JP6506124B2 - Gas concentration measuring device - Google Patents
Gas concentration measuring device Download PDFInfo
- Publication number
- JP6506124B2 JP6506124B2 JP2015141550A JP2015141550A JP6506124B2 JP 6506124 B2 JP6506124 B2 JP 6506124B2 JP 2015141550 A JP2015141550 A JP 2015141550A JP 2015141550 A JP2015141550 A JP 2015141550A JP 6506124 B2 JP6506124 B2 JP 6506124B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- concentration
- output
- gas
- detection unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims description 224
- 238000001514 detection method Methods 0.000 claims description 156
- 238000004364 calculation method Methods 0.000 claims description 88
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 52
- 229910002092 carbon dioxide Inorganic materials 0.000 description 26
- 239000001569 carbon dioxide Substances 0.000 description 26
- 238000010521 absorption reaction Methods 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000009795 derivation Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、ガス濃度測定装置に関し、より詳細には、第1の濃度と第2の濃度との2濃度検査にて高精度なガス濃度測定が可能な算出式を用いたガス濃度測定装置に関する。 The present invention relates to a gas concentration measuring apparatus, and more particularly to a gas concentration measuring apparatus using a calculation formula capable of highly accurate gas concentration measurement in a two-concentration test of a first concentration and a second concentration. .
従来から大気中の測定対象ガスの濃度測定を行うガス濃度測定装置として、ガスの種類によって吸収される赤外線の波長が異なることを利用し、この吸収量を検出することによりそのガス濃度を測定する非分散赤外吸収型(Non−Dispersive Infrared)ガス濃度測定装置が知られている。この原理を用いたガス濃度測定装置としては、例えば、測定対象ガスが吸収特性を持つ波長に限定した赤外線を透過するフィルタ(透過部材)と赤外線センサを組み合わせ、赤外線の吸収量を測定することによってガスの濃度を測定するようにしたものが挙げられる。 Conventionally, as a gas concentration measuring device for measuring the concentration of a gas to be measured in the atmosphere, the gas concentration is measured by detecting the amount of absorption utilizing the fact that the wavelength of infrared rays absorbed differs depending on the type of gas. Non-dispersive infrared gas concentration measuring devices are known. As a gas concentration measuring apparatus using this principle, for example, a combination of a filter (transmissive member) transmitting an infrared ray limited to a wavelength at which the gas to be measured has absorption characteristics and an infrared sensor, and measuring the amount of absorption of infrared rays There is one that is adapted to measure the concentration of gas.
また、この原理の応用を用いたガス濃度測定装置として、例えば、特許文献1に記載のものは、測定対象ガスによる赤外線の吸収が生じない波長域の赤外線を選択的に透過する参照用フィルタと、測定対象ガスによる赤外線の吸収が生じる波長域の赤外線を選択的に透過する測定用フィルタをそれぞれ配置した赤外線検出素子を複数配置し、それぞれの赤外線検出素子からの出力信号に基づいて測定対象ガスの検出や濃度測定をしており、検出精度や出力の安定性を向上させた炭酸ガス濃度測定装置及び炭酸ガス検出方法である。 In addition, as a gas concentration measuring apparatus using an application of this principle, for example, the one described in Patent Document 1 is a reference filter that selectively transmits infrared light in a wavelength range in which absorption of infrared light by the gas to be measured does not occur. A plurality of infrared detection elements, each of which is provided with a measurement filter for selectively transmitting an infrared ray in a wavelength range in which absorption of infrared rays by the measurement target gas occurs, are measured based on output signals from the respective infrared detection elements These are a carbon dioxide gas concentration measuring device and a carbon dioxide gas detection method which perform detection and concentration measurement, and improve detection accuracy and stability of output.
以下、これらも含めて、ガス濃度測定装置及びガス濃度測定方法ともいう。その動作原理は、波長による吸収度合いの差異を、炭酸ガス検出に応用したものである。光源であるセラミックヒータから放射された赤外線において、波長4.3μm付近の赤外線は、気体容器内の炭酸ガスにより吸収されて、その放射強度が低下する。一方、波長3.9μmの赤外線は、炭酸ガスによる吸収はなく、その放射強度が低下することはない。 Hereinafter, including these, it is also referred to as a gas concentration measuring device and a gas concentration measuring method. The principle of operation is that the difference in the degree of absorption depending on the wavelength is applied to carbon dioxide gas detection. In the infrared rays emitted from the ceramic heater which is the light source, the infrared rays around a wavelength of 4.3 μm are absorbed by carbon dioxide gas in the gas container and the radiation intensity thereof is reduced. On the other hand, infrared rays with a wavelength of 3.9 μm are not absorbed by carbon dioxide gas, and their radiation intensity does not decrease.
そして、ガス測定装置の気体容器内を通過した異なる波長を含む赤外線から、波長4.3μmと波長3.9μmとの2波を、2波それぞれに対応した通過帯域を有する2種類の光学フィルタで濾波選別する。これら波長の異なる赤外線それぞれの放射強度に基づいて、気体容器内の炭酸ガスの濃度が算出される。セラミックヒータの放射強度分布は、炭酸ガスの赤外線吸収スペクトルを含む、2μm〜50μmの波長領域でブロードであり、炭酸ガスの赤外線吸収スペクトル付近の波長領域で十分な放射強度を有する。したがって、光源にセラミックヒータを用いたガス測定装置の検出精度及び出力の安定性は向上する。 And, from infrared rays including different wavelengths that have passed through the gas container of the gas measuring device, two types of waves with a wavelength of 4.3 μm and a wavelength of 3.9 μm, two types of optical filters having passbands corresponding to the two types of waves. Filter and sort. The concentration of carbon dioxide gas in the gas container is calculated based on the radiation intensities of the infrared rays different in wavelength. The radiation intensity distribution of the ceramic heater is broad in the wavelength range of 2 μm to 50 μm including the infrared absorption spectrum of carbon dioxide gas, and has sufficient radiation intensity in the wavelength range near the infrared absorption spectrum of carbon dioxide gas. Therefore, the detection accuracy and the stability of the output of the gas measuring device using the ceramic heater as the light source are improved.
上述した非分散赤外吸収型ガス濃度測定装置では、ランバートベールの法則に基づいて得られる下記式(1)に則った測定用赤外線検出部と参照用赤外線検出部の出力特性が得られる。 In the non-dispersive infrared absorption type gas concentration measuring apparatus described above, the output characteristics of the measuring infrared detecting unit and the reference infrared detecting unit according to the following equation (1) obtained based on Lambert-Beer's law can be obtained.
なお、式中、εは吸光度係数、l(エル)は光路長、Gは測定用赤外線検出部と参照用赤外線検出部のゲイン比、Vrefは参照用赤外線検出部からの出力、Voutは測定用赤外線検出部からの出力である。
しかし、光源から測定用赤外線検出部及び測定用赤外線検出部までの光路長や測定用赤外線検出部と参照用赤外線検出部のゲイン比には個体ごとにばらつきが生じる。そのため従来技術では、2濃度の検査を前提とした場合、実際の特性とは乖離のある1次関数を濃度算出式としていたため、高精度なガス濃度演算を実現できず、演算の精度を上げるためには、濃度検査の点数を多くし濃度算出式の次数を上げるしか方法がなかった。
In the equation, ε is the absorbance coefficient, l (L) is the optical path length, G is the gain ratio of the infrared detector for measurement and the infrared detector for reference, Vref is the output from the infrared detector for reference, Vout is for measurement It is an output from the infrared detection unit.
However, the optical path lengths from the light source to the measurement infrared detection unit and the measurement infrared detection unit, and the gain ratio of the measurement infrared detection unit and the reference infrared detection unit vary among individuals. Therefore, in the prior art, on the premise of the inspection of two concentrations, since the linear function having a difference from the actual characteristics is used as the concentration calculation formula, highly accurate gas concentration calculation can not be realized, and the calculation accuracy is improved. The only way to do this is to increase the number of concentration tests and to increase the order of the concentration calculation formula.
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、第1の濃度と第2の濃度との2濃度検査にて高精度なガス濃度測定が可能な算出式を用いたガス濃度測定装置を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is to calculate the gas concentration with high accuracy by the two concentration inspection of the first concentration and the second concentration. Providing a gas concentration measuring device using
本発明者らは上記課題を解決するために鋭意検討した結果、以下の発明により上記課題を解決できることを見出し、本発明を完成させた。
本発明の第1の様態は、光源と、前記光源からの光を受光する測定用赤外線検出部と、前記測定用赤外線検出部の近傍に配置された参照用赤外線検出部と、前記測定用赤外線検出部及び前記参照用赤外線検出部からの出力が入力される演算部と、を備えたガス濃度測定装置であって、演算部は、第1の濃度と、前記第1の濃度とは異なる第2の濃度と、前記第1の濃度の測定対象ガス中で前記光源を点灯させた時に前記測定用赤外線検出部が出力する第1の測定出力と、前記第1の濃度の測定対象ガス中で前記光源を点灯させた時に前記参照用赤外線検出部が出力する第1の参照出力と、前記第2の濃度の測定対象ガス中で前記光源を点灯させた時に前記測定用赤外線検出部が出力する第2の測定出力と、前記第2の濃度の測定対象ガス中で前記光源を点灯させた時に前記参照用赤外線検出部が出力する第2の参照出力と、に基づいて得られる係数を含む算出式と、測定時の前記参照用赤外線検出部の出力に対する前記測定用赤外線検出部の出力の比に、前記第1の測定出力及び前記第1の参照出力に基づく値を掛けた値と、に基づいて測定対象ガスの濃度を演算するガス濃度測定装置である。
MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to solve the said subject, the present inventors find out that the said subject can be solved by the following invention, and completed this invention.
According to a first aspect of the present invention, there is provided a light source, a measurement infrared detection unit for receiving light from the light source, a reference infrared detection unit disposed in the vicinity of the measurement infrared detection unit, and the measurement infrared light. A gas concentration measuring apparatus comprising: a detection unit and an operation unit to which an output from the reference infrared detection unit is input, wherein the operation unit is configured to have a first concentration and a first concentration different from the first concentration. The first measurement output output from the infrared detection unit for measurement when the light source is turned on in the measurement target gas having the concentration of 2 and the first concentration, and the measurement target gas of the first concentration The measurement infrared detection unit outputs the first reference output output from the reference infrared detection unit when the light source is turned on, and the measurement light source when the light source is turned on in the second concentration measurement target gas A second measurement output, and a measurement target gas of the second concentration A calculation formula including a coefficient obtained based on the second reference output output from the reference infrared detection unit when the light source is turned on, and the measurement for the output of the reference infrared detection unit at the time of measurement It is a gas concentration measuring device which computes concentration of measurement object gas based on a value which multiplied a value based on said 1st measurement output and said 1st reference output by ratio of an output of an infrared detection part.
本発明の第2の様態は、光源と、前記光源からの光を受光する測定用赤外線検出部と、前記測定用赤外線検出部からの出力が入力される演算部と、を備えたガス濃度測定装置であって、前記演算部は、第1の濃度と、前記第1の濃度とは異なる第2の濃度と、前記第1の濃度の測定対象ガス中で光源を点灯させた時に前記測定用赤外線検出部が出力する第1の測定出力と、前記第2の濃度の測定対象ガス中で光源を点灯させた時に前記測定用赤外線検出部が出力する第2の測定出力と、に基づいて得られる係数を含む算出式と、測定時の測定用赤外線検出部からの出力に、前記第1の測定出力に基づく値を掛けた値と、に基づいて測定対象ガスの濃度を演算するガス濃度測定装置である。 According to a second aspect of the present invention, there is provided a gas concentration measurement comprising: a light source; an infrared detection unit for measurement that receives light from the light source; and a calculation unit to which an output from the infrared detection unit for measurement is input. In the apparatus, the calculation unit may be configured to measure the first concentration, the second concentration different from the first concentration, and the measurement light source when the light source is turned on in the first concentration measurement gas. Obtained based on the first measurement output output from the infrared detection unit and the second measurement output output from the measurement infrared detection unit when the light source is turned on in the measurement target gas of the second concentration. Gas concentration measurement that calculates the concentration of the gas to be measured based on a calculation formula including the calculated coefficient, and a value obtained by multiplying the value based on the first measurement output by the output from the measurement infrared detection unit at the time of measurement It is an apparatus.
本発明のガス濃度測定装置によれば、高精度なガス濃度測定が可能な算出式を用いたガス濃度測定装置を実現できる。 According to the gas concentration measuring device of the present invention, it is possible to realize a gas concentration measuring device using a calculation formula capable of highly accurate gas concentration measurement.
以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかであろう。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではなく、実施形態で説明されている特徴的な構成の組み合わせの全てを含むものである。
以下、図面を参照して本発明の各実施形態について説明する。
In the following detailed description, numerous specific details are set forth to provide a thorough understanding of the embodiments of the present invention. However, it will be apparent that other embodiments can be practiced without being limited to such specific specific configurations. In addition, the following embodiments do not limit the invention according to the claims, and include all combinations of characteristic configurations described in the embodiments.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[実施形態1]
図1は、本発明に係るガス濃度測定装置の実施形態1を説明するための構成図である。図中符号10はガスセル、11はガス導入口、12はガス導出口、20は光源、31は測定用赤外線検出部、40は演算部、100はガス濃度測定装置、Lは最短距離の光路長を示している。なおここでは参考のため、ガスセル10を明示しているが、本発明においてガスセルは必須の構成ではなく、ガスセルの無い形態でも試験容器内等にガス濃度測定装置を配置することで下記と同様の2濃度検査を行うことが可能である。
本実施形態1のガス濃度測定装置100は、光源20と、光源20からの光を受光する測定用赤外線検出部31と、測定用赤外線検出部31の近傍に配置された参照用赤外線検出部32と、測定用赤外線検出部31及び参照用赤外線検出部32からの出力が入力される演算部40と、を備えている。
Embodiment 1
FIG. 1 is a configuration diagram for explaining a first embodiment of a gas concentration measurement device according to the present invention. In the figure,
The gas
演算部40は、第1の濃度c1と、第1の濃度c1とは異なる第2の濃度c2と、第1の濃度c1の測定対象ガス中で光源20を点灯させた時に測定用赤外線検出部31が出力する第1の測定出力Vout(c1)と、第1の濃度c1の測定対象ガス中で光源20を点灯させた時に参照用赤外線検出部32が出力する第1の参照出力Vref(c1)と、第2の濃度c2の測定対象ガス中で光源20を点灯させた時に測定用赤外線検出部31が出力する第2の測定出力Vout(c2)と、第2の濃度c2の測定対象ガス中で光源20を点灯させた時に参照用赤外線検出部32が出力する第2の参照出力Vref(c2)と、に基づいて得られる係数εを含む算出式と、測定時の参照用赤外線検出部32の出力Vrefに対する測定用赤外線検出部31の出力Voutの比Vout/Vrefに、第1の測定出力Vout(c1)及び第1の参照出力Vref(c1)に基づく値を掛けた値と、に基づいて測定対象ガスの濃度cを演算する。
The
本実施形態1に係るガス濃度測定装置では、第1の濃度と、第1の濃度とは異なる第2の濃度と、第1の濃度の測定対象ガス中で光源を点灯させた時に測定用赤外線検出部が出力する第1の測定出力と、第1の濃度の測定対象ガス中で光源を点灯させた時に参照用赤外線検出部が出力する第1の参照出力と、第2の濃度の測定対象ガス中で光源を点灯させた時に測定用赤外線検出部が出力する第2の測定出力と、第2の濃度の測定対象ガス中で光源を点灯させた時に参照用赤外線検出部が出力する第2の参照出力と、に基づいて得られる係数を含む算出式と、測定時の参照用赤外線検出部の出力に対する測定用赤外線検出部の出力の比に、第1の測定出力及び第1の参照出力に基づく値を掛けた値と、に基づいて測定対象ガスの濃度を演算することにより、2つの異なる既知濃度における測定用赤外線検出部の出力および参照用赤外線検出部の出力を予め取得することのみで、従来よりも高精度なガス濃度測定が可能になるという効果を奏する。 In the gas concentration measuring apparatus according to the first embodiment, the infrared ray for measurement when the light source is turned on in the gas to be measured of the first concentration, the second concentration different from the first concentration, and the first concentration A first measurement output output from the detection unit, a first reference output output from the reference infrared detection unit when the light source is turned on in the first concentration measurement target gas, and a second concentration measurement target The second measurement output output by the measuring infrared detection unit when the light source is turned on in the gas, and the second measurement output when the light source is turned on in the second concentration measurement target gas by the reference infrared detection unit The first measurement output and the first reference output are calculated based on the calculation formula including the coefficient obtained based on the reference output and the ratio of the output of the infrared detection unit for measurement to the output of the infrared detection unit for reference at the time of measurement. Calculate the concentration of the gas to be measured based on the value obtained by It brings about an effect that only by previously acquired the output of the output and the reference infrared detector of the measuring infrared detector at two different known concentrations, allowing accurate gas concentration measurement than the conventional.
また、係数εは、第1の濃度c1と、第1の濃度c1とは異なる第2の濃度c2と、第1の測定出力Vout(c1)に対する第1の参照出力Vref(c1)の比Vref(c1)/Vout(c1)=Rc1と、第2の測定出力Vout(c2)に対する第2の参照出力Vref(c2)の比Vref(c2)/Vout(c2)=Rc2と、に基づいて得られるようにしてもよい。 The coefficient ε is the ratio Vref of the first reference output Vref (c1) to the first concentration c1 and the second concentration c2 different from the first concentration c1 and the first measurement output Vout (c1) Obtained based on (c1) / Vout (c1) = Rc1 and the ratio Vref (c2) / Vout (c2) = Rc2 of the second reference output Vref (c2) to the second measurement output Vout (c2). It may be possible to
また、演算部40は、係数εを含む算出式と、測定時の参照用赤外線検出部32の出力Vrefに対する測定用赤外線検出部31の出力Voutの比Vout/Vrefに、第1の参照出力Vref(c1)に対する第1の測定出力Vout(c1)の比Vout(c1)/Vref(c1)=Rc1を掛けた値と、に基づいて測定対象ガスの濃度cを演算してもよい。
また、演算部40は、下記式(2)に基づいて測定対象ガスの濃度cを演算する。つまり、本実施形態1のガス濃度測定装置における具体的な算出式の一例としては、下記式(2)が挙げられる。
In addition, the
Further, the
なお、式中、c1は第1の濃度、c2は第2の濃度、Rc1は第1の濃度c1における測定用赤外線検出部31の出力に対する参照用赤外線検出部32の出力比、Rc2は第2の濃度c2における測定用赤外線検出部31の出力に対する参照用赤外線検出部32の出力比、Voutは測定時の測定用赤外線検出部31の出力、Vrefは測定時の参照用赤外線検出部32の出力である。
In the equation, c1 is a first concentration, c2 is a second concentration, Rc1 is an output ratio of the reference
上記式(2)から、算出式は、第1のガス濃度c1、第2のガス濃度c2、それぞれのガス濃度における測定用赤外線検出部の出力に対する参照用赤外線検出部の出力比Rc1,Rc2を定数としており、測定時の測定用赤外線検出部の出力Voutおよび測定時の参照用赤外線検出部の出力Vrefを代入することで濃度演算が可能であることが理解される。上記式(2)は、光路長l(エル)や測定用赤外線検出部と参照用赤外線検出部のゲイン比Gを含んでいないため、それらを予め定量的または定性的に導出する必要がない、個体ごとのばらつきが補償された算出式であるため、高精度なガス濃度測定が可能になることが理解される。 From the above equation (2), the calculation equation is the first gas concentration c1 and the second gas concentration c2, and the output ratios Rc1 and Rc2 of the reference infrared detection unit to the output of the measurement infrared detection unit at each gas concentration It is understood that the concentration calculation can be performed by substituting the output Vout of the measurement infrared detection unit at the time of measurement and the output Vref of the reference infrared detection unit at the time of measurement. Since the above equation (2) does not include the optical path length l (L) or the gain ratio G of the infrared detector for measurement and the infrared detector for reference, it is not necessary to derive them quantitatively or qualitatively in advance. It is understood that, since the calculation formula is compensated for individual variation, it is possible to measure the gas concentration with high accuracy.
<式(2)の導出>
以下、上記式(2)の導出過程について説明する。
測定用赤外線検出部31と参照用赤外線検出部32の出力は、演算部40での演算処理前にそれぞれ信号増幅される。この時のゲイン比をGとする。
まず、ランバートベールの法則から、ガス濃度は下記式(3)で算出される。
<Derivation of Equation (2)>
Hereinafter, the derivation process of the above equation (2) will be described.
The outputs of the measuring
First, the gas concentration is calculated by the following equation (3) from Lambert-Beer's law.
なお、式中、εは吸光度係数、l(エル)は実態的な光路長、Gは測定用赤外線検出部31と参照用赤外線検出部32のゲイン比、Vrefは参照用赤外線検出部32の出力、Voutは測定用赤外線検出部31の出力である。
任意の既知の第1の濃度c1の測定対象ガス中で、光源20を点灯させた時に得られる測定用赤外線検出部31からの出力と参照用赤外線検出部32からの出力との出力比をRc1とすると、第1の濃度c1は下記式(4)で表される。
In the equation, ε is the absorbance coefficient, l (L) is the actual optical path length, G is the gain ratio of the infrared detector for
The output ratio between the output from the measuring
上記式(3)、(4)から、下記式(5)が得られる。 The following equation (5) is obtained from the above equations (3) and (4).
任意の既知の第2の濃度c2の測定対象ガス中で、光源20を点灯させた時に得られる測定用赤外線検出部31からの出力と参照用赤外線検出部32からの出力との出力比をRc2とし、上記式(5)に代入すると、下記式(6)が得られる。
The output ratio between the output from the measuring
上記式(5)に上記式(6)を代入すると式(2)を得ることが出来る。 By substituting the above equation (6) into the above equation (5), the equation (2) can be obtained.
以上より、第1の濃度の測定対象ガス中で光源を点灯させた時に得られる測定用赤外線検出部の出力および参照用赤外線検出部の出力と、第2の濃度の測定対象ガス中で光源を点灯させた時に得られる測定用赤外線検出部の出力および参照用赤外線検出部の出力と、に基づいて得られる算出式を用いることにより、2つの異なる既知濃度における測定用赤外線検出部の出力および参照用赤外線検出部の出力を予め取得することのみで、ゲイン比Gや吸光度係数ε、光路長l(エル)を含まない算出式が導出可能であり、従来よりも高精度なガス濃度測定が可能になることが理解される。 From the above, the output of the measuring infrared detection unit obtained when the light source is turned on in the first concentration measurement target gas, the output of the reference infrared detection unit, and the light source in the second concentration measurement target gas Using the calculation formula obtained based on the output of the measurement infrared detection unit obtained when the light is turned on and the output of the reference infrared detection unit, the output and reference of the measurement infrared detection unit at two different known concentrations By obtaining the output of the infrared detector for this purpose only in advance, it is possible to derive a calculation formula that does not include the gain ratio G, the absorbance coefficient ε, and the optical path length l (El), and gas concentration measurement with higher accuracy than before is possible It will be understood that
また、第1の実施形態に係るガス濃度測定装置において、式(2)の各パラメータにオフセットを加味してもよい。これにより、測定するガス濃度の精度をさらに向上させることが可能となる。
図2は、図1に示した演算部の回路構成図である。
演算部40は、係数算出部41と比演算部42と乗算部43と濃度演算部44とを備えている。
Moreover, in the gas concentration measuring device according to the first embodiment, an offset may be added to each parameter of the equation (2). This makes it possible to further improve the accuracy of the gas concentration to be measured.
FIG. 2 is a circuit diagram of the operation unit shown in FIG.
The
係数算出部41は、係数εを含む算出式を算出する。また、比演算部42は、測定時の参照用赤外線検出部32の出力Vrefに対する測定用赤外線検出部31の出力Voutの比Vout/Vrefを演算する。
また、乗算部43は、比演算部42で演算された比Vout/Vrefに、第1の参照出力Vref(c1)に対する第1の測定出力Vout(c1)の比Vout(c1)/Vref(c1)=Rc1を掛ける。
また、濃度演算部44は、係数算出部41で算出された算出式と、乗算部43の値と、に基づいて測定対象ガスの濃度cを演算する。
The
Further, the multiplying
Further, the
[実施形態2]
図3は、本発明に係るガス濃度測定装置の実施形態2を説明するための構成図である。なお、図1と同じ機能を有する構成要素には同一の符号を付してある。つまり、図1における参照用赤外線検出部32を除いた構成となっている。なおここでは参考のため、ガスセル10を明示しているが、本発明においてガスセルは必須の構成ではなく、ガスセルの無い形態でも試験容器内等にガス濃度測定装置を配置することで下記と同様の2濃度検査を行うことが可能である。
Second Embodiment
FIG. 3 is a configuration diagram for explaining a second embodiment of the gas concentration measurement device according to the present invention. The components having the same functions as those in FIG. 1 are denoted by the same reference numerals. That is, the configuration is such that the reference
本実施形態2のガス濃度測定装置は、光源20と、光源20からの光を受光する測定用赤外線検出部31と、測定用赤外線検出部31からの出力が入力される演算部40と、を備えたガス濃度測定装置である。
演算部40は、第1の濃度c1と、第1の濃度c1とは異なる第2の濃度c2と、第1の濃度c1の測定対象ガス中で光源20を点灯させた時に測定用赤外線検出部31が出力する第1の測定出力Vout(c1)と、第2の濃度c2の測定対象ガス中で光源20を点灯させた時に測定用赤外線検出部31が出力する第2の測定出力Vout(c2)と、に基づいて得られる係数εを含む算出式と、測定時の測定用赤外線検出部31からの出力Voutに、第1の測定出力Vout(c1)に基づく値を掛けた値と、に基づいて測定対象ガスの濃度cを演算する。
The gas concentration measurement apparatus according to the second embodiment includes a
The
本実施形態2のガス濃度測定装置は、第1の濃度と、第1の濃度とは異なる第2の濃度と、第1の濃度の測定対象ガス中で光源を点灯させた時に測定用赤外線検出部が出力する第1の測定出力と、第2の濃度の測定対象ガス中で光源を点灯させた時に測定用赤外線検出部が出力する第2の測定出力と、に基づいて得られる係数を含む算出式と、測定時の測定用赤外線検出部からの出力に、第1の測定出力に基づく値を掛けた値と、に基づいて測定対象ガスの濃度を演算することにより、2つの異なる既知濃度における測定用赤外線検出部の出力を予め取得することのみで、参照用赤外線検出部を用いることなく、従来よりも高精度なガス濃度測定が可能になるという効果を奏する。また、参照用赤外線検出部を用いる必要がないので、より小型で低コストのガス濃度測定装置が実現できるという効果も奏する。 The gas concentration measurement apparatus according to the second embodiment detects the infrared ray for measurement when the light source is turned on in the measurement target gas of the first concentration, the second concentration different from the first concentration, and the first concentration. Including a coefficient obtained on the basis of the first measurement output output by the unit and the second measurement output output by the infrared detection unit for measurement when the light source is turned on in the measurement target gas of the second concentration. Two different known concentrations are calculated by calculating the concentration of the gas to be measured based on the calculation formula and the value obtained by multiplying the value based on the first measurement output by the output from the measurement infrared detection unit at the time of measurement By acquiring the output of the measurement infrared detection unit in advance in advance, it is possible to perform gas concentration measurement with higher accuracy than in the prior art without using the reference infrared detection unit. In addition, since it is not necessary to use the reference infrared detection unit, it is possible to realize a more compact and low-cost gas concentration measuring apparatus.
また、係数εは、第1の濃度c1と、第1の濃度c1とは異なる第2の濃度c2と、第1の測定出力Vout(c1)に対する第2の測定出力Vout(c2)の比Vout(c2)/Vout(c1)と、に基づいて得られるようにしてもよい。
また、演算部40は、係数εを含む算出式と、測定時の測定用赤外線検出部31の出力Voutに対する第1の測定出力Vout(c1)の比Vout(c1)/Voutと、に基づいて測定対象ガスの濃度cを演算するようにしてもよい。
また、演算部40は、下記式(7)に基づいて測定対象ガスの濃度cを演算する。つまり、本実施形態2のガス濃度測定装置における具体的な算出式の一例としては、下記式(7)が挙げられる。
Further, the coefficient ε is the ratio Vout of the first measurement c1 and the second concentration c2 different from the first concentration c1, and the second measurement output Vout (c2) to the first measurement output Vout (c1). It may be obtained based on (c2) / Vout (c1).
In addition, the
Further, the
なお、式中、c1は第1の濃度、c2は第2の濃度、Vout(c1)は第1の濃度c1における測定用赤外線検出部31の出力、Vout(c2)は第2の濃度c2における測定用赤外線検出部31の出力、Voutは測定時の測定用赤外線検出部31の出力である。
上記式(7)から、算出式は、第1のガス濃度c1、第2のガス濃度c2、それぞれのガス濃度における測定用赤外線検出部の出力Vout(c1)を定数としており、測定時の測定用赤外線検出部の出力Voutを代入することで濃度演算が可能であることが理解される。上記式(7)は、光路長l(エル)を含んでいないため、それを予め定量的または定性的に導出する必要がないため、個体ごとのばらつきが補償された算出式であるため、高精度なガス濃度測定が可能になることが理解される。
In the equation, c1 is a first concentration, c2 is a second concentration, Vout (c1) is an output of the measuring
From the above equation (7), the calculation equation uses the output Vout (c1) of the infrared detection unit for measurement at each of the first gas concentration c1 and the second gas concentration c2 as a constant, and the measurement at the time of measurement It is understood that concentration calculation is possible by substituting the output Vout of the infrared detection unit. Since the above equation (7) does not include the optical path length l (L), it is not necessary to derive it quantitatively or qualitatively in advance, so it is a calculation equation in which the variation among individuals is compensated. It is understood that accurate gas concentration measurement is possible.
<式(7)の導出>
以下、上記式(7)の導出過程について説明する。
測定用赤外線検出部31出力は、演算部40での演算処理前にそれぞれ信号増幅される。この時のゲインをGとする。
まず、ランバートベールの法則から、参照用赤外線検出部を用いない場合のガス濃度は下記式(8)で導出される。
<Derivation of Equation (7)>
Hereinafter, the derivation process of the above equation (7) will be described.
The output of the measurement
First, from Lambert-Beil's law, the gas concentration in the case where the reference infrared detector is not used is derived by the following equation (8).
なお、式中、εは吸光度係数、l(エル)は実態的な光路長、Vout(0)は測定対象ガスによる吸収が無い場合の測定用赤外線検出部の仮想出力、Voutは測定対象ガスによる吸収が有る場合の測定用赤外線検出部の出力である。
任意の既知の第1の濃度c1の測定対象ガス中で、光源20を点灯させた時に得られる測定用赤外線検出部からの出力をVout(c1)とすると、第1の濃度c1は下記式(9)で表される。
In the equation, ε is the absorbance coefficient, l (L) is the actual optical path length, Vout (0) is the virtual output of the infrared detection unit for measurement when there is no absorption by the gas to be measured, and Vout is the gas to be measured It is an output of the infrared detector for measurement when there is absorption.
Assuming that the output from the infrared detection unit for measurement obtained when the
上記式(8)、(9)を行い変形すると、下記式(10)が得られる。 By modifying the equations (8) and (9) to obtain the following equation (10).
任意の既知の第2の濃度c2の測定対象ガス中で、光源20を点灯させた時に得られる測定用赤外線検出部からの出力をVout(c2)とし、上記式(10)に代入して変形すると、下記式(11)が得られる。
The output from the infrared detector for measurement obtained when the
上記式(10)に上記式(11)を代入すると式(7)を得ることが出来る。 By substituting the equation (11) into the equation (10), the equation (7) can be obtained.
以上より、第1の濃度の測定対象ガス中で光源を点灯させた時に得られる測定用赤外線検出部の出力と、第2の濃度の測定対象ガス中で光源を点灯させた時に得られる測定用赤外線検出部の出力と、に基づいて得られる算出式を用いることにより、2つの異なる既知濃度における測定用赤外線検出部の出力を予め取得することのみで、Vout(0)や吸光度係数ε、光路長l(エル)を含まない算出式が導出可能であり、従来よりも高精度なガス濃度測定が可能になることが理解される。
ただし、Vout(0)が校正時と測定時で同じと仮定している。
また、本実施形態2に係るガス濃度測定装置において、式(7)の各パラメータにオフセットを加味してもよい。これにより、測定するガス濃度の精度をさらに向上させることが可能となる。
From the above, the output of the measuring infrared detection unit obtained when the light source is turned on in the first concentration measurement target gas, and the measurement obtained when the light source is turned on in the second concentration measurement target gas By using the calculation formula obtained based on the output of the infrared detection unit, the output of the measurement infrared detection unit at two different known concentrations can be obtained in advance only by using Vout (0), the absorbance coefficient ε, and the optical path. It is understood that a calculation formula which does not include the length l (l) can be derived, and gas concentration measurement with higher precision than before can be performed.
However, it is assumed that Vout (0) is the same at calibration and measurement.
Moreover, in the gas concentration measuring device according to the second embodiment, an offset may be added to each parameter of the equation (7). This makes it possible to further improve the accuracy of the gas concentration to be measured.
図4は、図3に示した演算部の回路構成図である。
なお、図2と同じ機能を有する構成要素には同一の符号を付してある。つまり、図2における乗算部43を除いた構成となっている。
演算部40は、係数算出部41と比演算部42と濃度演算部44とを備えている。
係数算出部41は、係数εを含む算出式を算出する。また、比演算部42は、測定時の測定用赤外線検出部31の出力Voutに対する第1の測定出力Vout(c1)の比Vout(c1)/Voutを演算する。
FIG. 4 is a circuit diagram of the operation unit shown in FIG.
Components having the same functions as those in FIG. 2 are denoted by the same reference numerals. That is, the configuration is such that the
The
The
また、濃度演算部44は、係数算出部41で算出された算出式と、比演算部42で演算された比Vout(c1)/Voutと、に基づいて測定対象ガスの濃度cを演算する。
以下、本実施形態のガス濃度測定装置における各構成要件について説明する。各構成要件の具体例や技術的特徴は、本発明の技術思想を逸脱しない範囲で単独または組み合わせて適用可能である。
Further, the
Hereinafter, each component of the gas concentration measuring apparatus of the present embodiment will be described. Specific examples and technical features of each component can be applied singly or in combination without departing from the technical concept of the present invention.
(赤外線検出部)
測定用赤外線検出部31、参照用赤外線検出部32は、光源20が出力する赤外線に対する感度を有し、入射された赤外線に応じた信号を出力するものである。測定用赤外線検出部31は参照用赤外線検出部32よりも、測定対象ガスによる赤外線吸収帯域に対する感度の前記赤外線吸収帯域以外の帯域に対する感度に対する比が大きいものであれば特に制限されない。測定用赤外線検出部31及び参照用赤外線検出部32には、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile:熱電堆)、ボロメータ(Bolometer)等の熱型赤外線センサや、量子型赤外線センサ等が好適である。
(Infrared detector)
The measuring
測定用赤外線検出部31、参照用赤外線検出部32は、測定対象ガスに併せて所望の光学特性を有する光学フィルタをさらに備えていてもよい。例えば、測定対象ガスが炭酸ガスの場合、測定用赤外線検出部31には炭酸ガスによる赤外線吸収が多く生じる波長帯(代表的には4.3μm付近)の赤外線を濾波できるバンドパスフィルタを搭載し、参照用赤外線検出部32には炭酸ガスによる赤外線吸収が生じない波長帯(代表的には3.9μm付近)の赤外線を濾波できるバンドパスフィルタを搭載する形態が例示される。
The measurement
(光源)
光源20は、測定用赤外線検出部31、参照用赤外線検出部32が感度を有する赤外線帯域を出力できるものであれば特に制限されない。例えば、白熱電球やセラミックヒータ、MEMS(Micro Electro Mechanical Systems)ヒーターやLEDなどを用いることができる。
(light source)
The
(演算部)
演算部40は、ガス濃度算出における演算が可能なものであれば特に制限されず、例えば、アナログIC、ディジタルIC及びCPU(Central Processing Unit)等が好適である。演算部40には、光源を制御するための機能が含まれていても構わない。
(Operation unit)
The
(ガスセル)
本実施形態のガス濃度測定装置は、内部に測定対象ガスを導入可能であり、内部に光源20、測定用赤外線検出部31、参照用赤外線検出部32、演算部40を配置可能なガスセル10をさらに備えても良い。ガスセル10をさらに備えることで、測定用赤外線検出部31及び参照用赤外線検出部32の出力する信号のSNRを高めることができ、より高精度なガス濃度測定装置が実現する。赤外線検出部に入射される赤外線の効率化の観点から、ガスセル内部が赤外線を反射する材料で形成されていることが好ましい。具体的にはアルミニウムや銅などの金属材料が挙げられる。
次に、本実施形態のガス濃度測定装置を実施例に基づき説明する。
(Gas cell)
The gas concentration measuring apparatus of the present embodiment can introduce the gas to be measured inside, and can arrange the
Next, the gas concentration measuring device of the present embodiment will be described based on examples.
タングステン光源、CO2による赤外線吸収のある4.2μm〜4.4μmの波長帯を選択的に濾波選別する光学フィルタを搭載した測定用赤外線検出部31としての量子型赤外線センサ「IR1011」(旭化成エレクトロニクス株式会社製)、CO2による赤外線吸収の無い3.7μm〜3.9μmの波長帯を選択的に濾波選別する光学フィルタを搭載した参照用赤外線検出部32としての量子型赤外線センサ「IR1011」(旭化成エレクトロニクス株式会社製)、演算部40として記憶部と処理部を備えたICをプリント基板上に配置した炭酸ガス濃度測定装置を準備した。
Quantum type infrared sensor “IR1011” as an
次いで、この炭酸ガス濃度測定装置を試験容器内に設置し、濃度967ppmの炭酸ガスを充填した時の、それぞれアンプにより増幅された測定用赤外線検出部31と参照用赤外線検出部32からの出力と、濃度2953ppmの炭酸ガスを試験容器内に充填した時の、それぞれアンプにより増幅された測定用赤外線検出部31と参照用赤外線検出部32からの出力から、上述した実施形態1のガス濃度測定装置における前記式(7)に測定用赤外線検出部31の出力オフセットを加味した下記式(12)に対応する演算式を導出した。
Next, the carbon dioxide concentration measuring apparatus is placed in a test container, and when the carbon dioxide gas having a concentration of 967 ppm is filled, the outputs from the measuring
なお、式中a1は測定用赤外線検出部31のオフセット、R1(c1)は第1のガス濃度における測定用赤外線検出部31の出力値からオフセット分を差し引いた値に対する参照用赤外線検出部32の出力値の比、R1(c2)は第2のガス濃度における測定用赤外線検出部31の出力値からオフセット分を差し引いた値に対する参照用赤外線検出部32の出力値の比である。
測定用赤外線検出部31の出力以外のパラメータにもオフセットが生じる場合があるため、下記式(13)のように必要に応じてそれぞれのパラメータにオフセットを加味する。
In the equation, a1 represents the offset of the measurement
Since an offset may occur also to parameters other than the output of the measurement
なお、式中a2は参照用赤外線検出部のオフセット、R2(c1)は第1のガス濃度における測定用赤外線検出部31の出力値からオフセット分を差し引いた値に対する参照用赤外線検出部32の出力値からオフセット分を差し引いた値の比、R2(c2)は第2のガス濃度における測定用赤外線検出部31の出力値からオフセット分を差し引いた値に対する参照用赤外線検出部32の出力値からオフセット分を差し引いた値の比である。
a1やa2などのオフセットは、代表的なサンプルにて求めた測定用赤外線検出器31や参照用赤外線検出器32の感度スペクトルと、光源20の発光スペクトルから求められる光学的オフセットと、増幅回路のオフセットを足し合わせた代表値である。
In the equation, a2 is the offset of the reference infrared detection unit, R2 (c1) is the output of the reference
The offsets such as a1 and a2 are obtained by measuring the sensitivity spectra of the
[比較例1]
濃度967ppmの炭酸ガスを試験容器内に充填した時の、それぞれアンプにより増幅された測定用赤外線検出部と参照用赤外線検出部からの出力と、濃度2953ppmの炭酸ガスを試験容器内に充填した時の、それぞれアンプにより増幅された測定用赤外線検出部と参照用赤外線検出部からの出力から、炭酸ガス濃度と測定用赤外線検出部の出力に対する参照用赤外線検出部の出力比の相関を表す1次関数を導出した。
Comparative Example 1
When the test container is filled with carbon dioxide at a concentration of 967 ppm, when the outputs from the infrared detection unit for measurement and the infrared detection unit for reference amplified by the amplifier are filled with carbon dioxide at a concentration of 2953 ppm. Primary from the output from the measuring infrared detection unit and the reference infrared detection unit amplified by the amplifier, the correlation between the carbon dioxide concentration and the output ratio of the reference infrared detection unit to the output of the measuring infrared detection unit I derived the function.
タングステン光源、CO2による赤外線吸収のある4.2μm〜4.4μmの波長帯を選択的に濾波選別する光学フィルタを搭載した測定用赤外線検出部31としての量子型赤外線センサ「IR1011」(旭化成エレクトロニクス株式会社製)、演算部40として記憶部と処理部を備えたICを配置した炭酸ガス濃度測定装置を準備した。
次いで、この炭酸ガス濃度測定装置を試験容器内に設置し、濃度967ppmの炭酸ガスを試験容器内に充填した時の、アンプにより増幅された測定用赤外線検出部31からの出力と、濃度2953ppmの炭酸ガスを試験容器内に充填した時の、アンプにより増幅された測定用赤外線検出部31からの出力から、上述した実施形態2のガス濃度測定装置における上記式(7)に測定用赤外線検出部の出力オフセットを加味した下記式(14)に対応する演算式を導出した。
Quantum type infrared sensor “IR1011” as an
Next, the carbon dioxide concentration measuring apparatus is installed in the test container, and when the carbon dioxide gas having a concentration of 967 ppm is filled in the test container, the output from the
a1やa2などのオフセットは、代表的なサンプルにて求めた測定用赤外線検出器31や参照用赤外線検出器32の感度スペクトルと、光源20の発光スペクトルから求められる光学的オフセットと、増幅回路のオフセットを足し合わせた代表値である。
The offsets such as a1 and a2 are obtained by measuring the sensitivity spectra of the
[比較例2]
濃度967ppmの炭酸ガスを試験容器内に充填した時の、アンプにより増幅された測定用赤外線検出部の出力と、濃度2953ppmの炭酸ガスを試験容器内に充填した時の、アンプにより増幅された測定用赤外線検出部の出力から、炭酸ガス濃度と測定用赤外線検出部の出力の相関を表す1次関数を導出した。
図5は、上述した実施例1と比較例1を対比した結果を示す図である。
図5の結果より、実施例1の演算式によると、濃度396ppmでは−12ppm、濃度967ppmでは0ppm、濃度1919ppmでは38ppm、濃度2953ppmでは0ppm、濃度4914ppmの高濃度領域でも25ppmの誤差にとどまった。
Comparative Example 2
The output of the infrared detection unit for measurement amplified by the amplifier when carbon dioxide gas having a concentration of 967 ppm is filled in the test container, and the measurement amplified by the amplifier when the carbon dioxide gas having a concentration of 2953 ppm is filled in the test container From the output of the infrared detecting unit, a linear function representing the correlation between the carbon dioxide concentration and the output of the infrared detecting unit was derived.
FIG. 5 is a diagram showing the result of comparison between Example 1 and Comparative Example 1 described above.
From the results of FIG. 5, according to the operation equation of Example 1, the error was only 25 ppm at -12 ppm at 396 ppm, 0 ppm at 967 ppm, 38 ppm at 1919 ppm, 0 ppm at 2953 ppm and 4914 ppm.
一方、比較例1の演算式によると、濃度396ppmでは−154ppm、濃度967ppmでは0ppm、濃度1919ppmでは77ppm、濃度2953ppmでは0ppm、濃度4914ppmに至っては−375ppmの誤差が生じた。
以上の結果より、実施形態1のガス濃度演算装置によれば、従来の濃度算出式よりも広範囲で高精度な濃度演算が可能であることが理解される。
On the other hand, according to the calculation formula of Comparative Example 1, an error of -154 ppm at 396 ppm, 0 ppm at 967 ppm, 77 ppm at 1919 ppm, 0 ppm at 2953 ppm, and -375 ppm at 4914 ppm occurred.
From the above results, it is understood that according to the gas concentration calculation device of the first embodiment, highly accurate concentration calculation is possible in a wider range than the conventional concentration calculation formula.
図6は、上述した実施例2と比較例2を対比した結果を示す図である。
図6の結果より、実施例2の演算式によると、濃度396ppmでは−8ppm、濃度967ppmでは0ppm、濃度1919ppmでは41ppm、濃度2953ppmでは0ppm、濃度4914ppmの高濃度領域でも19ppmの誤差にとどまった。
一方、比較例2の演算式によると、濃度396ppmでは−130ppm、濃度967ppmでは0ppm、濃度1919ppmでは115ppm、濃度2953ppmでは0ppm、濃度4914ppmに至っては−496ppmの誤差が生じた。
FIG. 6 is a diagram showing the result of comparison between Example 2 and Comparative Example 2 described above.
From the results of FIG. 6, according to the calculation formula of Example 2, the error remained at -8 ppm at 396 ppm, 0 ppm at 967 ppm, 41 ppm at 1919 ppm, 0 ppm at 2953 ppm, and 19 ppm in the high concentration region of 4914 ppm.
On the other hand, according to the calculation formula of Comparative Example 2, an error of -130 ppm at 396 ppm, 0 ppm at 967 ppm, 115 ppm at 1919 ppm, 0 ppm at 2953 ppm, and -496 ppm occurred at 4914 ppm.
以上の結果より、実施形態2のガス濃度演算装置によれば、参照用赤外線検出部を用いない場合でも、従来の濃度算出式よりも広範囲で高精度な濃度演算が可能であることが理解される。
以上、本発明の実施形態について説明したが、本発明の技術的範囲は、上述した実施形態に記載の技術的範囲には限定されない。上述した実施形態に、多様な変更又は改良を加えることも可能であり、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
From the above results, it is understood that according to the gas concentration calculation device of the second embodiment, even when the reference infrared detection unit is not used, highly accurate concentration calculation can be performed in a wider range than the conventional concentration calculation formula. Ru.
As mentioned above, although embodiment of this invention was described, the technical scope of this invention is not limited to the technical scope as described in embodiment mentioned above. It is also possible to add various changes or improvements to the embodiment described above, and it is possible from the description of the claims that forms obtained by adding such changes or improvements can be included in the technical scope of the present invention. it is obvious.
本発明は、炭酸ガス等に代表される赤外線吸収を生じるガスのガス濃度測定装置として好適である。 The present invention is suitable as a gas concentration measuring device for a gas that produces infrared absorption represented by carbon dioxide gas and the like.
10 ガスセル
11 ガス導入口
12 ガス導出口
20 光源
31 測定用赤外線検出部
32 参照用赤外線検出部
40 演算部
41 係数算出部
42 比演算部
43 乗算部
44 濃度演算部
Claims (12)
前記光源からの光を受光する測定用赤外線検出部と、
前記測定用赤外線検出部の近傍に配置された参照用赤外線検出部と、
前記測定用赤外線検出部及び前記参照用赤外線検出部からの出力が入力される演算部と、
を備えたガス濃度測定装置であって、
前記演算部は、
第1の濃度と、
前記第1の濃度とは異なる第2の濃度と、
前記第1の濃度の測定対象ガス中で前記光源を点灯させた時に前記測定用赤外線検出部が出力する第1の測定出力と、
前記第1の濃度の測定対象ガス中で前記光源を点灯させた時に前記参照用赤外線検出部が出力する第1の参照出力と、
前記第2の濃度の測定対象ガス中で前記光源を点灯させた時に前記測定用赤外線検出部が出力する第2の測定出力と、
前記第2の濃度の測定対象ガス中で前記光源を点灯させた時に前記参照用赤外線検出部が出力する第2の参照出力と、
に基づいて得られる係数を含む算出式と、
測定時の前記参照用赤外線検出部の出力に対する前記測定用赤外線検出部の出力の比に、前記第1の測定出力及び前記第1の参照出力に基づく値を掛けた値と、に基づいて測定対象ガスの濃度を演算するガス濃度測定装置。 Light source,
An infrared detector for measurement that receives light from the light source;
A reference infrared detection unit disposed in the vicinity of the measurement infrared detection unit;
A calculation unit to which outputs from the measurement infrared detection unit and the reference infrared detection unit are input;
A gas concentration measuring device comprising
The arithmetic unit is
The first concentration,
A second concentration different from the first concentration;
A first measurement output that the infrared detection unit for measurement outputs when the light source is turned on in the gas to be measured of the first concentration;
A first reference output that the reference infrared detector outputs when the light source is turned on in the first concentration measurement target gas;
A second measurement output that is output by the infrared detection unit for measurement when the light source is turned on in the measurement target gas of the second concentration;
A second reference output that the reference infrared detection unit outputs when the light source is turned on in the measurement target gas of the second concentration;
A calculation formula including a coefficient obtained based on
Measurement based on a value obtained by multiplying the ratio of the output of the infrared measuring unit for measurement to the output of the infrared detecting unit for reference at the time of measurement by the value based on the first measurement output and the first reference output A gas concentration measuring device that calculates the concentration of the target gas.
第1の濃度と、
前記第1の濃度とは異なる第2の濃度と、
前記第1の測定出力に対する前記第1の参照出力の比と、
前記第2の測定出力に対する前記第2の参照出力の比と、に基づいて得られる請求項1に記載のガス濃度測定装置。 The factor is
The first concentration,
A second concentration different from the first concentration;
A ratio of the first reference output to the first measured output;
The gas concentration measurement device according to claim 1, obtained based on a ratio of the second reference output to the second measurement output.
前記係数を含む算出式と、
測定時の前記参照用赤外線検出部の出力に対する前記測定用赤外線検出部の出力の比に、前記第1の参照出力に対する前記第1の測定出力の比を掛けた値と、に基づいて測定対象ガスの濃度を演算する請求項1または請求項2に記載のガス濃度測定装置。 The arithmetic unit is
A formula including the coefficient,
Measurement target based on a value obtained by multiplying the ratio of the first measurement output to the first reference output by the ratio of the output of the measurement infrared detection unit to the output of the reference infrared detection unit at the time of measurement The gas concentration measuring device according to claim 1 or 2 which calculates concentration of gas.
前記係数を含む算出式を算出する係数算出部と、
測定時の前記参照用赤外線検出部の出力に対する前記測定用赤外線検出部の出力の比を演算する比演算部と、
前記比演算部で演算された比に、前記第1の参照出力に対する前記第1の測定出力の比を掛ける乗算部と、
前記係数算出部で算出された算出式と、前記乗算部の値と、に基づいて測定対象ガスの濃度を演算する濃度演算部と、
を備えている請求項1から請求項5のいずれか一項に記載のガス濃度測定装置。 The arithmetic unit is
A coefficient calculation unit that calculates a calculation formula including the coefficient;
A ratio calculation unit that calculates a ratio of an output of the infrared detection unit for measurement to an output of the infrared detection unit for reference at the time of measurement;
A multiplication unit that multiplies the ratio calculated by the ratio calculation unit by the ratio of the first measurement output to the first reference output;
A concentration calculation unit that calculates the concentration of the gas to be measured based on the calculation formula calculated by the coefficient calculation unit and the value of the multiplication unit;
The gas concentration measuring device according to any one of claims 1 to 5, comprising:
前記光源からの光を受光する測定用赤外線検出部と、
前記測定用赤外線検出部からの出力が入力される演算部と、
を備えたガス濃度測定装置であって、
前記演算部は、
第1の濃度と、
前記第1の濃度とは異なる第2の濃度と、
前記第1の濃度の測定対象ガス中で光源を点灯させた時に前記測定用赤外線検出部が出力する第1の測定出力と、
前記第2の濃度の測定対象ガス中で光源を点灯させた時に前記測定用赤外線検出部が出力する第2の測定出力と、
に基づいて得られる係数を含む算出式と、
測定時の測定用赤外線検出部からの出力に、前記第1の測定出力に基づく値を掛けた値と、に基づいて測定対象ガスの濃度を演算するガス濃度測定装置。 Light source,
An infrared detector for measurement that receives light from the light source;
An operation unit to which an output from the measurement infrared detection unit is input;
A gas concentration measuring device comprising
The arithmetic unit is
The first concentration,
A second concentration different from the first concentration;
A first measurement output output from the measurement infrared detection unit when the light source is turned on in the first concentration measurement target gas;
A second measurement output that the infrared detection unit for measurement outputs when the light source is turned on in the measurement target gas of the second concentration;
A calculation formula including a coefficient obtained based on
A gas concentration measuring device that calculates the concentration of a gas to be measured based on a value obtained by multiplying an output from an infrared detection unit for measurement at the time of measurement by a value based on the first measurement output.
第1の濃度と、
前記第1の濃度とは異なる第2の濃度と、
前記第1の測定出力に対する前記第2の測定出力の比と、に基づいて得られる請求項7に記載のガス濃度測定装置。 The factor is
The first concentration,
A second concentration different from the first concentration;
The gas concentration measuring device according to claim 7, obtained based on the ratio of the second measurement output to the first measurement output.
前記係数を含む算出式と、
測定時の前記測定用赤外線検出部の出力に対する前記第1の測定出力の比と、に基づいて測定対象ガスの濃度を演算する請求項7または請求項8に記載のガス濃度測定装置。 The arithmetic unit is
A formula including the coefficient,
9. The gas concentration measuring apparatus according to claim 7, wherein the concentration of the gas to be measured is calculated based on the ratio of the first measurement output to the output of the measurement infrared detection unit at the time of measurement.
前記係数を含む算出式を算出する係数算出部と、
測定時の前記測定用赤外線検出部の出力に対する前記第1の測定出力の比を演算する比演算部と、
前記係数算出部で算出された算出式と、前記比演算部で演算された比と、に基づいて測定対象ガスの濃度を演算する濃度演算部と、
を備えている請求項7から請求項11のいずれか一項に記載のガス濃度測定装置。 The arithmetic unit is
A coefficient calculation unit that calculates a calculation formula including the coefficient;
A ratio calculation unit that calculates a ratio of the first measurement output to an output of the measurement infrared detection unit at the time of measurement;
A concentration calculation unit that calculates the concentration of the gas to be measured based on the calculation formula calculated by the coefficient calculation unit and the ratio calculated by the ratio calculation unit;
The gas concentration measuring device according to any one of claims 7 to 11, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015141550A JP6506124B2 (en) | 2015-07-15 | 2015-07-15 | Gas concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015141550A JP6506124B2 (en) | 2015-07-15 | 2015-07-15 | Gas concentration measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017026324A JP2017026324A (en) | 2017-02-02 |
JP6506124B2 true JP6506124B2 (en) | 2019-04-24 |
Family
ID=57949482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015141550A Active JP6506124B2 (en) | 2015-07-15 | 2015-07-15 | Gas concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6506124B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5402242A (en) * | 1993-11-05 | 1995-03-28 | Nakano; Yukio | Method of and an apparatus for measuring a concentration of a fluid |
JP4417223B2 (en) * | 2004-10-21 | 2010-02-17 | 高圧ガス保安協会 | Concentration measuring device |
JP2011169636A (en) * | 2010-02-16 | 2011-09-01 | Hamamatsu Photonics Kk | Gas concentration calculation device and gas concentration measurement module |
-
2015
- 2015-07-15 JP JP2015141550A patent/JP6506124B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017026324A (en) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9557261B2 (en) | Spectroscopic analysis method and spectroscopic analyzer | |
JP5603870B2 (en) | Calibration method for wavelength modulation spectroscopy apparatus | |
US8629397B2 (en) | Spectrophotometer and method for calibrating the same | |
CN113324973B (en) | Multi-factor correction Raman spectrum quantitative analysis method combined with spectrum internal standard | |
JP2019002791A (en) | Calculation method for output correction computing equation of photodetector, and output correction method for photodetector | |
JP5347983B2 (en) | Gas analyzer | |
US9007592B2 (en) | Gas analyzer | |
JP7529763B2 (en) | Method and apparatus for measuring the amount of a gas species using an optical sensor - Patents.com | |
KR100910871B1 (en) | Method and apparatus for measuring water contained in the chimney gas | |
JP6530669B2 (en) | Gas concentration measuring device | |
JP6506124B2 (en) | Gas concentration measuring device | |
JP3261842B2 (en) | Non-dispersive infrared gas analyzer | |
US20190195834A1 (en) | Apparatuses and methods for using the photoacoustic effect | |
JP2019113568A (en) | Spectrometric measurement device and spectrometric measurement method | |
JP6571476B2 (en) | Gas concentration measuring device | |
JP2014142299A (en) | Gas concentration measurement device | |
Wöllenstein et al. | Miniaturized multi channel infrared optical gas sensor system | |
Ebert et al. | Comparison of two variants of a novel setup for real time high resolution UV-LED absorption spectroscopy | |
Ebert et al. | New setup for a real time high resolution UV-LED absorption spectroscopy | |
JP3128163U (en) | Spectrophotometer | |
JP7381475B2 (en) | Gas analysis method using double illumination | |
JP2009058527A (en) | Ndir photometer for measuring multiple components | |
WO2015163782A1 (en) | Method for measuring composition of sample | |
CN116917716A (en) | Method of calibrating a gas sensor and method of measuring a gas using the calibration | |
LT7040B (en) | Optical CO2 concentration meter based on gas absorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190328 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6506124 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |