[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6502755B2 - Resin composition for engine support member and engine support member - Google Patents

Resin composition for engine support member and engine support member Download PDF

Info

Publication number
JP6502755B2
JP6502755B2 JP2015118511A JP2015118511A JP6502755B2 JP 6502755 B2 JP6502755 B2 JP 6502755B2 JP 2015118511 A JP2015118511 A JP 2015118511A JP 2015118511 A JP2015118511 A JP 2015118511A JP 6502755 B2 JP6502755 B2 JP 6502755B2
Authority
JP
Japan
Prior art keywords
component unit
polyamide resin
acid
diamine component
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015118511A
Other languages
Japanese (ja)
Other versions
JP2017002205A (en
Inventor
洋平 宝谷
洋平 宝谷
翔 石川
翔 石川
洋樹 江端
洋樹 江端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2015118511A priority Critical patent/JP6502755B2/en
Publication of JP2017002205A publication Critical patent/JP2017002205A/en
Application granted granted Critical
Publication of JP6502755B2 publication Critical patent/JP6502755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、エンジン支持部材用樹脂組成物及びエンジン支持部材に関する。   The present invention relates to a resin composition for an engine support member and an engine support member.

近年、自動車の燃費改善を目的として、自動車のエンジンルーム内部品に用いられる金属製部材を樹脂に置き換えて、軽量化することが検討されている。中でも、ポリアミド樹脂は、金属より格段に軽量であり、優れた剛性、耐熱性及び耐油性等を有することから、自動車用部品として好適に用いられる。   In recent years, in order to improve the fuel efficiency of automobiles, it has been studied to reduce the weight by replacing metal members used for parts in the engine room of automobiles with resin. Among them, polyamide resins are much lighter than metals, and have excellent rigidity, heat resistance, oil resistance, and the like, and thus they are suitably used as automobile parts.

例えば、自動車エンジンルーム内部品には、高温下で高い剛性が求められることから、そのような用途の樹脂材料として、ポリアミド樹脂と、ガラス繊維とを含むポリアミド樹脂組成物が提案されている(特許文献1)。   For example, since high rigidity is required at high temperature for parts in an automobile engine room, a polyamide resin composition containing a polyamide resin and glass fibers has been proposed as a resin material for such applications (patented) Literature 1).

一方、金属部品の樹脂化や部品の小型化が進展すると共に、エンジンルームのコンパクト化が急伸している。それに伴い、樹脂材料には、これまで以上に高い耐熱性が要求されており、汎用の脂肪族ポリアミド樹脂であるPA66では、100℃を超える耐熱性の要求を満足できない場面が増えてきている。   On the other hand, as the resinification of metal parts and the miniaturization of parts progress, the downsizing of the engine room is rapidly expanding. Along with this, resin materials are required to have higher heat resistance than ever, and with PA 66, which is a general-purpose aliphatic polyamide resin, there are increasing situations where heat resistance requirements exceeding 100 ° C. can not be satisfied.

例えば、エンジンを支持する部品の一つであるエンジンマウントブラケットには、100℃における高い剛性が求められることから、そのような用途の樹脂材料として、脂肪族ポリアミドと、ガラス転移点が高い半芳香族ポリアミドと、ガラス繊維とを添加した樹脂組成物が提案されている(例えば特許文献2)。また、樹脂製エンジンマウントやトルクロッドのウェルド部強度改良に有効な製品形状が提案されている(例えば特許文献3)。また、ポリアミド樹脂組成物としては、融点290℃以上の半芳香族ポリアミド樹脂と、融解熱量ΔHが5J/g以下の半芳香族ポリアミド樹脂と、官能基構造単位を含むオレフィン重合体と、繊維状充填材とを含む樹脂組成物も知られている(特許文献4)。   For example, since high rigidity at 100 ° C. is required for the engine mount bracket, which is one of the parts supporting the engine, aliphatic polyamide and semi-aromatic compounds having a high glass transition temperature as resin materials for such applications are required. The resin composition which added group family polyamide and glass fiber is proposed (for example, patent documents 2). Further, a product shape effective for improving the strength of welds of resin engine mounts and torque rods has been proposed (for example, Patent Document 3). Further, as the polyamide resin composition, a semi-aromatic polyamide resin having a melting point of 290 ° C. or higher, a semi-aromatic polyamide resin having a heat of fusion ΔH of 5 J / g or less, an olefin polymer containing a functional group structural unit, and fibrous A resin composition containing a filler is also known (Patent Document 4).

特開平2−240160号公報Unexamined-Japanese-Patent No. 2-240160 特開平11−49950号公報Unexamined-Japanese-Patent No. 11-49950 gazette 特開2004−255971号公報Japanese Patent Application Publication No. 2004-255971 国際公開第2015/011935号International Publication No. 2015/011935

半芳香族ポリアミドの配合比率を高めることで、成形物の高温での剛性や耐熱性を向上させることができる。しかしながら、樹脂組成物におけるポリアミド樹脂の主鎖骨格中の芳香族濃度が増加し、分子鎖が剛直になるため、例えば射出成形物のウェルド部(金型内で溶融樹脂の流れが合流して融着した部分)の強度の低下や、衝撃に対する強度の低下等が生じる懸念があった。   By increasing the compounding ratio of the semiaromatic polyamide, the rigidity and heat resistance at high temperature of the molded product can be improved. However, since the aromatic concentration in the main chain skeleton of the polyamide resin in the resin composition increases and the molecular chain becomes rigid, for example, the weld portion of the injection-molded product (the molten resin streams merge and melt in the mold) There is a concern that the strength of the worn part) may be reduced, or the strength against impact may be reduced.

エンジンマウント等のエンジン支持部材は、高温条件下での使用に耐える強度(剛性)・耐熱性を有するだけでなく、車両走行時の振動に対する耐性(ウェルド強度・耐衝撃性)とを有することが求められるが、従来のポリアミド樹脂組成物は、耐熱性と振動に対する耐性(ウェルド強度・耐衝撃性)との両立が難しいという問題があった。   Engine supporting members such as engine mounts not only have strength (stiffness) and heat resistance to withstand use under high temperature conditions, but also have resistance to vibration during vehicle travel (weld strength and impact resistance) Although it is required, the conventional polyamide resin composition has a problem that it is difficult to achieve both heat resistance and resistance to vibration (weld strength and impact resistance).

さらに、エンジンは、停止と駆動を繰り返す際の温度変化が大きいだけでなく、エンジンルームもコンパクト化されているため、これまで以上に高い耐熱老化特性も求められている。高温雰囲気によって樹脂が劣化すると、成形物の剛性が不十分となり、長期の使用が不可能となることも懸念される。   Furthermore, the engine not only has a large temperature change when it is repeatedly stopped and driven, but also the engine room is made compact, so there is also a demand for higher heat aging characteristics than ever before. When the resin is deteriorated by the high temperature atmosphere, there is a concern that the rigidity of the molded product is insufficient and the long-term use becomes impossible.

特許文献4には、高温下での強度(剛性)と振動耐性を両立するとの思想は開示されていない。また、当該樹脂組成物をエンジン支持部材として用いるには、一層高い耐熱性・剛性が望まれている。   Patent Document 4 does not disclose the idea of achieving both strength (rigidity) under high temperature and vibration resistance. Moreover, in order to use the said resin composition as an engine support member, much higher heat resistance and rigidity are desired.

本発明は、上記課題に鑑みてなされたものであり、高温条件下での使用に耐える高い耐熱性と強度とを有し、かつ高い振動耐性(ウェルド強度・耐衝撃性)を有するエンジン支持部材用樹脂組成物、及びこれを用いたエンジン支持部材を提供することを目的とする。   The present invention has been made in view of the above problems, and an engine support member having high heat resistance and strength that can withstand use under high temperature conditions, and high vibration resistance (weld strength and impact resistance). It is an object of the present invention to provide a resin composition for use as well as an engine support member using the same.

[1] 示差走査熱量計(DSC)により測定される、ガラス転移温度が80℃〜150℃であり、融点(Tm)が300℃以上であるポリアミド樹脂(A)29.89〜68.9質量%と、示差走査熱量計(DSC)により測定される融点(Tm)が実質観測されないポリアミド樹脂(B)0.1〜20質量%と、繊維状充填材(C)30〜70質量%と、耐熱安定剤(D)0.01〜3.0質量%とを含有し(但し、(A)、(B)、(C)及び(D)の合計が100質量%である)、前記ポリアミド樹脂(A)は、テレフタル酸成分単位20〜100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0〜80モル%及び炭素原子数4〜20の脂肪族ジカルボン酸成分単位0〜40モル%の少なくとも一方とを含むジカルボン酸成分単位(a1)(但し、ジカルボン酸成分単位の合計を100モル%とする)と、炭素原子数4〜20の脂肪族ジアミン成分単位を含むジアミン成分単位(a2)とを含む、エンジン支持部材用樹脂組成物。
[2] 前記ポリアミド樹脂(A)の前記脂肪族系ジアミン成分単位は、下記の1)と2)の少なくとも一方を満たす、[1]に記載のエンジン支持部材用樹脂組成物。
1)炭素原子数4〜20の直鎖状アルキレンジアミン成分単位を、前記脂肪族ジアミン成分単位の総モル数に対して40〜100モル%含む
2)炭素原子数4〜20の分岐状アルキレンジアミン成分単位を、前記脂肪族ジアミン成分単位の総モル数に対して60モル%以下含む
[3] 前記ポリアミド樹脂(B)は、イソフタル酸成分単位を含むジカルボン酸成分単位(b1)と、炭素原子数4〜15の脂肪族ジアミン成分単位を含むジアミン成分単位(b2)とを含む、[1]又は[2]に記載のエンジン支持部材用樹脂組成物。
[4] 前記ポリアミド樹脂(B)において、前記ジカルボン酸成分単位(b1)は、テレフタル酸成分単位をさらに含んでいてもよく、前記イソフタル酸成分単位と前記テレフタル酸成分単位とのモル比が、イソフタル酸成分単位/テレフタル酸成分単位=55/45〜100/0である、[3]に記載のエンジン支持部材用樹脂組成物。
[5] 前記ポリアミド樹脂(A)と前記ポリアミド樹脂(B)の含有質量比B/(A+B)は、0.05〜0.35である、[1]〜[4]のいずれかに記載のエンジン支持部材用樹脂組成物。
[6] 前記ポリアミド樹脂(A)において、前記テレフタル酸以外の芳香族ジカルボン酸成分単位は、イソフタル酸成分単位を含み、前記炭素原子数4〜20の脂肪族ジアミン成分単位は、炭素原子数4〜20の直鎖状アルキレンジアミン成分単位を含む、[1]又は[2]に記載のエンジン支持部材用樹脂組成物。
[7] 前記ポリアミド樹脂(A)において、前記テレフタル酸成分単位と前記イソフタル酸成分単位とのモル比は、テレフタル酸成分単位/イソフタル酸成分単位=55/45〜80/20である、[6]に記載のエンジン支持部材用樹脂組成物。
[8] 前記ポリアミド樹脂(A)において、前記炭素原子数4〜20の直鎖状アルキレンジアミン成分単位は、ヘキサメチレンジアミン成分単位であり、前記炭素原子数4〜20の分岐状アルキレンジアミン成分単位は、2−メチル−1,5−ペンタンジアミン成分単位である、[2]に記載のエンジン支持部材用樹脂組成物。
[9] 前記ポリアミド樹脂(A)において、前記炭素原子数4〜20の分岐状アルキレンジアミン成分単位は、1,9−ノナンジアミン成分単位と2−メチル−1,8−オクタンジアミン成分単位である、[2]に記載のエンジン支持部材用樹脂組成物。
[10] [1]〜[9]のいずれかに記載のエンジン支持部材用樹脂組成物の成形物を含む、エンジン支持部材。
[1] Polyamide resin (A) 29.89 to 68.9 mass having a glass transition temperature of 80 ° C. to 150 ° C. and a melting point (Tm) of 300 ° C. or higher, which is measured by a differential scanning calorimeter (DSC) %, And a polyamide resin (B) 0.1 to 20% by mass in which the melting point (Tm) measured by a differential scanning calorimeter (DSC) is not substantially observed, and a fibrous filler (C) 30 to 70% by mass; Heat-resistant stabilizer (D) in an amount of 0.01 to 3.0% by mass (provided that the total of (A), (B), (C) and (D) is 100% by mass); (A) contains 20 to 100 mol% of terephthalic acid component units, 0 to 80 mol% of aromatic dicarboxylic acid component units other than terephthalic acid and 0 to 40 mol% of aliphatic dicarboxylic acid component units having 4 to 20 carbon atoms Dicarboxylic acid containing at least one of An engine support member comprising component unit (a1) (wherein the total of dicarboxylic acid component units is 100 mol%) and diamine component unit (a2) containing aliphatic diamine component units having 4 to 20 carbon atoms Resin composition.
[2] The resin composition for an engine supporting member according to [1], wherein the aliphatic diamine component unit of the polyamide resin (A) satisfies at least one of the following 1) and 2).
1) containing 40 to 100 mol% of a linear alkylene diamine component unit having 4 to 20 carbon atoms with respect to the total number of moles of the aliphatic diamine component unit 2) a branched alkylene diamine having 4 to 20 carbon atoms The component unit is contained in an amount of 60 mol% or less based on the total number of moles of the aliphatic diamine component unit [3] The polyamide resin (B) comprises a dicarboxylic acid component unit (b1) containing an isophthalic acid component unit, and a carbon atom The resin composition for engine supporting members as described in [1] or [2] which contains the diamine component unit (b2) containing several 4-15 aliphatic diamine component unit.
[4] In the polyamide resin (B), the dicarboxylic acid component unit (b1) may further contain a terephthalic acid component unit, and the molar ratio of the isophthalic acid component unit to the terephthalic acid component unit is The resin composition for engine supporting members as described in [3], which is isophthalic acid component unit / terephthalic acid component unit = 55/45 to 100/0.
[5] The mass ratio B / (A + B) of the polyamide resin (A) to the polyamide resin (B) is in a range of 0.05 to 0.35, according to any one of [1] to [4]. Resin composition for engine supporting member.
[6] In the polyamide resin (A), the aromatic dicarboxylic acid component unit other than terephthalic acid contains an isophthalic acid component unit, and the aliphatic diamine component unit having 4 to 20 carbon atoms has 4 carbon atoms The resin composition for engine supporting members as described in [1] or [2] which contains -20 linear alkylene diamine component units.
[7] In the polyamide resin (A), the molar ratio of the terephthalic acid component unit to the isophthalic acid component unit is terephthalic acid component unit / isophthalic acid component unit = 55/45 to 80/20, [6 ] The resin composition for engine supporting members as described in-.
[8] In the polyamide resin (A), the linear alkylene diamine component unit having 4 to 20 carbon atoms is a hexamethylene diamine component unit, and the branched alkylene diamine component unit having 4 to 20 carbon atoms The resin composition for an engine supporting member according to [2], which is a 2-methyl-1,5-pentanediamine component unit.
[9] In the polyamide resin (A), the branched alkylenediamine component unit having 4 to 20 carbon atoms is 1,9-nonanediamine component unit and 2-methyl-1,8-octanediamine component unit, The resin composition for engine supporting members as described in [2].
[10] An engine support member comprising the molded product of the resin composition for an engine support member according to any one of [1] to [9].

本発明によれば、高温条件下での使用に耐える高い耐熱性と強度とを有し、かつ高い振動耐性(ウェルド強度・耐衝撃性)を有するエンジン支持部材用樹脂組成物及びエンジン支持部材を提供できる。   According to the present invention, a resin composition for an engine support member and an engine support member having high heat resistance and strength that can withstand use under high temperature conditions and high resistance to vibration (weld strength and impact resistance) Can be provided.

エンジンマウントの一例を示す模式図である。It is a schematic diagram which shows an example of an engine mount.

前述の通り、エンジン支持部材に用いられる樹脂組成物には、高温下での使用に耐える耐熱性・強度(剛性)と、高い振動耐性(ウェルド強度・耐衝撃性)とを両立できることが望まれる。   As described above, the resin composition used for the engine support member is desired to be compatible with heat resistance and strength (rigidity) that withstands use at high temperatures and high vibration resistance (weld strength and impact resistance). .

高融点(高結晶性)のポリアミド樹脂(A)を含む成形物は、高温下での高い強度(剛性)・耐熱性に優れるが、柔軟性が低く、振動耐性(ウェルド部強度・耐衝撃性)が低くなりやすい。これに対して、低結晶性のポリアミド樹脂(B)を所定の割合で組み合わせることで、高温下での強度・耐熱性を損なうことなく、成形物に高い振動耐性を付与できる。   A molded product containing a high melting point (high crystallinity) polyamide resin (A) is excellent in high strength (stiffness) and heat resistance at high temperatures, but has low flexibility and vibration resistance (weld part strength and impact resistance) ) Tend to be low. On the other hand, by combining the low crystalline polyamide resin (B) in a predetermined ratio, high vibration resistance can be imparted to the molded product without losing the strength and heat resistance under high temperature.

さらに、ポリアミド樹脂(A)と耐熱安定剤(D)とを組み合わせることで、成形物に、エンジン支持部材に適した高い耐熱性を付与しうる。本発明は、このような知見に基づきなされたものである。   Furthermore, by combining the polyamide resin (A) and the heat resistant stabilizer (D), the molded article can be provided with high heat resistance suitable for the engine support member. The present invention has been made based on such findings.

1.エンジン支持部材用樹脂組成物
本発明のエンジン支持部材用樹脂組成物は、ポリアミド樹脂(A)と、ポリアミド樹脂(B)と、繊維状充填材(C)と、耐熱安定剤(D)とを含む。
1. Resin composition for engine supporting member The resin composition for engine supporting member of the present invention comprises a polyamide resin (A), a polyamide resin (B), a fibrous filler (C), and a heat resistant stabilizer (D). Including.

1−1.ポリアミド樹脂(A)
ポリアミド樹脂(A)は、示差走査熱量計(DSC)により測定される、ガラス転移温度(Tg)が80℃〜150℃であり、融点(Tm)が300℃以上であるポリアミド樹脂であることが好ましい。そのようなポリアミド樹脂(A)は、成形物に高温での強度(剛性)や耐熱性を付与しうる。
1-1. Polyamide resin (A)
The polyamide resin (A) is a polyamide resin having a glass transition temperature (Tg) of 80 ° C. to 150 ° C. and a melting point (Tm) of 300 ° C. or higher, which is measured by a differential scanning calorimeter (DSC) preferable. Such polyamide resin (A) can impart high temperature strength (rigidity) and heat resistance to a molded article.

ポリアミド樹脂(A)の、示差走査熱量計(DSC)により測定される融点(Tm)は、300℃以上340℃以下であることがより好ましく、300℃以上330℃以下であることがさらに好ましい。ポリアミド樹脂(A)の融点(Tm)が300℃以上であると、高い耐熱性と強度(剛性)を有する成形物が得られやすい。ポリアミド樹脂(A)の融点(Tm)が340℃以下であると、成形温度を過剰に高くする必要がないため、溶融重合や溶融成形時にポリマーや各種添加材の熱分解が生じるのを抑制できる。   The melting point (Tm) of the polyamide resin (A) measured by differential scanning calorimeter (DSC) is more preferably 300 ° C. or more and 340 ° C. or less, and still more preferably 300 ° C. or more and 330 ° C. or less. When the melting point (Tm) of the polyamide resin (A) is 300 ° C. or more, a molded product having high heat resistance and strength (rigidity) is easily obtained. When the melting point (Tm) of the polyamide resin (A) is 340 ° C. or less, it is not necessary to excessively increase the molding temperature, so it is possible to suppress the thermal decomposition of the polymer and various additives during melt polymerization or melt molding. .

ポリアミド樹脂(A)の、示差走査熱量計(DSC)により測定されるガラス転移温度(Tg)は、80℃〜150℃であることが好ましく、90〜135℃であることがより好ましい。ポリアミド樹脂(A)のガラス転移温度(Tg)が80℃以上であると、使用環境温度下において、成形物が良好な耐熱性を維持しうる。   The glass transition temperature (Tg) of the polyamide resin (A) measured by differential scanning calorimetry (DSC) is preferably 80 ° C. to 150 ° C., and more preferably 90 to 135 ° C. When the glass transition temperature (Tg) of the polyamide resin (A) is 80 ° C. or higher, the molded article can maintain good heat resistance under the operating environment temperature.

ポリアミド樹脂(A)の、融点(Tm)とガラス転移温度(Tg)は、示差走査熱量計(例えばDSC220C型、セイコーインスツル(株)製)にて測定することができる。具体的には、約5mgのポリアミド樹脂を測定用アルミニウムパン中に密封し、室温から10℃/minで330℃まで加熱する。ポリアミド樹脂を完全融解させるために、330℃で5分間保持し、次いで、10℃/minで30℃まで冷却する。30℃で5分間置いた後、10℃/minで330℃まで2度目の加熱を行う。2度目の加熱でのピーク温度(℃)をポリアミド樹脂の融点(Tm)とし、ガラス転移に相当する変位点をガラス転移温度(Tg)とする。   The melting point (Tm) and the glass transition temperature (Tg) of the polyamide resin (A) can be measured with a differential scanning calorimeter (for example, DSC 220 C type, manufactured by Seiko Instruments Inc.). Specifically, about 5 mg of polyamide resin is sealed in an aluminum pan for measurement, and heated from room temperature to 330 ° C. at 10 ° C./min. In order to completely melt the polyamide resin, it is held at 330 ° C. for 5 minutes, and then cooled to 30 ° C. at 10 ° C./min. After 5 minutes at 30 ° C., perform a second heating to 330 ° C. at 10 ° C./min. The peak temperature (° C.) at the second heating is taken as the melting point (Tm) of the polyamide resin, and the displacement point corresponding to the glass transition is taken as the glass transition temperature (Tg).

ポリアミド樹脂(A)の融点やガラス転移温度は、例えばジカルボン酸成分単位やジアミン成分単位の組成によって調整されうる。ポリアミド樹脂(A)の融点を高めるためには、例えばテレフタル酸成分単位の含有比率を多くすればよい。   The melting point and the glass transition temperature of the polyamide resin (A) can be adjusted, for example, by the composition of the dicarboxylic acid component unit and the diamine component unit. In order to increase the melting point of the polyamide resin (A), for example, the content ratio of terephthalic acid component units may be increased.

ポリアミド樹脂(A)は、前述の融点とガラス転移温度を有する半芳香族ポリアミド樹脂であることが好ましい。半芳香族ポリアミド樹脂は、芳香族ジカルボン酸成分単位又は芳香族ジアミン成分単位を含むポリアミド樹脂であり、好ましくは芳香族ジカルボン酸成分単位を含むポリアミド樹脂である。   The polyamide resin (A) is preferably a semiaromatic polyamide resin having the above-mentioned melting point and glass transition temperature. The semiaromatic polyamide resin is a polyamide resin containing an aromatic dicarboxylic acid component unit or an aromatic diamine component unit, preferably a polyamide resin containing an aromatic dicarboxylic acid component unit.

即ち、ポリアミド樹脂(A)は、芳香族ジカルボン酸成分単位を含むジカルボン酸成分単位(a1)と、脂肪族ジアミン成分単位を含むジアミン成分単位(a2)とを含むことが好ましい。   That is, the polyamide resin (A) preferably contains a dicarboxylic acid component unit (a1) containing an aromatic dicarboxylic acid component unit and a diamine component unit (a2) containing an aliphatic diamine component unit.

(ジカルボン酸成分単位(a1))
ジカルボン酸成分単位(a1)は、少なくともテレフタル酸成分単位を含むことが好ましい。テレフタル酸成分単位を含むポリアミド樹脂は、結晶性が高く、樹脂組成物に良好な耐熱性や剛性を付与しうる。
(Dicarboxylic acid component unit (a1))
The dicarboxylic acid component unit (a1) preferably contains at least a terephthalic acid component unit. The polyamide resin containing a terephthalic acid component unit has high crystallinity, and can impart good heat resistance and rigidity to the resin composition.

ジカルボン酸成分単位(a1)は、テレフタル酸成分単位20〜100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0〜80モル%及び炭素原子数4〜20の脂肪族ジカルボン酸成分単位0〜40モル%の少なくとも一方とを含むことがより好ましく;テレフタル酸成分単位55〜100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0〜45モル%とを含むことがさらに好ましい。但し、ジカルボン酸成分単位の合計(総モル数)を100モル%とする。   The dicarboxylic acid component unit (a1) comprises 20 to 100 mol% of terephthalic acid component unit, 0 to 80 mol% of aromatic dicarboxylic acid component unit other than terephthalic acid, and 0 aliphatic dicarboxylic acid component unit having 4 to 20 carbon atoms It is more preferable to contain at least one of 40 to 40 mol%; further preferably 55 to 100 mol% of terephthalic acid component unit and 0 to 45 mol% of aromatic dicarboxylic acid component unit other than terephthalic acid. However, the total (total number of moles) of dicarboxylic acid component units is 100 mol%.

テレフタル酸の例には、テレフタル酸や、テレフタル酸エステル(テレフタル酸の炭素数1〜4のアルキルエステル)が含まれる。   Examples of terephthalic acid include terephthalic acid and terephthalic acid ester (C1-C4 alkyl ester of terephthalic acid).

テレフタル酸以外の芳香族ジカルボン酸の例には、イソフタル酸、2−メチルテレフタル酸、ナフタレンジカルボン酸及びこれらのエステルが含まれ、好ましくはイソフタル酸でありうる。   Examples of aromatic dicarboxylic acids other than terephthalic acid include isophthalic acid, 2-methylterephthalic acid, naphthalenedicarboxylic acid and esters thereof, preferably it may be isophthalic acid.

炭素原子数4〜20の脂肪族ジカルボン酸は、炭素原子数6〜12の脂肪族ジカルボン酸であることが好ましく、その例には、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2−ジメチルグルタル酸、3,3−ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸等が含まれ、好ましくはアジピン酸でありうる。   The aliphatic dicarboxylic acid having 4 to 20 carbon atoms is preferably an aliphatic dicarboxylic acid having 6 to 12 carbon atoms, and examples thereof include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid 2-methyl adipic acid, trimethyl adipic acid, pimelic acid, 2,2-dimethyl glutaric acid, 3, 3-diethyl succinic acid, azelaic acid, sebacic acid, suberic acid etc., preferably adipic acid .

ジカルボン酸成分単位(a1)中の、テレフタル酸成分単位とテレフタル酸以外の芳香族ジカルボン酸成分単位(好ましくはイソフタル酸成分単位)の含有モル比は、テレフタル酸成分単位/テレフタル酸以外の芳香族ジカルボン酸成分単位(好ましくはイソフタル酸成分単位)=20/80〜100/0であることが好ましく、55/45〜80/20であることがより好ましく、60/40〜85/15であることがさらに好ましい。テレフタル酸成分単位の量が一定以上であると、得られる成形物の耐熱性や剛性が高まりやすい。テレフタル酸成分単位の量が一定以下であると、得られる成形物の耐衝撃性が高まりやすい。   The molar ratio of the terephthalic acid component unit to the aromatic dicarboxylic acid component unit other than terephthalic acid (preferably isophthalic acid component unit) in the dicarboxylic acid component unit (a1) is: terephthalic acid component unit / aromatic compound other than terephthalic acid The dicarboxylic acid component unit (preferably isophthalic acid component unit) is preferably 20/80 to 100/0, more preferably 55/45 to 80/20, and 60/40 to 85/15. Is more preferred. When the amount of the terephthalic acid component unit is a certain amount or more, the heat resistance and the rigidity of the resulting molded product are likely to be enhanced. When the amount of the terephthalic acid component unit is less than or equal to a certain amount, the impact resistance of the resulting molded product tends to be increased.

ジカルボン酸成分単位(a1)は、本発明の効果を損なわない範囲で、脂環族ジカルボン酸成分単位をさらに含んでもよい。脂環族ジカルボン酸の例には、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸等が含まれる。   The dicarboxylic acid component unit (a1) may further contain an alicyclic dicarboxylic acid component unit as long as the effects of the present invention are not impaired. Examples of alicyclic dicarboxylic acids include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and the like.

(ジアミン成分単位(a2))
ジアミン成分単位(a2)は、炭素原子数4〜20の脂肪族ジアミン成分単位を含む。炭素原子数4〜20の脂肪族ジアミン成分単位は、成形物に疎水性を付与し、吸湿性や吸水性を低くすることができる。
(Diamine component unit (a2))
The diamine component unit (a2) contains an aliphatic diamine component unit having 4 to 20 carbon atoms. The aliphatic diamine component unit having 4 to 20 carbon atoms can impart hydrophobicity to the molded product, and can lower hygroscopicity and water absorption.

炭素原子数4〜20の脂肪族ジアミン成分単位は、1)炭素原子数4〜20の直鎖状アルキレンジアミン成分単位と、2)炭素原子数4〜20の分岐状アルキレンジアミン(側鎖を有するアルキレンジアミン)成分単位の少なくとも一方を含むことが好ましい。   The aliphatic diamine component unit having 4 to 20 carbon atoms has 1) a linear alkylene diamine component unit having 4 to 20 carbon atoms, and 2) a branched alkylene diamine having 4 to 20 carbon atoms (a side chain It is preferable to include at least one of alkylene diamine) component units.

直鎖状アルキレンジアミン成分単位の炭素原子数は、4〜15であることが好ましく、6〜12であることがより好ましい。直鎖状アルキレンジアミンの例には、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−オクタンジアミン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン等が含まれる。これらの中でも、1,6−ジアミノヘキサン及び1,9−ノナンジアミンが好ましい。直鎖状アルキレンジアミン成分単位は、1種のみ含まれてもよいし、2種以上含まれてもよい。   The number of carbon atoms of the linear alkylene diamine component unit is preferably 4 to 15, and more preferably 6 to 12. Examples of linear alkylene diamines include 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-octanediamine, 1,9-diaminononane, 1,10-diaminodecane 1, 1, 11-diaminoundecane, 1, 12-diaminododecane and the like. Among these, 1,6-diaminohexane and 1,9-nonanediamine are preferable. The linear alkylene diamine component unit may be contained alone or in combination of two or more.

直鎖状アルキレンジアミン成分単位の含有量は、炭素原子数4〜20の脂肪族ジアミン成分単位の合計(総モル数)に対して40〜100モル%であることが好ましい。直鎖状アルキレンジアミン成分単位の含有量が一定以上であると、得られる成形物の耐水性が高まりやすいと考えられる。   The content of the linear alkylene diamine component unit is preferably 40 to 100 mol% with respect to the total (total number of moles) of the aliphatic diamine component unit having 4 to 20 carbon atoms. It is thought that the water resistance of the molded object obtained will be easy to increase as content of a linear alkylene diamine component unit is more than fixed.

分岐状アルキレンジアミン成分単位の炭素原子数は、4〜15であることが好ましく、6〜12であることがよりさらに好ましい。分岐状アルキレンジアミンの例には、2−メチル−1,5−ペンタンジアミン、2−メチル−1,6ージアミノヘキサン、2−メチル−1,7−ジアミノヘプタン、2−メチル−1,8−オクタンジアミン、2−メチル−1,9−ジアミノノナン、2−メチル−1,10−ジアミノデカン、2−メチル−1,11−ジアミノウンデカン等が含まれる。これらの中でも、2−メチル−1,5−ペンタンジアミン及び2−メチル−1,8−オクタンジアミンが好ましい。分岐状アルキレンジアミン成分単位は、1種のみ含まれてもよいし、2種以上含まれてもよい。   The number of carbon atoms of the branched alkylene diamine component unit is preferably 4 to 15, and more preferably 6 to 12. Examples of branched alkylene diamines include 2-methyl-1,5-pentanediamine, 2-methyl-1,6-diaminohexane, 2-methyl-1,7-diaminoheptane, 2-methyl-1,8- Included are octanediamine, 2-methyl-1,9-diaminononane, 2-methyl-1,10-diaminodecane, 2-methyl-1,11-diaminoundecane and the like. Among these, 2-methyl-1,5-pentanediamine and 2-methyl-1,8-octanediamine are preferable. The branched alkylene diamine component unit may be contained alone or in combination of two or more.

分岐状アルキレンジアミン成分単位の含有量は、炭素原子数4〜20の脂肪族ジアミン成分単位の合計(総モル数)に対して60モル%以下であることが好ましい。分岐状アルキレンジアミン成分単位の含有量が60モル%以下であると、結晶性が過剰に低下することによる、成形物の強度の低下や成形時の不良を生じるおそれが少ないからである。   The content of the branched alkylene diamine component unit is preferably 60 mol% or less with respect to the total (total number of moles) of the aliphatic diamine component unit having 4 to 20 carbon atoms. If the content of the branched alkylene diamine component unit is 60 mol% or less, there is little possibility that the strength of the molded product may be reduced or defects at the time of molding may be caused due to the excessive decrease in crystallinity.

炭素原子数4〜20の脂肪族ジアミン成分単位が、直鎖状アルキレンジアミン成分単位と分岐状アルキレンジアミン成分単位の両方を含む場合、それらの好ましい組み合わせの例には、1,6−ジアミノヘキサン成分単位と、2−メチル−1,5−ペンタンジアミン成分単位の組み合わせが含まれる。脂肪族ジアミン成分単位の総モル数に対して、1,6−ジアミノヘキサン成分単位の含有量は45モル%超55モル%未満であり、かつ2−メチル−1,5−ペンタンジアミンの含有量は45モル%超55モル%未満であることが好ましい。好ましい組み合わせの他の例には、1,9−ノナンジアミン成分単位と、2−メチル−1,8−オクタンジアミン成分単位との組み合わせが含まれる。脂肪族ジアミン成分単位の総モル数に対して、1,9−ノナンジアミン成分単位の含有量は45モル%超85モル%未満であり、かつ2−メチル−1,8−オクタンジアミン成分単位の含有量は15モル%超55モル%未満であることが好ましい。   When the aliphatic diamine component unit having 4 to 20 carbon atoms contains both a linear alkylene diamine component unit and a branched alkylene diamine component unit, examples of preferable combinations thereof include 1,6-diaminohexane component A combination of units and 2-methyl-1,5-pentanediamine component units is included. The content of 1,6-diaminohexane component units is more than 45 mol% and less than 55 mol% based on the total number of moles of aliphatic diamine component units, and the content of 2-methyl-1,5-pentanediamine Is preferably more than 45 mol% and less than 55 mol%. Other examples of preferred combinations include combinations of 1,9-nonane diamine component units and 2-methyl-1,8-octane diamine component units. The content of 1,9-nonane diamine component units is more than 45 mol% and less than 85 mol% based on the total number of moles of aliphatic diamine component units, and containing 2-methyl-1,8-octane diamine component units The amount is preferably more than 15 mol% and less than 55 mol%.

脂肪族ジアミン成分単位の含有量は、ジアミン成分単位の合計(総モル数)に対して50〜100モル%であることが好ましく、60〜100モル%であることがより好ましい。   The content of the aliphatic diamine component unit is preferably 50 to 100 mol%, and more preferably 60 to 100 mol% with respect to the total (total number of moles) of diamine component units.

ジアミン成分単位(a2)は、本発明の効果を損なわない範囲で、炭素原子数4〜20の脂肪族ジアミン成分単位以外の他のジアミン成分単位をさらに含んでもよい。他のジアミン成分単位の例には、脂環族ジアミン成分単位や芳香族ジアミン成分単位が含まれる。脂環族ジアミンの例には、1,4−シクロヘキサンジアミン及び1,3−シクロヘキサンジアミン等が含まれる。芳香族ジアミンの例には、メタキシリレンジアミン等が含まれる。他のジアミン成分単位の含有量は、50モル%以下であり、好ましくは40モル%以下でありうる。   The diamine component unit (a2) may further contain other diamine component units other than aliphatic diamine component units having 4 to 20 carbon atoms, as long as the effects of the present invention are not impaired. Examples of other diamine component units include alicyclic diamine component units and aromatic diamine component units. Examples of alicyclic diamines include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine and the like. Examples of aromatic diamines include metaxylylene diamine and the like. The content of other diamine component units may be 50 mol% or less, preferably 40 mol% or less.

ポリアミド樹脂(A)の具体例には、ジカルボン酸成分単位がテレフタル酸成分単位であり、脂肪族系ジアミン成分単位が1,6−ジアミノヘキサン及び2−メチル−1,5−ペンタンジアミンである樹脂;ジカルボン酸成分単位がテレフタル酸成分単位であり、脂肪族系ジアミン成分単位が1,9−ノナンジアミン及び2−メチル−1,8−ペンタンジアミンである樹脂;ジカルボン酸成分単位がテレフタル酸成分単位及びイソフタル酸成分単位であり、脂肪族系ジアミン成分単位が1,6−ジアミノヘキサンである樹脂;及びジカルボン酸成分単位がテレフタル酸成分単位及びアジピン酸成分単位であり、脂肪族系ジアミン成分単位が1,6−ジアミノヘキサンである樹脂等が含まれる。ポリアミド樹脂(A)は、1種のみ含まれてもよいし、2種以上含まれてもよい。   In a specific example of the polyamide resin (A), a resin in which the dicarboxylic acid component unit is terephthalic acid component unit, and the aliphatic diamine component unit is 1,6-diaminohexane and 2-methyl-1,5-pentanediamine A resin wherein the dicarboxylic acid component unit is terephthalic acid component unit and the aliphatic diamine component unit is 1,9-nonanediamine and 2-methyl-1,8-pentanediamine; the dicarboxylic acid component unit is terephthalic acid component unit, A resin which is an isophthalic acid component unit and the aliphatic diamine component unit is 1,6-diaminohexane; and a dicarboxylic acid component unit is a terephthalic acid component unit and an adipic acid component unit, and the aliphatic diamine component unit is 1 , 6-diaminohexane and the like. The polyamide resin (A) may be contained alone or in combination of two or more.

ポリアミド樹脂(A)の、温度25℃、96.5%硫酸中で測定される極限粘度[η]は、0.7〜1.6dl/gであることが好ましく、0.8〜1.2dl/gであることがより好ましい。ポリアミド樹脂(A)の極限粘度[η]が一定以上であると、成形物の強度が十分に高まりやすい。極限粘度[η]が一定以下であると、樹脂組成物の成形時の流動性が損なわれにくい。極限粘度[η]は、ポリアミド樹脂(A)の分子量によって調整される。   The intrinsic viscosity [η] of the polyamide resin (A) measured in a 96.5% sulfuric acid at a temperature of 25 ° C. is preferably 0.7 to 1.6 dl / g, and 0.8 to 1.2 dl. It is more preferable that it is / g. When the intrinsic viscosity [η] of the polyamide resin (A) is a certain value or more, the strength of the molded product tends to be sufficiently increased. The flowability at the time of shaping | molding of a resin composition is hard to be impaired as an intrinsic viscosity [eta] is below fixed. The intrinsic viscosity [η] is adjusted by the molecular weight of the polyamide resin (A).

極限粘度は、約0.5gのポリアミド樹脂(A)を96.5%濃硫酸50mlに溶解させ、得られた溶液の、25度±0.05℃の条件下での流下秒数を、ウベローデ粘度計を使用して測定し、以下の式に基づき算出される。
[η]=ηSP/(C(1+0.205ηSP))
[η]:極限粘度(dl/g)
ηSP:比粘度
C:試料濃度(g/dl)
t:試料溶液の流下秒数(秒)
t0:ブランク硫酸の流下秒数(秒)
ηSP=(t−t0)/t0
The intrinsic viscosity is obtained by dissolving about 0.5 g of polyamide resin (A) in 50 ml of 96.5% concentrated sulfuric acid, and the resulting solution is allowed to flow seconds under 25 ° ± 0.05 ° C. It measures using a viscometer and is calculated based on the following formula.
[Η] = ηSP / (C (1 + 0.205ηSP))
[Η]: Intrinsic viscosity (dl / g)
ηSP: specific viscosity C: sample concentration (g / dl)
t: Seconds of flow of sample solution (seconds)
t0: Blank sulfuric acid flow down seconds (seconds)
ηSP = (t−t0) / t0

ポリアミド樹脂(A)は、公知のポリアミド樹脂と同様の方法で製造することができ、例えばジカルボン酸とジアミンとを均一溶液中で重縮合させて製造することができる。具体的には、ジカルボン酸とジアミンとを、国際公開第03/085029号に記載されているように触媒の存在下で加熱することにより低次縮合物を得て、次いでこの低次縮合物の溶融物にせん断応力を付与して重縮合させることで製造することができる。   The polyamide resin (A) can be produced by the same method as a known polyamide resin, and can be produced, for example, by polycondensation of dicarboxylic acid and diamine in a uniform solution. Specifically, a lower condensate is obtained by heating a dicarboxylic acid and a diamine in the presence of a catalyst as described in WO 03/085029, and then the lower condensate is It can be produced by applying shear stress to the melt to cause polycondensation.

ポリアミド樹脂(A)の極限粘度を調整する場合は、反応系に分子量調整剤(例えば末端封止剤)を配合することが好ましい。分子量調整剤は、例えばモノカルボン酸又はモノアミンでありうる。モノカルボン酸の例には、炭素原子数2〜30の脂肪族モノカルボン酸、芳香族モノカルボン酸及び脂環族モノカルボン酸が含まれる。これらの分子量調整剤は、ポリアミド樹脂(A)の分子量を調整すると共に、ポリアミド樹脂(A)の末端アミノ基の量を調整することができる。芳香族モノカルボン酸及び脂環族モノカルボン酸は、環状構造部分に置換基を有していてもよい。   When adjusting the intrinsic viscosity of a polyamide resin (A), it is preferable to mix | blend a molecular weight modifier (for example, terminal blocker) with a reaction system. The molecular weight modifier can be, for example, a monocarboxylic acid or a monoamine. Examples of monocarboxylic acids include aliphatic monocarboxylic acids having 2 to 30 carbon atoms, aromatic monocarboxylic acids and alicyclic monocarboxylic acids. These molecular weight modifiers can adjust the amount of terminal amino groups of the polyamide resin (A) as well as adjusting the molecular weight of the polyamide resin (A). The aromatic monocarboxylic acid and alicyclic monocarboxylic acid may have a substituent at the cyclic structure part.

脂肪族モノカルボン酸の例には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸及びリノ−ル酸等が含まれる。芳香族モノカルボン酸の例には、安息香酸、トルイル酸、ナフタレンカルボン酸、メチルナフタレンカルボン酸及びフェニル酢酸等が含まれる。脂環族モノカルボン酸の例には、シクロヘキサンカルボン酸等が含まれる。   Examples of aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, stearic acid, oleic acid and linoleic acid etc. included. Examples of aromatic monocarboxylic acids include benzoic acid, toluic acid, naphthalene carboxylic acid, methyl naphthalene carboxylic acid, phenylacetic acid and the like. Examples of alicyclic monocarboxylic acids include cyclohexanecarboxylic acid and the like.

分子量調整剤は、ジカルボン酸とジアミンとの反応系に添加される。添加量はジカルボン酸の合計量1モルに対して、0.07モル以下であることが好ましく、0.05モル以下であることがより好ましい。このような量で分子量調整剤を使用することにより、少なくともその一部がポリアミド中に取り込まれ、これによりポリアミドの分子量、即ち極限粘度[η]が所望の範囲内に調整される。   A molecular weight modifier is added to the reaction system of dicarboxylic acid and diamine. The addition amount is preferably 0.07 mol or less, more preferably 0.05 mol or less, per 1 mol of the total amount of the dicarboxylic acid. By using a molecular weight modifier in such an amount, at least a portion thereof is incorporated into the polyamide, whereby the molecular weight of the polyamide, that is, the intrinsic viscosity [η] is adjusted within the desired range.

ポリアミド樹脂(A)の含有量は、(A)成分、(B)成分、(C)成分及び(D)成分の合計に対して29.89〜68.9質量%であることが好ましく、35〜65質量%であることがより好ましい。ポリアミド樹脂(A)の含有量が30質量%以上であると、樹脂組成物に高い強度(剛性)と耐熱性を付与しうる。ポリアミド樹脂(A)の含有量が68.9質量%以下であると、樹脂組成物の耐衝撃性やウェルド強度の顕著な低下が生じにくい。   The content of the polyamide resin (A) is preferably 29.89 to 68.9 mass% with respect to the total of the components (A), (B), (C) and (D), and 35 It is more preferable that it is -65 mass%. When the content of the polyamide resin (A) is 30% by mass or more, high strength (rigidity) and heat resistance can be imparted to the resin composition. When the content of the polyamide resin (A) is 68.9% by mass or less, the impact resistance of the resin composition and the remarkable decrease in weld strength hardly occur.

1−2.ポリアミド樹脂(B)
ポリアミド樹脂(B)は、示差走査熱量計(DSC)により測定される融点(Tm)が実質的に測定されないポリアミド樹脂であることが好ましい。そのようなポリアミド樹脂(B)は、結晶性が低いので、樹脂組成物に良好な耐衝撃性やウェルド強度を付与しうる。
1-2. Polyamide resin (B)
The polyamide resin (B) is preferably a polyamide resin whose melting point (Tm) which is measured by a differential scanning calorimeter (DSC) can not be substantially measured. Such a polyamide resin (B) has low crystallinity, and can impart good impact resistance and weld strength to the resin composition.

「融点(Tm)が実質的に測定されない」とは、示差走査熱量計(DSC)を用いた前述の融点の測定において、2度目の加熱(室温から330℃まで)において結晶融解に基づく吸熱ピークが実質的に観測されないことをいう。   “The melting point (Tm) is not substantially measured” means an endothermic peak based on crystal melting in the second heating (from room temperature to 330 ° C.) in the measurement of the above-mentioned melting point using a differential scanning calorimeter (DSC) Is not observed substantially.

ポリアミド樹脂(B)の、示差走査熱量測定(DSC)により得られる昇温過程(昇温速度:10℃/min)における融解熱量(ΔH)は、0J/g以上5J/g以下であることが好ましく、0J/gであることがより好ましい。融解熱量は、樹脂の結晶性の指標であり、融解熱量が小さい程、結晶性が低いことを示す。ポリアミド樹脂(B)の融解熱量(ΔH)が5J/g以下であり、結晶性が低いと、ポリアミド樹脂(A)との相溶性に優れ、かつ樹脂組成物の成形品の外観が優れる点で好ましい。ポリアミド樹脂(B)は非晶性の樹脂であることが好ましい。   The heat of fusion (ΔH) of the polyamide resin (B) in the heating process (heating rate: 10 ° C./min) obtained by differential scanning calorimetry (DSC) is 0 J / g to 5 J / g. Preferably, it is 0 J / g. The heat of fusion is an index of the crystallinity of the resin, and the smaller the heat of fusion, the lower the crystallinity. When the heat of fusion (ΔH) of the polyamide resin (B) is 5 J / g or less and the crystallinity is low, the compatibility with the polyamide resin (A) is excellent and the appearance of the molded article of the resin composition is excellent. preferable. The polyamide resin (B) is preferably an amorphous resin.

融解熱量(ΔH)とは、JIS K7122に準じて求められる値であり、即ち、昇温速度10℃/minで走査した時に得られる示差走査熱量測定チャートにおいて、結晶化に伴う発熱ピークの面積から求められる値である。融解熱量(ΔH)は、履歴を消さない1回目の昇温における値である。   The heat of fusion (ΔH) is a value determined according to JIS K 7122. That is, in the differential scanning calorimetry chart obtained when scanning at a temperature rising rate of 10 ° C./min, from the area of the exothermic peak associated with crystallization It is a value to be obtained. The heat of fusion (ΔH) is a value at the first temperature rise that does not erase the history.

ポリアミド樹脂(B)は、前述の融点又は融解熱量(ΔH)を満たす半芳香族ポリアミド樹脂であることが好ましい。半芳香族ポリアミド樹脂は、芳香族ジカルボン酸成分単位又は芳香族ジアミン成分単位を含むポリアミド樹脂であり、好ましくは芳香族ジカルボン酸成分単位を含むポリアミド樹脂である。   The polyamide resin (B) is preferably a semiaromatic polyamide resin satisfying the above-mentioned melting point or heat of fusion (ΔH). The semiaromatic polyamide resin is a polyamide resin containing an aromatic dicarboxylic acid component unit or an aromatic diamine component unit, preferably a polyamide resin containing an aromatic dicarboxylic acid component unit.

即ち、ポリアミド樹脂(B)は、芳香族ジカルボン酸成分単位を含むジカルボン酸成分単位(b1)と、脂肪族ジアミン成分単位を含むジアミン成分単位(b2)とを含むことが好ましい。   That is, the polyamide resin (B) preferably contains a dicarboxylic acid component unit (b1) containing an aromatic dicarboxylic acid component unit and a diamine component unit (b2) containing an aliphatic diamine component unit.

(ジカルボン酸成分単位(b1))
ジカルボン酸成分単位(b1)は、少なくともイソフタル酸成分単位を含むことが好ましい。イソフタル酸成分単位は、ポリアミド樹脂の結晶性を低くし、当該ポリアミド樹脂を含む成形物に良好な耐衝撃性やウェルド強度を付与しうる。
(Dicarboxylic acid component unit (b1))
The dicarboxylic acid component unit (b1) preferably contains at least an isophthalic acid component unit. The isophthalic acid component unit can lower the crystallinity of the polyamide resin, and can impart good impact resistance and weld strength to a molded article containing the polyamide resin.

イソフタル酸成分単位の含有量は、ポリアミド樹脂(B)中のジカルボン酸成分の合計(総モル数)に対して40モル%以上であることが好ましく、50モル%以上であることがより好ましい。イソフタル酸成分単位の含有量が40モル%以上であると、成形物に耐衝撃性やウェルド強度を付与しやすい。   The content of the isophthalic acid component unit is preferably 40 mol% or more, more preferably 50 mol% or more based on the total (total number of moles) of the dicarboxylic acid component in the polyamide resin (B). When the content of the isophthalic acid component unit is 40 mol% or more, it is easy to impart impact resistance and weld strength to the molded product.

ジカルボン酸成分単位(b1)は、本発明の効果を損なわない範囲で、イソフタル酸成分単位以外の他のジカルボン酸成分単位をさらに含んでいてもよい。他のジカルボン酸の例には、テレフタル酸、2−メチルテレフタル酸及びナフタレンジカルボン酸等のイソフタル酸以外の芳香族ジカルボン酸、脂肪族ジカルボン酸、及び脂環族ジカルボン酸が含まれる。脂肪族ジカルボン酸及び脂環族ジカルボン酸は、前述の脂肪族ジカルボン酸及び脂環族ジカルボン酸とそれぞれ同様でありうる。これらの中でも、イソフタル酸以外の芳香族ジカルボン酸が好ましく、テレフタル酸がより好ましい。   The dicarboxylic acid component unit (b1) may further contain other dicarboxylic acid component units other than the isophthalic acid component unit, as long as the effects of the present invention are not impaired. Examples of other dicarboxylic acids include aromatic dicarboxylic acids other than isophthalic acid such as terephthalic acid, 2-methylterephthalic acid and naphthalene dicarboxylic acid, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids. The aliphatic dicarboxylic acid and the alicyclic dicarboxylic acid may be similar to the above-mentioned aliphatic dicarboxylic acid and alicyclic dicarboxylic acid, respectively. Among these, aromatic dicarboxylic acids other than isophthalic acid are preferable, and terephthalic acid is more preferable.

ジカルボン酸成分単位(b1)中の、イソフタル酸成分単位とイソフタル酸以外の芳香族ジカルボン酸(好ましくはテレフタル酸)成分単位のモル比は、イソフタル酸成分単位/イソフタル酸以外の芳香族ジカルボン酸(好ましくはテレフタル酸)成分単位=55/45〜100/0であることが好ましく、60/40〜90/10であることがより好ましい。イソフタル酸成分単位/イソフタル酸以外の芳香族ジカルボン酸(好ましくはテレフタル酸)成分単位のモル比が上記範囲にあると、ポリアミド樹脂(B)は非晶性となり、且つポリアミド樹脂(A)との相溶性もよいため、樹脂組成物の耐衝撃性やウェルド強度を高めやすい。   The molar ratio of an isophthalic acid component unit to an aromatic dicarboxylic acid (preferably terephthalic acid) component unit other than isophthalic acid in the dicarboxylic acid component unit (b1) is an aromatic dicarboxylic acid other than isophthalic acid component unit / isophthalic acid ( Preferably, the component unit of terephthalic acid is 55/45 to 100/0, and more preferably 60/40 to 90/10. When the molar ratio of isophthalic acid component unit / aromatic dicarboxylic acid (preferably terephthalic acid) component unit other than isophthalic acid is within the above range, the polyamide resin (B) becomes amorphous and at the same time as the polyamide resin (A) Since the compatibility is also good, it is easy to increase the impact resistance and weld strength of the resin composition.

(ジアミン成分単位(b2))
ジアミン成分単位(b2)は、炭素原子数4〜15の脂肪族ジアミン成分単位を含む。
(Diamine component unit (b2))
The diamine component unit (b2) contains an aliphatic diamine component unit having 4 to 15 carbon atoms.

脂肪族ジアミンの炭素原子数は、4〜9であることがより好ましい。脂肪族ジアミンの例には、前述の直鎖状アルキレンジアミンや分岐状アルキレンジアミンと同様のものが含まれ、好ましくは1,6−ヘキサンジアミンである。   It is more preferable that the carbon atom number of aliphatic diamine is 4-9. Examples of aliphatic diamines include those similar to the above-mentioned linear alkylene diamines and branched alkylene diamines, preferably 1,6-hexane diamine.

脂肪族ジアミン成分単位の含有量は、ジアミン成分単位(b2)の合計(総モル数)に対して50〜100モル%であることが好ましく、60〜100モル%であることがより好ましい。   The content of the aliphatic diamine component unit is preferably 50 to 100 mol%, and more preferably 60 to 100 mol% with respect to the total (total number of moles) of the diamine component unit (b2).

ジアミン成分単位(b2)は、本発明の効果を損なわない範囲で、脂肪族ジアミン成分単位以外の他のジアミン成分単位をさらに含んでもよい。他のジアミン成分の例には、脂環族ジアミン及び芳香族ジアミンが含まれる。脂環族ジアミン及び芳香族ジアミンは、前述の脂環族ジアミン及び芳香族ジアミンとそれぞれ同様でありうる。他のジアミン成分単位の含有量は、50モル%以下であり、好ましくは40モル%以下でありうる。   The diamine component unit (b2) may further contain other diamine component units other than the aliphatic diamine component units, as long as the effects of the present invention are not impaired. Examples of other diamine components include alicyclic diamines and aromatic diamines. Alicyclic diamines and aromatic diamines may be similar to the aforementioned alicyclic diamines and aromatic diamines, respectively. The content of other diamine component units may be 50 mol% or less, preferably 40 mol% or less.

ポリアミド樹脂(B)の具体例には、イソフタル酸/テレフタル酸/1,6−ヘキサンジアミン/ビス(3−メチル−4−アミノシクロヘキシル)メタンの重縮合体、イソフタル酸/ビス(3−メチル−4−アミノシクロヘキシル)メタン/ω−ラウロラクタムの重縮合体、イソフタル酸/テレフタル酸/1,6−ヘキサンジアミンの重縮合体、イソフタル酸/2,2,4−トリメチル−1,6−ヘキサンジアミン/2,4,4−トリメチル−1,6−ヘキサンジアミンの重縮合体、イソフタル酸/テレフタル酸/2,2,4−トリメチル−1,6−ヘキサンジアミン/2,4,4−トリメチル−1,6−ヘキサンジアミンの重縮合体、イソフタル酸/ビス(3−メチル−4−アミノシクロヘキシル)メタン/ω−ラウロラクタムの重縮合体、及びイソフタル酸/テレフタル酸/その他ジアミン成分の重縮合体等が含まれる。中でも、イソフタル酸/テレフタル酸/1,6−ヘキサンジアミンの重縮合体が好ましい。ポリアミド樹脂(B)は、1種のみ含まれてもよいし、2種以上含まれてもよい。   Specific examples of the polyamide resin (B) include a polycondensate of isophthalic acid / terephthalic acid / 1,6-hexanediamine / bis (3-methyl-4-aminocyclohexyl) methane, isophthalic acid / bis (3-methyl- 4-aminocyclohexyl) methane / ω-laurolactam polycondensate, isophthalic acid / terephthalic acid / 1,6-hexanediamine polycondensate, isophthalic acid / 2,2,4-trimethyl-1,6-hexanediamine Polycondensate of / 2,4,4-trimethyl-1,6-hexanediamine, isophthalic acid / terephthalic acid / 2,2,4-trimethyl-1,6-hexanediamine / 2,4,4-trimethyl-1 , A polycondensate of 6-hexanediamine, a polycondensate of isophthalic acid / bis (3-methyl-4-aminocyclohexyl) methane / ω-laurolactam, And polycondensates of isophthalic acid / terephthalic acid / other diamine components and the like. Among them, a polycondensate of isophthalic acid / terephthalic acid / 1,6-hexanediamine is preferable. The polyamide resin (B) may be contained alone or in combination of two or more.

ポリアミド樹脂(B)の、温度25℃、96.5%硫酸中で測定される極限粘度[η]は、0.6〜1.6dl/gであることが好ましく、0.65〜1.2dl/gであることがより好ましい。   The intrinsic viscosity [η] of the polyamide resin (B) measured in a 96.5% sulfuric acid at a temperature of 25 ° C. is preferably 0.6 to 1.6 dl / g, and 0.65 to 1.2 dl. It is more preferable that it is / g.

ポリアミド樹脂(B)は、前述と同様の方法で製造することができる。   The polyamide resin (B) can be produced by the same method as described above.

ポリアミド樹脂(B)の含有量は、(A)成分、(B)成分、(C)成分及び(D)成分の合計に対して0.1〜20質量%であることが好ましく、0.5〜15質量%であることがより好ましい。ポリアミド樹脂(B)の含有量が0.1質量%以上であると、成形物に高い耐衝撃性やウェルド強度を付与しうる。ポリアミド樹脂(B)の含有量が20質量%以下であると、成形物の強度(剛性)の顕著な低下が生じにくい。   The content of the polyamide resin (B) is preferably 0.1 to 20% by mass with respect to the total of the components (A), (B), (C) and (D). It is more preferable that it is -15 mass%. When the content of the polyamide resin (B) is 0.1% by mass or more, high impact resistance and weld strength can be imparted to the molded product. When the content of the polyamide resin (B) is 20% by mass or less, a remarkable decrease in the strength (rigidity) of the molded product hardly occurs.

ポリアミド樹脂(A)とポリアミド樹脂(B)の含有質量比B/(A+B)は、0.05〜0.35であることが好ましく、0.07〜0.2であることがより好ましい。B/(A+B)が0.05以上であると、樹脂組成物に十分な耐衝撃性やウェルド強度を付与しやすい。B/(A+B)が0.35以下であると、成形物に十分な耐熱性や剛性を付与しやすい。   The content mass ratio B / (A + B) of the polyamide resin (A) to the polyamide resin (B) is preferably 0.05 to 0.35, and more preferably 0.07 to 0.2. When B / (A + B) is 0.05 or more, it is easy to impart sufficient impact resistance and weld strength to the resin composition. When B / (A + B) is 0.35 or less, it is easy to impart sufficient heat resistance and rigidity to the molded product.

1−3.繊維状充填材(C)
繊維状充填材(C)は、成形物に強度(剛性)を付与しうる。繊維状充填材(C)の例には、ガラス繊維、ワラストナイト、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー、硫酸マグネシウムウィスカー、セピオライト、ゾノトライト、酸化亜鉛ウィスカー、ミルドファイバー、カットファイバー、全芳香族ポリアミド繊維(例えば、ポリパラフェニレンテレフタルアミド繊維、ポリメタフェニレンテレフタルアミド繊維、ポリパラフェニレンイソフタルアミド繊維、ポリメタフェニレンイソフタルアミド繊維及びジアミノジフェニルエーテルとテレフタル酸又はイソフタル酸との縮合物から得られる繊維等)、ホウ素繊維及び液晶ポリエステル繊維、炭素繊維等が含まれる。これらの中でも、成形物の強度(剛性)や耐熱性を高めやすいことから、ガラス繊維、ワラストナイトや炭素繊維が好ましい。繊維状充填材(C)は、1種のみ含まれてもよいし、2種以上が含まれてもよい。
1-3. Fibrous filler (C)
The fibrous filler (C) can impart strength (rigidity) to the molded product. Examples of fibrous fillers (C) include glass fibers, wollastonite, potassium titanate whiskers, calcium carbonate whiskers, aluminum borate whiskers, magnesium sulfate whiskers, sepiolite, sonotolite, zinc oxide whiskers, milled fibers, cut fibers And wholly aromatic polyamide fibers (eg, polyparaphenylene terephthalamide fibers, polymetaphenylene terephthalamide fibers, polyparaphenylene isophthalamide fibers, polymetaphenylene isophthalamide fibers and condensation products of diaminodiphenyl ether and terephthalic acid or isophthalic acid) The resulting fibers, etc.), boron fibers, liquid crystal polyester fibers, carbon fibers and the like are included. Among these, glass fiber, wollastonite and carbon fiber are preferable because the strength (rigidity) and heat resistance of the molded product can be easily improved. The fibrous filler (C) may be contained alone or in combination of two or more.

繊維状充填材(C)の平均繊維長は、成形性を損なうことなく、十分な強度の成形物を得る観点から、1μm〜20mmであることが好ましく、5μm〜10mmであることがより好ましく、10μm〜7mmであることがさらに好ましい。繊維状充填材(C)のアスペクト比は、5〜2000であることが好ましく、30〜1000であることがより好ましい。   The average fiber length of the fibrous filler (C) is preferably 1 μm to 20 mm, more preferably 5 μm to 10 mm, from the viewpoint of obtaining a molded product with sufficient strength without impairing moldability. More preferably, it is 10 μm to 7 mm. The aspect ratio of the fibrous filler (C) is preferably 5 to 2000, and more preferably 30 to 1000.

繊維状強化材(C)の平均繊維長と平均繊維径は、以下の方法により測定することができる。
1)樹脂組成物又は成形物を、ヘキサフルオロイソプロパノール/クロロホルム溶液(0.1/0.9体積%)に溶解させた後、濾過して得られる濾過物を採取する。
2)前記1)で得られた濾過物を水に分散させ、光学顕微鏡(倍率:50倍)で任意の300本それぞれの繊維長(Li)と繊維径(Di)を計測する。繊維長がLiである繊維の本数をqiとし、次式に基づいて重量平均長さ(Lw)を算出し、これを繊維状強化材の平均繊維長とする。
重量平均長さ(Lw)=(Σqi×Li)/(Σqi×Li)
同様に、繊維径がDiである繊維の本数をriとし、次式に基づいて重量平均径(Dw)を算出し、これを繊維状強化材の平均繊維径とする。
重量平均径(Dw)=(Σri×Di)/(Σri×Di)
The average fiber length and the average fiber diameter of the fibrous reinforcing material (C) can be measured by the following method.
1) The resin composition or the molded product is dissolved in a hexafluoroisopropanol / chloroform solution (0.1 / 0.9% by volume) and then filtered to collect a filtrate obtained.
2) The filtrate obtained in the above 1) is dispersed in water, and the fiber length (Li) and the fiber diameter (Di) of each 300 arbitrary fibers are measured with an optical microscope (magnification: 50 times). Assuming that the number of fibers whose fiber length is Li is qi, the weight average length (Lw) is calculated based on the following equation, and this is used as the average fiber length of the fibrous reinforcement.
Weight average length (Lw) = (Σqi × Li 2 ) / (Σqi × Li)
Similarly, assuming the number of fibers having a fiber diameter Di as ri, the weight average diameter (Dw) is calculated based on the following equation, and this is used as the average fiber diameter of the fibrous reinforcing material.
Weight average diameter (Dw) = (Σri × Di 2 ) / (Σri × Di)

樹脂組成物中又は成形物中の繊維状強化材(C)の平均繊維長や平均繊維径は、通常、溶融混練前の繊維状強化材(C)の平均繊維長や平均繊維径とほぼ同程度である。   The average fiber length and the average fiber diameter of the fibrous reinforcement (C) in the resin composition or in the molded product are generally substantially the same as the average fiber length and the average fiber diameter of the fibrous reinforcement (C) before melt-kneading It is an extent.

繊維状充填材(C)は、ポリアミド樹脂との接着性が改善され、得られるポリアミド樹脂組成物の機械的特性が大幅に向上することから、表面処理が施されていることが好ましい。該表面処理における表面処理剤の例には、シラン系カップリング剤、チタン系カップリング剤及びアルミネート系カップリング剤等のカップリング剤や、集束剤が含まれる。   The fibrous filler (C) is preferably surface-treated because the adhesion with the polyamide resin is improved and the mechanical properties of the resulting polyamide resin composition are significantly improved. Examples of surface treatment agents in the surface treatment include coupling agents such as silane coupling agents, titanium coupling agents and aluminate coupling agents, and sizing agents.

カップリング剤の例には、アミノシラン、エポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン及びビニルトリメトキシシランが含まれる。集束剤の例には、エポキシ系化合物、ウレタン系化合物、カルボン酸系化合物、ウレタン/マレイン酸変性化合物及びウレタン/アミン変性系化合物等が含まれる。これらの表面処理剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。特に、カップリング剤と集束剤とを併用すると、繊維状充填材(C)とポリアミド樹脂との接着性が一層改善され、得られる樹脂組成物の機械的特性がより向上する。   Examples of coupling agents include aminosilanes, epoxysilanes, methyltrimethoxysilane, methyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane and vinyltrimethoxysilane. Examples of the sizing agent include epoxy compounds, urethane compounds, carboxylic acid compounds, urethane / maleic acid modified compounds, urethane / amine modified compounds and the like. One of these surface treatment agents may be used alone, or two or more thereof may be used in combination. In particular, when the coupling agent and the sizing agent are used in combination, the adhesion between the fibrous filler (C) and the polyamide resin is further improved, and the mechanical properties of the resulting resin composition are further improved.

繊維状充填材(C)の含有量は、(A)成分、(B)成分、(C)成分及び(D)成分の合計に対して30〜70質量%であることが好ましく、35〜60質量%であることがより好ましく、40〜60質量%であることが更に好ましい。繊維状充填材(C)の含有量が30質量%以上であると、樹脂組成物に高い剛性を付与しやすい。繊維状充填材(C)の含有量が70質量%以下であると、成形時の過度な粘度上昇や、成形物の耐衝撃性やウェルド強度の顕著な低下が生じにくい。   The content of the fibrous filler (C) is preferably 30 to 70% by mass with respect to the total of the components (A), (B), (C) and (D), and 35 to 60. It is more preferable that it is mass%, and it is still more preferable that it is 40-60 mass%. When the content of the fibrous filler (C) is 30% by mass or more, high rigidity can be easily imparted to the resin composition. When the content of the fibrous filler (C) is 70% by mass or less, it is difficult to cause an excessive increase in viscosity at the time of molding, a remarkable decrease in the impact resistance of the molded product and the weld strength.

1−4.耐熱安定剤(D)
耐熱安定剤(D)は、銅系安定剤(D−1)と有機熱安定剤(D−2)の少なくとも一方を含むことが好ましい。
1-4. Heat-resistant stabilizer (D)
The heat resistant stabilizer (D) preferably contains at least one of a copper stabilizer (D-1) and an organic heat stabilizer (D-2).

1−4−1.銅系安定剤(D−1)
銅系安定剤(D−1)は、(i)ハロゲンと元素周期律表の1族又は2族金属元素との塩(ハロゲン金属塩)、(ii)銅化合物、及び(iii)高級脂肪酸金属塩の混合物を含む。
1-4-1. Copper-based stabilizer (D-1)
The copper-based stabilizer (D-1) is a salt of (i) a halogen and a metal of Group 1 or 2 of the periodic table (halogen metal salt), (ii) a copper compound, and (iii) a higher fatty acid metal Contains a mixture of salts.

(i)ハロゲン金属塩の例には、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム及び塩化ナトリウムが含まれる。中でも、ヨウ化カリウム及び臭化カリウムが好ましい。ハロゲン金属塩は、1種類のみ含まれてもよいし、2種類以上が含まれてもよい。   Examples of (i) halogen metal salts include potassium iodide, potassium bromide, potassium chloride, sodium iodide and sodium chloride. Among them, potassium iodide and potassium bromide are preferred. The halogen metal salt may be contained alone or in combination of two or more.

(ii)銅化合物の例には、銅のハロゲン化物;銅の硫酸塩、酢酸塩、プロピオオン酸塩、安息香酸塩、アジピン酸塩、テレフタル酸塩、サルチル酸塩、ニコチン酸塩、ステアリン酸塩;銅のキレート化合物(銅とエチレンジアミン又はエチレンジアミン四酢酸等との化合物)が含まれる。中でも、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅、及び酢酸銅が好ましい。銅化合物は、1種類のみ含まれてもよいし、2種類以上が含まれてもよい。   (Ii) Examples of copper compounds include copper halides; copper sulfates, acetates, propionates, benzoates, adipates, terephthalates, salicylates, nicotinates and stearates. And copper chelate compounds (compounds of copper and ethylenediamine or ethylenediaminetetraacetic acid etc.) are included. Among them, copper iodide, cuprous bromide, cupric bromide, cuprous chloride and copper acetate are preferred. A copper compound may be contained only by 1 type, and 2 or more types may be contained.

(i)ハロゲン金属塩と(ii)銅化合物との含有質量比は、成形物の耐熱性や製造時の腐食性を改善しやすくする観点から、ハロゲンと銅とのモル比が、0.1/1〜200/1、好ましくは0.5/1〜100/1、より好ましくは2/1〜40/1となるように調整されうる。   From the viewpoint of easily improving the heat resistance of the molded product and the corrosion resistance at the time of production, the molar ratio of halogen to copper is 0.1 It may be adjusted to be 1/1 to 200/1, preferably 0.5 / 1 to 100/1, more preferably 2/1 to 40/1.

(iii)高級脂肪酸金属塩の例には、高級飽和脂肪酸金属塩及び高級不飽和脂肪酸金属塩が含まれる。   (Iii) Examples of higher fatty acid metal salts include higher saturated fatty acid metal salts and higher unsaturated fatty acid metal salts.

高級飽和脂肪酸金属塩は、炭素原子数6〜22の飽和脂肪酸と、元素周期律表の1、2、3族元素、亜鉛、及びアルミニウム等の金属元素(M1)との金属塩でることが好ましい。そのような高級飽和脂肪酸金属塩は、下記式(1)で示される。

Figure 0006502755
(式(1)中、金属元素(M1)は、元素周期律表の1、2、3族元素、亜鉛又はアルミニウムであり、nは、8〜30でありうる) The higher saturated fatty acid metal salt is preferably a metal salt of a saturated fatty acid having 6 to 22 carbon atoms and a metal element (M1) such as an element of Groups 1, 2 and 3 of the Periodic Table of the Elements, zinc, and aluminum. . Such higher saturated fatty acid metal salt is represented by the following formula (1).
Figure 0006502755
(In the formula (1), the metal element (M1) is an element of Groups 1, 2 and 3 of the Periodic Table of the Elements, zinc or aluminum, and n may be 8 to 30)

高級飽和脂肪酸金属塩の例には、カプリン酸、ウラデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸のリチウム塩、ナトリウム塩、マグネシウム塩、カルシウム塩、亜鉛塩及びアルミニウム塩が含まれる。中でも、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、エルカ酸、ブラシジン酸、ソルビル酸、リノール酸、リノレン酸、アラキドン酸、ステアロール酸、2−ヘキサデセン酸、7−ヘキサデセン酸、9−ヘキサデセン酸、ガドレイン酸、ガドエライジン酸、11−エイコセン酸のリチウム塩、ナトリウム塩、マグネシウム塩、カルシウム塩、亜鉛塩及びアルミニウム塩が好ましい。   Examples of higher saturated fatty acid metal salts include capric acid, uradecyl acid, lauric acid, tridecyl acid, myristic acid, pentadecyl acid, palmitic acid, heptadecyl acid, stearic acid, nonadecanoic acid, aracic acid, behenic acid, lignoceric acid, and serotin. Included are the acids, heptacosanoic acid, montanic acid, melissic acid, lithium salts, sodium salts, magnesium salts, calcium salts, zinc salts and aluminum salts of lactose. Among them, undecylenic acid, oleic acid, elaidic acid, celylic acid, erucic acid, brucidic acid, sorbic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid, stearyl acid, 2-hexadecenoic acid, 7-hexadecenoic acid, 9-hexadecenoic acid Gadeuric acid, gadoeridic acid, lithium salts, sodium salts, magnesium salts, calcium salts, zinc salts and aluminum salts of 11-eicosenoic acid are preferred.

高級不飽和脂肪酸金属塩は、炭素原子数6〜22の不飽和脂肪酸と、元素周期律表の1、2、3族元素、亜鉛、及びアルミニウム等の金属元素(M1)との金属塩でることが好ましい。   The higher unsaturated fatty acid metal salt is a metal salt of an unsaturated fatty acid having 6 to 22 carbon atoms and a metal element (M1) such as an element of Groups 1, 2 and 3 of the Periodic Table of the Elements, zinc, and aluminum Is preferred.

銅系安定剤(D−1)の含有量は、ポリアミド樹脂(A)とポリアミド樹脂(B)の合計100質量部に対して、0.01〜3質量部であることが好ましく、0.01〜2.0質量部であることがより好ましく、0.025〜1.5質量部であることがさらに好ましく、0.05〜1.0質量部であることが最も好ましい。   The content of the copper stabilizer (D-1) is preferably 0.01 to 3 parts by mass with respect to 100 parts by mass in total of the polyamide resin (A) and the polyamide resin (B), and 0.01 The amount is more preferably about 2.0 parts by mass, further preferably 0.025 to 1.5 parts by mass, and most preferably 0.05 to 1.0 parts by mass.

1−4−2.有機熱安定剤(D−2)
有機熱安定剤(D−2)は、ヒンダードフェノール化合物、ヒンダードアミン化合物、ホスファイト類、有機リン化合物、及びビスフェノール型エポキシ樹脂から選ばれる少なくとも1種であることが好ましい。
1-4-2. Organic heat stabilizer (D-2)
The organic heat stabilizer (D-2) is preferably at least one selected from hindered phenol compounds, hindered amine compounds, phosphites, organic phosphorus compounds, and bisphenol type epoxy resins.

ヒンダードフェノール化合物の例には、N,N’-ヘキサメチレンビス-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド、ビス(3,3-ビス(4’-ヒドロキシ-3’-tert-ブチルフェニル)ブタン酸)グリコールエステル、2,1’-チオエチルビス-(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、及びトリエチレングリコール-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート等が含まれる。   Examples of hindered phenol compounds include N, N'-hexamethylenebis-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide, bis (3,3-bis (4'-) Hydroxy-3'-tert-butylphenyl) butanoic acid) glycol ester, 2,1'-thioethyl bis- (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 4,4'-butylidene bis (3-methyl-6-tert-butylphenol), and triethylene glycol-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate and the like.

ヒンダードアミン化合物の例には、フェニレンジアミンのアセトン付加物(Naugard A)、フェニレンジアミンのリノレン付加物、Naugard 445、N,N’-ジナフチル-p-フェニレンジアミン、N-フェニル-N’-シクロヘキシル-p-フェニレンジアミン、及びクラリアント社製Nylostab S−EED[N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジニル)−1,3−ベンゼンジカルボキサミド]等が含まれる。   Examples of hindered amine compounds include acetone adduct of phenylenediamine (Naugard A), linolenic adduct of phenylenediamine, Naugard 445, N, N'-dinaphthyl-p-phenylenediamine, N-phenyl-N'-cyclohexyl-p Phenylenediamine, and Nylostab S-EED [N, N'-bis (2,2,6,6-tetramethyl-4-piperidinyl) -1,3-benzenedicarboxamide] manufactured by Clariant Co., etc. are included.

ホスファイト類及び有機リン化合物の例には、トリフェニルホスファイト、ジフェニルアルキルホスファイト、フェニルジアルキルホスファイト、トリス(ノニルフェニル)ホスファイト、トリラウリルホスファイト、トリオクタデシルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ジイソデシルオキシペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチル-6-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリス(tert-ブチルフェニル))ペンタエリスリトールジホスファイト、トリステアリルソルビトールトリホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、6-イソオクチルオキシ-2,4,8,10-テトラ-tert-ブチル-12H-ジベンズ-[d,g]-1,3,2-ジオキサホスホシン、6-フルオロ-2,4,8,10-テトラ-tert-ブチル-12-メチルジベンズ[d,g]-1,3,2-ジオキサホスホシン、ビス(2,4-ジ-tert-ブチル-6-メチルフェニル)メチルホスファイト及びビス(2,4-ジ-tert-ブチル-6-メチルフェニル)エチルホスファイト等が含まれ、好ましくはトリス[2-tert-ブチル-4-チオ-(2’-メチル-4’-ヒドロキシ-5’-tertブチル)フェニル-5-メチル]フェニル ホスファイト及びトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト(バーゼル、Clariant社の市販品、Hostanox(登録商標)PAR 24)である。   Examples of phosphites and organophosphorus compounds include triphenyl phosphite, diphenyl alkyl phosphite, phenyldialkyl phosphite, tris (nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, and distearyl pentaerythritol dichloride. Phosphite, tris (2,4-di-tert-butylphenyl) phosphite, diisodecylpentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6 -Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, diisodecyloxypentaerythritol diphosphite, bis (2,4-di-tert-butyl-6-methylphenyl) pentaerythritol diphosphite, bis (2,4 6-tris (tert-butylphenyl)) pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylene diphosphonite, 6-isooctyl Oxy-2,4,8,10-tetra-tert-butyl-12H-dibenz- [d, g] -1,3,2-dioxaphosphocin, 6-fluoro-2,4,8,10-tetra -tert-Butyl-12-methyldibenz [d, g] -1,3,2-dioxaphosphocin, bis (2,4-di-tert-butyl-6-methylphenyl) methyl phosphite and bis (2, 4-di-tert-butyl-6-methylphenyl) ethyl phosphite and the like are preferably included, preferably tris [2-tert-butyl-4-thio- (2′-methyl-4′-hydroxy-5′-tert] Butyl) phenyl-5-methyl] phenyl phosphite and tris (2,4- -tert- butylphenyl) phosphite (Basel, Clariant Corporation of commercial products, Hostanox (TM) is a PAR 24).

ビスフェノール型エポキシ樹脂の例には、油化シェルエポキシ(株)社製EPIKOTE等が含まれる。   Examples of the bisphenol type epoxy resin include EPIKOTE manufactured by Yuka Shell Epoxy Co., Ltd., and the like.

有機熱安定剤(D−2)は、前述の通り、ヒンダードフェノール化合物、ヒンダードアミン化合物、ホスファイト類、有機リン化合物、及びビスフェノール型エポキシ樹脂から選ばれる2種類以上の混合物であってもよい。そのような混合物の例には、BASF社製Irgatec NC66等が含まれる。   As described above, the organic heat stabilizer (D-2) may be a mixture of two or more types selected from hindered phenol compounds, hindered amine compounds, phosphites, organic phosphorus compounds, and bisphenol-type epoxy resins. Examples of such mixtures include BASF's Irgatec NC66 etc.

有機熱安定剤(D−2)の含有量は、金型汚染性、成形品表面の銀状発生、靱性の観点から調整されうるが、例えばポリアミド樹脂(A)とポリアミド樹脂(B)の合計100質量部に対して、0.01〜3質量部であることが好ましく、0.01〜2質量部であることがより好ましく、0.025〜2質量部であることがさらに好ましく、0.05〜1.5質量部であることが最も好ましい。   The content of the organic heat stabilizer (D-2) can be adjusted from the viewpoint of mold staining, formation of silver on the surface of molded articles, and toughness. For example, the total of polyamide resin (A) and polyamide resin (B) It is preferable that it is 0.01-3 mass parts with respect to 100 mass parts, It is more preferable that it is 0.01-2 mass parts, It is still more preferable that it is 0.025-2 mass parts, 0. Most preferably, it is from 0.5 to 1.5 parts by mass.

耐熱安定剤(D)の含有量は、(A)成分、(B)成分、(C)成分及び(D)成分の合計に対して0.01〜3.0質量%であることが好ましく、0.1〜2.0質量%であることがより好ましい。耐熱安定剤(D)の含有量が0.01質量%以上であると、成形物に高い耐熱性を付与しやすい。耐熱安定剤(D)の含有量が3.0質量%以下であると、成形物の強度(剛性)が損なわれにくい。   The content of the heat resistant stabilizer (D) is preferably 0.01 to 3.0% by mass with respect to the total of the components (A), (B), (C) and (D). It is more preferable that it is 0.1-2.0 mass%. It is easy to provide high heat resistance to a molded article as content of a heat-resistant stabilizer (D) is 0.01 mass% or more. The intensity | strength (rigidity) of a molded article is hard to be impaired as content of a heat-resistant stabilizer (D) is 3.0 mass% or less.

銅系安定剤(D−1)と有機熱安定剤(D−2)の含有質量比は、例えば10/90〜100/0であり、50/50〜90/10であることが好ましい。銅系安定剤(D−1)の比率が多いと、150℃を超える温度域で良好な耐熱老化性を示しやすく;有機熱安定剤(D−2)の比率が多いと、100〜150℃の温度域で良好な耐熱老化性を示しやすい。   The mass ratio of the copper stabilizer (D-1) to the organic heat stabilizer (D-2) is, for example, 10/90 to 100/0, and preferably 50/50 to 90/10. When the proportion of the copper-based stabilizer (D-1) is large, it tends to exhibit good heat aging resistance in a temperature range exceeding 150 ° C .; when the proportion of the organic heat stabilizer (D-2) is large, 100 to 150 ° C. Tends to show good heat aging resistance in the temperature range of

1−5.その他の成分
本発明のエンジン支持部材用樹脂組成物は、本発明の効果を損なわない範囲で、その他の成分をさらに含有してもよい。その他の成分の例には、酸化防止剤(フェノール類、アミン類、イオウ類及びリン類等)、繊維状以外の無機充填材(クレー、シリカ、アルミナ、タルク、カオリン、石英、マイカ及びグラファイト等)、光安定剤(ベンゾトリアゾール類、トリアジン類、ベンゾフェノン類、ベンゾエート類、ヒンダードアミン類及びオギザニリド類等)、他の重合体(ポリオレフィン類、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体等のオレフィン共重合体、プロピレン・1-ブテン共重合体等のオレフィン共重合体、ポリスチレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリフェニレンオキシド、フッ素樹脂、シリコーン樹脂及びLCP等)、難燃剤(臭素系、塩素系、リン系、アンチモン系および無機系等)、離型剤、流動性改良剤、加水分解抑制剤、蛍光増白剤、可塑剤、増粘剤、帯電防止剤、顔料、結晶核剤等が含まれる。中でも、繊維状以外の無機充填材、流動性改良剤及び加水分解抑制剤等が好ましい。
1-5. Other Components The resin composition for an engine support member of the present invention may further contain other components as long as the effects of the present invention are not impaired. Examples of other components include antioxidants (phenols, amines, sulfurs and phosphoruss, etc.), non-fibrous inorganic fillers (clay, silica, alumina, talc, kaolin, quartz, mica, graphite, etc. ), Photostabilizers (benzotriazoles, triazines, benzophenones, benzoates, hindered amines and olgenanilides, etc.), other polymers (polyolefins, ethylene / propylene copolymer, ethylene / 1-butene copolymer) And olefin copolymers such as propylene / 1-butene copolymer, polystyrene, polyamide, polycarbonate, polyacetal, polysulfone, polysulfone, polyphenylene oxide, fluorocarbon resin, silicone resin and LCP etc., flame retardant (bromine) , Chlorine, Phosphorus, Antimony and Inorganic And the like), mold release agents, fluidity improvers, hydrolysis inhibitors, optical brighteners, plasticizers, thickeners, antistatic agents, pigments, nucleating agents, and the like. Among them, inorganic fillers other than fibrous, flowability improvers, hydrolysis inhibitors and the like are preferable.

流動性改良剤は、成形時の樹脂組成物の流動性を高める目的で添加されうる。特に本発明では、剛性や耐熱性を高めるために、繊維状充填材(C)を比較的多く含むことがある。そのような場合でも、成形時の樹脂組成物の過剰な粘度上昇を抑制でき、成形性や離型性の低下を抑制しうる。そのような流動性改良剤の例には、脂肪族金属塩が含まれる。   A flowability improver may be added for the purpose of enhancing the flowability of the resin composition at the time of molding. In the present invention, in particular, a fibrous filler (C) may be contained in a relatively large amount in order to enhance the rigidity and the heat resistance. Even in such a case, an excessive increase in viscosity of the resin composition at the time of molding can be suppressed, and a decrease in moldability and releasability can be suppressed. Examples of such flow improvers include aliphatic metal salts.

脂肪酸金属塩は、公知の化合物であってよい。脂肪酸金属塩を構成する脂肪酸の例には、モンタン酸、ベヘン酸、及びステアリン酸等が含まれる。脂肪酸金属塩を構成する金属塩の例には、リチウム塩、カルシウム塩、バリウム塩、亜鉛塩、及びアルミニウム塩等が含まれる。脂肪酸金属塩の好ましい例には、成形時の流動性を高める観点から、モンタン酸又はベヘン酸の、リチウム塩、カルシウム塩、バリウム塩、亜鉛塩、及びアルミニウム塩が含まれ、より好ましくはモンタン酸カルシウムが含まれる。   The fatty acid metal salt may be a known compound. Examples of fatty acids constituting fatty acid metal salts include montanic acid, behenic acid, and stearic acid. Examples of metal salts constituting fatty acid metal salts include lithium salts, calcium salts, barium salts, zinc salts, aluminum salts and the like. Preferred examples of fatty acid metal salts include lithium salts, calcium salts, barium salts, zinc salts, and aluminum salts of montanic acid or behenic acid from the viewpoint of enhancing fluidity during molding, and more preferably montanic acid. Contains calcium.

加水分解抑制剤は、例えば樹脂組成物中のポリアミド樹脂の加水分解を抑制し、銅系安定剤(D−1)の活性低下を抑制する目的で添加されうる。そのような加水分解抑制剤の例には、カルボジイミド基、イミノ基及びアミノ基からなる群より選ばれる1種類以上の官能基を有する化合物が含まれる。   The hydrolysis inhibitor can be added, for example, for the purpose of suppressing the hydrolysis of the polyamide resin in the resin composition and suppressing the decrease in the activity of the copper stabilizer (D-1). Examples of such hydrolysis inhibitors include compounds having one or more functional groups selected from the group consisting of carbodiimide groups, imino groups and amino groups.

カルボジイミド基を含有する化合物(カルボジイミド基含有化合物)は、下記式(2)で示される構造を有する化合物であることがより好ましい。

Figure 0006502755
The compound having a carbodiimide group (carbodiimide group-containing compound) is more preferably a compound having a structure represented by the following formula (2).
Figure 0006502755

式(2)のR1は、2価の有機基を示す。2価の有機基は、脂肪族基(好ましくはアルキレン基)又は芳香族基(好ましくはアリーレン基)であり、好ましくは脂肪族基(好ましくはアルキレン基)である。   R1 of Formula (2) shows a divalent organic group. The divalent organic group is an aliphatic group (preferably an alkylene group) or an aromatic group (preferably an arylene group), preferably an aliphatic group (preferably an alkylene group).

式(2)のnは、1以上の整数であり、好ましくは2〜15の整数、より好ましくは3〜13の整数、更に好ましくは3〜11の整数である。   N of Formula (2) is an integer greater than or equal to 1, Preferably it is an integer of 2-15, More preferably, it is an integer of 3-13, More preferably, it is an integer of 3-11.

カルボジイミド基含有化合物のゲルパーミエーションクロマトグラフィー(GPC)により求められるポリスチレン換算の数平均分子量(Mn)は、通常、400〜500,000であることが好ましく、1,000〜10,000であることがより好ましく、2,000〜4,000であることが更に好ましい。数平均分子量(Mn)がこの範囲にあると、耐加水分解性や銅系安定剤の活性が好ましく向上しうる。   The polystyrene equivalent number average molecular weight (Mn) determined by gel permeation chromatography (GPC) of the carbodiimide group-containing compound is usually preferably 400 to 500,000, and 1,000 to 10,000. Is more preferable, and 2,000 to 4,000 is more preferable. When the number average molecular weight (Mn) is in this range, the hydrolysis resistance and the activity of the copper-based stabilizer can be preferably improved.

カルボジイミド基含有化合物は、一種類を単独で用いてもよいし、複数種類を組み合わせて用いてもよい。   A carbodiimide group containing compound may be used individually by 1 type, and may be used in combination of multiple types.

カルボジイミド基含有化合物は、合成物であってもよいし、市販品であってもよい。カルボジイミド基含有化合物の合成法は、特に限定されないが、例えば有機ポリイソシアネ−トを、イソシアネ−ト基のカルボジイミド化反応を促進する触媒の存在下で反応させることにより合成できる。市販のカルボジイミド基含有化合物としては、日清紡績株式会社製カルボジライトHMV−8CAやLA1(いずれも商品名)等が挙げられる。   The carbodiimide group-containing compound may be a synthetic product or a commercially available product. Although the synthesis method of the carbodiimide group-containing compound is not particularly limited, it can be synthesized, for example, by reacting an organic polyisocyanate in the presence of a catalyst which promotes the carbodiimidization reaction of an isocyanate group. Examples of commercially available carbodiimide group-containing compounds include Carbodilite HMV-8CA and LA1 (all trade names) manufactured by Nisshinbo Co., Ltd., and the like.

イミノ基又はアミノ基を含有する化合物は、1分子内に2つ以上のイミノ基又はアミノ基を有する脂肪族炭化水素化合物であることが好ましい。イミノ基又はアミノ基を含有する化合物の例には、1,4−ジアミノブタン、ジエチレントリアミン等の直鎖ポリアミン;1,4,8,11−テトラアザシクロテトラデカン、1,4,7,10,13,16−ヘキサアザシクロオクタデカン等の環状ポリアミン;ポリ低級アルキレンイミン;ポリアリルアミン等が含まれる。中でも、ポリ低級アルキレンイミンやポリアリルアミンが好ましい。低級アルキレンとは、2〜4個の炭素原子を有するアルキレン基を意味する。   The compound containing an imino group or an amino group is preferably an aliphatic hydrocarbon compound having two or more imino groups or amino groups in one molecule. Examples of compounds containing an imino group or an amino group include linear polyamines such as 1,4-diaminobutane and diethylenetriamine; 1,4,8,11-tetraazacyclotetradecane, 1,4,7,10,13 And cyclic polyamines such as 16-hexaazacyclooctadecane; poly (lower alkylenimine); polyallylamine and the like. Among these, poly (lower alkylene imine) and poly (allylamine) are preferable. Lower alkylene means alkylene groups having 2 to 4 carbon atoms.

ポリ低級アルキレンイミンは、下記式(3)で表される構造を有するポリエチレンイミンであることが好ましい。

Figure 0006502755
(式(3)中、nは、2以上の整数である) The poly (lower alkyleneimine) is preferably a polyethyleneimine having a structure represented by the following formula (3).
Figure 0006502755
(In the formula (3), n is an integer of 2 or more)

ポリ低級アルキレンイミンの数平均分子量は、特に限定されないが、200〜80,000であることが好ましい。ポリ低級アルキレンイミンは、分岐鎖状又は直鎖状でありうる。ポリエチレンイミンは市販品であってもよく、その例には日本触媒社製「エポミンSP−018」、「エポミンSP−200」等が含まれる。   The number average molecular weight of the poly (lower alkylene) imine is not particularly limited, but is preferably 200 to 80,000. The poly (lower alkylene) imine may be branched or linear. Polyethyleneimine may be a commercially available product, and examples thereof include “Epomin SP-018”, “Epomin SP-200” and the like manufactured by Nippon Shokubai Co., Ltd.

樹脂組成物におけるその他の各成分の含有量は、その種類にもよるが、それぞれ(A)成分、(B)成分、(C)成分及び(D)成分の合計に対して0〜10質量%であることが好ましく、0〜5質量%であることがより好ましく、0〜1質量%であることがさらに好ましい。   Although content of each other component in a resin composition is based also on the kind, 0-10 mass% is each with respect to the sum total of (A) component, (B) component, (C) component, and (D) component. It is preferable that it is, 0-5 mass% is more preferable, and 0-1 mass% is more preferable.

2.エンジン支持部材用樹脂組成物の製造方法
本発明のエンジン支持部材用樹脂組成物は、少なくとも上記の比率のポリアミド樹脂(A)、ポリアミド樹脂(B)、繊維状充填材(C)及び耐熱安定剤(D)を、公知の方法、例えばヘンシェルミキサー、Vブレンダー、リボンブレンダーもしくはタンブラーブレンダー等で混合する方法、又は混合後さらに一軸押出機、多軸押出機、ニーダー若しくはバンバリーミキサー等で溶融混練した後、造粒若しくは粉砕する方法により製造することができる。
2. A method of producing a resin composition for an engine support member The resin composition for an engine support member of the present invention comprises a polyamide resin (A), a polyamide resin (B), a fibrous filler (C) and a heat resistant stabilizer at least in the above ratio. (D) may be mixed by a known method, such as a Henschel mixer, V blender, ribbon blender or tumbler blender, or after mixing and further melt kneading by a single screw extruder, multi-screw extruder, kneader or Banbury mixer, etc. , Granulation or grinding method.

3.エンジン支持部材
本発明のエンジン支持部材は、その構成部品の少なくとも一部に本発明のエンジン支持部材用樹脂組成物の成形物を含む。本発明のエンジン支持部材用樹脂組成物の成形物は、エンジン支持部材用樹脂組成物を、例えば射出成形して得ることができる。
3. Engine support member The engine support member of the present invention includes a molded product of the resin composition for an engine support member of the present invention on at least a part of its component parts. The molded product of the resin composition for an engine support member of the present invention can be obtained, for example, by injection molding the resin composition for an engine support member.

本発明のエンジン支持部材の例には、エンジンマウント、エンジンマウントブラケット、オイルパンアッパー、エンジントルクロッド等が含まれる。中でも、エンジンマウントが好ましい。   Examples of the engine support member of the present invention include an engine mount, an engine mount bracket, an oil pan upper, an engine torque rod and the like. Among them, the engine mount is preferable.

図1は、エンジンマウントの一例を示す模式図である。図1に示されるように、エンジンマウント1は、金属製の内筒2と、当該内筒2を軸平行かつ同心的に取り囲む樹脂ブラケット3と、当該内筒2と樹脂ブラケット3との間に介装され両者を弾力的に結合するゴムブッシュ4とを含む。内筒2がエンジン側のブラケット(不図示)に接続され、樹脂ブラケット3が車体側に固定される。   FIG. 1 is a schematic view showing an example of an engine mount. As shown in FIG. 1, the engine mount 1 includes an inner cylinder 2 made of metal, a resin bracket 3 surrounding the inner cylinder 2 coaxially and concentrically, and a space between the inner cylinder 2 and the resin bracket 3 And a rubber bush 4 which interposes and elastically connects the two. The inner cylinder 2 is connected to a bracket (not shown) on the engine side, and the resin bracket 3 is fixed to the vehicle body side.

樹脂ブラケット3は、車体に固定するための左右の脚部5を有し、この脚部5には、金属製のナット6が埋設されている。樹脂ブラケット3を、本発明のエンジン支持部材用樹脂組成物の成形物としうる。   The resin bracket 3 has left and right leg portions 5 for fixing to the vehicle body, and a metal nut 6 is embedded in the leg portions 5. The resin bracket 3 may be a molded product of the resin composition for an engine support member of the present invention.

このようなエンジンマウント1は、例えば樹脂成形用金型に、ゴムブッシュ4を中子(図示せず)とともにセットし、金属製のナット6をさらにセットした後、当該金型内のキャビティに溶融樹脂を射出注入して、樹脂ブラケットを形成して製造される。この射出成形において、樹脂強度の低いウェルド部(融着部)が、樹脂ブラケット3の開口部の周縁部や、金属製のナット6のボルト穴の周縁に形成される。   Such an engine mount 1 is set, for example, in a mold for resin molding, with the rubber bush 4 set together with a core (not shown), and after the metal nut 6 is further set, it is melted in the cavity in the mold It is manufactured by injection injection of resin to form a resin bracket. In this injection molding, a weld portion (fused portion) having low resin strength is formed at the peripheral edge of the opening of the resin bracket 3 or the peripheral edge of the bolt hole of the metal nut 6.

エンジンマウント1を構成する樹脂ブラケット3は、本発明のエンジン支持部材用樹脂組成物の成形物からなる。本発明のエンジン支持部材用樹脂組成物の成形物は、高い強度と耐熱性を有し、かつ高い振動耐性を有する。従って、樹脂ブラケット3は、高い強度・耐熱性と、高いウェルド強度・耐衝撃性とを有するので、エンジン等の振動に良好に耐えることができる。   The resin bracket 3 which comprises the engine mount 1 consists of a molding of the resin composition for engine supporting members of this invention. The molded product of the resin composition for an engine support member of the present invention has high strength and heat resistance, and has high vibration resistance. Therefore, since the resin bracket 3 has high strength and heat resistance, high weld strength and impact resistance, it can well withstand vibration of an engine or the like.

以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。   The invention will be described in more detail below with reference to examples. The scope of the present invention is not interpreted as being limited by these examples.

<ポリアミド樹脂(A)の調製>
[合成例1]ポリアミド樹脂(A−1)の調製
1,6−ジアミノヘキサン2800g(24.1モル)、テレフタル酸2774g(16.7モル)、イソフタル酸1196g(7.2モル)、安息香酸36.6g(0.30モル)、次亜リン酸ナトリウム一水和物5.7g及び蒸留水545gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温させた。このとき、オートクレーブの内圧を3.03MPaまで昇圧させた。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。その後、室温まで冷却後、低次縮合物を粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥させた。得られた低次縮合物の水分量は4100ppm、極限粘度[η]は0.15dl/gであった。
次に、この低次縮合物を棚段式固相重合装置に入れ、窒素置換後、約1時間30分かけて180℃まで昇温させた。その後、1時間30分反応し、室温まで降温させた。得られた化合物の極限粘度[η]は、0.20dl/gであった。
その後、この化合物を、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度を330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合させて、ポリアミド樹脂(A−1)を得た。
<Preparation of Polyamide Resin (A)>
Synthesis Example 1 Preparation of Polyamide Resin (A-1) 2800 g (24.1 mol) of 1,6-diaminohexane, 2774 g (16.7 mol) of terephthalic acid, 1196 g (7.2 mol) of isophthalic acid, benzoic acid 36.6 g (0.30 mol), 5.7 g of sodium hypophosphite monohydrate and 545 g of distilled water were charged in an 13.6 L autoclave and purged with nitrogen. Stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was raised to 3.03 MPa. It was continued in this state for 1 hour the reaction, from spray nozzles installed in the autoclave lower withdrawn by atmospheric discharge low-order condensate. Then, after cooling to room temperature, the low-order condensate was ground to a particle size of 1.5 mm or less by a grinder and dried at 110 ° C. for 24 hours. The water content of the lower condensate obtained was 4100 ppm, and the intrinsic viscosity [粘度] was 0.15 dl / g.
Next, this lower condensate was placed in a tray type solid phase polymerization apparatus, and after nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour and 30 minutes. Then, it reacted for 1 hour and 30 minutes, and was made to cool to room temperature. The intrinsic viscosity [η] of the obtained compound was 0.20 dl / g.
Thereafter, this compound is melt-polymerized in a twin screw extruder with a screw diameter of 30 mm and L / D = 36 at a barrel setting temperature of 330 ° C. and a screw rotation speed of 200 rpm and a resin feed rate of 6 kg / h. (A-1) was obtained.

[合成例2]ポリアミド樹脂(A−2)の調製
1,6−ジアミノヘキサン1312g(11.1モル)、2−メチル−1,5−ジアミノペンタン1312g(11.1モル)、テレフタル酸3655g(22.0モル)、安息香酸34.2g(0.28モル)、触媒として次亜リン酸ナトリウム5.5g(5.2×10−2モル)、及び蒸留水640mlを1リットルの反応器に仕込み、窒素置換後、250℃、35kg/cmの条件で1時間反応させた。1,6−ジアミノヘキサンと2−メチル−1,5−ジアミノペンタンとのモル比は50:50とした。1時間経過後、この反応器内に生成した反応生成物を、この反応器と連結され、かつ圧力を約10kg/cm低く設定した受器に抜き出し、極限粘度[η]が0.15dl/gである低次縮合物を得た。
次いで、この低次縮合物を乾燥した後、二軸押出機を用いてシリンダー設定温度330℃で溶融重合させて、ポリアミド樹脂(A−2)を得た。
Synthesis Example 2 Preparation of Polyamide Resin (A-2) 1312 g (11.1 mol) of 1,6-diaminohexane, 1312 g (11.1 mol) of 2-methyl-1,5-diaminopentane, 3655 g of terephthalic acid 22.0 mol), 34.2 g (0.28 mol) of benzoic acid, 5.5 g (5.2 × 10 -2 mol) of sodium hypophosphite as a catalyst, and 640 ml of distilled water in a 1-liter reactor After charging and nitrogen substitution, the reaction was performed at 250 ° C. and 35 kg / cm 2 for 1 hour. The molar ratio of 1,6-diaminohexane to 2-methyl-1,5-diaminopentane was 50:50. After one hour, the reaction product formed in the reactor is withdrawn into a receiver connected to the reactor and set to a pressure lower by about 10 kg / cm 2 , and the intrinsic viscosity [η] is 0.15 dl //. The lower condensate which is g was obtained.
Next, the low-order condensate was dried and then melt polymerized at a cylinder setting temperature of 330 ° C. using a twin-screw extruder to obtain a polyamide resin (A-2).

[合成例3]ポリアミド樹脂(A−3)の調製
テレフタル酸4537.7g(27.3モル)、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとの混合物[1,9−ノナンジアミン/2−メチル−1,8−オクタンジアミン=80/20(モル比)]4385g(27.5モル)、安息香酸41.5g(0.34モル)、次亜リン酸ナトリウム一水和物9.12g(原料の総質量に対して0.1質量%)、及び蒸留水2.5リットルを内容積20リットルのオートクレーブに入れ、窒素置換した。100℃で30分間攪拌し、2時間かけてオートクレーブ内部の温度を220℃に昇温させた。この時、オートクレーブ内部の圧力は2MPaまで昇圧させた。そのまま2時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を2MPaに保ちながら反応させた。次に、30分かけて圧力を1MPaまで下げ、さらに1時間反応させて、極限粘度[η]が0.15dl/gの低次縮合物を得た。この低次縮合物を100℃、減圧下で12時間乾燥し、2mm以下の粒径まで粉砕した。
得られた低次縮合物を230℃、13Pa(0.1mmHg)にて10時間固相重合させて、ポリアミド樹脂(A−3)を得た。
Synthesis Example 3 Preparation of Polyamide Resin (A-3) 4537.7 g (27.3 mol) of terephthalic acid, a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine [1,9- Nonane diamine / 2-methyl-1, 8-octane diamine = 80/20 (molar ratio) 4385 g (27.5 mol), benzoic acid 41.5 g (0.34 mol), sodium hypophosphite monohydrate 9.12 g (0.1% by mass based on the total mass of the raw materials) and 2.5 liters of distilled water were placed in an autoclave having an inner volume of 20 liters and purged with nitrogen. The mixture was stirred at 100 ° C. for 30 minutes, and the temperature inside the autoclave was raised to 220 ° C. over 2 hours. At this time, the pressure inside the autoclave was increased to 2 MPa. The reaction was continued as it was for 2 hours, and the temperature was raised to 230 ° C. Then, the temperature was kept at 230 ° C. for 2 hours, and the reaction was carried out while gradually removing steam to keep the pressure at 2 MPa. Next, the pressure was lowered to 1 MPa over 30 minutes, and reaction was further performed for 1 hour to obtain a low-order condensate having an intrinsic viscosity [η] of 0.15 dl / g. The lower condensate was dried at 100 ° C. under reduced pressure for 12 hours and ground to a particle size of 2 mm or less.
The lower condensate obtained was subjected to solid phase polymerization at 230 ° C. and 13 Pa (0.1 mmHg) for 10 hours to obtain a polyamide resin (A-3).

<比較用ポリアミド樹脂>
(a−1):東レ社製ナイロン樹脂、アミランCM3001−N(66ナイロン)
<Polyamide resin for comparison>
(A-1): Toray Industries nylon resin, Amilan CM3001-N (66 nylon)

<ポリアミド樹脂(B)の調製>
[合成例4]ポリアミド樹脂(B−1)の調製
テレフタル酸1390g(8.4モル)、1,6−ヘキサンジアミン2800g(24.1モル)、イソフタル酸2581g(15.5モル)、安息香酸109.5g(0.9モル)、次亜リン酸ナトリウム一水和物5.7g及び蒸留水545gを内容量13.6Lのオートクレーブに入れ、窒素置換した。190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温した。このとき、オートクレーブの内圧を3.02MPaまで昇圧した。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低次縮合物を抜き出した。その後、低次縮合物を室温まで冷却後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥した。得られた低次縮合物の水分量は3000ppm、極限粘度[η]は0.14dl/gであった。
次に、この低次縮合物を、スクリュー径30mm、L/D=36の二軸押出機にて、バレル設定温度330℃、スクリュー回転数200rpm、6Kg/hの樹脂供給速度で溶融重合させて、ポリアミド樹脂(B−1)を得た。
<Preparation of Polyamide Resin (B)>
Synthesis Example 4 Preparation of Polyamide Resin (B-1) 1390 g (8.4 mol) of terephthalic acid, 2800 g (24.1 mol) of 1,6-hexanediamine, 2581 g (15.5 mol) of isophthalic acid, benzoic acid 109.5 g (0.9 mol), 5.7 g of sodium hypophosphite monohydrate and 545 g of distilled water were charged in an 13.6 L autoclave and purged with nitrogen. Stirring was started from 190 ° C., and the internal temperature was raised to 250 ° C. over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa. After continuing the reaction as it was for 1 hour, air was released to the atmosphere from a spray nozzle installed at the lower part of the autoclave to extract a lower condensate. Thereafter, the low-order condensate was cooled to room temperature, pulverized to a particle size of 1.5 mm or less by a pulverizer, and dried at 110 ° C. for 24 hours. The water content of the lower condensate obtained was 3000 ppm, and the intrinsic viscosity [粘度] was 0.14 dl / g.
Next, this low-order condensate is melt polymerized at a resin setting rate of 6 kg / h at a barrel setting temperature of 330 ° C. and a screw rotation speed of 200 rpm by a twin screw extruder with a screw diameter of 30 mm and L / D = 36. And a polyamide resin (B-1) were obtained.

〔極限粘度[η]〕
得られたポリアミド樹脂(A)及び(B)の極限粘度[η]は、以下のようにして測定した。ポリアミド樹脂0.5gを96.5%硫酸溶液50mlに溶解させた。得られた溶液の、25℃±0.05℃の条件下での流下秒数を、ウベローデ粘度計を使用して測定し、「数式:[η]=ηSP/(C(1+0.205ηSP))」に基づき算出した。
[η]:極限粘度(dl/g)
ηSP:比粘度
C:試料濃度(g/dl)
t:試料溶液の流下秒数(秒)
t0:ブランク硫酸の流下秒数(秒)
ηSP=(t−t0)/t0
[Intrinsic viscosity [η]]
The intrinsic viscosity [η] of the obtained polyamide resins (A) and (B) was measured as follows. 0.5 g of polyamide resin was dissolved in 50 ml of 96.5% sulfuric acid solution. The number of seconds of flow of the resulting solution under 25 ° C. ± 0.05 ° C. is measured using a Ubbelohde viscometer, “formula: [η] = ηSP / (C (1 + 0.205ηSP)) Calculated based on
[Η]: Intrinsic viscosity (dl / g)
ηSP: specific viscosity C: sample concentration (g / dl)
t: Seconds of flow of sample solution (seconds)
t0: Blank sulfuric acid flow down seconds (seconds)
ηSP = (t−t0) / t0

〔融点(Tm)、ガラス転移温度(Tg)、及び融解熱量ΔH〕
ポリアミド樹脂の融点(Tm)は、測定装置として示差走査熱量計(DSC220C型、セイコーインスツル(株)製)を用いて測定した。具体的には、約5mgのポリアミド樹脂を測定用アルミニウムパン中に密封し、室温から10℃/minで330℃まで加熱した。ポリアミド樹脂を完全融解させるために、330℃で5分間保持し、次いで、10℃/minで30℃まで冷却した。30℃で5分間置いた後、10℃/minで330℃まで2度目の加熱を行なった。この2度目の加熱でのピーク温度(℃)をポリアミド樹脂の融点(Tm)とし、ガラス転移に相当する変位点をガラス転移温度(Tg)とした。融解熱量ΔHは、JIS K7122に準じて、結晶化の発熱ピークの面積から求めた。
[Melting point (Tm), glass transition temperature (Tg), and heat of fusion ΔH]
The melting point (Tm) of the polyamide resin was measured using a differential scanning calorimeter (DSC 220C, manufactured by Seiko Instruments Inc.) as a measurement device. Specifically, about 5 mg of polyamide resin was sealed in an aluminum pan for measurement, and heated to 330 ° C. at room temperature to 10 ° C./min. In order to completely melt the polyamide resin, it was maintained at 330 ° C. for 5 minutes and then cooled to 30 ° C. at 10 ° C./min. After 5 minutes at 30 ° C., a second heating to 330 ° C. was performed at 10 ° C./min. The peak temperature (° C.) at this second heating was taken as the melting point (Tm) of the polyamide resin, and the displacement point corresponding to the glass transition was taken as the glass transition temperature (Tg). The heat of fusion ΔH was determined from the area of the exothermic peak of crystallization in accordance with JIS K7122.

得られた測定結果を表1に示す。

Figure 0006502755
The obtained measurement results are shown in Table 1.
Figure 0006502755

<繊維状充填材(C)>
(C−1):ガラス繊維(オーウェンスコーニング社製、FT756D、ガラス繊維長3mm、アスペクト比300)
<Fibrous filler (C)>
(C-1): Glass fiber (manufactured by Owens Corning, FT756D, glass fiber length 3 mm, aspect ratio 300)

<耐熱安定剤(D)>
(D−1):銅系安定剤(14.3質量%のヨウ化銅(I)と85.7質量%のヨウ化カリウム/ジステアリン酸カルシウム(98:2)との混合物)
(D−2):BASF社製Irgatec NC66(有機熱安定剤混合物)
<Heat resistant stabilizer (D)>
(D-1): Copper stabilizer (mixture of 14.3% by mass of copper (I) iodide and 85.7% by mass of potassium iodide / calcium distearate (98: 2))
(D-2): BASF Corporation Irgatec NC 66 (organic heat stabilizer mixture)

<その他成分>
添加剤(E):日清紡績株式会社製カルボジライトHMV−8CA(脂肪族ポリカルボジイミド)
タルク(F):他の無機充填材、平均粒子径1.6μm
モンタン酸カルシウム(G)(離型性改良剤・流動性向上剤)
<Other ingredients>
Additive (E): Carbodilite HMV-8 CA (aliphatic polycarbodiimide) manufactured by Nisshinbo Co., Ltd.
Talc (F): other inorganic filler, average particle size 1.6 μm
Calcium montanate (G) (removal improver / flow improver)

<実施例1>
表2に示される量の、ポリアミド樹脂(A−1)、ポリアミド樹脂(B−1)、繊維状充填材(C−1)、耐熱安定剤(D−1)、タルク(F)及びモンタン酸カルシウム(G)を、タンブラーブレンダーを用いて混合し、二軸押出機((株)日本製鋼所製TEX30α)にて、シリンダー温度(Tm1+15)℃で原料を溶融混錬した。その後、溶融混練物をストランド状に押出し、水槽で冷却した。その後、ペレタイザーでストランドを引き取り、カットしてペレット状の樹脂組成物を得た。
Example 1
Polyamide resin (A-1), polyamide resin (B-1), fibrous filler (C-1), heat resistant stabilizer (D-1), talc (F) and montanic acid in amounts shown in Table 2 Calcium (G) was mixed using a tumbler blender, and the raw materials were melt-kneaded at a cylinder temperature (Tm1 + 15) ° C. by a twin-screw extruder (TEX30α manufactured by Japan Steel Works, Ltd.). Thereafter, the melt-kneaded product was extruded into strands and cooled in a water tank. Thereafter, the strand was taken up with a pelletizer and cut to obtain a pellet-like resin composition.

<実施例2〜7、比較例1〜5>
組成を表2又は3に示されるように変更した以外は実施例1と同様にしてペレット状の樹脂組成物を得た。
Examples 2 to 7 and Comparative Examples 1 to 5
A pellet-like resin composition was obtained in the same manner as in Example 1 except that the composition was changed as shown in Table 2 or 3.

得られた樹脂組成物について、引張強度、ウェルド部引張強度、曲げ弾性率(25℃、100℃)及び耐熱老化性を、以下の方法で評価した。   The resulting resin composition was evaluated for tensile strength, weld tensile strength, flexural modulus (25 ° C., 100 ° C.) and heat aging resistance by the following method.

(引張強度)
得られた樹脂組成物を下記の射出成形機を用い、下記の成形条件で厚さ3mmのASTM−1(ダンベル片)の試験片を作製した。
成形機:(株)ソディック プラスティック、ツパールTR40S3A
成形機シリンダー温度:ポリアミド樹脂(A)の融点(Tm)+15℃
金型温度:ポリアミド樹脂(A)のTg+20℃
作製した試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で引張試験を行い、引張強度を測定した。
(Tensile strength)
The obtained resin composition was used for the following injection molding machine, and the test piece of ASTM-1 (the dumbbell piece) of thickness 3 mm was produced on the following molding conditions.
Molding machine: Sodick Plastic Co., Ltd., Tupearl TR40S3A
Molding machine cylinder temperature: melting point (Tm) of polyamide resin (A) + 15 ° C
Mold temperature: Tg of polyamide resin (A) + 20 ° C
The prepared test piece was left to stand at a temperature of 23 ° C. under a nitrogen atmosphere for 24 hours. Subsequently, a tensile test was conducted under an atmosphere of a temperature of 23 ° C. and a relative humidity of 50% to measure the tensile strength.

(ウェルド部引張強度)
ASTM1号型のウェルド部を有する評価用試験片を作製し、前述の引張強度試験と同様にして引張強度を測定した。当該ウェルド部を有する評価用試験片の引張強度をウェルド部強度とした。
(Weld tensile strength)
Test pieces for evaluation having a weld part of ASTM type 1 were prepared, and the tensile strength was measured in the same manner as the above-mentioned tensile strength test. The tensile strength of the test piece for evaluation which has the said weld part was made into weld part strength.

(ウェルド部強度保持率)
前述で測定された引張強度(ウェルド部を有しない試料片の引張強度)と、ウェルド部引張強度とを、それぞれ下記式に当てはめて、引張強度に対するウェルド部強度の割合(%)を算出した。
ウェルド部強度保持率(%)=(ウェルド部引張強度/引張強度)×100
(Weld part strength retention rate)
The ratio (%) of weld portion strength to tensile strength was calculated by applying the tensile strength measured in the above (tensile strength of a specimen having no weld) and the weld tensile strength to the following equations.
Weld area strength retention rate (%) = (weld area tensile strength / tensile strength) × 100

(曲げ弾性率)
得られた樹脂組成物を、以下の条件で射出成形して1/8インチ厚短冊片を作製した。
成形機:(株)ソディック プラステック、ツパールTR40S3A
成形機シリンダー温度:ポリアミド樹脂(A)の融点+10℃
金型温度:ポリアミド樹脂(A)のTg+20℃
作製した試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度25℃、100℃、相対湿度50%の雰囲気下で曲げ試験機:NTESCO社製 AB5、スパン51mm、曲げ速度12.7mm/分で曲げ試験を行い、弾性率を測定した。
(Flexural modulus)
The obtained resin composition was injection molded under the following conditions to prepare a 1/8 inch thick strip.
Molding machine: Sodick Plastech Co., Ltd. Tupearl TR40S3A
Molding machine cylinder temperature: melting point + 10 ° C of polyamide resin (A)
Mold temperature: Tg of polyamide resin (A) + 20 ° C
The prepared test piece was left to stand at a temperature of 23 ° C. under a nitrogen atmosphere for 24 hours. Next, a bending test was performed under an atmosphere of temperature 25 ° C., 100 ° C., relative humidity 50%, bending tester: AB5 manufactured by NTESCO, span 51 mm, bending speed 12.7 mm / min, and elastic modulus was measured.

(耐熱老化性)
厚さ3mmのASTM−1(ダンベル片)の試験片を、温度200℃の条件下、空気循環炉中で3000時間処理した後、試験片を炉から取り出し、23℃まで冷却した。次いで、温度23℃、相対湿度50%の雰囲気下で引張試験を行い、引張強度を測定した。強度保持率は、以下の式より算出した。
耐熱老化性(強度保持率)(%)=(加熱処理後の引張強度/引張強度)×100
(Heat resistant aging resistance)
After a 3 mm thick test piece of ASTM-1 (dumbbell piece) was treated in an air circulating furnace for 3000 hours at a temperature of 200 ° C., the test piece was removed from the furnace and cooled to 23 ° C. Subsequently, a tensile test was conducted under an atmosphere of a temperature of 23 ° C. and a relative humidity of 50% to measure the tensile strength. The strength retention was calculated by the following equation.
Thermal aging resistance (strength retention) (%) = (tensile strength after heat treatment / tensile strength) × 100

(IZOD衝撃強度)
下記の射出成型機を用い、下記の成形条件で調整したノッチ付き、厚さ:3.2mmの試験片を作製して、ASTMD256に準拠し、温度23℃、相対湿度50%の雰囲気下でのIZOD衝撃強度で測定した。
成型機:住友重機械工業(株)社製、SE50DU
成型機シリンダー温度:(Tm+15)℃
金型温度:120℃
Tmは、ポリアミド樹脂(A)の融点を示す。
(IZOD impact strength)
A test piece with a thickness of 3.2 mm is prepared using the following injection molding machine and adjusted under the following molding conditions, and in accordance with ASTM D 256, in an atmosphere with a temperature of 23 ° C. and a relative humidity of 50%. It measured by IZOD impact strength.
Molding machine: SE50DU, manufactured by Sumitomo Heavy Industries, Ltd.
Molding machine cylinder temperature: (Tm + 15) ° C
Mold temperature: 120 ° C
Tm indicates the melting point of the polyamide resin (A).

実施例1〜7の評価結果を表2に示し;比較例1〜5の評価結果を表3に示す。

Figure 0006502755
Figure 0006502755
The evaluation results of Examples 1 to 7 are shown in Table 2; the evaluation results of Comparative Examples 1 to 5 are shown in Table 3.
Figure 0006502755
Figure 0006502755

実施例1〜7の樹脂組成物は、いずれもウェルド部引張強度及び衝撃強度が高く、かつ耐熱老化性・引張強度も高いことが示される。   The resin compositions of Examples 1 to 7 are all shown to have high weld tensile strength and impact strength, and high heat aging resistance and tensile strength.

これに対して比較例1〜5の樹脂組成物は、ウェルド部引張強度及び衝撃強度、耐熱老化性、並びに引張強度の少なくとも一つが低いことが示される。比較例1の樹脂組成物は、ポリアミド樹脂(B)を含まないことから、ウェルド強度及び衝撃強度が低いことが示される。比較例2の樹脂組成物は、ポリアミド樹脂(B)を多く含みすぎることから、引張強度や耐熱老化性が低下することが示される。比較例3及び4は、耐熱安定剤(D−1)及び(D−2)を含まないことから、耐熱老化性が低いことが示される。比較例5は、ポリアミド樹脂(A)よりも耐熱性が低いポリアミド樹脂(a−1)を含むことから、耐熱老化性が低く、高温下での剛性(曲げ弾性率)も低いことが示される。   On the other hand, it is shown that the resin composition of Comparative Examples 1 to 5 is low in at least one of weld tensile strength and impact strength, heat aging resistance, and tensile strength. Since the resin composition of Comparative Example 1 does not contain the polyamide resin (B), it is shown that the weld strength and the impact strength are low. Since the resin composition of Comparative Example 2 contains too much polyamide resin (B), it is shown that the tensile strength and the heat aging resistance decrease. Since Comparative Examples 3 and 4 do not contain the heat stabilizers (D-1) and (D-2), they are shown to have low heat aging resistance. Comparative Example 5 includes the polyamide resin (a-1) having a heat resistance lower than that of the polyamide resin (A), so that it is shown that the heat aging resistance is low and the rigidity (flexural modulus) at high temperature is also low. .

本発明は、優れた振動耐性(ウェルド強度・耐衝撃性)と、優れた高温環境下での長期の耐熱性と強度とを有するエンジン支持部材用樹脂組成物、及びこれを用いたエンジン支持部材を提供することができる。   The present invention provides a resin composition for an engine support member having excellent vibration resistance (weld strength and impact resistance) and long-term heat resistance and strength in an excellent high temperature environment, and an engine support member using the same. Can be provided.

1 エンジンマウント
2 内筒
3 樹脂ブラケット
4 ゴムブッシュ
5 脚部
6 ナット
1 engine mount 2 inner cylinder 3 resin bracket 4 rubber bush 5 leg 6 nut

Claims (10)

示差走査熱量計(DSC)により測定される、ガラス転移温度が80℃〜150℃であり、融点(Tm)が300℃以上であるポリアミド樹脂(A)29.89〜68.9質量%と、
示差走査熱量計(DSC)により測定される融点(Tm)が実質観測されないポリアミド樹脂(B)0.1〜20質量%と、
繊維状充填材(C)30〜70質量%と、
銅系安定剤(D−1)を含む耐熱安定剤(D)0.01〜3.0質量%とを含有し(但し、(A)、(B)、(C)及び(D)の合計が100質量%である)、
前記ポリアミド樹脂(A)は、
テレフタル酸成分単位とイソフタル酸成分単位とを含み、かつテレフタル酸成分単位/イソフタル酸成分単位の含有比率が55/45〜85/15(モル比)であるジカルボン酸成分単位(a1)と、
炭素原子数4〜20の脂肪族ジアミン成分単位を含むジアミン成分単位(a2)とを含む、エンジン支持部材用樹脂組成物。
Polyamide resin (A) 29.89-68.9 mass% which has a glass transition temperature of 80 ° C. to 150 ° C. and a melting point (Tm) of 300 ° C. or higher, which is measured by a differential scanning calorimeter (DSC),
0.1 to 20% by mass of a polyamide resin (B) having substantially no melting point (Tm) measured by a differential scanning calorimeter (DSC),
30 to 70% by mass of fibrous filler (C),
A heat-resistant stabilizer (D) containing 0.01 to 3.0% by mass of a copper-based stabilizer (D-1) (provided that the total of (A), (B), (C) and (D) Is 100% by mass),
The polyamide resin (A) is
Look including terephthalic acid component unit and isophthalic acid component unit, and the content ratio of terephthalic acid component unit / isophthalic acid component units is 55 / 45-85 / 15 (molar ratio) in which the dicarboxylic acid component unit (a1),
The resin composition for engine supporting members containing the diamine component unit (a2) containing a C4-C20 aliphatic diamine component unit.
前記ポリアミド樹脂(A)の前記脂肪族系ジアミン成分単位は、下記の1)と2)の少なくとも一方を満たす、請求項1に記載のエンジン支持部材用樹脂組成物。
1)炭素原子数4〜20の直鎖状アルキレンジアミン成分単位を、前記脂肪族ジアミン成分単位の総モル数に対して40〜100モル%含む
2)炭素原子数4〜20の分岐状アルキレンジアミン成分単位を、前記脂肪族ジアミン成分単位の総モル数に対して60モル%以下含む
The resin composition for engine supporting members according to claim 1, wherein the aliphatic diamine component unit of the polyamide resin (A) satisfies at least one of the following 1) and 2).
1) containing 40 to 100 mol% of a linear alkylene diamine component unit having 4 to 20 carbon atoms with respect to the total number of moles of the aliphatic diamine component unit 2) a branched alkylene diamine having 4 to 20 carbon atoms 60 mol% or less of component units with respect to the total number of moles of the aliphatic diamine component units
前記ポリアミド樹脂(B)は、
イソフタル酸成分単位を含むジカルボン酸成分単位(b1)と、
炭素原子数4〜15の脂肪族ジアミン成分単位を含むジアミン成分単位(b2)とを含む、請求項1又は2に記載のエンジン支持部材用樹脂組成物。
The polyamide resin (B) is
A dicarboxylic acid component unit (b1) containing an isophthalic acid component unit,
The resin composition for engine supporting members according to claim 1 or 2, comprising a diamine component unit (b2) containing an aliphatic diamine component unit having 4 to 15 carbon atoms.
前記ポリアミド樹脂(B)において、
前記ジカルボン酸成分単位(b1)は、テレフタル酸成分単位をさらに含んでいてもよく、
前記イソフタル酸成分単位と前記テレフタル酸成分単位とのモル比が、イソフタル酸成分単位/テレフタル酸成分単位=55/45〜100/0である、請求項3に記載のエンジン支持部材用樹脂組成物。
In the polyamide resin (B),
The dicarboxylic acid component unit (b1) may further contain a terephthalic acid component unit,
The resin composition for an engine supporting member according to claim 3, wherein a molar ratio of the isophthalic acid component unit to the terephthalic acid component unit is isophthalic acid component unit / terephthalic acid component unit = 55/45 to 100/0. .
前記ポリアミド樹脂(A)と前記ポリアミド樹脂(B)の含有質量比B/(A+B)は、0.05〜0.35である、請求項1〜4のいずれか一項に記載のエンジン支持部材用樹脂組成物。   The engine support member according to any one of claims 1 to 4, wherein a content mass ratio B / (A + B) of the polyamide resin (A) and the polyamide resin (B) is 0.05 to 0.35. Resin composition. 前記ポリアミド樹脂(A)において
前記炭素原子数4〜20の脂肪族ジアミン成分単位は、炭素原子数4〜20の直鎖状アルキレンジアミン成分単位を含む、請求項1又は2に記載のエンジン支持部材用樹脂組成物。
In the polyamide resin (A) ,
The resin composition for an engine supporting member according to claim 1 or 2, wherein the aliphatic diamine component unit having 4 to 20 carbon atoms contains a linear alkylene diamine component unit having 4 to 20 carbon atoms.
前記ポリアミド樹脂(A)において、
前記炭素原子数4〜20の直鎖状アルキレンジアミン成分単位は、ヘキサメチレンジアミン成分単位であり、
前記炭素原子数4〜20の分岐状アルキレンジアミン成分単位は、2−メチル−1,5−ペンタジアミン成分単位である、請求項2に記載のエンジン支持部材用樹脂組成物。
In the polyamide resin (A),
The linear alkylene diamine component unit having 4 to 20 carbon atoms is a hexamethylene diamine component unit,
The resin composition for an engine supporting member according to claim 2, wherein the branched alkylene diamine component unit having 4 to 20 carbon atoms is a 2-methyl-1,5-pentadiamine component unit.
前記ポリアミド樹脂(A)において、
前記炭素原子数4〜20の分岐状アルキレンジアミン成分単位は、1,9−ノナンジアミン成分単位と2−メチル−1,8−オクタンジアミン成分単位である、請求項2に記載のエンジン支持部材用樹脂組成物。
In the polyamide resin (A),
The resin for an engine supporting member according to claim 2, wherein the branched alkylene diamine component unit having 4 to 20 carbon atoms is 1,9-nonane diamine component unit and 2-methyl-1,8-octane diamine component unit. Composition.
前記耐熱安定剤(D)の含有量は、0.1〜3.0質量%である、
請求項1〜8のいずれか一項に記載のエンジン支持部材用樹脂組成物
The content of the heat resistant stabilizer (D) is 0.1 to 3.0% by mass,
The resin composition for engine supporting members as described in any one of Claims 1-8 .
請求項1〜9のいずれか一項に記載のエンジン支持部材用樹脂組成物の成形物を含む、エンジン支持部材。   An engine support member comprising the molding of the resin composition for an engine support member according to any one of claims 1 to 9.
JP2015118511A 2015-06-11 2015-06-11 Resin composition for engine support member and engine support member Active JP6502755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118511A JP6502755B2 (en) 2015-06-11 2015-06-11 Resin composition for engine support member and engine support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118511A JP6502755B2 (en) 2015-06-11 2015-06-11 Resin composition for engine support member and engine support member

Publications (2)

Publication Number Publication Date
JP2017002205A JP2017002205A (en) 2017-01-05
JP6502755B2 true JP6502755B2 (en) 2019-04-17

Family

ID=57751196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118511A Active JP6502755B2 (en) 2015-06-11 2015-06-11 Resin composition for engine support member and engine support member

Country Status (1)

Country Link
JP (1) JP6502755B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319171B2 (en) * 2014-07-28 2018-05-09 東京エレクトロン株式会社 Deposition equipment
JP2019026670A (en) * 2017-07-26 2019-02-21 旭化成株式会社 Polyamide composition and molding
SG11202000892XA (en) 2017-09-28 2020-02-27 Dupont Polymers Inc Polymerization process
US11673341B2 (en) * 2018-02-16 2023-06-13 Mitsui Chemicals, Inc. Polyamide resin composition, molded body thereof, and method for manufacturing laser-welded body
JP7249738B2 (en) * 2018-05-23 2023-03-31 旭化成株式会社 Polyamide resin pellets, method for producing the same, and method for producing polyamide composition
JP2021154650A (en) * 2020-03-27 2021-10-07 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and engine mount member
WO2021231590A1 (en) * 2020-05-14 2021-11-18 Ascend Performance Materials Operations Llc Polyamide formulations for improved noise vibration and harshness

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790178A (en) * 1993-09-21 1995-04-04 Mitsubishi Chem Corp Polyamide resin composition
JPH1149950A (en) * 1997-08-07 1999-02-23 Tokai Rubber Ind Ltd Resin member for substituting metal fixture as engine part
JPH11222553A (en) * 1998-02-06 1999-08-17 Ube Ind Ltd Aromatic polyamide resin composition
JP2000204241A (en) * 1999-01-08 2000-07-25 Ube Ind Ltd Polyamide resin composition having excellent weld strength
JP5902903B2 (en) * 2011-09-21 2016-04-13 ユニチカ株式会社 Polyamide resin composition and molded body formed by molding the same
CN103827172B (en) * 2011-09-22 2016-06-29 尤尼吉可株式会社 Semiaromatic polyamide composition and the molded body formed by it
JP5494897B1 (en) * 2012-09-14 2014-05-21 東レ株式会社 Polyamide resin composition, molded product
US9732223B2 (en) * 2013-07-26 2017-08-15 Mitsui Chemicals, Inc. Semi-aromatic polyamide resin composition and molded article containing same

Also Published As

Publication number Publication date
JP2017002205A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6502755B2 (en) Resin composition for engine support member and engine support member
JP6042064B2 (en) Heat-resistant molded or extruded thermoplastic articles
JP2763348B2 (en) Polyamide resin composition
JP5497921B2 (en) Copolyamide
JP5964964B2 (en) Polyamide, polyamide composition and molded article
US20130281589A1 (en) Thermoplastic polyamide composition
KR102251533B1 (en) Polyamide composition
JP2018204025A (en) Stabilized polyamide composition
KR102220069B1 (en) Polyamide composition
JP6834006B2 (en) Semi-aromatic polyamide resin composition and its molded product
JP7280146B2 (en) Polyamide composition, method for producing the same, and molded article
JP6985828B2 (en) Vibration-welded polyamide resin composition, molded body and welded molded body
JP2015129243A (en) Polyamide composition and molded product
JP5997526B2 (en) Polyamide resin composition and molded product
JP5942108B2 (en) Polyamide composition and molded body obtained by molding polyamide composition
JP7267794B2 (en) Polyamide resin composition and molded article
US20130338274A1 (en) Thermoplastic melt-mixed compositions with epoxy-amine heat stabilizer
JP2014133871A (en) Polyamide resin composition, and production method thereof
KR102219588B1 (en) Polyamide composition
JP2013253196A (en) Polyamide composition, and molded product obtained by molding polyamide composition
JP7150716B2 (en) Use of Polyamide 6 (PA6) as a Heat Aging Stabilizer in Polymer Compositions Containing Polyphenylene Sulfide (PPS)
JP7017969B2 (en) Polyamide resin composition and its molded products
JP5972088B2 (en) Polyamide resin composition and molded body
WO2023136205A1 (en) Polyamide resin composition and polyamide molded article
JP2022552989A (en) Mixtures of semi-aromatic polyamides and moldings with enhanced weld line strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6502755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250