforming to the flexible needle or the flexible needle, and when the substrate is bent or by electrolysis etc. It is an object of the present invention to provide a conductive paint for electrode formation which can provide a thin film which is not easily peeled off even when the gas is generated, and to provide an electrode having a conductive thin film which is hardly peeled using this paint. I assume. Another object of the present invention is to provide an electrolysis unit using the above electrode and a dental treatment instrument using the electrolysis unit.

本発明者らは、BDD粉末を用い、かつ基材表面との接着の強度が高く、かつ電極材料、特に電解用の電極材料として利用可能な導電性を有する材料の開発を検討した。その結果、所定比率のBDD粉末とイオン交換性樹脂とを含む組成物または所定比率のBDD粉末と絶縁性バインダ及びシリコーンゴムとの混合物とを含む組成物を用いて基材表面に形成した被膜が、基材表面との良好な接着強度を有し、かつ電解により電解水を生成できることを見出して、本発明を完成させた。   The present inventors examined development of a material using BDD powder and having high adhesion strength with the surface of the substrate and having conductivity that can be used as an electrode material, particularly an electrode material for electrolysis. As a result, a film formed on the surface of a substrate using a composition containing a predetermined ratio of BDD powder and ion exchange resin or a composition containing a predetermined ratio of BDD powder and an insulating binder and silicone rubber is used. The present invention has been accomplished by finding that it has good adhesive strength with the surface of a substrate and that electrolytic water can be generated by electrolysis.

本発明は以下の通りである。
[1]
導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)及びイオン交換性樹脂分散体を含有する電極形成用導電性塗料。
[2]
導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)、絶縁性バインダ及びシリコーンゴムを含有する電極形成用導電性塗料。
[3]
電極基材及び前記基材の少なくとも一部の表面に設けられた導電性被膜を有する電極であって、前記導電性被膜は、導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)及びイオン交換性樹脂を含有するか、またはBDDPと絶縁性バインダ及びシリコーンゴムを含有する、前記電極。
[4]
前記電極基材が針状または板状の基材である[3]に記載の電極。
[5]
[3]又は[4]に記載の電極、及び対極を含む電解ユニット。
[6]
[3]又は[4]に記載の電極、セパレータ及び対極を含む電解ユニット。
[7]
電極基材が針状である[3]又は[4]に記載の電極、前記電極に、前記電極と対極の間にイオン交換膜を介在させてテープ状の対極を巻き付けてなる、電解ユニット。
[8]
歯科治療用である[5]〜[7]のいずれか1項に記載の電解ユニット。
[9]
齲蝕、歯周病、または根管治療用である[5]〜[7]のいずれか1項に記載の電解ユニット。
[10]
[5]〜[7]のいずれか1項に記載の電解ユニットを含む歯科治療器具。
[11]
歯科治療器具が、齲蝕、歯周病、または根管治療器具である[10]に記載の歯科治療器具。
The present invention is as follows.
[1]
A conductive paint for electrode formation, comprising conductive diamond powder (BD-DP) and an ion exchange resin dispersion.
[2]
A conductive paint for electrode formation, comprising conductive diamond powder (BDDP), an insulating binder and silicone rubber.
[3]
An electrode substrate and an electrode having a conductive film provided on the surface of at least a part of the substrate, wherein the conductive film comprises a conductive diamond powder (BDDP) and an ion exchange property. The above electrode containing a resin or containing BDDP and an insulating binder and silicone rubber.
[4]
The electrode according to [3], wherein the electrode substrate is a needle-like or plate-like substrate.
[5]
The electrolysis unit containing the electrode as described in [3] or [4], and a counter electrode.
[6]
The electrolysis unit containing the electrode as described in [3] or [4], a separator, and a counter electrode.
[7]
An electrode unit according to [3] or [4], wherein the electrode substrate is acicular, and an electrolytic unit formed by winding a tape-like counter electrode on the electrode with an ion exchange membrane interposed between the electrode and the counter electrode.
[8]
The electrolysis unit according to any one of [5] to [7], which is for dental treatment.
[9]
The electrolytic unit according to any one of [5] to [7], which is for caries, periodontal disease, or root canal treatment.
[10]
The dental treatment instrument containing the electrolysis unit of any one of [5]-[7].
[11]
The dental treatment instrument according to [10], wherein the dental treatment instrument is a caries, periodontal disease, or root canal treatment instrument.

本発明によれば、基材表面との接着強度が高く、可撓性である基材表面に被覆し、基材が撓んだ際及び電解により酸素等の気体が発生した際にも剥離し難い薄膜を提供できる電極形成用導電性ダイヤモンド粉末含有塗料、及びこの塗料を用いて形成した、剥離し難い導電性薄膜を有する電極を提供することができる。さらに本発明によれば、上記電極を用いた電解ユニット及びこの電解ユニットを用いた歯科治療器具、特に根管治療器具を提供することもできる。   According to the present invention, the substrate surface is coated with a high adhesive strength with flexibility and is flexible, and the substrate peels even when the substrate is bent or when a gas such as oxygen is generated by electrolysis. It is possible to provide a conductive diamond powder-containing paint for electrode formation which can provide a difficult thin film, and an electrode having a conductive thin film which is formed using this paint and which is not easily peeled off. Furthermore, according to the present invention, it is also possible to provide an electrolysis unit using the above-mentioned electrode and a dental treatment instrument using the electrolysis unit, in particular a root canal treatment instrument.

本発明の電解ユニットの図を示す(左図:界面付近拡大図、右図:中央部の全体像)。The figure of the electrolysis unit of the present invention is shown (the left: close-up view near the interface, the right: an overall image of the central part). 根管内の電子顕微鏡画像を示す。(A)根管内面に培養された歯周病細菌P.ジンジバリス(P. gingivalis)。(B)BDD電極で7.5V、30秒間通電後の根管内面。(C)次亜塩素酸ナトリウム30秒間処理。(D)30秒間PBS洗浄のみ。The electron microscope image in a root canal is shown. (A) Periodontitis bacteria P. gingivalis (P. gingivalis) cultured on the intratubular surface. (B) The surface of the root canal after energization with a BDD electrode at 7.5 V for 30 seconds. (C) Sodium hypochlorite treatment for 30 seconds. (D) PBS wash for 30 seconds only.

[電極形成用導電性塗料]
本発明の電極形成用導電性塗料は、導電性ダイヤモンド粉末(boron-doped diamond powder、以下BDDPと略記する)及びイオン交換性樹脂分散体を含有する塗料(以下、塗料Aと呼ぶ)、及びBDDP、絶縁性バインダ及びシリコーンゴムを含有する塗料(以下、塗料Bと呼ぶ)である。
[Conductive paint for electrode formation]
The conductive paint for electrode formation of the present invention comprises a paint containing conductive diamond powder (boron-doped diamond powder, hereinafter abbreviated as BDDP) and an ion exchange resin dispersion (hereinafter, called paint A), and BDDP A paint containing an insulating binder and silicone rubber (hereinafter referred to as paint B).

導電性ダイヤモンド粉末としては、例えば、基材としてダイヤモンド粒子(DP:Diamond Powder)を用い、このダイヤモンド粒子の表面上にホウ素をドープしたダイヤモンド(BDD:Boron Doped Diamond)層を形成した導電性ダイヤモンド粒子からなるものが挙げられる。   As the conductive diamond powder, for example, conductive diamond particles using diamond particles (DP: Diamond Powder) as a base material and forming a boron-doped diamond (BDD: Boron Doped Diamond) layer on the surface of the diamond particles What consists of

ダイヤモンド粒子は、研磨剤として市販されている絶縁性のダイヤモンド粉末など、天然のダイヤモンド粉末や人工的に作製されたダイヤモンド粉末を用いることができる。人工的なダイヤモンド粉末は、熱CVDや、RFプラズマ、熱フィラメントCVD法などのCVD法や、イオンビーム法やイオン化蒸着法といったPVD法、及び高温高圧法などで作製することができる。ダイヤモンド粒子の粒子径(平均粒子径)や形状は、特に限定されるものではないが、BDDP含有塗料の作業性及びBDDP含有塗料を乾燥した後のBDDP含有層の厚さなどを勘案して適宜設定される。例えば、ダイヤモンド粒子の粒子径を、5nm〜100μm、より好ましくは、50nm〜10μmとすると、BDDP含有塗料を印刷してBDDP含有層を有する電極を作製するのに十分な作業性を確保でき、作製された電極において、BDDPと電極基材とが電気的に接続された状態を確保しやすくなる。   The diamond particles may be natural diamond powder or artificially produced diamond powder, such as insulating diamond powder commercially available as an abrasive. The artificial diamond powder can be produced by thermal CVD, a CVD method such as RF plasma, a thermal filament CVD method, a PVD method such as an ion beam method or an ionized deposition method, a high temperature high pressure method, or the like. The particle diameter (average particle diameter) and the shape of the diamond particles are not particularly limited, but taking into consideration the workability of the BDDP-containing paint and the thickness of the BDDP-containing layer after drying the BDDP-containing paint, etc. It is set. For example, when the particle diameter of the diamond particles is 5 nm to 100 μm, more preferably 50 nm to 10 μm, sufficient workability can be ensured for producing an electrode having a BDDP containing layer by printing a BDDP containing paint. It becomes easy to ensure that the BDDP and the electrode substrate are electrically connected to each other.

ダイヤモンド粒子の表面にBDD層を形成する際、ダイヤモンドにドープするホウ素の量は、少なくともダイヤモンドを構成する炭素に対してホウ素を10ppm以上、より好ましくは、1000ppm以上、さらに好ましくは、10000ppm以上ドープすると(換言すると、結晶中のホウ素濃度比が1020〜1022cm-3)十分な導電性を有するBDDP粒子を得ることができる。 When forming a BDD layer on the surface of the diamond particles, the amount of boron to be doped to the diamond is at least 10 ppm, more preferably 1000 ppm or more, and still more preferably 10000 ppm or more of boron relative to the carbon constituting the diamond. (In other words, the boron concentration ratio in the crystal is 10 20 to 10 22 cm -3 ) BDDP particles having sufficient conductivity can be obtained.

<塗料A>
塗料Aは、BDDPとイオン交換性樹脂分散体を含有する。イオン交換性樹脂分散体は、イオン交換性を有する樹脂を分散媒に分散した物であり、イオン交換性を有する樹脂は、所謂、イオン交換樹脂から適宜選択され、好ましくは、耐久性に優れたフッ素樹脂系イオン交換樹脂であることができる。フッ素樹脂系イオン交換樹脂としては、パーフルオロイオン交換樹脂を挙げることができ、パーフルオロイオン交換樹脂の分散体としては、例えば、ナフィオン(登録商標、以下同様)分散体、パーフルオロイオン交換樹脂溶液(旭化成(株)製、Aciplex(登録商標)−SS−1000:商品名、樹脂濃度5%)等を挙げることができる。但し、これらに限定される意図ではない。
<Paint A>
The paint A contains BDDP and an ion exchange resin dispersion. The ion exchange resin dispersion is a dispersion of a resin having ion exchangeability in a dispersion medium, and the resin having ion exchangeability is appropriately selected from so-called ion exchange resins, and preferably has excellent durability. It can be a fluororesin-based ion exchange resin. As a fluororesin-based ion exchange resin, a perfluoro ion exchange resin can be mentioned, and as a dispersion of a perfluoro ion exchange resin, for example, Nafion (registered trademark, the same applies hereinafter) dispersion, perfluoro ion exchange resin solution (Asaplex (registered trademark) -Asiplex (registered trademark) -SS-1000: trade name, resin concentration 5%) and the like can be mentioned. However, it is not the intention limited to these.

ナフィオンは、炭素−フッ素からなる疎水性テフロン(登録商標)骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料であり、典型的にはテトラフルオロエチレンとパーフルオロ[2-(フルオロスルホニルエトキシ)プロピルビニルエーテル]の共重合体であって、非架橋性高分子であり、一般的には以下の構造を有する。
Nafion is a perfluorocarbon material composed of a carbon-fluorine hydrophobic Teflon (R) backbone and a perfluoro side chain having a sulfonic acid group, and is typically tetrafluoroethylene and perfluoro [2- ( [1] A copolymer of fluorosulfonylethoxy) propyl vinyl ether], which is a non-crosslinkable polymer, generally having the following structure.

ナフィオンは、溶媒には完全には溶けずコロイド溶液(分散体)として存在する。通常は、溶媒中で直径10nm前後の比較的大きなコロイド状に凝集していると考えられる。そのため分子量の測定が難しく、およそ10,000〜1,000,000と推定されている。イオン交換性樹脂分散体であるナフィオン分散液は、例えば、Nafion(登録商標)5wt%分散体、Nafion(登録商標)10wt%分散体、及びNafion(登録商標)20wt%分散体が市販されている。何れも1−プロパノール及び2−プロパノールの混合溶媒に、5wt%、10wt%又は20wt%のナフィオン(イオン交換性樹脂)が分散された液体である。   Nafion is not completely dissolved in the solvent and exists as a colloidal solution (dispersion). In general, it is considered that they are aggregated in a relatively large colloid having a diameter of about 10 nm in a solvent. Therefore, the measurement of molecular weight is difficult, and it is estimated to be about 10,000 to 1,000,000. As the Nafion dispersion which is an ion exchange resin dispersion, for example, Nafion (registered trademark) 5 wt% dispersion, Nafion (registered trademark) 10 wt% dispersion, and Nafion (registered trademark) 20 wt% dispersion are commercially available. . Each is a liquid in which 5 wt%, 10 wt% or 20 wt% of Nafion (ion exchange resin) is dispersed in a mixed solvent of 1-propanol and 2-propanol.

塗料Aにおける、BDDPとイオン交換性樹脂分散体中のイオン交換性樹脂の含有量比(質量比)は、電極用の基材表面に塗布形成した被膜が電解用の電極として機能すること(即ち、良好な導電性を有すること)及び基材表面に塗布形成した被膜と基材との接着強度が良好である(即ち、ハンドリング及び電解において剥離しないまたは剥離しにくいこと)を考慮すると、BDDP質量を100としたときにイオン交換性樹脂質量が10〜200の範囲、好ましくは20〜150の範囲、より好ましくは30〜100の範囲、さらに好ましくは40〜70の範囲であることが適当である。一般的傾向として、BDDP質量が増えれば導電性は高くなり、イオン交換性樹脂質量が増えれば基材との接着強度は高くなる。   The content ratio (mass ratio) of BDDP to the ion exchange resin dispersion in the ion exchange resin dispersion in the paint A is that the film formed on the surface of the substrate for the electrode functions as an electrode for electrolysis (ie, BDDP mass, considering that it has good conductivity) and adhesion strength between the coating formed on the substrate surface and the substrate is good (that is, it does not peel off or is difficult to peel off in handling and electrolysis) The ion exchange resin mass is suitably in the range of 10 to 200, preferably in the range of 20 to 150, more preferably in the range of 30 to 100, and still more preferably in the range of 40 to 70, where . As a general tendency, as the BDDP mass increases, the conductivity increases, and as the ion exchange resin mass increases, the adhesion strength to the substrate increases.

塗料Aは、BDDPとイオン交換性樹脂分散体に加えて有機溶媒を含有することができる。前述のようにイオン交換性樹脂分散体がNafion(登録商標)20wt%分散体等である場合には、Nafion(登録商標)20wt%分散体にプロパノールが含まれているが、これに加えて、有機溶媒を含有することもできる。追加の有機溶媒を用いないで塗料を作製することもできる。追加の有機溶媒は、BDDP及びイオン交換性樹脂を良好に分散させ得る物であることが適当であり、例えば、Nafion(登録商標)20wt%分散体等で用いられているアルコール類(例えば、エタノール、1−プロパノール、2−プロパノール)を挙げることができる。但し、この有機溶媒に限定される意図ではない。有機溶媒の使用量は、塗料に要求される粘度や塗布性能等を考慮して適宜決定することができる。   The paint A can contain an organic solvent in addition to the BDDP and the ion exchange resin dispersion. As described above, when the ion exchange resin dispersion is Nafion (R) 20 wt% dispersion or the like, propanol is contained in the Nafion (R) 20 wt% dispersion, but in addition to this, It can also contain an organic solvent. Paints can also be made without the use of additional organic solvents. The additional organic solvent is suitably one capable of well dispersing BDDP and ion exchange resin, and, for example, alcohols used in Nafion (registered trademark) 20 wt% dispersion etc. (eg ethanol) , 1-propanol, 2-propanol) can be mentioned. However, it is not the intention limited to this organic solvent. The amount of the organic solvent used can be appropriately determined in consideration of the viscosity, coating performance, etc. required of the paint.

<塗料B>
塗料Bは、BDDP、絶縁性バインダ及びシリコーンゴムを含有する塗料である。絶縁性バインダとしては、例えば、多価カルボン酸(ジカルボン酸)とポリアルコール(ジオール)との縮重合体であるポリエステル樹脂を挙げることができる。さらに、絶縁性バインダとしては、ポリエステル樹脂以外に、例えば、ウレタン変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂、アクリル変性ポリエステルなどの各種変性ポリエステル樹脂や、ポリエーテルウレタン樹脂、ポリカーボネートウレタン樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル重合体、マレイン化ポリオレフィンなどのポリオレフィン系樹脂、塩化ビニル・酢酸ビニル重合体、エポキシ樹脂、フェノール樹脂、ポリアミドイミド、ニトロセルロース、セルロース・アセテート・ブチレート(CAB)、セルロース・アセテート・プロピオネート(CAP)などの変性セルロース類などを用いることもできる。
<Paint B>
The paint B is a paint containing BDDP, an insulating binder and silicone rubber. As an insulating binder, the polyester resin which is a condensation polymer of polyhydric carboxylic acid (dicarboxylic acid) and polyalcohol (diol) can be mentioned, for example. Furthermore, as the insulating binder, in addition to polyester resin, for example, various modified polyester resins such as urethane modified polyester resin, epoxy modified polyester resin, acrylic modified polyester, polyether urethane resin, polycarbonate urethane resin, polyethylene, polypropylene, ethylene Vinyl acetate polymer, polyolefin resin such as maleated polyolefin, vinyl chloride / vinyl acetate polymer, epoxy resin, phenol resin, polyamide imide, nitrocellulose, cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP) And modified celluloses can also be used.

シリコーンゴムは、未硬化のシリコーンゴム原料組成物であることができ、例えば、一液型の加熱硬化型のシリコーン樹脂であることができる。一液型の加熱硬化型のシリコーン樹脂としては、特に制限はないが、例えば、信越シリコーン(株)製の一液性加熱硬化型シリコーン接着剤、例えば、KE−1830等を挙げることができる。   The silicone rubber can be an uncured silicone rubber raw material composition, and can be, for example, a one-component heat-curable silicone resin. The one-component heat-curable silicone resin is not particularly limited, and examples thereof include a one-component heat-curable silicone adhesive manufactured by Shin-Etsu Silicone Co., Ltd., such as KE-1830.

塗料Bにおける、BDDPと絶縁性バインダ及びシリコーンゴムの含有量比(質量比)は、電極用の基材表面に塗布して形成した被膜が電解用の電極として機能すること即ち、良好な導電性を有すること)及び基材表面に塗布形成した被膜と基材との接着強度が良好であること(即ち、ハンドリング及び電解において剥離しないまたは剥離しにくいこと)を考慮すると、BDDP質量を100としたときに絶縁性バインダ及びシリコーンゴムの合計含有質量が10〜200の範囲、好ましくは15〜150の範囲、より好ましくは20〜100の範囲、さらに好ましくは25〜45の範囲であることが適当である。一般的傾向として、BDDP質量が増えれば導電性は高くなり、絶縁性バインダ及びシリコーンゴムの合計含有質量が増えれば接着強度は高くなる。   The content ratio (mass ratio) of BDDP to the insulating binder and silicone rubber in the coating material B is that the film formed by applying on the surface of the substrate for the electrode functions as an electrode for electrolysis, that is, good conductivity And the adhesive strength between the coating formed on the surface of the substrate and the substrate (that is, not peeling or difficult to peel in handling and electrolysis), the BDDP mass is 100 When the total content of the insulating binder and the silicone rubber is in the range of 10 to 200, preferably in the range of 15 to 150, more preferably in the range of 20 to 100, still more preferably in the range of 25 to 45 is there. As a general tendency, as the BDDP mass increases, the conductivity increases, and as the total content of the insulating binder and the silicone rubber increases, the adhesive strength increases.

絶縁性バインダとシリコーンゴムの含有量比(質量比)は、シリコーンゴムが基材表面に塗布形成した被膜と基材との接着強度や被膜に強度を付与することを考慮すると、絶縁性バインダ質量を100としたときにシリコーンゴムの含有質量が1〜50の範囲、好ましくは3〜30の範囲、より好ましくは5〜25の範囲、さらに好ましくは5〜15の範囲であることが適当である。一般的傾向として、シリコーンゴムの含有量が高くなると接着強度や被膜強度は高くなる。但し、上記範囲に限定される意図ではなく、何れも例示を目的とするものである。   The content ratio (mass ratio) of the insulating binder to the silicone rubber is the mass of the insulating binder in consideration of the adhesion strength between the film coated on the surface of the substrate and the substrate and the application of the strength to the film. It is appropriate that the content weight of the silicone rubber is in the range of 1 to 50, preferably in the range of 3 to 30, more preferably in the range of 5 to 25, and still more preferably in the range of 5 to 15. . As a general tendency, the higher the content of silicone rubber, the higher the adhesive strength and the film strength. However, the present invention is not intended to be limited to the above range, and all are intended for illustration.

塗料Bは、BDDPと絶縁性バインダ及びシリコーンゴムに加えて有機溶媒を含有することができる。有機溶媒は、絶縁性バインダ及びシリコーンゴムを溶解させ得る物であることができ、例えば、メチルエチルケトン(MEK)やイソホロン等を挙げることができる。但し、この有機溶媒に限定される意図ではない。有機溶媒の使用量は、塗料に要求される粘度や塗布性能等を考慮して適宜決定することができる。   The paint B can contain an organic solvent in addition to the BDDP, the insulating binder and the silicone rubber. The organic solvent can be one capable of dissolving the insulating binder and the silicone rubber, and examples thereof include methyl ethyl ketone (MEK) and isophorone. However, it is not the intention limited to this organic solvent. The amount of the organic solvent used can be appropriately determined in consideration of the viscosity, coating performance, etc. required of the paint.

[電極]
本発明の電極は、電極基材及び前記基材の少なくとも一部の表面に設けられた導電性被膜を有する電極である。さらに前記導電性被膜は、BDDP及びイオン交換性樹脂を含有するか、またはBDDPと絶縁性バインダ及びシリコーンゴム(硬化物)を含有する。前記導電性被膜におけるBDDPの含有量は、比較的大きい通電量を必要とする電解においても、導電性被膜が良好な導電性(通電性)を示すという観点から選択され、例えば、10質量%以上であることが適当であり、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、さらに一層好ましくは50質量%以上である。導電性被膜におけるBDDPの含有量は、より良好な導電性(通電性)を有するという観点から、60質量%以上、さらに好ましくは70質量%以上である。BDDP含有量を増大させることで、導電性は向上するが、その一方でイオン交換性樹脂、または絶縁性バインダ及びシリコーンゴム(硬化物)の含有量が低下することから、導電性被膜の接着強度が低下する傾向はある。この点を考慮すると、イオン交換性樹脂、または絶縁性バインダ及びシリコーンゴム(硬化物)の種類やBDDPの種類(例えば、粒子径など)などにもよるが、BDDP含有量の上限は、実用的には80質量%程度である。但し、この上限はあくまでも目安であり、限定する意図ではない。
[electrode]
The electrode of the present invention is an electrode having an electrode substrate and a conductive film provided on the surface of at least a part of the substrate. Furthermore, the conductive film contains BDDP and an ion exchange resin, or contains BDDP, an insulating binder and a silicone rubber (cured product). The content of BDDP in the conductive film is selected from the viewpoint that the conductive film exhibits good conductivity (current conductivity) even in electrolysis which requires a relatively large amount of current, for example, 10% by mass or more Is preferably 20% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and still more preferably 50% by mass or more. The content of BDDP in the conductive film is 60% by mass or more, more preferably 70% by mass or more, from the viewpoint of having better conductivity (electrical conductivity). By increasing the BDDP content, the conductivity is improved, but on the other hand, the content of the ion exchange resin or the insulating binder and the silicone rubber (cured product) decreases, so the adhesive strength of the conductive film is increased. Tend to decrease. When this point is taken into consideration, the upper limit of the BDDP content is practical although it depends on the type of ion exchange resin or insulating binder and silicone rubber (cured product), the type of BDDP (eg, particle diameter etc.), etc. To about 80% by mass. However, this upper limit is merely a guide and is not intended to be limiting.

BDDP及びイオン交換性樹脂を含有する導電性被膜は、前記塗料Aを塗布し、塗料が含有する有機溶媒を除去(蒸発)させることで形成することができる。またBDDPと絶縁性バインダ及びシリコーンゴムを含有する導電性被膜は、前記塗料Bを塗布し、塗料が含有する有機溶媒を除去(蒸発)させ、さらに未硬化シリコーンゴムを硬化させることで形成することができる。塗料の基材への塗布方法や有機溶媒の除去(蒸発)方法、未硬化シリコーンゴムの硬化方法などは、公知の方法を適宜利用することができる。   The conductive film containing BDDP and ion exchange resin can be formed by applying the paint A and removing (evaporating) the organic solvent contained in the paint. A conductive film containing BDDP, an insulating binder and silicone rubber is formed by applying the paint B, removing (evaporating) the organic solvent contained in the paint, and curing the uncured silicone rubber. Can. A known method can be appropriately used for the method of applying the paint to the substrate, the method of removing (evaporating) the organic solvent, the method of curing the uncured silicone rubber, and the like.

前記電極基材は、形状や寸法には特に制限はない。本発明の電極の用途を考慮して適宜決定できる。電極基材は、例えば、針状または板状の基材であることができる。本発明の電極を歯科治療用、特に根管治療用とする場合には、電極基材は、直径約0.05〜0.5mmの針状部材であることが適当である。但し、電極基材は、針状の基材に限定される意図ではなく、電極の用途に応じて種々の電極基材を採用することができる。また、電極基材の材質は、電極を陽極として利用する場合には、酸化に対する耐性を有する材料であることが好ましい。例えば、白金等の貴金属やチタンなどの金属材料を挙げることができる。また、白金等の貴金属を電極基材にめっきし、耐性を賦与してもよい。但し、これに限定される意図ではない。針状以外の電極基材は、板状やメッシュ状など種々の形態の物であることもできる。   The shape and size of the electrode substrate are not particularly limited. It can determine suitably in consideration of the use of the electrode of the present invention. The electrode substrate can be, for example, a needle-like or plate-like substrate. When the electrode of the present invention is used for dental treatment, particularly for root canal treatment, the electrode substrate is suitably a needle-like member having a diameter of about 0.05 to 0.5 mm. However, the electrode substrate is not intended to be limited to a needle-like substrate, and various electrode substrates can be adopted according to the use of the electrode. Further, the material of the electrode base material is preferably a material having resistance to oxidation when the electrode is used as an anode. Examples thereof include noble metals such as platinum and metal materials such as titanium. Alternatively, a noble metal such as platinum may be plated on the electrode substrate to impart resistance. However, it is not the intention limited to this. The electrode base material other than needle-like may be in various forms such as plate-like and mesh-like.

本発明の電極は、前記塗料A又はBを電極基材表面に塗布し、次いで乾燥、必要により加熱硬化させることで作製できる。導電性被膜の厚みは特に制限はないが、例えば、1μm〜1mmの範囲とすることができる。根管治療用の電極の場合は、例えば、1μm〜200μmの範囲、好ましくは5μm〜100μmの範囲とすることができる。   The electrode of the present invention can be produced by applying the paint A or B on the surface of the electrode substrate, and then drying and if necessary heat curing. The thickness of the conductive film is not particularly limited, but can be, for example, in the range of 1 μm to 1 mm. In the case of an electrode for treatment of the root canal, for example, it can be in the range of 1 μm to 200 μm, preferably in the range of 5 μm to 100 μm.

[電解ユニット]
本発明の電解ユニットは、本発明の電極及び対極を含む。さらに、本発明の電解ユニットの一態様としては、本発明の電極、セパレータ及び対極を含むものも挙げることができる。セパレータは、本発明の電極と対極とを短絡することなく、かつ通電可能に隔離しえる部材であればよい。セパレータとしては、例えば、導電性樹脂などの固体電解質を用いることができ、例えば、ナフィオン(登録商標)膜やAciplex(登録商標)膜を用いることができる。また、塗料Aの材料として用いたイオン交換性樹脂分散体を対極に塗布し、対極とセパレータを一体化させてもよい。セパレータの膜厚は、電解ユニットの構造及び寸法、さらには電解条件などを考慮して適宜選択できる。対極は、電解ユニットが電解系として機能し得る電極であれば、特に制限はない。本発明の電解ユニットを水又は水溶液の電解に用いる場合には対極は陰極となることから、水素が発生する。そのため、例えば、水素発生過電圧の低い材料であるあることが適当である。白金等の貴金属材料からなる電解を例示できる。
[Electrolysis unit]
The electrolysis unit of the present invention comprises the electrode of the present invention and the counter electrode. Furthermore, as an aspect of the electrolysis unit of the present invention, one including the electrode, the separator and the counter electrode of the present invention can also be mentioned. The separator may be any member capable of providing electrical isolation without short-circuiting the electrode of the present invention and the counter electrode. As the separator, for example, a solid electrolyte such as a conductive resin can be used, and for example, a Nafion (registered trademark) film or an Aciplex (registered trademark) film can be used. Alternatively, the ion exchange resin dispersion used as the material of the paint A may be applied to the counter electrode to integrate the counter electrode with the separator. The film thickness of the separator can be appropriately selected in consideration of the structure and dimensions of the electrolytic unit, and further the electrolytic conditions. The counter electrode is not particularly limited as long as the electrolysis unit can function as an electrolysis system. When the electrolysis unit of the present invention is used for electrolysis of water or an aqueous solution, hydrogen is generated because the counter electrode is a cathode. Therefore, for example, a material having a low hydrogen generation overvoltage is appropriate. The electrolysis which consists of noble metal materials, such as platinum, can be illustrated.

一例として、電極基材が針状である本発明の電極と、前記電極に、前記電極と対極の間にイオン交換膜を介在させてテープ状の対極を巻き付けてなる、電解ユニットを挙げることができる。テープ状の対極は、電極にらせん状に巻き付けることができる。具体的には、図1に示すように、例えば針状基板に導電性被覆を設けた電極10に、イオン交換膜、例えば、ナフィオン(登録商標)膜20を介在させて対極である金属(白金)テープ30を巻き付けたものであることができる。金属(白金)テープ30は、電解ユニットの径が、根管の内径より小さくなるように、厚みが10〜100μmの範囲であることが適当であり、イオン交換膜の厚みも10〜100μmの範囲であることが適当である。   As an example, mention may be made of an electrode according to the present invention in which the electrode substrate is needle-like, and an electrolysis unit in which a tape-like counter electrode is wound on the electrode with an ion exchange membrane interposed between the electrode and the counter electrode. it can. The tape-like counter electrode can be spirally wound around the electrode. Specifically, as shown in FIG. 1, for example, an ion exchange membrane, for example, a Nafion (registered trademark) membrane 20, is interposed between an electrode 10 provided with a conductive coating on a needle-like substrate, for example, a metal (platinum ) The tape 30 can be wound. The thickness of the metal (platinum) tape 30 is suitably in the range of 10 to 100 μm so that the diameter of the electrolytic unit is smaller than the inner diameter of the root canal, and the thickness of the ion exchange membrane is also in the range of 10 to 100 μm Is appropriate.

本発明の電解ユニットは、歯科治療用、例えば、齲蝕、歯周病、または根管治療用であることができる。上記図1に示す電解ユニットは、根管治療用として特に有用である。但し、本発明の電解ユニットは、歯科治療用に限定される意図ではなく、その他の殺菌用の電解水を調製する装置としても利用できる。所望の電解水量等に応じて、電解ユニットの寸法や形状、構造は適宜選択することができる。例えば、本発明の電解及び対極を含む(セパレータは含まない)電解ユニットは、特許文献1及び非特許文献1に記載の電解水噴霧装置の電解ユニットに代わるものとして用いることもできる。   The electrolytic unit of the present invention can be for dental treatment, for example, for caries, periodontal disease, or root canal treatment. The electrolysis unit shown in FIG. 1 is particularly useful for root canal treatment. However, the electrolysis unit of the present invention is not intended to be limited to dental treatment, and can also be used as a device for preparing other electrolyzed electrolyzed water. The size, shape, and structure of the electrolytic unit can be appropriately selected according to the desired amount of electrolytic water and the like. For example, the electrolysis unit containing the electrolysis of the present invention and the counter electrode (not including the separator) can be used as a substitute for the electrolysis unit of the electrolyzed water spray device described in Patent Document 1 and Non-Patent Document 1.

本発明の電解ユニットは、本発明の電極、(セパレータ)及び対極に加えて、本発明の電極及び対極をそれぞれ電源と接続するためのリード線、スイッチ及び電源を含むこともできる。電源は特に制限はないが、例えば、直流電源であり、具体的には電池であることができる。特に歯科治療用あるいは根管治療用の場合、電解ユニットが小型であり、かつ操作性を考慮すれば、小型の電源(例えば、乾電池やボタン電池)と電解ユニット及びスイッチとが一体化したものであることもできる。電解に用いる電圧は、例えば、2.5〜12Vの範囲であることができ、3〜10Vの範囲であることが、水の電解を容易に行い、オゾンなどの酸化剤を容易に発生させるという観点からは好ましい。また、電解に用いる溶液は、水、又は水に適当な溶質を加えた水溶液であることができ、溶質を用いる場合、用途に応じて適宜選択できる。溶質として食塩(NaCl)等の塩化物を用いれば、電解により塩素及び/又は次亜塩素酸を生成させることができる。電解に用いる溶液は、例えば、生理食塩水またはリン酸緩衝生理食塩水であることもできる。   The electrolytic unit of the present invention can also include, in addition to the electrode of the present invention (separator) and the counter electrode, a lead wire, a switch and a power source for connecting the electrode and the counter electrode of the present invention to the power source. The power source is not particularly limited, but may be, for example, a direct current power source, specifically a battery. In particular, in the case of dental treatment or root canal treatment, the electrolytic unit is small in size, and in consideration of operability, a small power source (for example, dry cell or button battery) integrated with the electrolytic unit and switch. It can also be. The voltage used for the electrolysis can be, for example, in the range of 2.5 to 12 V, and the fact that it is in the range of 3 to 10 V means that the electrolysis of water is easily performed to easily generate an oxidant such as ozone. It is preferable from the viewpoint. Further, the solution used for electrolysis may be water or an aqueous solution obtained by adding a suitable solute to water, and when using a solute, it can be appropriately selected according to the application. If a chloride such as sodium chloride (NaCl) is used as a solute, chlorine and / or hypochlorous acid can be produced by electrolysis. The solution used for the electrolysis can also be, for example, saline or phosphate buffered saline.

[歯科治療器具]
本発明は、前記本発明の電解ユニットを含む歯科治療器具を包含する。歯科治療器具は、根管治療器具であることができる。本発明の歯科治療器具は、簡易的に殺菌用の水溶液を生成することができ、特に、治療場所において殺菌用の水溶液を生成することができる。
[Dental treatment equipment]
The present invention includes a dental treatment apparatus including the electrolysis unit of the present invention. The dental treatment instrument can be a root canal treatment instrument. The dental treatment apparatus of the present invention can easily produce a sterilizing aqueous solution, and in particular, can produce a sterilizing aqueous solution at a treatment site.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.

実施例1
ポリエステル樹脂3gをメチルエチルケトン6.3gとイソホロン7.8gの混合溶媒にて35℃で溶解する。シリコーン樹脂(信越シリコン、KE-1830)0.3gを加えよく撹拌する(溶液A)。BDDPと溶液Aを1:3の重量比で混合しBDDペーストとする。根管拡大に用いられる最大径0.3mmの歯科用ファイルにこのBDDペーストを塗布し60℃に1時間以上熱し、更に120℃で10分以上加熱し、BDD電極を作製する。一方Al電極にイオン交換膜を付着させるためナフィオン12.5重量%の水溶液をAlフォイルに塗布し、60℃1時間以上加熱し、さらに120℃で10分加熱する。Al電極上にイオン交換膜ができる。このAl電極を約1mmの幅で裁断し、イオン交換膜の部分がBDD電極表面に接するようにAl電極をBDD電極のまわりに螺旋状に巻きつけ電解ユニットを作製する。
Example 1
3 g of a polyester resin is dissolved at 35 ° C. in a mixed solvent of 6.3 g of methyl ethyl ketone and 7.8 g of isophorone. Add 0.3 g of silicone resin (Shin-Etsu Silicone, KE-1830) and stir well (solution A). BDDP and solution A are mixed in a weight ratio of 1: 3 to obtain a BDD paste. This BDD paste is applied to a dental file with a maximum diameter of 0.3 mm used for root canal expansion, heated to 60 ° C. for 1 hour or more, and further heated to 120 ° C. for 10 minutes or more to produce a BDD electrode. On the other hand, in order to attach an ion exchange membrane to an Al electrode, an aqueous solution of 12.5 wt% Nafion is applied to an Al foil, heated at 60 ° C. for 1 hour or more, and further heated at 120 ° C. for 10 minutes. An ion exchange membrane is formed on the Al electrode. The Al electrode is cut to a width of about 1 mm, and the Al electrode is spirally wound around the BDD electrode so that a portion of the ion exchange membrane is in contact with the surface of the BDD electrode to produce an electrolytic unit.

上記方法により作製した電解ユニットは屈曲した根管に適応しても破断することなく、さらに1.5mlの蒸留水中で7.5Vの電圧をかけたところ0.7mg/lのオゾンが発生していることを確認し、歯科治療などで使用可能なことがわかった。尚、本願実施例におけるオゾン濃度測定は、多目的水質計デジタルパックテスト・マルチおよびパックテスト・オゾン(ともに共立理化学研究所)を用いて行った。サンプル溶液1.5 mLをパックテスト・オゾンを用いて酵素による4-アミノアンチピリン比色法にて呈色させ、その吸光度をデジタルパックテスト・マルチで測定して濃度を算出した。   The electrolytic unit produced by the above method does not break even when it is applied to a bent root canal, and when a voltage of 7.5 V is further applied in 1.5 ml of distilled water, 0.7 mg / l of ozone is generated. It confirmed, and it turned out that it can be used by dental treatment etc. In addition, the ozone concentration measurement in this-application Example was performed using the multipurpose water quality meter digital pack test * multi and pack test * ozone (both Kyoritsu Chemical-Chemical laboratory). 1.5 mL of the sample solution was subjected to color test by 4-aminoantipyrine enzymatic method using Pack test ozone, and its absorbance was measured by Digital Pack Test Multi to calculate the concentration.

牛歯の根管にP.ジンジバリス(P.gingivalis)を培養し、この電解ユニットを用いて7.5Vの電圧を30秒間かけた結果、根管内面から菌は消滅していた。その電子顕微鏡による観察写真を図2に示す。この電解ユニットはこのSEM観察の結果からも殺菌に有効であることを確認した。(図2)(A)根管内面に培養された歯周病細菌P.ジンジバリス(P. gingivalis)。(B)BDD電極で7.5V、30秒間通電後の根管内面。菌を認めない。(C)次亜塩素酸ナトリウム30秒間処理。菌を認めない。(D)30秒間PBS洗浄のみ。多くの菌を認めた。   As a result of culturing P. gingivalis (P. gingivalis) in the root canal of the bovine tooth and applying a voltage of 7.5 V for 30 seconds using this electrolytic unit, the bacteria disappeared from the surface of the root canal. The observation photograph by the electron microscope is shown in FIG. It was confirmed from this SEM observation that this electrolytic unit is also effective for sterilization. (FIG. 2) (A) Periodontitis bacteria P. gingivalis (P. gingivalis) cultured on the intratubular surface. (B) The surface of the root canal after energization with a BDD electrode at 7.5 V for 30 seconds. I do not recognize bacteria. (C) Sodium hypochlorite treatment for 30 seconds. I do not recognize bacteria. (D) PBS wash for 30 seconds only. Many bacteria were recognized.

実施例2〜4は実施例1に準拠しBDD電極を作製した。主な相違を表にまとめておく。詳細は後述する。   Examples 2 to 4 conformed to Example 1 to produce BDD electrodes. The main differences are summarized in the table. Details will be described later.

実施例2
BDDPとイオン交換樹脂分散体であるナフィオン分散液(20% NafionR Dispersion Solution DE2021 CS type)とを10:5の重量比になるように秤量し、混合してBDDペーストを得た。最大径0.3mmの根管拡大ファイル(マニー Kファイル 28mm/#30)にこのBDDペーストを塗布し、60℃で1時間、120℃で10分加熱してBDDコートファイルを得た。白金箔(99.98%,厚さ0.02mm, ニラコ, PT-353212)の片面に上記のナフィオン分散液を塗布し、60℃で1時間、120℃で10分加熱後に細く裁断して、ナフィオンコート白金箔リボンを得た。
Example 2
A BDDP and Nafion dispersion (20% Nafion® Dispersion Solution DE 2021 CS type), which is an ion exchange resin dispersion, were weighed to a weight ratio of 10: 5 and mixed to obtain a BDD paste. The BDD paste was applied to a root canal enlargement file (Manny K file 28 mm / # 30) having a maximum diameter of 0.3 mm, and heated at 60 ° C. for 1 hour and at 120 ° C. for 10 minutes to obtain a BDD coated file. The above Nafion dispersion is applied on one side of a platinum foil (99.98%, 0.02 mm thickness, Nyako, PT-353212), and it is finely cut after heating at 60 ° C. for 1 hour and at 120 ° C. for 10 minutes. I got a gold foil ribbon.

これを、ナフィオン側が接するようにBDDコートファイルに巻きつけ、シリコーン樹脂KE-1830(信越シリコーン)を先端に塗布して60℃で1時間、120℃で10分加熱して固定した。   This was wrapped around a BDD coated file so that the Nafion side was in contact, and silicone resin KE-1830 (Shin-Etsu Silicone) was applied to the tip and fixed by heating at 60 ° C. for 1 hour and 120 ° C. for 10 minutes.

実施例3
BDDPとイオン交換樹脂分散体であるナフィオン分散液(20% Nafion(登録商標)Dispersion Solution DE2021 CS type)とを10:5の重量比になるように秤量し、混合してBDDペーストを得た。最大径0.08mmの根管拡大ファイル(マニー Kファイル 28mm/#08)に白金めっきを施した。
Example 3
A BDDP and Nafion dispersion (20% Nafion (registered trademark) Dispersion Solution DE 2021 CS type), which is an ion exchange resin dispersion, were weighed to a weight ratio of 10: 5 and mixed to obtain a BDD paste. Platinum plating was applied to a root canal enlargement file (Manny K file 28 mm / # 08) with a maximum diameter of 0.08 mm.

ここにファイルと白金線を浸漬させ、ファイルを陰極、白金線を陽極として、直流2.5 V、30 mAの条件で30 分間電解し、水洗して白金めっきファイルを得た。これに前述のBDDペーストを塗布し、60℃で1時間、120℃で10分加熱してBDDコート白金めっきファイルを得た。白金箔(99.98%,厚さ0.02mm, ニラコ, PT-353212)の片面に上記のナフィオン分散液を塗布し、60℃で1時間、120℃で10分加熱後に細く裁断して、ナフィオンコート白金箔リボンを得た。   A file and a platinum wire were immersed therein, and the file was used as a cathode and a platinum wire as an anode, electrolyzed for 30 minutes under the conditions of 2.5 V DC, 30 mA and washed with water to obtain a platinum plated file. The above-mentioned BDD paste was applied to this, and heated at 60 ° C. for 1 hour and at 120 ° C. for 10 minutes to obtain a BDD-coated platinum plated file. The above Nafion dispersion is applied on one side of a platinum foil (99.98%, 0.02 mm thickness, Nyako, PT-353212), and it is finely cut after heating at 60 ° C. for 1 hour and at 120 ° C. for 10 minutes. I got a gold foil ribbon.

これを、ナフィオン側が接するようにBDDコート白金めっきファイルに巻きつけ、シリコーン樹脂KE-1830(信越シリコーン)を先端に塗布して60℃で1時間、120℃で10分加熱して固定した。   This was wrapped around a BDD-coated platinum-plated file so that the Nafion side was in contact, and silicone resin KE-1830 (Shin-Etsu Silicone) was applied to the tip and fixed by heating at 60 ° C. for 1 hour and 120 ° C. for 10 minutes.

作製した電解ユニットは屈曲した根管に適応しても破断することなく、さらに1.5mlの蒸留水中で7.5Vの電圧をかけたところ0.41mg/lのオゾンが発生していることを確認し、歯科治療などで使用可能なことがわかった。   The prepared electrolytic unit was adapted to a bent root canal without breaking, and when a voltage of 7.5 V was further applied in 1.5 ml of distilled water, it was confirmed that 0.41 mg / l of ozone was generated. It turned out that it can be used by dental treatment etc.

実施例4
ポリエステル樹脂3gをメチルエチルケトン6.3gとイソホロン7.8gの混合溶媒にて35℃で溶解する。シリコーン樹脂(信越シリコン、KE-1830)0.3gを加えよく撹拌する(溶液A)。BDDPと溶液Aを2:3の重量比で混合しBDDペーストとする。実施例3と同様の白金めっき済みの根管拡大に用いられる最大径0.08mmの歯科用ファイルにこのBDDペーストを塗布し60℃に1時間以上熱し、更に120℃で10分以上加熱し、BDD電極を作製する。一方Al電極にイオン交換膜を付着させるためナフィオン12.5重量%の水溶液をAlフォイルに塗布し、60℃1時間以上加熱し、さらに120℃で10分加熱する。Al電極上にイオン交換膜ができる。このAl電極を約1mmの幅で裁断し、イオン交換膜の部分がBDD電極表面に接するようにAl電極をBDD電極のまわりに螺旋状に巻きつけ電解ユニットを作製する。
Example 4
3 g of a polyester resin is dissolved at 35 ° C. in a mixed solvent of 6.3 g of methyl ethyl ketone and 7.8 g of isophorone. Add 0.3 g of silicone resin (Shin-Etsu Silicone, KE-1830) and stir well (solution A). BDDP and solution A are mixed in a weight ratio of 2: 3 to obtain a BDD paste. This BDD paste is applied to a dental file with a maximum diameter of 0.08 mm used for platinum-rooted root canal expansion similar to Example 3, heated to 60 ° C. for 1 hour or more, and further heated to 120 ° C. for 10 minutes or more, BDD Make an electrode. On the other hand, in order to attach an ion exchange membrane to an Al electrode, an aqueous solution of 12.5 wt% Nafion is applied to an Al foil, heated at 60 ° C. for 1 hour or more, and further heated at 120 ° C. for 10 minutes. An ion exchange membrane is formed on the Al electrode. The Al electrode is cut to a width of about 1 mm, and the Al electrode is spirally wound around the BDD electrode so that a portion of the ion exchange membrane is in contact with the surface of the BDD electrode to produce an electrolytic unit.

上記方法で作製した電解ユニットは屈曲した根管に適応しても破断することは無かった。さらに1.5mlの蒸留水中で7.5Vの電圧をかけたところ1.36mg/lのオゾンが発生していることを確認した。この電解ユニットは、歯科治療などで使用可能なことがわかった。   The electrolytic unit produced by the above method did not break even when it was applied to a bent root canal. Further, when a voltage of 7.5 V was applied in 1.5 ml of distilled water, it was confirmed that 1.36 mg / l of ozone was generated. It has been found that this electrolysis unit can be used in dental treatment and the like.

比較例1
ポリエステル樹脂3gをメチルエチルケトン6.3gとイソホロン7.8gの混合溶媒にて35℃で溶解する(溶液A)。BDDPと溶液Aを3:5の重量比で混合しBDDペーストとする。根管拡大に用いられる最大径0.3mmの歯科用ファイルにこのBDDペーストを塗布し60℃に1時間以上熱し、更に120℃で10分以上加熱し、BDD電極を作製する。一方Al電極にイオン交換膜を付着させるためナフィオン12.5重量%の水溶液をAlフォイルに塗布し、60℃1時間以上加熱し、さらに120℃で10分加熱する。Al電極上にイオン交換膜ができる。このAl電極を約1mmの幅で裁断し、イオン交換膜の部分がBDD電極表面に接するようにAl電極をBDD電極のまわりに螺旋状に巻きつけ電解ユニットを作製する。
Comparative Example 1
3 g of a polyester resin is dissolved at 35 ° C. in a mixed solvent of 6.3 g of methyl ethyl ketone and 7.8 g of isophorone (solution A). BDDP and solution A are mixed in a weight ratio of 3: 5 to obtain a BDD paste. This BDD paste is applied to a dental file with a maximum diameter of 0.3 mm used for root canal expansion, heated to 60 ° C. for 1 hour or more, and further heated to 120 ° C. for 10 minutes or more to produce a BDD electrode. On the other hand, in order to attach an ion exchange membrane to an Al electrode, an aqueous solution of 12.5 wt% Nafion is applied to an Al foil, heated at 60 ° C. for 1 hour or more, and further heated at 120 ° C. for 10 minutes. An ion exchange membrane is formed on the Al electrode. The Al electrode is cut to a width of about 1 mm, and the Al electrode is spirally wound around the BDD electrode so that a portion of the ion exchange membrane is in contact with the surface of the BDD electrode to produce an electrolytic unit.

上記方法で作製した電解ユニットは屈曲した根管程度の屈曲に適応せず破断し、電極に使用することはできなかった。   The electrolytic unit produced by the above method was broken without adapting to the bending of the bent root canal and could not be used as an electrode.

実施例5
121℃15分間オートクレーブで滅菌したハイドロキシアパタイト板(直径5mm、厚さ1mm)を2mlのBHI液体培地中に浸漬しE,フェカリス(E.faecalis) を1昼夜嫌気培養した。HA板の上にはE,ファエカリス(E.faecalis)のフィルムが生成していた。BHI液体培地を捨て通常のPBS緩衝液を2ml入れ、実施例4で作製したBDD電解ユニットにて7.5Vで15秒間通電した。その後20μlのチオ硫酸ナトリウムを添加し、残存している活性酸素を完全に除去した。生菌の濃度はアラマルブルーによる蛍光強度で比較した。すなわち15秒間の通電後と通電せず15秒PBS溶液に浸した場合の蛍光強度を比較した。この結果、BDD電解ユニットを7.5Vで15秒間作用させた場合、蛍光強度は53%減少しており明らかに殺菌効果が認められた。
Example 5
The hydroxyapatite plate (diameter 5 mm, thickness 1 mm) sterilized by autoclaving at 121 ° C. for 15 minutes was immersed in 2 ml of BHI liquid medium, and E. faecalis (E. faecalis) was anaerobically cultured overnight. A film of E. faecalis (E. faecalis) was formed on the HA plate. The BHI liquid medium was discarded, 2 ml of a normal PBS buffer solution was added, and the BDD electrolysis unit prepared in Example 4 was energized at 7.5 V for 15 seconds. Thereafter, 20 μl of sodium thiosulfate was added to completely remove the remaining active oxygen. The concentration of viable bacteria was compared by the fluorescence intensity by alamar blue. That is, the fluorescence intensity was compared after 15 seconds of energization and when immersed in a PBS solution for 15 seconds without energization. As a result, when the BDD electrolytic unit was operated at 7.5 V for 15 seconds, the fluorescence intensity decreased by 53%, and the bactericidal effect was clearly recognized.

実施例6
121℃15分間オートクレーブで滅菌したハイドロキシアパタイト板(直径5mm、厚さ1mm)を2mlのBHI液体培地中に浸漬しS.ミュータンス(S.mutans)を1昼夜嫌気培養した。HA板の上にはS.ミュータンス(S.mutans)のフィルムが生成していた。BHI液体培地を捨て通常のPBS緩衝液を2ml入れ、実施例4で作製したBDD電解ユニットにて7.5Vで15秒間通電した。その後20μlのチオ硫酸ナトリウムを添加し、残存している活性酸素を完全に除去した。生菌の濃度はアラマルブルーによる蛍光強度で比較した。すなわち15秒間の通電後と通電せず15秒PBS溶液に浸した場合の蛍光強度を比較した。この結果、BDD電解ユニットを7.5Vで15秒間作用させた場合、蛍光強度は55%減少しており明らかに殺菌効果が認められた。
Example 6
The hydroxyapatite plate (diameter 5 mm, thickness 1 mm) sterilized by autoclaving at 121 ° C. for 15 minutes was immersed in 2 ml of BHI liquid medium, and S. mutans (S. mutans) was anaerobically cultured overnight. A film of S. mutans (S. mutans) was formed on the HA plate. The BHI liquid medium was discarded, 2 ml of a normal PBS buffer solution was added, and the BDD electrolysis unit prepared in Example 4 was energized at 7.5 V for 15 seconds. Thereafter, 20 μl of sodium thiosulfate was added to completely remove the remaining active oxygen. The concentration of viable bacteria was compared by the fluorescence intensity by alamar blue. That is, the fluorescence intensity was compared after 15 seconds of energization and when immersed in a PBS solution for 15 seconds without energization. As a result, when the BDD electrolysis unit was operated at 7.5 V for 15 seconds, the fluorescence intensity decreased by 55%, and the bactericidal effect was clearly recognized.

比較例2
121℃15分間オートクレーブで滅菌したハイドロキシアパタイト板(直径5mm、厚さ1mm)を2mlのBHI液体培地中に浸漬しS.ミュータンス(S.mutans)を1昼夜嫌気培養した。HA板の上にはS.ミュータンス(S.mutans)のフィルムが生成していた。BHI液体培地を捨て通常のPBS緩衝液を2ml入れ、100ppmの次亜塩素酸ナトリウム水溶液を15秒間作用させた。生菌の濃度はアラマルブルーによる蛍光強度で比較した。すなわち15秒間次亜塩素酸ナトリウムを含むPBS溶液に浸漬した場合と含まないPBS溶液に浸漬した場合の蛍光強度の差を測定した。この結果から、100ppmの次亜塩素酸ナトリウムを含む場合は、蛍光強度は35%減少しており殺菌効果が認められた。通常次亜塩素酸ナトリウムの殺菌能は広く知られていることを考慮すればBDD電解ユニットの性能は優っており実用で有効であると推測された。
Comparative example 2
The hydroxyapatite plate (diameter 5 mm, thickness 1 mm) sterilized by autoclaving at 121 ° C. for 15 minutes was immersed in 2 ml of BHI liquid medium, and S. mutans (S. mutans) was anaerobically cultured overnight. A film of S. mutans (S. mutans) was formed on the HA plate. The BHI liquid medium was discarded, 2 ml of a normal PBS buffer was added, and 100 ppm aqueous sodium hypochlorite solution was allowed to act for 15 seconds. The concentration of viable bacteria was compared by the fluorescence intensity by alamar blue. That is, the difference in fluorescence intensity was measured when immersed in a PBS solution containing sodium hypochlorite for 15 seconds and in a PBS solution not containing sodium hypochlorite. From this result, when 100 ppm sodium hypochlorite was contained, the fluorescence intensity decreased by 35%, and a bactericidal effect was observed. It is assumed that the performance of the BDD electrolytic unit is superior and practical and effective, considering that the sterilizing ability of sodium hypochlorite is generally known.

実施例7
ヒト抜去歯を準備した。根管の内径が0.4mmに満たないものは0.4mmまで根管用リーマーで拡大した。根管をPBS溶液で十分洗浄し121℃15分間滅菌し試料とした。この試料を2mlのBHI液体培地中に浸漬し、更にP.ジンジバリス(P.gingivalis)を加えて1昼夜培養し、根管内を菌で満たした。一方実施例4の方法にしたがって、最外径0.25mm〜0.3mmのBDD電解ユニットを作製した。1昼夜培養された菌を含む根管から細菌液を取りだしPBS緩衝液で置き換えた。このBDD電解ユニットを用いて7.5Vの電圧を60秒かけ殺菌状況を調査した。通電後根管内の細菌を50番のk-fileで掻きだし、PBS溶液1ml中に懸濁させた。この懸濁液を0.6mlとり血液寒天培地で培養した。通電したものは細菌のコロニーが培養されなかった。一方、通電しなかったものは培地上で菌のコロニーが多数観察された。この血液寒天培地での培養結果でもBDD電解ユニットは殺菌効果があることがあきらかになった。
Example 7
Human extraction teeth were prepared. When the inner diameter of the root canal was less than 0.4 mm, it was enlarged with a root canal reamer to 0.4 mm. The root canal was thoroughly washed with a PBS solution and sterilized at 121 ° C. for 15 minutes to obtain a sample. This sample was immersed in 2 ml of BHI liquid medium, and P. gingivalis was further added, and cultured overnight, and the root canal was filled with bacteria. On the other hand, according to the method of Example 4, a BDD electrolytic unit with an outermost diameter of 0.25 mm to 0.3 mm was produced. Bacterial fluid was removed from the root canal containing the cultured bacteria overnight and replaced with PBS buffer. Using this BDD electrolysis unit, a sterilization condition was investigated by applying a voltage of 7.5 V for 60 seconds. After energization, the bacteria in the root canal were scraped with a # 50 k-file and suspended in 1 ml of PBS solution. 0.6 ml of this suspension was taken and cultured on blood agar medium. Bacterial colonies were not cultured in those which were energized. On the other hand, many colonies of bacteria were observed on the medium in the case of non-energized cells. The results of culture on this blood agar medium also revealed that the BDD electrolyzing unit has a bactericidal effect.

実施例8、9
実施例7と全く同様に培養を行った。ただ菌をS.ミュータンス(S.mutans)及びE.フェカリス(E.faecallis)に換え調査した。7.5V、60秒間通電したものは、それぞれ菌は培養されなかった。
Examples 8 and 9
The culture was performed in exactly the same manner as in Example 7. The bacteria were just investigated for S. mutans (S. mutans) and E. faecalis (E. faecallis). The cells were not cultured when the cells were energized at 7.5 V for 60 seconds.

実施例10
抜歯した牛歯根管を準備した。根管の直径を1mm以上に拡大調整した。121℃15分間オートクレーブで滅菌した。一方実施例2での作製方法に準じてBDD電解ユニットを準備した。牛歯根管内で、P.ジンジバリス(P.gingivalis)を1昼夜培養し菌を繁殖させた。この根管内をPBS緩衝液に置換し、BDD電解ユニットを挿入し7.5Vの電圧をかけ30秒間通電した。通電前後でアラマルブルーを用い菌濃度の減少を蛍光分光法で測定した。通電前後での蛍光強度は99%減少し、BDD電解ユニットの殺菌効果を確認した。
Example 10
The extracted bovine root canal was prepared. The diameter of the root canal was adjusted to 1 mm or more. Sterilized in an autoclave at 121 ° C. for 15 minutes. On the other hand, a BDD electrolysis unit was prepared according to the preparation method in Example 2. P. gingivalis (P. gingivalis) was cultured overnight to propagate the bacteria in the canal root canal. The root canal was replaced with a PBS buffer solution, a BDD electrolysis unit was inserted, a voltage of 7.5 V was applied, and current was applied for 30 seconds. The decrease in bacterial concentration was measured by fluorescence spectroscopy using alamar blue before and after current application. The fluorescence intensity before and after energization decreased 99%, and the bactericidal effect of the BDD electrolysis unit was confirmed.

実施例11、12
実施例10の方法に準じてBDD電解ユニットの効果を菌種を変えて測定した。用いた菌体と結果を表にまとめて示す。なお牛歯根管の大きさ、通電条件などは実施例10と同じである。
Examples 11 and 12
According to the method of Example 10, the effect of the BDD electrolyzing unit was measured by changing the bacterial species. The cells used and the results are summarized in the table. The size of the bovine canal and the electrification conditions are the same as in Example 10.

実施例11,12のどの例においてもBDD電解ユニットの効果を確認した。
どの例も通電後は非常に優れた殺菌効果を有していることが明らかになった。
The effect of the BDD electrolysis unit was confirmed in any of Examples 11 and 12.
It turned out that each example has a very excellent bactericidal effect after energization.

比較例3
実施例10に準じ、抜歯した牛歯根管を準備した。根管の直径を1mm以上に拡大調整した。牛歯根管内で、P.ジンジバリス(P.gingivalis)を1昼夜培養し菌を繁殖させた。この根管内を生理食塩水(PBS水溶液)で30秒間洗浄した。洗浄前後でアラマルブルーを用い菌濃度の減少を蛍光分光法で測定した。洗浄前の前後の減少率は2%程度でほとんど変化がなかった。
Comparative example 3
According to Example 10, the extracted bovine tooth root canal was prepared. The diameter of the root canal was adjusted to 1 mm or more. P. gingivalis (P. gingivalis) was cultured overnight to propagate the bacteria in the canal root canal. The root canal was washed with physiological saline (PBS solution) for 30 seconds. The decrease in bacterial concentration was measured by fluorescence spectroscopy using alamar blue before and after washing. The reduction rate before and after washing was almost unchanged at 2%.

実施例13
実施例1で作製した塗料溶液A 0.05gを、Pt板およびAl箔(1cm2)にそれぞれ塗布し、実施例1の場合と同様に熱処理によって硬化させた。得られた膜は可撓性と導電性を充分に有していた。作製した電極を陽極とし、Pt線を陰極として、ともにPBS中に浸漬し、7.5 Vの電圧を印加して電解を実施した。何れの電極も、PBS中でも剥離せずに電解可能であった。
Example 13
0.05 g of the coating solution A prepared in Example 1 was applied to a Pt plate and an Al foil (1 cm 2 ), respectively, and was cured by heat treatment in the same manner as in Example 1. The obtained film had sufficient flexibility and conductivity. The prepared electrode was used as an anode and a Pt wire was used as a cathode, both were immersed in PBS, and a voltage of 7.5 V was applied to carry out electrolysis. Both electrodes were electrolyzable without peeling even in PBS.

本発明は、電極作製技術及び電解水の製造技術に関連する分野に有用である。   The present invention is useful in the fields related to electrode manufacturing technology and electrolytic water manufacturing technology.

Claims (12)

導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)及びイオン交換性樹脂分散体を含有し、かつBDDP質量を100としたときにイオン交換性樹脂質量が30〜200の範囲であ気体発生に用いられる電極形成用導電性塗料。 Conductive diamond powder (boron-doped diamond powder, BDDP ) and containing ion exchange resin dispersion, and the gas generating ion exchange resin mass area by der of 30 to 200 when the BDDP mass and 100 Conductive paint for electrode formation used . 導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)、絶縁性バインダ及びシリコーンゴムを含有する電極形成用導電性塗料。 A conductive paint for electrode formation, comprising conductive diamond powder (BDDP), an insulating binder and silicone rubber. 電極基材及び前記基材の少なくとも一部の表面に設けられた導電性被膜を有する気体発生に用いられる電極であって、前記導電性被膜は、導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)及びイオン交換性樹脂を含有し、かつBDDP質量を100としたときにイオン交換性樹脂質量が30〜200の範囲である、前記電極。 An electrode used for gas generation, comprising: an electrode substrate and a conductive film provided on the surface of at least a part of the substrate, wherein the conductive film is a conductive diamond powder (BD) ) and containing ion exchange resin, and the ion-exchange resin mass area by der of 30 to 200 when the BDDP mass and 100, the electrode. 電極基材及び前記基材の少なくとも一部の表面に設けられた導電性被膜を有する電極であって、前記導電性被膜は、導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)と絶縁性バインダ及びシリコーンゴムを含有する、前記電極。An electrode substrate and an electrode having a conductive film provided on the surface of at least a part of the substrate, wherein the conductive film comprises a conductive diamond powder (BDDP) and an insulating binder And the electrode containing silicone rubber. 前記電極基材が針状または板状の基材である請求項3又は4に記載の電極。 The electrode according to claim 3 or 4 , wherein the electrode substrate is a needle-like or plate-like substrate. 請求項3〜5のいずれかに記載の電極、及び対極を含む電解ユニット。 The electrolysis unit containing the electrode in any one of Claims 3-5 , and a counter electrode. 請求項3〜5のいずれかに記載の電極、セパレータ及び対極を含む電解ユニット。 The electrolysis unit containing the electrode in any one of Claims 3-5 , a separator, and a counter electrode. 状である電極基材及び前記基材の少なくとも一部の表面に設けられた導電性被膜を有する電極であって、前記導電性被膜は、導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)及びイオン交換性樹脂を含有するか、またはBDDPと絶縁性バインダ及びシリコーンゴムを含有する電極、前記電極に、前記電極と対極の間にイオン交換膜を介在させてテープ状の対極を巻き付けてなる、電解ユニット。 An electrode substrate having a needle shape and an electrode having a conductive film provided on the surface of at least a part of the substrate, wherein the conductive film is a conductive diamond powder (BDDP) And an electrode containing an ion exchange resin, or an electrode containing BDDP and an insulating binder and a silicone rubber , wherein the electrode is wound with a tape-like counter electrode by interposing an ion exchange membrane between the electrode and the counter electrode. , Electrolysis unit. 電極基材及び前記基材の少なくとも一部の表面に設けられた導電性被膜を有する電極であって、前記導電性被膜は、導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)及びイオン交換性樹脂を含有するか、若しくはBDDPと絶縁性バインダ及びシリコーンゴムを含有する電極及び対極を含む電解ユニット、又は前記電極、セパレータ及び対極を含む電解ユニットであって、歯科治療用である電解ユニット。 An electrode substrate and an electrode having a conductive film provided on the surface of at least a part of the substrate, wherein the conductive film comprises a conductive diamond powder (BDDP) and an ion exchange property. or containing a resin, or BDDP the electrodes and the electrolytic unit comprises a counter electrode comprising an insulating binder and silicone rubber, or the electrode, a electrolytic unit comprising a separator and a counter electrode, dental der Ru electrolytic unit . 電極基材及び前記基材の少なくとも一部の表面に設けられた導電性被膜を有する電極であって、前記導電性被膜は、導電性ダイヤモンド粉末(boron-doped diamond powder, BDDP)及びイオン交換性樹脂を含有するか、若しくはBDDPと絶縁性バインダ及びシリコーンゴムを含有する電極及び対極を含む電解ユニット、又は前記電極、セパレータ及び対極を含む電解ユニットであって、齲蝕、歯周病、または根管治療用である電解ユニット。 An electrode substrate and an electrode having a conductive film provided on the surface of at least a part of the substrate, wherein the conductive film comprises a conductive diamond powder (BDDP) and an ion exchange property. An electrolytic unit comprising a resin, or an electrode and a counter electrode containing BDDP and an insulating binder and a silicone rubber, or an electrolytic unit comprising the electrode, a separator and a counter electrode, wherein the dental caries, periodontal disease, or root canal therapeutic der Ru electrolytic unit. 請求項6〜8のいずれか1項に記載の電解ユニットを含む歯科治療器具。 The dental treatment instrument containing the electrolysis unit of any one of Claims 6-8 . 歯科治療器具が、齲蝕、歯周病、または根管治療器具である請求項11に記載の歯科治療器具。 The dental treatment instrument according to claim 11 , wherein the dental treatment instrument is a caries, periodontal disease or root canal treatment instrument.
JP2014154449A 2014-07-30 2014-07-30 Paint containing conductive diamond powder, electrode and dental treatment tool for electrode formation Active JP6506924B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014154449A JP6506924B2 (en) 2014-07-30 2014-07-30 Paint containing conductive diamond powder, electrode and dental treatment tool for electrode formation
PCT/JP2015/071505 WO2016017694A1 (en) 2014-07-30 2015-07-29 Coating material for use in electrode formation which contains electrically conductive diamond powder, electrode, and dental therapy tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154449A JP6506924B2 (en) 2014-07-30 2014-07-30 Paint containing conductive diamond powder, electrode and dental treatment tool for electrode formation

Publications (2)

Publication Number Publication Date
JP2016030806A JP2016030806A (en) 2016-03-07
JP6506924B2 true JP6506924B2 (en) 2019-04-24

Family

ID=55217592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154449A Active JP6506924B2 (en) 2014-07-30 2014-07-30 Paint containing conductive diamond powder, electrode and dental treatment tool for electrode formation

Country Status (2)

Country Link
JP (1) JP6506924B2 (en)
WO (1) WO2016017694A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159002A (en) * 2016-03-08 2017-09-14 株式会社iMott Medical procedure tool
DE102017125635A1 (en) 2017-11-02 2019-05-02 Friedrich-Alexander-Universität Erlangen-Nürnberg Implant made of a metal
EP3733238B1 (en) 2019-04-30 2022-04-06 Friedrich-Alexander-Universität Erlangen-Nürnberg Flexible electrode made of a metallic substrate
JP7317298B2 (en) * 2019-06-13 2023-07-31 株式会社エーワンテクニカ Diamond electrode, method for manufacturing diamond electrode, and method for applying conductive diamond

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090954A1 (en) * 2004-03-09 2005-09-29 Element Six B.V. Electrochemical sensor comprising diamond particles
DE102005034010A1 (en) * 2005-07-18 2007-01-25 Coltène/Whaledent GmbH + Co. KG Root canal instrument with abrasive coating and method of making the same
JP5290656B2 (en) * 2008-07-22 2013-09-18 東海旅客鉄道株式会社 Method for producing boron-doped diamond
JP5113892B2 (en) * 2010-04-30 2013-01-09 アクアエコス株式会社 Membrane-electrode assembly, electrolytic cell using the same, ozone water production apparatus, ozone water production method, sterilization method, and waste water / waste liquid treatment method
JP5916528B2 (en) * 2011-06-24 2016-05-11 昭和電工株式会社 Ink, electrode catalyst layer formed using the ink, and use thereof
JP5999804B2 (en) * 2011-09-30 2016-09-28 学校法人東京理科大学 Method for producing conductive diamond electrode
JP5882878B2 (en) * 2012-11-08 2016-03-09 株式会社神戸製鋼所 Diamond electrode and ozone generator using diamond electrode

Also Published As

Publication number Publication date
JP2016030806A (en) 2016-03-07
WO2016017694A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
EP3456309B1 (en) Apparatus for electrochemically whitening teeth
JP3179111B2 (en) Fluid electrolysis system for in vivo administration to humans and other warm-blooded animals
JP6506924B2 (en) Paint containing conductive diamond powder, electrode and dental treatment tool for electrode formation
TWI354581B (en) Membrane-electrode assembly, electrolytic unit usi
CA2900313C (en) Treatment system for cleaning a component part contaminated with a biofilm, in particular an implant part
CN110087583B (en) Treatment system for cleaning parts contaminated with biofilm
CN101686689A (en) Disinfectant based on aqueous, hypochlorous acid (hoci)-containing solutions, method for the production thereof, and use thereof
CA2923652C (en) Ceramic body, in particular for use in a bone implant, in particular as a dental implant
JP2016513145A (en) Treatment liquid for cleaning implant parts
US20230218787A1 (en) Contacting System and Use of the Contacting System
Lata et al. Anti bacterial effectiveness of electro-chemically activated (ECA) water as a root canal irrigant-an in-vitro comparative study
Zhou et al. The antimicrobial activity of an atmospheric-pressure room-temperature plasma in a simulated root-canal model infected with Enterococcus faecalis
TW201416493A (en) Treatment method for implant material with excellent biocompatibility and treatment apparatus thereof
CA3168137A1 (en) Electrode applicators for conjunctive use in a dental implant treatment system
EP3703767B1 (en) Implant made of a metal
US20210370052A1 (en) Dental implant and system for treatment
Kyaw et al. Efficacy of combined chemical and electrochemical decontamination treatments on contaminated healing abutments and their effect on surface topography: An in vitro study
WO2024122522A1 (en) Sterilization method and composition used in sterilization method
US12144694B2 (en) Flexible electrode made of a metal base material
US20220226085A1 (en) Flexible electrode made of a metal base material
CN103834984A (en) Preparation method of hierarchical nanostructure shape memory alloy
Liu et al. Effects of Hydrogen-rich Water on Cariogenic Bacteria
CN109621005A (en) Preparation method of special coating of oral implant suitable for diabetic patients
WO2011077460A2 (en) Chair side apparatus for in-situ production of root canal irrigant
JP5550009B2 (en) Method for producing electrode composition for iontophoresis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6506924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250