[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6501247B2 - Immunostimulatory polynucleotide / schizophyllan complex and pharmaceutical composition containing the same - Google Patents

Immunostimulatory polynucleotide / schizophyllan complex and pharmaceutical composition containing the same Download PDF

Info

Publication number
JP6501247B2
JP6501247B2 JP2014253763A JP2014253763A JP6501247B2 JP 6501247 B2 JP6501247 B2 JP 6501247B2 JP 2014253763 A JP2014253763 A JP 2014253763A JP 2014253763 A JP2014253763 A JP 2014253763A JP 6501247 B2 JP6501247 B2 JP 6501247B2
Authority
JP
Japan
Prior art keywords
schizophyllan
complex
polydeoxyribonucleotide
polynucleotide
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014253763A
Other languages
Japanese (ja)
Other versions
JP2016113404A (en
Inventor
櫻井 和朗
和朗 櫻井
慎一 望月
慎一 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF KITAKYUSHU
Original Assignee
THE UNIVERSITY OF KITAKYUSHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF KITAKYUSHU filed Critical THE UNIVERSITY OF KITAKYUSHU
Priority to JP2014253763A priority Critical patent/JP6501247B2/en
Priority to PCT/JP2015/085276 priority patent/WO2016098832A1/en
Publication of JP2016113404A publication Critical patent/JP2016113404A/en
Application granted granted Critical
Publication of JP6501247B2 publication Critical patent/JP6501247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、新規な免疫賦活用ポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物に関する。 The present invention relates to novel immunostimulatory polynucleotide / schizophyllan complexes and pharmaceutical compositions comprising the same.

ワクチンによる感染予防の基本的な原理は、人為的な擬似感染により、獲得免疫を誘導し、特定の病原体に対する抗体産生や細胞性免疫を誘導することにある。獲得免疫においては、免疫の「記憶」を担当するT細胞やB細胞が中心的な役割を果たし、DNAの再構成による抗体の可変領域の多様性が、無数の抗原への特異的な免疫反応を可能にしていることが知られている。一方、白血球、マクロファージ、樹状細胞等の食細胞が中心的な役割を果たしている自然免疫は、従来、病原体や異物を貪食する非特異的なプロセスであり、獲得免疫成立までの「一時しのぎ」としての役割のみを果たしていると考えられていたが、自然免疫の分子機構に関する研究の進展により、自然免疫においても、自己・非自己の特異的な認識が行われていることや、自然免疫が獲得免疫の成立に必須であることが明らかにされた。より具体的には、樹状細胞、マクロファージ、B細胞等の抗原提示細胞に存在するToll様受容体(TLR)ファミリーが、様々な病原体と反応し、サイトカインの産生を誘導し、ナイーブT細胞のTh1細胞への分化の促進、キラーT細胞の活性化等を通して、獲得免疫を誘導することが、最近の研究により明らかにされた。   The basic principle of preventing infection by a vaccine is to induce acquired immunity by artificial artificial infection, and to induce antibody production and cellular immunity against specific pathogens. In acquired immunity, T cells and B cells responsible for immune "memory" play a central role, and the diversity of antibody variable regions due to DNA rearrangement causes specific immune responses to numerous antigens. It is known to make it possible. On the other hand, innate immunity in which phagocytes such as white blood cells, macrophages and dendritic cells play a central role has hitherto been a nonspecific process of phagocytosing pathogens and foreign substances, and as "temporary" until acquired immunity is established. It is thought that it plays only a role, but progress in research on the molecular mechanism of innate immunity leads to specific recognition of self / non-self and innate immunity acquired even in innate immunity. It was clarified that it is essential for the establishment of immunity. More specifically, Toll-like receptor (TLR) family present in antigen-presenting cells such as dendritic cells, macrophages and B cells react with various pathogens to induce the production of cytokines, and naive T cells are Recent studies have revealed that induced immunity can be induced through promotion of differentiation into Th1 cells, activation of killer T cells, and the like.

一連のTLRファミリーにより認識される病原体の構成成分は多岐にわたるが、その中の1つに、TLR9のリガンドである、CpG配列を有するDNA(CpG DNA)がある。CpG配列は、中心部にシトシン(C)とグアニン(G)が並ぶ6個の塩基を基本とする配列で、ほ乳類には少なく、微生物には多く見られる塩基配列である。また、ほ乳類においては、少数存在するCpG配列の殆どがメチル化を受けている。ほ乳類中に殆ど存在しない非メチル化CpG配列は、強力な免疫賦活活性を有している(例えば、非特許文献1〜3参照)。エンドサイトーシスにより細胞内に取り込まれたCpG DNAは、ファゴソーム様小胞体に存在するTLR9により認識され、Th1反応を強く誘導する。Th1反応は、Th2反応が優位なアレルギー反応を抑制すると共に、強い抗腫瘍活性を有する。また、CpG DNAには、一部のアジュバントに見られるような毒性等の副作用もない。そのため、CpG DNAは、感染予防に加え、アレルギー疾患、腫瘍性疾患に対するアジュバントとしても期待されている(例えば非特許文献4参照)。   The components of pathogens recognized by a series of TLR families are diverse, one of which is DNA with CpG sequences (CpG DNA), which is a ligand for TLR9. The CpG sequence is a sequence based on six bases in which cytosine (C) and guanine (G) are aligned at the central portion, and is a nucleotide sequence which is small in mammals and frequently in microorganisms. Also, in mammals, most of the few CpG sequences are methylated. Unmethylated CpG sequences, which are scarcely present in mammals, have potent immunostimulatory activity (see, for example, non-patent documents 1 to 3). CpG DNA taken up into cells by endocytosis is recognized by TLR9 present in phagosome-like endoplasmic reticulum and strongly induces a Th1 response. The Th1 response has strong antitumor activity, while suppressing the allergic response in which the Th2 response is dominant. In addition, CpG DNA does not have side effects such as toxicity as seen with some adjuvants. Therefore, in addition to infection prevention, CpG DNA is expected as an adjuvant for allergic diseases and neoplastic diseases (see, for example, Non-Patent Document 4).

しかし、CpG DNAを免疫療法のアジュバントとして使用する場合、細胞質や血漿中のヌクレアーゼによる分解や、タンパク質との非特異的な結合を回避しつつ、いかに標的細胞の内部にCpG DNAを到達させるかが問題となる。   However, when CpG DNA is used as an adjuvant for immunotherapy, how to allow CpG DNA to reach the inside of target cells while avoiding degradation due to nucleases in cytoplasm or plasma and nonspecific binding with proteins is considered. It becomes a problem.

本発明者らは、新規な遺伝子キャリアとしてシゾフィラン(以下、「SPG」と略称する場合がある。)に着目し、これまでに、シゾフィランが核酸医薬(アンチセンスDNA、CpG DNA)をはじめとする種々の核酸と新しいタイプの複合体を形成することを見出してきた(例えば、特許文献1、2、非特許文献5〜7参照)。   The present inventors focused on schizophyllan (hereinafter sometimes abbreviated as "SPG") as a novel gene carrier, and so far, schizophyllan includes nucleic acid drugs (antisense DNA, CpG DNA) It has been found to form new types of complexes with various nucleic acids (see, for example, Patent Documents 1 and 2 and Non-patent Documents 5 to 7).

天然では三重螺旋で存在するシゾフィランを、ジメチルスルホキシド(DMSO)等の非プロトン性極性有機溶媒、或いは0.1N以上のアルカリ溶液に溶解して1本鎖に解離させた後に、1本鎖の核酸を加え、溶媒を水或いは中性に戻すことによって、核酸1分子とシゾフィラン2分子とからなる三重螺旋複合体が形成することを見出した。この場合、三重螺旋複合体におけるシゾフィラン分子と核酸分子とは、主として水素結合と疎水性相互作用により分子間結合を形成しているものと考えられている(非特許文献8参照)。   A single-stranded nucleic acid after dissolving Schizophyllan, which is naturally present in a triple helix, in an aprotic polar organic solvent such as dimethyl sulfoxide (DMSO) or an alkaline solution of 0.1 N or more and dissociating it into a single strand. Were added, and the solvent was returned to water or neutral, and it was found that a triple helical complex consisting of one nucleic acid molecule and two schizophyllan molecules was formed. In this case, it is considered that the schizophyllan molecule and the nucleic acid molecule in the triple helix complex mainly form hydrogen bonding and hydrophobic interaction to form an intermolecular bond (see Non-Patent Document 8).

上述のように、核酸をシゾフィランと複合化することにより、ヌクレアーゼによる核酸分子の加水分解や、血漿タンパク質と核酸との非特異的な結合等の、核酸分子と生体内タンパク質との望ましくない相互作用を抑制しつつ、核酸を細胞の内部に到達させることが可能になった。シゾフィランと核酸との複合体、さらには抗原性を有するタンパク質を含む3元複合体を利用して、CpG DNAの細胞内へのデリバリーに成功した(例えば、特許文献3、4、非特許文献9〜11参照)。   As mentioned above, undesired interactions between nucleic acid molecules and in vivo proteins, such as hydrolysis of the nucleic acid molecules by nucleases and nonspecific binding of plasma proteins to the nucleic acids by complexing the nucleic acid with Schizophyllan It has become possible to allow the nucleic acid to reach the inside of the cell while suppressing Successful delivery of CpG DNA into cells using a complex of schizophyllan and a nucleic acid, and a ternary complex containing a protein having antigenicity (for example, Patent Documents 3 and 4, Non-patent Document 9) ~ 11).

国際公開第01/34207号WO 01/34207 国際公開第02/072152号WO 02/072152 特開2007−174107号公報JP 2007-174107 A 特開2010−70307号公報JP, 2010-70307, A

Bacterial CpG DNA Activates Immune Cells to Signal Infectious Danger, H. Wagner, Adv. Immunol., 73, 329-368 (1999).Bacterial CpG DNA Activates Immune Cells to Signal Infectious Danger, H. Wagner, Adv. Immunol., 73, 329-368 (1999). CpG Motifs in Bacterial DNA and Their Immune Effects, M. Krieg, Annu. Rev. Immunol., 20, 709-760 (2002).CpG Motifs in Bacterial DNA and Their Immune Effects, M. Krieg, Annu. Rev. Immunol., 20, 709-760 (2002). The discovery of immunostimulatory DNA sequence, S. Yamamoto, T. Yamamoto, and T. Tokunaga, Springer Seminars in Immunopathology, 22, 11-19 (2000).The discovery of immunostimulatory DNA sequence, S. Yamamoto, T. Yamamoto, and T. Tokunaga, Springer Seminars in Immunopathology, 22, 11-19 (2000). 「標準免疫学」第2版、医学書院、2002年、333頁Standard Immunology, 2nd Edition, School of Medicine, 2002, p. 333 Molecular Recognition of Adenine, Cytosine, and Uracil in a Single-Stranded RNA by a Natural Polysaccharide: Schizophyllan. K. Sakurai and S. Shinkai, J. Am. Chem. Soc., 122, 4520-4521 (2000).Molecular Recognition of Adenine, Cytosine, and Uracil in a Single-Stranded RNA by a Natural Polysaccharide: Schizophylla. K. Sakurai and S. Shinkai, J. Am. Chem. Soc., 122, 4520-4521 (2000). Polysaccharide-Polynucleotide Complexes. 2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Schizophyllan in the Macromolecular Complex with Single-Stranded RNA and DNA. K. Sakurai, M. Mizu and S. Shinkai, Biomacromolecules, 2, 641-650 (2001).Polysaccharide-Polynucleotide Complexes. 2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Complex of the Macromolecular Complex with Single-Stranded RNA and DNA. K. Sakurai, M. Mizu and S. Shinkai, Biomacromolecules, 2, 641-650 (2001) . Dectin-1 targeting delivery of TNF-α antisense ODNs complexed with β-1,3-glucan protects mice from LPS-induced hepatitis. S. Mochizuki and K. Sakurai, J. Control. Release, 151 (2011) 155-161.Sect. Mochizuki and K. Sakurai, J. Control. Release, 151 (2011) 155-161. Dectin-1 targeting delivery of TNF-α anti-sense ODNs complexed with β-1,3- glucan protectors mice from LPS-induced hepatitis. Structural Analysis of the Curdlan/Poly (cytidylic acid) Complex with Semiempirical Molecular Orbital Calculations. K. Miyoshi, K. Uezu, K. Sakurai and S. Shinkai, Biomacromolecules, 6, 1540-1546 (2005).Structural Analysis of the Curdlan / Poly (cytidylic acid) Complex with Semiempirical Molecular Orbital Calculations. K. Miyoshi, K. Uezu, K. Sakurai and S. Shinkai, Biomacromolecules, 6, 1540-1546 (2005). A Polysaccharide Carrier for Immunostimulatory CpG DNAs to Enhance Cytokine Secretion, M. Mizu, K. Koumoto, T. Anada, T. Matsumoto, M. Numata, S. Shinkai, T. Nagasaki and K. Sakurai, J. Am. Chem. Soc., 126, 8372-8373 (2004).A. Polysaccharide Carrier for Immunostimulatory CpG DNAs to Enhance Cytokine Secretion, M. Mizu, K. Koumoto, T. Anada, T. Matsumoto, M. Numata, S. Shinkai, T. Nagasaki and K. Sakurai, J. Am. Soc., 126, 8372-8373 (2004). Protection of Polynucleotides against Nuclease-mediated Hydrolysis by Complexation with Schizophyllan, M. Mizu, K. Koumoto, T. Kimura, K. Sakurai and S. Shinkai, Biomaterials, 25, 15, 3109-3116 (2004).Protection of Polynucleotides against Nuclease-Mediated Hydrolysis by Complexation with Schizophyllan, M. Mizu, K. Koumoto, T. Kimura, K. Sakurai and S. Shinkai, Biomaterials, 25, 15, 3109-3116 (2004). Synthesis and in Vitro Characterization of Antigen-Conjugated Polysaccharide as a CpG DNA Carrier, N. Shimada, K. J. Ishii, Y. Takeda, C. Coban, Y. Torii, S. Shinkai, S. Akira and K. Sakurai, Bioconjugate Chem., 17 1136-1140 (2006).Synthesis and in Vitro Characterization of Antigen-Conjugated Polysaccharide as a CpG DNA Carrier, N. Shimada, KJ Ishii, Y. Takeda, C. Coban, Y. Torii, S. Shinkai, S. Akira and K. Sakurai, Bioconjugate Chem. , 17 1136-1140 (2006).

しかしながら、上記従来の技術は、以下のような課題を有していた。例えば、非特許文献11記載のシゾフィラン/抗原性を有するタンパク質/CpG DNAの3元複合体の製造方法においては、過ヨウ素酸酸化により、シゾフィランの側鎖のグルコース残基上にホルミル基を生成させ、還元的アミノ化反応により、ホルミル基と抗原性を有するペプチド(以下、「抗原性ペプチド」と略称する場合がある。)のアミノ基とを反応させ、シゾフィランと抗原性ペプチドとが共有結合した複合体を形成するが、収率がきわめて低いという課題を有していた。かかる事情に鑑みて、例えば、特許文献4記載のシゾフィラン/抗原性タンパク質(抗原性ペプチド)/CpG DNAの3元複合体の製造方法においては、側鎖にホルミル基を有するシゾフィランと抗原性ペプチドとを、アルカリ水溶液中で反応させると同時に中和を行ない、或いはアルカリ水溶液中で反応させて逐次中和を行なうことにより、シゾフィランの側鎖上のホルミル基と抗原性ペプチドのアミノ基との反応性及び収率を向上させている。しかしながら、ペプチドには複数のアミノ基が存在するため、反応点の制御が困難である。したがって、抗原性ペプチドの反応位置による免疫原性の違いや、シゾフィランとの反応生成物が複雑な混合物となることに起因する分離精製の困難性等の問題の発生が懸念される。また、水素結合による複合体形成を利用したシゾフィランとDNAとの複合体の形成に比べ、シゾフィランと抗原性ペプチドの共有結合の形成に基づく複合体の形成は煩雑な工程を必要とする。これらの点において、特許文献4記載のシゾフィラン/抗原性ペプチド/CpG DNAの3元複合体の製造方法は、生産性等の点で依然として課題を有している。   However, the above-described conventional techniques have the following problems. For example, in the method for producing a ternary complex of schizophyllan / protein having antigenicity / CpG DNA described in Non-Patent Document 11, a formyl group is generated on the glucose residue of the side chain of schizophyllan by periodic acid oxidation. The Schizophyllan and the antigenic peptide are covalently bonded by reacting a formyl group with the amino group of a peptide having antigenicity (hereinafter sometimes abbreviated as "antigenic peptide") by reductive amination. Although forming a complex, it had the subject that the yield was very low. In view of such circumstances, for example, in the method of producing a ternary complex of schizophyllan / antigenic protein (antigenic peptide) / CpG DNA described in Patent Document 4, schizophyllan having a formyl group in the side chain and antigenic peptide Is reacted in an aqueous alkaline solution and at the same time neutralized, or reacted in an aqueous alkaline solution and sequentially neutralized to react the formyl group on the side chain of schizophyllan with the amino group of the antigenic peptide. And improve the yield. However, since there are a plurality of amino groups in the peptide, control of the reaction point is difficult. Therefore, there are concerns about problems such as differences in immunogenicity depending on the reaction position of the antigenic peptide, and difficulties in separation and purification due to the reaction product with schizophyllan becoming a complicated mixture. In addition, the formation of a complex based on the formation of a covalent bond between schizophyllan and an antigenic peptide requires a complicated step, as compared to the formation of a complex of schizophyllan and DNA using complex formation by hydrogen bonding. In these respects, the method for producing a ternary complex of schizophyllan / antigenic peptide / CpG DNA described in Patent Document 4 still has problems in terms of productivity and the like.

本発明はかかる事情に鑑みてなされたもので、生産性に優れ、高い免疫賦活活性を有する免疫賦活用ポリヌクレオチド/シゾフィラン複合体及びそれを含む医薬組成物を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an immunostimulatory polynucleotide / schizophyllan complex having excellent productivity and high immunostimulatory activity, and a pharmaceutical composition comprising the same.

前記目的に沿う本発明の第1の態様は、シゾフィランと、
前記シゾフィランと水素結合を介して結合し、CpG配列を有するポリデオキシリボヌクレオチド又は該ポリデオキシリボヌクレオチドにおいてホスホジエステル結合の一部又は全部がホスホロチオエート結合もしくはホスホロジチオエート結合で置換されたポリデオキシリボヌクレオチド誘導体(以下、本発明において「前記ポリデオキシリボヌクレオチド誘導体」又は「ポリデオキシリボヌクレオチド誘導体」と略称する。)とを含み、
前記ポリデオキシリボヌクレオチド又は前記ポリデオキシリボヌクレオチド誘導体の分子鎖1本と前記シゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成しており、
多角度光散乱測定又はX線小角散乱による慣性半径の測定値が20nm以上200nm以下であり、
X線小角散乱を用いて測定したX線の散乱強度Iを、下記の式(I)で定義されるq値の対数に対しプロットした場合、qが10−1nm−1から1nm−1の範囲における傾きaが−1.5以上−0.5以下であり、
前記ポリデオキシリボヌクレオチド又は前記ポリデオキシリボヌクレオチドの誘導体のうち、前記シゾフィランと水素結合を介して結合する部分の重合度が60以上であることを特徴とする免疫賦活用ポリヌクレオチド/シゾフィラン複合体を提供することにより上記課題を解決するものである。

Figure 0006501247
なお、式(I)において、θはX線の散乱角を表し、λはX線の波長を表す。
本発明の第2の態様は、シゾフィランと、
前記シゾフィランと水素結合を介して結合し、CpG配列を有するポリデオキシリボヌクレオチド又は該ポリデオキシリボヌクレオチドにおいてホスホジエステル結合の一部又は全部がホスホロチオエート結合もしくはホスホロジチオエート結合で置換されたポリデオキシリボヌクレオチド誘導体とを含み、
前記ポリデオキシリボヌクレオチド又は前記ポリデオキシリボヌクレオチド誘導体の分子鎖1本と前記シゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成しており、
多角度光散乱測定又はX線小角散乱による慣性半径の測定値が20nm以上200nm以下であり、
X線小角散乱を用いて測定したX線の散乱強度Iを、上記の式(I)で定義されるq値の対数に対しプロットした場合、qが10 −1 nm −1 から1nm −1 の範囲における傾きaが−1.5以上−0.5以下であり、
前記ポリデオキシリボヌクレオチド又は前記ポリデオキシリボヌクレオチドの誘導体のうち、前記シゾフィランと水素結合を介して結合する部分の重合度が10以上であり、且つポリデオキシリボヌクレオチドにおいてホスホジエステル結合がホスホロジチオエート結合に置換されたポリデオキシリボヌクレオチドの誘導体であることを特徴とする免疫賦活用ポリヌクレオチド/シゾフィラン複合体を提供することにより上記課題を解決するものである。 According to a first aspect of the present invention, which meets the above object, there is provided schizophyllan,
The schizophyllan and linked via hydrogen bonds, poly deoxyribonucleic polynucleotide or the polypeptide deoxyribonucleic nucleotides some phosphodiester bonds or in the whole of poly deoxyribonucleic nucleotide derivative substituted with phosphorothioate bonds or phosphorodithioate bonds having a CpG sequence ( Hereinafter, the present invention includes “the above-mentioned polydeoxyribonucleotide derivative” or “ polydeoxyribonucleotide derivative” for short.
Forms a complex with the polypeptide deoxyribonucleic polynucleotide or triple helix structure composed of the polypeptide deoxyribonucleic nucleotide derivative chains one with a molecular chain two of said schizophyllan,
The measurement value of the radius of inertia by multi-angle light scattering measurement or small-angle X-ray scattering is 20 nm or more and 200 nm or less,
When the scattered intensity I of X-rays measured using small-angle X-ray scattering is plotted against the logarithm of q value defined by the following formula (I), q is 10 −1 nm −1 to 1 nm −1 slope a is -1.5 or more in the range -0.5 Ri der below,
There is provided an immunostimulatory polynucleotide / schizophyllan complex , wherein the degree of polymerization of a portion of the polydeoxyribonucleotide or the derivative of the polydeoxyribonucleotide bound to the schizophyllan via a hydrogen bond is 60 or more. It solves the above-mentioned subject by doing.
Figure 0006501247
In equation (I), θ represents the scattering angle of X-rays, and λ represents the wavelength of X-rays.
According to a second aspect of the present invention there is provided:
A polydeoxyribonucleotide having a CpG sequence and a polydeoxyribonucleotide having a CpG sequence or a polydeoxyribonucleotide derivative in which part or all of phosphodiester bonds in the polydeoxyribonucleotide is substituted with a phosphorothioate bond or a phosphorodithioate bond, which is bound to the schizophyllan via hydrogen bond Including
Forming a complex having a triple helical structure comprising one molecular chain of the polydeoxyribonucleotide or the polydeoxyribonucleotide derivative and two molecular chains of the schizophyllan,
The measurement value of the radius of inertia by multi-angle light scattering measurement or small-angle X-ray scattering is 20 nm or more and 200 nm or less,
The scattering intensity I of X-rays was measured using an X-ray small angle scattering, when plotted against the logarithm of q values defined by the above formula (I), q is 1 nm -1 from 10 -1 nm -1 The slope a in the range is -1.5 or more and -0.5 or less,
In the polydeoxyribonucleotide or the derivative of the polydeoxyribonucleotide, the degree of polymerization of the moiety bonded to the schizophyllan via hydrogen bond is 10 or more, and in the polydeoxyribonucleotide, the phosphodiester bond is substituted to the phosphorodithioate bond The object of the present invention is to solve the above-mentioned problems by providing an immunostimulatory polynucleotide / schizophyllan complex characterized by being a derivative of the polydeoxyribonucleotide.

本発明の第1又は第2の態様に係る免疫賦活用ポリヌクレオチド/シゾフィラン複合体において、分子量が1×10以上3×10以下であってもよい。 In the immunostimulatory polynucleotide / schizophyllan complex according to the first or second aspect of the present invention, the molecular weight may be 1 × 10 5 or more and 3 × 10 6 or less.

本発明の第の態様は、本発明の第1又は第2の態様に係る免疫賦活用ポリヌクレオチド/シゾフィラン複合体を含む医薬組成物を提供することにより上記課題を解決するものである。 The third aspect of the present invention solves the above-mentioned problems by providing a pharmaceutical composition comprising the immunostimulatory polynucleotide / schizophyllan complex according to the first or second aspect of the present invention.

本発明によると、以下のような有利な効果が得られる。
(1)シゾフィラン及びCpG配列を有するポリヌクレオチドの種類、分子量、組み合わせ等に関わりなく、シゾフィランとポリヌクレオチドとの間の水素結合を介してポリヌクレオチド/シゾフィラン複合体を形成できるため、広範なシゾフィランとCpG配列を有するポリヌクレオチドの組み合わせについて、単一の操作により免疫賦活用ポリヌクレオチド/シゾフィラン複合体を得ることができる。
According to the present invention, the following advantageous effects are obtained.
(1) Regardless of the type, molecular weight, combination, etc. of schizophyllan and polynucleotides having CpG sequences, a polynucleotide / schizophyllan complex can be formed via hydrogen bonding between schizophyllan and the polynucleotide, so An immunostimulatory polynucleotide / schizophyllan complex can be obtained by a single operation for combinations of polynucleotides having CpG sequences.

(2)シゾフィランとCpG配列を有するポリヌクレオチドとの水素結合は、溶媒のpHを変化させることにより迅速かつ高効率に反応を進行させることができる。したがって、短時間に高収率でポリヌクレオチド/シゾフィラン複合体が得られ、単離精製に要する手間も軽減することが可能になる。したがって、本発明の免疫賦活用ポリヌクレオチド/シゾフィラン複合体は、生産性に優れており、低コストで製造することができる。 (2) Hydrogen bonding between schizophyllan and a polynucleotide having a CpG sequence can rapidly and efficiently proceed the reaction by changing the pH of the solvent. Therefore, the polynucleotide / schizophyllan complex can be obtained in a high yield in a short time, and the time required for isolation and purification can also be reduced. Therefore, the immunostimulatory polynucleotide / schizophyllan complex of the present invention is excellent in productivity and can be produced at low cost.

(3)本発明の免疫賦活用ポリヌクレオチド/シゾフィラン複合体を用いることにより、CpG配列を有するポリヌクレオチドを単独で使用した場合に比べ、CpG配列を有するポリヌクレオチドに特異的な免疫応答の誘導をより効果的に行うことができる。 (3) The use of the immunostimulatory polynucleotide / schizophyllan complex of the present invention induces induction of an immune response specific to a polynucleotide having a CpG sequence, as compared to when the polynucleotide having a CpG sequence is used alone. It can be done more effectively.

(4)本発明の免疫賦活用ポリヌクレオチド/シゾフィラン複合体を含む医薬組成物は、CpG配列を有するポリヌクレオチドを単独で用いた場合よりも、広範なCpG配列を有するポリヌクレオチドについて特異的な免疫応答をより効果的に誘導できる。そのため、ワクチンや免疫賦活剤としての応用が期待できる。 (4) immunostimulatory polynucleotide / schizophyllan pharmaceutical composition comprising a conjugate of the present invention, than with a polynucleotide having a CpG sequence alone, specific immune for polynucleotides having a broad CpG sequence The response can be induced more effectively. Therefore, application as a vaccine and an immunostimulant can be expected.

S−d(A)40−D35複合体の分子量と慣性半径の関係を示すグラフである。It is a graph which shows the molecular weight of a Sd (A) 40- D35 complex, and the relation of a radius of inertia.

続いて、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。   Subsequently, an embodiment of the present invention will be described to provide an understanding of the present invention.

[1]免疫賦活用ポリヌクレオチド/シゾフィラン複合体
本発明の第一の実施の形態に係る免疫賦活用ポリヌクレオチド/シゾフィラン複合体(以下、単に「ポリヌクレオチド/シゾフィラン複合体」と略称する場合がある。)は、シゾフィランと、シゾフィランと水素結合を介して結合し、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体(ポリヌクレオチドにおいてホスホジエステル結合の一部又は全部がホスホロチオエート結合もしくはホスホロジチオエート結合で置換されたポリヌクレオチド誘導体)とを含んでいる。
[1] first according to the embodiment immunostimulatory polynucleotide / schizophyllan complex of immunostimulatory polynucleotides / schizophyllan complexes present invention (hereinafter, sometimes simply referred to as "polynucleotide / schizophyllan complex" ) Is bound to schizophyllan via hydrogen bond with schizophyllan, and a polynucleotide or polynucleotide derivative having a CpG sequence (a part or all of phosphodiester bonds in the polynucleotide is substituted by phosphorothioate bond or phosphorodithioate bond) (Polynucleotide derivatives) and

ポリヌクレオチド/シゾフィラン複合体において、ポリヌクレオチド又はポリヌクレオチド誘導体と、シゾフィランとは、ポリヌクレオチド又はポリヌクレオチド誘導体の分子鎖1本とシゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成している。   In the polynucleotide / schizophyllan complex, the polynucleotide or the polynucleotide derivative and the schizophyllan form a complex having a triple helical structure consisting of one molecular chain of the polynucleotide or the polynucleotide derivative and two molecular chains of the schizophyllan. doing.

ポリヌクレオチド/シゾフィラン複合体の製造に使用されるポリヌクレオチド又はポリヌクレオチド誘導体は、シゾフィランと水素結合を介して結合することができると共に、CpG配列を有している。   The polynucleotide or polynucleotide derivative used for production of the polynucleotide / schizophyllan complex is capable of binding to schizophyllan via hydrogen bond and has a CpG sequence.

免疫応答の刺激活性を有するオリゴヌクレオチドは、1984年にTokunagaらによりBCGの抗腫瘍性成分を検索する過程で発見された。そして、その活性化作用がシトシン・グアニンジヌクレオチド(5’−CpG−3’:所謂CpG配列)を含む特定の塩基配列に起因するものであることが明らかにされた(例えば、Tokunaga, T., et al., J. Natl. Cancer Inst., 72, 955(1984)及びTokunaga, T., et al., J. Natl. Cancer Res., 79, 682(1988)を参照。)。   Oligonucleotides having an immune response stimulating activity were discovered in 1984 by Tokunaga et al. In the process of searching for an antitumor component of BCG. Then, it was revealed that the activation action is attributable to a specific base sequence containing cytosine guanine dinucleotide (5′-CpG-3 ′: so-called CpG sequence) (eg, Tokunaga, T. et al. , et al., J. Natl. Cancer Inst., 72, 955 (1984) and Tokunaga, T., et al., J. Natl. Cancer Res., 79, 682 (1988)).

脊椎動物又は植物以外のCpG配列をもつゲノムDNAにも同様の活性が認められている。免疫刺激活性にはCpGコアの前後の配列も重要と考えられ、特に、メチル化されてないCpGを有し、その前後に置換プリン(Pu)と置換ピリミジン(Py)が配列した5’−PuPuCpGPyPy−3’が、代表的な非メチル化CpGモチーフとしてコンセンサスを得ている(例えば、Krieg, A.,他, Nature, 374, 576(1995)を参照。)。ここで、非メチル化CpGモチーフとは、よく知られているように、少なくとも1つのシトシン(C)−グアニン(G)配列を含む短いヌクレオチド配列(一般的には4〜10個のヌクレオチドから成る配列)であって、該シトシン−グアニン配列におけるシトシンの5位がメチル化されていないものを指称する。なお、以下の説明において、CpGとは、特に断らない限り非メチル化CpGを意味する。   Similar activity is also observed in genomic DNA having CpG sequences other than vertebrates or plants. Sequences before and after the CpG core are also considered to be important for the immunostimulatory activity, and in particular, 5'-PuPuCpGPyPy having non-methylated CpGs and in which substituted purines (Pu) and substituted pyrimidines (Py) are arranged. The consensus is -3 'as a representative unmethylated CpG motif (see, eg, Krieg, A., et al., Nature, 374, 576 (1995)). Here, the unmethylated CpG motif is, as is well known, a short nucleotide sequence (generally 4 to 10 nucleotides) containing at least one cytosine (C) -guanine (G) sequence Sequence), wherein the 5-position of cytosine in the cytosine-guanine sequence is not methylated. In the following description, CpG means unmethylated CpG unless otherwise specified.

有用なCpGモチーフ(ヘキサマー)の例を以下に記載する(但し、A:アデニン、G:グアニン、C:シトシン、T:チミン、U:ウラシル)。   Examples of useful CpG motifs (hexamers) are described below (where A: adenine, G: guanine, C: cytosine, T: thymine, U: uracil).

AACGTT、AGCGTT、GACGTT、GGCGTT、AACGTC、AGCGTC、GACGTC、GGCGTC、AACGCC、AGCGCC、GACGCC、GGCGCC、AACGCT、AGCGCT、GACGCT、及びGGCGCT   AACGTT, AGCGTT, GACGTT, GGCGTT, AACGTC, AGCGTC, GACGTC, AGCGTC, AACGCC, AGCGCC, GACGCC, GAGGCCC, AACGCT, AGCGCT, GACGCT, and GGGCCT

これらの配列を含む8〜100個程度で構成されるオリゴヌクレオチドが免疫刺激活性を有するものである。   Oligonucleotides composed of about 8 to 100 including these sequences are those having immunostimulatory activity.

以下の配列は、NK細胞の活性化に有効と報告されたCpGモチーフを含む免疫刺激性オリゴヌクレオチドの例である(下線部分がCpGモチーフを示し、また、大文字はチオール化DNAを表わす)(例えば、S. Iho, T. Yamamoto, T. Takahashi and S. Yamamoto, J. immunol., 1999, 163, 3642-3652. を参照。)。   The following sequences are examples of immunostimulatory oligonucleotides containing CpG motifs that have been reported to be effective for NK cell activation (underlined portions indicate CpG motifs and capital letters indicate thiolated DNA) (eg S. Iho, T. Yamamoto, T. Takahashi and S. Yamamoto, J. immunol., 1999, 163, 3642-3652.).

accgataccggtgccggtgacggcaccacg
accgatagcgctgccggtgacggcaccacg
accgatgacgtcgccggtgacggcaccacg
accgattcgcgagccggtgacggcaccacg
ggggggggggggcgatcggggggggggggg
gggggggggggacgatcgtcgggggggggg
ggggggggggggaacgttgggggggggggg
GAGAACGCTCGACCTTCGAT
TCCATGACGTTCCTGATGCT
TCTCCCAGCGTGCGCCAT
GGggtcaacgttgaGGGGGg
accgat accggt gccggt gacgg caccacg
accgat agcgct gccggtgacggcaccacg
accgat gacgtc gccggtgacggcaccacg
accgat tcgcga gccggtgacggcaccacg
gggggggggggg cgatcg gggggggggggg
gggggggggg gacgatcgtc gggggggggg
gggggggggggg aacgtt gggggggggggg
GAG AACGCT CGACCTTCGAT
TCCAT GACGTT CCTGATGCT
TCTCCCAG CG TG CG CCAT
GGggt caacgtt gaGGGGGg

上述したCpG配列を含むポリヌクレオチド(例えば、RNA又はDNA)と、シゾフィランと水素結合を介して結合する塩基配列を有するポリヌクレオチド又はポリヌクレオチド誘導体とをハイブリッドさせてもよく、そのようなハイブリッドは、任意の公知の方法を用いて入手又は合成できる。なお、ポリヌクレオチド又はポリヌクレオチド誘導体が、DNAの3’末端側にRNAの5’末端側が結合したキメラ核酸である場合、RNAとDNAの間のホスホジエステル結合が、特に分解を受けやすくなるため、DNAと結合したRNAの5’末端側ヌクレオチドにおける2’位のヒドロキシル基をメトキシ基又はフルオロ基で置換し、かつ/又はDNAと結合した最初のリボヌクレオチドの3’位と、それに隣接するRNAの5’位との間のホスホジエステル基をホスホロチオエート基で置換する等の誘導体化を行い、加水分解に対する耐性を向上させておくことが好ましい。   The polynucleotide (for example, RNA or DNA) containing the CpG sequence described above may be hybridized with a polynucleotide or polynucleotide derivative having a base sequence that binds to Schizophyllan via a hydrogen bond, and such a hybrid is It can be obtained or synthesized using any known method. When the polynucleotide or the polynucleotide derivative is a chimeric nucleic acid in which the 5 'end of RNA is bound to the 3' end of DNA, the phosphodiester bond between RNA and DNA is particularly susceptible to degradation. The hydroxyl group at the 2 'position of the 5' terminal nucleotide of RNA bound to DNA is substituted with a methoxy group or a fluoro group and / or the 3 'position of the first ribonucleotide bound to DNA and the adjacent RNA Preferably, derivatization such as substitution of a phosphodiester group between the 5'-positions with a phosphorothioate group is carried out to improve the resistance to hydrolysis.

ポリヌクレオチドは、生体内でヌクレアーゼによる分解を受けやすいので、生体内での安定性を向上させるために、ポリヌクレオチドの代わりにポリヌクレオチド誘導体を用いてもよい。ポリヌクレオチド誘導体の例としては、リボヌクレオチドの2’位のヒドロキシル基の全部又は一部がフッ素又はメトキシ基で置換されているもの、ポリリボヌクレオチド(RNA)又はポリデオキシリボヌクレオチド(DNA)のホスホジエステル基の全部又は一部がホスホロチオエート基で置換されているもの等が挙げられる。ポリリボヌクレオチド又はポリデオキシリボヌクレオチドのホスホジエステル基の一部がホスホロチオエート基で置換されている場合、ホスホジエステル結合の50%以上がホスホロチオエート基で置換されていることが好ましい。ホスホロチオエート基で置換されるホスホジエステル基の位置は特に制限されず、連続した複数のホスホジエステル基が置換されていてもよく、或いはホスホロチオエート基が互いに隣り合わないように置換されていてもよい。   Since polynucleotides are susceptible to degradation by nucleases in vivo, polynucleotide derivatives may be used instead of polynucleotides to improve their stability in vivo. Examples of polynucleotide derivatives include those in which all or part of the hydroxyl group at the 2 'position of ribonucleotide is substituted with a fluorine or methoxy group, phosphodiester of polyribonucleotide (RNA) or polydeoxyribonucleotide (DNA) Those in which all or part of the groups are substituted with phosphorothioate groups are exemplified. When part of the phosphodiester group of the polyribonucleotide or polydeoxyribonucleotide is substituted with a phosphorothioate group, it is preferable that 50% or more of the phosphodiester bond is substituted with a phosphorothioate group. The position of the phosphodiester group substituted by the phosphorothioate group is not particularly limited, and a plurality of consecutive phosphodiester groups may be substituted or the phosphorothioate groups may be substituted so as not to be adjacent to each other.

水素結合を介して結合する部分塩基配列を有するポリヌクレオチド又はポリヌクレオチド誘導体の具体例としては、シゾフィランと結合能が高いポリアデノシン(ポリアデニル酸、ポリリボアデニル酸)(polyA)、ポリシチジン(ポリシチジル酸、ポリリボシチジル酸)(polyC)、ポリデオキシアデノシン(ポリデオキシアデニル酸、ポリデオキシリボアデニル酸)(poly(dA))、ポリデオキシチミジン(ポリデオキシチミジル酸、ポリデオキシリボチミジル酸)(poly(dT))が挙げられる。ポリヌクレオチドの塩基数は、上述のとおり、シゾフィランとの間で三重螺旋構造を有する複合体を形成できる限りにおいて特に制限されないが、複合体形成能を向上させるために、ポリヌクレオチドは、シゾフィランと結合能が高いポリアデノシン(polyA)、ポリシチジン(polyC)、ポリデオキシアデノシン(poly(dA))、ポリデオキシチミジン(poly(dT))のいずれかの繰り返し配列を有していることが好ましい。好ましい繰り返し配列を構成する塩基及びヌクレオチド又はヌクレオチド誘導体の種類並びに塩基数は、CpG配列を有するポリヌクレオチド又はポリヌクレオチド誘導体部分の長さ、用いられるシゾフィランの分子量等に応じて適宜決定される。繰り返し配列の長さは、塩基数が少ないと、シゾフィランとの水素結合による三重螺旋構造の形成が困難であるため、塩基数は、10以上である必要があり、20〜80であることが好ましく、30〜80であることが更に好ましい。   Specific examples of the polynucleotide or polynucleotide derivative having a partial base sequence linked via a hydrogen bond include polyadenosine (polyadenylate, polyriboadenylate) (polyA), polycytidine (polycytidylate), which has a high binding ability to schizophyllan. Polyribocytidylic acid (polyC), polydeoxyadenosine (polydeoxyadenylate, polydeoxyriboadenylate) (poly (dA)), polydeoxythymidine (polydeoxythymidylate, polydeoxyribotimidylate) (poly (dT)) Be The number of bases of the polynucleotide is not particularly limited as long as it can form a complex having a triple helix structure with Schizophyllan as described above, but in order to improve the complexing ability, the polynucleotide binds to Schizophyllan It is preferable to have a repeating sequence of any of polyadenosine (polyA), polycytidine (polyC), polydeoxyadenosine (poly (dA)), and polydeoxythymidine (poly (dT)) having high performance. The type of base and nucleotide or nucleotide derivative constituting the preferable repeating sequence and the number of bases are appropriately determined according to the length of the polynucleotide or polynucleotide derivative having the CpG sequence, the molecular weight of the schizophyllan to be used, and the like. If the number of bases is small, it is difficult to form a triple helix structure by hydrogen bonding with schizophyllan, so the number of bases needs to be 10 or more, and preferably 20 to 80. And 30 to 80 are more preferable.

シゾフィランの分子量は、ポリヌクレオチド/シゾフィラン複合体に含まれるポリヌクレオチド又はポリヌクレオチド誘導体の塩基配列及び塩基長等に応じて適宜調節される。しかし、分子量が小さいと、いわゆるクラスター効果(高分子系の協同現象)が発現し難くなり好ましくない。通常は、核酸と複合体を形成しうるシゾフィランの重量平均分子量(分子鎖1本あたり)としては、核酸塩基の種類や高次構造によって異なるが、好ましくは2万以上、さらに好ましくは4万以上、より好ましくは6万以上である。また、ポリヌクレオチド上の核酸塩基と水素結合を形成する水酸基の数は、通常は、5個以上、好ましくは、8個以上、さらに好ましくは、10個以上必要である。
なお、シゾフィランの重量平均分子量は、光散乱法、沈降速度法(超遠心法)等の任意の公知の方法を用いて決定することができる。
The molecular weight of schizophyllan is appropriately adjusted according to the base sequence and base length of the polynucleotide or polynucleotide derivative contained in the polynucleotide / schizophyllan complex. However, if the molecular weight is small, it is not preferable because the so-called cluster effect (cooperative phenomenon of polymer systems) hardly occurs. Usually, the weight-average molecular weight (per molecule) of schizophyllan capable of forming a complex with a nucleic acid varies depending on the type and higher-order structure of the nucleic acid base, but is preferably at least 20,000, more preferably at least 40,000. And more preferably 60,000 or more. In addition, the number of hydroxyl groups that form hydrogen bonds with nucleic acid bases on the polynucleotide is usually 5 or more, preferably 8 or more, and more preferably 10 or more.
The weight average molecular weight of schizophyllan can be determined using any known method such as light scattering method, sedimentation velocity method (ultracentrifugation method) and the like.

シゾフィランは、一般に菌類や真性細菌によって産生されるため、これらの微生物を培養後、菌体をホモゲナイズし、細胞溶出分や不溶性残渣等の不純物から超遠心法等の方法により単離することにより得ることができる。一般に、このようにして得られるシゾフィランは高分子量(重量平均分子量が数十万程度)で三重螺旋構造を取る。必要に応じて低分子化して用いてもよい。低分子化は、酵素分解、酸加水分解等から適宜適当な方法及び条件を選択して行う。   Since schizophyllan is generally produced by fungi and eubacteria, it is obtained by culturing these microorganisms, homogenizing the cells, and isolating them from impurities such as cell elution and insoluble residue by a method such as ultracentrifugation. be able to. In general, the schizophyllan thus obtained has a triple helical structure with a high molecular weight (weight average molecular weight of several hundreds of thousands). If necessary, the molecular weight may be reduced. Molecular weight reduction is carried out by appropriately selecting an appropriate method and conditions from enzymatic degradation, acid hydrolysis and the like.

(3)ポリヌクレオチド/シゾフィラン複合体の製造
シゾフィランは、通常、水中でシゾフィランの分子鎖3本からなる三重螺旋構造を呈している。したがって、ポリヌクレオチド又はポリヌクレオチド誘導体と複合体を形成するためには、シゾフィランをDMSOのような溶媒に溶解して分子間水素結合及び疎水性相互作用による会合状態を解いて一本鎖にする。このようにして得られた一本鎖状のシゾフィランの溶液に、ポリヌクレオチド又はポリヌクレオチド誘導体を含有する水溶液(又はアルコール等の極性溶媒の溶液)を添加していくと、水の添加による溶媒の極性の増大に伴い、疎水性相互作用によりポリヌクレオチドとシゾフィランとが会合し、ポリヌクレオチド又はポリヌクレオチド誘導体の分子鎖を取り込みながら、ポリヌクレオチド又はポリヌクレオチド誘導体とシゾフィランとの複合体が形成される。その結果、ポリヌクレオチド又はポリヌクレオチド誘導体の分子鎖1本とシゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体が形成される。複合体の形成は、例えば、CD(円偏光二色性)スペクトルを測定することにより、ポリヌクレオチド又はポリヌクレオチド誘導体のコンホメーション変化を調べることによって確認することができる。
(3) Preparation of polynucleotide / schizophyllan complex Schizophyllan usually exhibits a triple helical structure consisting of three molecular chains of schizophyllan in water. Therefore, in order to form a complex with a polynucleotide or a polynucleotide derivative, Schizophyllan is dissolved in a solvent such as DMSO to break the association state due to intermolecular hydrogen bonding and hydrophobic interaction into a single strand. An aqueous solution containing a polynucleotide or a polynucleotide derivative (or a solution of a polar solvent such as alcohol) is added to the solution of single-stranded schizophyllan obtained in this manner, and the solvent is added by the addition of water. As the polarity increases, the hydrophobic interaction causes the polynucleotide and the schizophyllan to associate, and while the molecular chain of the polynucleotide or the polynucleotide derivative is incorporated, a complex of the polynucleotide or the polynucleotide derivative and the schizophyllan is formed. As a result, a complex having a triple helical structure consisting of one molecular chain of the polynucleotide or polynucleotide derivative and two molecular chains of schizophyllan is formed. The formation of the complex can be confirmed by examining the conformational change of the polynucleotide or the polynucleotide derivative, for example, by measuring a CD (circular dichroism) spectrum.

ポリヌクレオチド/シゾフィラン複合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)及び粘度測定等の任意の公知の方法を用いて測定することができる。ポリヌクレオチド/シゾフィラン複合体の分子量は、好ましくは、1×10以上3×10以下である。 The weight average molecular weight of the polynucleotide / schizophyllan complex can be measured using any known method such as gel permeation chromatography (GPC) and viscosity measurement. The molecular weight of the polynucleotide / schizophyllan complex is preferably 1 × 10 5 or more and 3 × 10 6 or less.

ポリヌクレオチド/シゾフィラン複合体において、多角度光散乱測定又はX線小角散乱による慣性半径の測定値は、好ましくは、20nm以上200nm以下である。ポリヌクレオチド/シゾフィラン複合体の慣性半径が20nmを下回り、或いは200nmを超えると、細胞表面に存在するシゾフィランの受容体に認識されにくくなるため、細胞への取り込みが起こりにくくなると考えられる。   In the polynucleotide / schizophyllan complex, the measurement value of the radius of inertia by multi-angle light scattering measurement or small-angle X-ray scattering is preferably 20 nm or more and 200 nm or less. When the radius of inertia of the polynucleotide / schizophyllan complex is less than 20 nm or more than 200 nm, it is considered that the receptor of Schizophyllan present on the cell surface is less likely to be recognized, and therefore, it is difficult for cellular uptake to occur.

ポリヌクレオチド/シゾフィラン複合体の慣性半径の測定には任意の公知の方法を用いることができるが、例えば、文献(The Journal of Physical Chemistry B 116 (1), 87-94(2011))に記載されている方法を用いることができ、より具体的には、ポリヌクレオチド/シゾフィラン複合体の分子量より、慣性半径が10nm以上であると予想されるものについては光散乱法、10nm未満であると予想されるものについてはX線小角散乱法が好ましく用いられる。   Although any known method can be used to measure the radius of inertia of the polynucleotide / schizophyllan complex, it is described, for example, in the literature (The Journal of Physical Chemistry B 116 (1), 87-94 (2011)). Methods, and more specifically, from the molecular weight of the polynucleotide / schizophyllan complex, it is expected to be less than 10 nm for the light scattering method for those for which the radius of inertia is expected to be 10 nm or more Small-angle X-ray scattering is preferably used.

ポリヌクレオチド/シゾフィラン複合体において、X線小角散乱を用いて測定したX線の散乱強度Iを、下記の式(I)で定義されるq値(散乱ベクトルの絶対値)の対数に対しプロットした場合、qが10−1nm −1 から1nm−1の範囲における傾きaが−1.5以上−0.5以下であることが好ましい。 In the polynucleotide / schizophyllan complex, X-ray scattering intensity I measured using small-angle X-ray scattering was plotted against the logarithm of q value (absolute value of scattering vector) defined by the following formula (I) In the case where q is in the range of 10 −1 nm −1 to 1 nm −1 , the slope a is preferably −1.5 or more and −0.5 or less.

Figure 0006501247
Figure 0006501247

なお、式(I)において、θはX線の散乱角を表し、λはX線の波長を表す。したがって、q値はX線の散乱角θ及びX線の波長λの関数であり、X線の散乱強度Iとq値との関係は、X線の散乱強度Iの角度及び波長依存性を示す。   In equation (I), θ represents the scattering angle of X-rays, and λ represents the wavelength of X-rays. Therefore, q value is a function of X-ray scattering angle θ and X-ray wavelength λ, and the relationship between X-ray scattering intensity I and q value indicates the angle and wavelength dependence of X-ray scattering intensity I .

X線散乱強度Iとq値との間には、I∝qという関係が成立する。したがって、a値は、X線の散乱強度Iを、q値の対数に対しプロットした場合の傾きaに相当する。a値は、高分子鎖の形状を反映し、a=−1のときは枝分かれのない棒状であることを示している。|a|<1のときは折れ曲がった棒状又は柔らかい棒状であることを示し、|a|>1のときは、分岐構造をとっていることを示す。|a|の値が大きければ大きいほど、分岐度が高いことを示す。ポリヌクレオチド/シゾフィラン複合体において、qが10−1nmから1nm−1の範囲における傾きaは、好ましくは、−1.5以上−0.5以下である。 The relationship I∝q a is established between the X-ray scattering intensity I and the q value. Therefore, the a value corresponds to the slope a when the scattered intensity I of the X-ray is plotted against the logarithm of the q value. The a value reflects the shape of the polymer chain, and when a = -1, it indicates that it is a rod-like shape without branching. When | a | <1, it indicates that it is a bent rod-like or soft rod-like, and when | a |> 1, it indicates that it has a branched structure. The larger the value of | a |, the higher the degree of branching. In the polynucleotide / schizophyllan complex, the slope a in the q range of 10 −1 nm to 1 nm −1 is preferably −1.5 or more and −0.5 or less.

aが上記の範囲外である場合にも、細胞表面に存在するシゾフィランの受容体に認識されにくくなるため、細胞への取り込みが起こりにくくなると考えられる。   Even when a is out of the above range, the receptor for Schizophyllan present on the cell surface is less likely to be recognized, so that it is considered that cellular uptake is less likely to occur.

本発明の第2の実施の形態に係る医薬組成物(以下、「医薬組成物」と略称する。)は、本発明の第1の実施の形態に係るポリヌクレオチド/シゾフィラン複合体を含んでいる。   The pharmaceutical composition according to the second embodiment of the present invention (hereinafter referred to as "pharmaceutical composition") comprises the polynucleotide / schizophyllan complex according to the first embodiment of the present invention. .

医薬組成物の製造には、有効成分としてのポリヌクレオチド/シゾフィラン複合体及びポリヌクレオチド/シゾフィラン複合体に加え、任意の公知の成分(医薬用途に許容される任意の担体、賦形剤及び添加物)及び製剤方法を用いることができる。例えば、医薬組成物は、錠剤、座剤、カプセル剤、シロップ剤、ナノゲル等のマイクロカプセル剤、滅菌液剤、懸濁液剤等の注射剤、エアゾール剤、スプレー剤等の形態を取ることができる。   For the preparation of the pharmaceutical composition, in addition to the polynucleotide / schizophyllan complex and the polynucleotide / schizophyllan complex as active ingredients, any known components (optional carriers, excipients and additives acceptable for pharmaceutical use) And formulation methods can be used. For example, the pharmaceutical composition can take the form of tablets, suppositories, capsules, microcapsules such as syrups and nanogels, sterile solutions, injections such as suspensions, aerosols, sprays and the like.

医薬組成物は、ヒト又は温血動物(マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ニワトリ、ネコ、イヌ、サル等)に対し、経口及び非経口経路のいずれによっても投与可能である。非経口投与経路としては、皮下、皮内及び筋中注射、腹腔内投与、点滴、鼻粘膜や咽頭部への噴霧等が挙げられる。   The pharmaceutical composition can be administered to human or warm-blooded animal (mouse, rat, rabbit, sheep, pig, cow, horse, chicken, cat, dog, monkey, etc.) by any of oral and parenteral routes. . The parenteral administration route includes subcutaneous, intradermal and intramuscular injection, intraperitoneal administration, drip, spray on nasal mucosa and pharynx, and the like.

活性成分であるポリヌクレオチド/シゾフィラン複合体の用量は、活性、治療対象となる疾患、投与対象となる動物の種類、体重、性別、年齢、疾患の重篤度、投与方法等に応じて異なる。体重60kgの成人を例に取ると、経口投与の場合、1日当たりの用量は通常約0.1〜約100mg、好ましくは約1.0〜約50mg、より好ましくは約1.0〜約20mgであり、非経口投与の場合、1日当たりの用量は通常約0.01〜約30mg、好ましくは約0.1〜約20mg、より好ましくは約0.1〜約10mgである。他の動物に投与する場合には、上記用量を単位体重当たりの用量に換算後、投与対象となる動物の体重を乗じて得られた用量を用いる。   The dose of the active ingredient polynucleotide / schizophyllan complex varies depending on the activity, the disease to be treated, the type of animal to be administered, body weight, sex, age, severity of disease, administration method and the like. When taking an adult weighing 60 kg as an example, for oral administration, the daily dose is usually about 0.1 to about 100 mg, preferably about 1.0 to about 50 mg, more preferably about 1.0 to about 20 mg For parenteral administration, the daily dose is usually about 0.01 to about 30 mg, preferably about 0.1 to about 20 mg, more preferably about 0.1 to about 10 mg. When administered to another animal, the dose is converted to the dose per unit body weight, and then the dose obtained by multiplying the weight of the animal to be administered is used.

医薬組成物は、免疫を活性化することによる細菌、ウィルス等の病原体の感染に起因する感染症、ガン等の腫瘍の治療及び予防のためのワクチン、免疫賦活剤等として用いることができる。   The pharmaceutical composition can be used as a vaccine for treatment and prevention of infections caused by infection of pathogens such as bacteria and viruses by activating immunity, and vaccines, immunostimulants and the like for tumors such as cancers.

実施例1:分子量の異なるシゾフィランの作製
本実施例において、Schizophyllum commune Friesを培養し、培養液中に産生されたシゾフィランを分離、精製することで高分子量シゾフィランを得た。その高分子シゾフィランを超音波処理することでシゾフィランを物理的に分解させた。また、超音波処理の時間を変えることで得られるシゾフィランの分子量を変化させるができた。
Example 1 Preparation of Schizophyllan of Different Molecular Weights In this Example, Schizophyllum commune Fries was cultured, and Schizophyllan produced in the culture solution was separated and purified to obtain high molecular weight Schizophyllan. The polymer Schizophyllan was sonicated to physically decompose Schizophyllan. Moreover, the molecular weight of schizophyllan obtained by changing the time of ultrasonication was able to be changed.

さらに低分子量のシゾフィランを得るために、ギ酸で処理した。得られた分子量の異なるシゾフィランは、文献(Norisuyeら、J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 547、Yanakiら、Macromolecules 1980, 13, 1462、Kashiwagiら、Macromolecules 1981, 14, 1220)に記載されているように、水を良溶媒、アセトン又はメタノールを貧溶媒として分別精製した。   In order to obtain an even lower molecular weight schizophyllan, it was treated with formic acid. The obtained Schizophyllan of different molecular weight is described in the literature (Norisuye et al., J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 547, Yanaki et al., Macromolecules 1980, 13, 1462, Kashiwagi et al., Macromolecules 1981, 14 Water was fractionally purified using a good solvent, acetone, or methanol as a poor solvent, as described in U.S. Pat.

得られた試料名と得られた分子量を表1に示す。また、各試料に関して、DMSO中70度でH NMR測定を行い、β−1,3−グルカン骨格を保持していること、特にケミカルシフト4.1ppmと4.5ppmのピーク比から、β−1,6−グルカン結合の側鎖が主鎖のグルコース10に対して2から5の範囲で保持されていることを確認した。また、化学構造に関しては、梁木利男の学位論文(大阪大学理学部1984年)の87〜90ページに記載されている、(1)硫酸で加水分解した後に適切な処理をしてガスクロマトグラムで解析する方法、(2)箱守法(文献:山形大学紀要(農学)第11巻第4号:907〜956ページ、別冊平成5年1月)で確認をした。分子量の測定には、光散乱光度計による散乱法、超遠心による遠心平衡法、X線小角散乱による散乱法で決定した。光散乱法は比較的高分子量の試料、遠心平衡法は比較的中程度量から低分子の試料、X線小角散乱は比較的低分子量の試料の分子量決定に適する。水系における分子量決定は誤差が多いので、2つ以上の独立した方法で決定した。また、DMSO中では溶媒の粘度が高く、遠心平衡法では沈降平衡に達する時間が長く、高分子量の試料では、測定が困難であり、X線小角散乱ではX線の透過率が悪く測定が困難であった。 The obtained sample names and the obtained molecular weights are shown in Table 1. For each sample, 1 H NMR measurement is performed at 70 ° C. in DMSO, and the β-1,3-glucan skeleton is retained, in particular from the peak ratios of the chemical shifts of 4.1 ppm and 4.5 ppm. It was confirmed that the side chains of 1,6-glucan bonds were maintained in the range of 2 to 5 to glucose 10 of the main chain. In addition, the chemical structure is described on pages 87-90 of Toshio Yanagi's thesis (Osaka University Faculty of Science 1984), (1) Hydrolysis with sulfuric acid is followed by appropriate processing and analysis by gas chromatogram Method, (2) The box guard method (literature: Bulletin of Yamagata University (Agriculture) Vol. 11, No. 4: 907 to 956, separate volume, January, 1993) was confirmed. The molecular weight was measured by scattering method using a light scattering photometer, centrifugal equilibrium method using ultracentrifugation, and scattering method using small-angle X-ray scattering. The light scattering method is suitable for determining the molecular weight of a relatively high molecular weight sample, the centrifugal equilibrium method is a relatively medium to low molecular weight sample, and the small angle X-ray scattering is a relatively low molecular weight sample. Since molecular weight determination in aqueous systems is subject to errors, it was determined in two or more independent ways. In DMSO, the viscosity of the solvent is high, the time to reach sedimentation equilibrium is long by centrifugal equilibrium, and measurement is difficult for samples of high molecular weight, and X-ray small-angle scattering makes X-ray transmission poor and difficult to measure Met.

表1に結果を示す。文献(Norisuyeら、J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 547. Yanakiら Macromolecules 1980, 13, 1462、Kashiwagiら、Macromolecules 1981, 14, 1220.)が示すように、シゾフィランはDMSO中では1本の高分子鎖として分子分散している。したがって、DMSO中の分子量と水中の分子量の比が3になっている場合には、シゾフィランは水中で三重螺旋構造を取っていると判断される。表に示した結果から、シゾフィランの1本の高分子鎖として、重量平均分子量が2万以上、好ましくは3万以上であれば、水中ではシゾフィランは大多数が三重螺旋構造を取っている。また、重量平均分子量が1万以下の場合には、水中でも1本の高分子鎖として存在していると判断できる。   Table 1 shows the results. Phys. Ed. 1980, 18, 547. Yanaki et al., Macromolecules 1980, 13, 1462, Kashiwagi et al., Macromolecules 1981, 14, 1220. as indicated by the literature. Is molecularly dispersed as one polymer chain in DMSO. Therefore, if the ratio of the molecular weight in DMSO to the molecular weight in water is 3, it is judged that schizophyllan takes a triple helical structure in water. From the results shown in the table, when the weight average molecular weight is 20,000 or more, preferably 30,000 or more as one polymer chain of Schizophyllan, the majority of Schizophyllan has a triple helical structure in water. In addition, when the weight average molecular weight is 10,000 or less, it can be determined that it is present as one polymer chain in water.

Figure 0006501247
Figure 0006501247

注1:LSは光散乱、UCFは超遠心、SAXSはX線小角散乱法を示す。分子量分布は、光散乱ではGPCのクロマトグラムから求めた重量平均分子量と数平均分子量の比、超遠心では遠心平衡時のデータから文献(Fujita, H. Foundations of Ultracentrifugal Analysis; Wiley: New York, 1975)記載の方法にしたがって決定した。
注2:光散乱の測定を精度よくするために、シゾフィランが中性の水中と同じコンホメーションを保っていることが分かっている0.01N NaOH水溶液中で測定した。
Note 1: LS indicates light scattering, UCF indicates ultracentrifugation, and SAXS indicates small-angle X-ray scattering. The molecular weight distribution is the ratio of weight-average molecular weight to number-average molecular weight determined from the chromatogram of GPC for light scattering, and for ultracentrifugation, the data obtained at the time of centrifugal equilibria (Fujita, H. Foundations of Ultracentrifugal Analysis; Wiley: New York, 1975 ) Determined according to the method described.
Note 2: In order to make the measurement of light scattering accurate, it was measured in 0.01 N NaOH aqueous solution which is known to maintain the same conformation of Schizophyllan as neutral water.

実施例2:分子量の異なるシゾフィランと核酸poly(dA)の複合化
公知の核酸固相合成法にて、デオキシアデノシン1リン酸の重合体であるpoly(dA)を合成した。ここでXは重合度を示す。すなわち、(dA)は、デオキシアデノシンのX量体であることを示す。この類縁体として、ホスホジエステル結合のリン酸の酸素原子の一つがイオウに置換されているホスホロチオエート誘導体であるS−poly(dA)と、リン酸の酸素原子の2つがイオウに置換されているホスホロジチオエート誘導体であるD−poly(dA)も合成した。いずれもHPLCを用いて精製し、純度99%以上の精製物を得た。
Example 2: at different molecular weights schizophyllan and nucleic poly (dA) X of the complexed known nucleic acid solid phase synthesis, was synthesized poly (dA) X is a polymer of deoxyadenosine monophosphate. Here, X indicates the degree of polymerization. That is, (dA) X is an X-mer of deoxyadenosine. As this analogue, S-poly (dA) X , which is a phosphorothioate derivative in which one of the oxygen atoms of phosphodiester-linked phosphate is substituted with sulfur, and two of the oxygen atoms of phosphoric acid are substituted with sulfur A phosphorodithioate derivative D-poly (dA) X was also synthesized. All were purified using HPLC to obtain a purified product having a purity of 99% or more.

Bioorganic Chemistry Vol. 38. P260-264 (2010) に記載されている、ゲル電気泳動、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)、円偏光2色性スペクトルを用いてシゾフィランとの複合化率が95%以上である場合(○)、50%以上である場合(△)、10%以下である場合(×)を、表1の試料ごとに分類した。その結果を表2から表4に示す。表2はホスホジエステル結合、表3は酸素の一つがイオウに置換されているS−poly(dA)、表4は酸素の2つがイオウに置換されているD−poly(dA)の結果である。 As described in Bioorganic Chemistry Vol. 38. P260-264 (2010), gelation electrophoresis, gel permeation chromatography (GPC), and circular dichroism spectra are used to determine the degree of conjugation with schizophyllan. When it is 95% or more (○), 50% or more (Δ), and 10% or less (×), the samples in Table 1 were classified. The results are shown in Tables 2 to 4. Table 2 shows the results of phosphodiester bonds, Table 3 shows the results of S-poly (dA) X in which one of the oxygens is substituted by sulfur, and Table 4 shows the results of D-poly (dA) X in which two of the oxygens are substituted by sulfur. It is.

なお、複合体の調製には、シゾフィランを0.25N NaOH溶液に溶解し(15mg/mL)2日以上放置し、完全にシゾフィランを1本鎖に解離させたのち、ポリ(デオキシリボヌクレオチド/シゾフィラン複合体)溶液とリン酸緩衝液(330mM NaHPO、pH4.5)とを混合し、pHが6〜7の範囲になるよう、かつ、シゾフィランとデオキシリボヌクレオチドの混合比がモル比で3:1となるようシゾフィランの塩基性水溶液を添加し攪拌した。得られた溶液を4℃で一晩静置させた後、各種測定を行った。なお、先行特許には、適当な濃度のシゾフィラン/DMSO溶液をDNA溶液に加える方法が開示されているが、生体実験に用いる際、DMSOが残存して好ましくない。 For preparation of the complex, Schizophyllan is dissolved in 0.25 N NaOH solution (15 mg / mL) and left for 2 days or more to completely dissociate Schizophyllan into a single strand, and then poly (deoxyribonucleotide / schizophyllan complex Solution) and phosphate buffer (330 mM NaH 2 PO 4 , pH 4.5), so that the pH is in the range of 6 to 7, and the mixing ratio of schizophyllan to deoxyribonucleotide is 3 in molar ratio: A basic aqueous solution of schizophyllan was added and stirred to be 1. After the obtained solution was allowed to stand overnight at 4 ° C., various measurements were performed. Although the prior patent discloses a method of adding an appropriate concentration of Schizophyllan / DMSO solution to a DNA solution, it is not preferable because DMSO remains when it is used in biological experiments.

表2〜4に示した結果より、ホスホジエステル結合では、デオキシアデノシン1リン酸の重合Xが、好ましくは20以上、更に好ましくは40以上、複合体の収率を100%近くにするには60以上が必要である。ホスホロチオエート型のS−poly(dA)では、好ましくは10以上、更に好ましくは20以上、複合体の収率を100%近くにするには40以上が必要である。ホスホロジチオエート型のD−poly(dA)では、好ましくは10以上、複合体の収率を100%近くにするには20以上が必要である。 From the results shown in Tables 2 to 4, in the phosphodiester bond, the polymerization X of deoxyadenosine monophosphate is preferably 20 or more, more preferably 40 or more, and 60 to make the yield of the complex close to 100%. The above is necessary. In the phosphorothioate type S-poly (dA) X , preferably 10 or more, more preferably 20 or more, and 40 or more are required to make the yield of the complex close to 100%. In the case of phosphorodithioate type D-poly (dA) X , preferably 10 or more and 20 or more are required to make the yield of the complex close to 100%.

Figure 0006501247
Figure 0006501247

Figure 0006501247
Figure 0006501247

Figure 0006501247
Figure 0006501247

実施例3:分子量の異なるシゾフィランとpoly(dA)テールを付加したCpG DNAとの複合化
CpG DNAは、K−タイプのCpG DNAとして5’−末端にポリdAテール:(dA)40を付加した5’−(dA)40−ATCGACTCTCGAGCGTTCTC−3’(配列番号1;(dA)40−K3と略記)を、及びD−タイプのCpG DNAとして5’−(dA)40−GGTGCATCGATGCAGGGGGG(配列番号1;(dA)40−D35と略記)を使用した。DNAのリン酸バックボーンはいずれもホスホロチオエート型で、両サンプルともHokkaido System Science社の合成品で、高速液体クロマトグラフィーで精製されている。また、3’−末端にポリdAテールを付加したK3−(dA)40とD35−(dA)40も同様にして合成した。これらの試料の複合化を実施例2と同様の方法で評価した。結果を表5に示す。
Example 3 Complexation of Schizophyllan of Different Molecular Weights with CpG DNA with Poly (dA) X Tail Added CpG DNA added poly dA tail: (dA) 40 at the 5'-end as a K-type CpG DNA the 5 '- (dA) 40 -ATCGACTCTCGAGCGTTCTC -3'; 5 ' (SEQ ID NO: 1 (dA) 40 k3 hereinafter), and as D- type CpG DNA - (dA) 40 -GGTGCATCGATGCAGGGGGG ( SEQ ID NO: 1 (DA) 40 -D35 for short) was used. Both phosphate backbones of DNA are phosphorothioate type, and both samples are synthetic products of Hokkaido System Science, and are purified by high performance liquid chromatography. In addition, K3- (dA) 40 and D35- (dA) 40 to which a poly dA tail was added at the 3'-end were similarly synthesized. The complexation of these samples was evaluated in the same manner as in Example 2. The results are shown in Table 5.

なお、シゾフィランとdAの混合比がモル比で3:1となるようシゾフィランの塩基性水溶液を添加し攪拌した。この結果より、CpGがdAに付加されると、僅かであるが、複合化がされにくいことが分かる。   The basic aqueous solution of Schizophyllan was added and stirred so that the mixing ratio of Schizophyllan and dA was 3: 1 in molar ratio. From this result, it can be seen that when CpG is added to dA, although it is slight, complexation is difficult.

Figure 0006501247
Figure 0006501247

実施例4:複合体の精製と分子量、拡がりの測定と細胞刺激性
未反応のDNAは複合体に比べて分子量がはるかに小さいために、GPCで分離することができる。複合体のフラクションを確認しながら検出器から流出してくる溶液を分取した。また、未反応のシゾフィランは、特開2011−178707号公報に記載されている陰イオン交換カラムを用いた方法で取り除いた。複合化率50%以下の混合溶液から、これらの方法を用いて複合化率90%以上にすることができた。この精製された複合体は、水溶液として室温で10日放置しても複合化率が変わることはなかった。
Example 4 Purification of Complex and Measurement of Molecular Weight, Spread and Cell Stimulation Unreacted DNA can be separated by GPC because its molecular weight is much smaller than that of the complex. The solution flowing out of the detector was separated while confirming the complex fraction. Moreover, unreacted schizophyllan was removed by the method using the anion exchange column described in Unexamined-Japanese-Patent No. 2011-178707. From the mixed solution having a complexing ratio of 50% or less, it was possible to make the complexing ratio 90% or more using these methods. The purified complex did not change its conjugation rate even when left as an aqueous solution at room temperature for 10 days.

このようにして得た複合化率90%以上の試料に関して、文献(The Journal of Physical Chemistry B 116 (1), 87-94(2011))に記載されている方法で、重量平均絶対分子量Mwと慣性半径Rgを測定した。慣性半径Rgの測定には、10nm以上のものについては光散乱法を、10nm未満の場合にはX線小角散乱法を用いた。複合体にすると、分子量と慣性半径の分布が大きくなるので、両者の測定値の最小値及び最大値を記録した。   The weight average absolute molecular weight Mw and the sample having a complexing ratio of 90% or more obtained in this manner are described by the method described in the literature (The Journal of Physical Chemistry B 116 (1), 87-94 (2011)). The inertial radius Rg was measured. For the measurement of the radius of inertia Rg, the light scattering method was used for 10 nm or more, and the small-angle X-ray scattering method was used for less than 10 nm. Since the distribution of molecular weight and radius of inertia increases in the complex, the minimum value and the maximum value of both measured values were recorded.

また、以下の方法で、CpG DNAの刺激によるマウス由来腹腔マクロファージからのサイトカインIL−12産生量の増強効果(以下、「生理活性」という。)を調べた。すなわち、マウス由来腹腔マクロファージの単離は、文献記載の定法で行った。すなわち8週齢の雌のBalb/cマウスの頚動脈を切断し脱血死させ、70%エタノールで消毒後に腹部外皮に切れ目を入れ外皮をはいで腹膜を露出させた。冷PBS(リン酸緩衝化生理食塩水)を5mL腹部に注入し、よくマッサージしたのち液を回収した。ポリプロピレン製の遠心管を用いて1,000rpm、10分間、4℃で遠心した。上清を除き、10%仔牛胎児血清を含むRPMI1640培地に懸濁した(日本生化学会編、新生化学実験講座12 分子免疫学I 免疫細胞・サイトカイン、東京化学同人(1989))。   Moreover, the enhancement effect (hereinafter referred to as "physiological activity") of the cytokine IL-12 production amount from mouse-derived peritoneal macrophages by stimulation of CpG DNA was examined by the following method. That is, isolation of mouse-derived peritoneal macrophages was carried out by a standard method described in the literature. That is, the carotid artery of an eight-week-old female Balb / c mouse was cut and decapitated, disinfected with 70% ethanol, cut in the abdominal skin, exposed the outer skin and exposed the peritoneum. Cold PBS (phosphate buffered saline) was injected into 5 mL of the abdomen, massaged well, and then the fluid was recovered. Using a polypropylene centrifuge tube, centrifugation was performed at 1,000 rpm for 10 minutes at 4 ° C. The supernatant was removed and suspended in RPMI 1640 medium containing 10% fetal calf serum (Nippon Biochemical Society, edited by NeoBiochem. 12 Molecular Immunology I Immunocytes / Cytokine, Tokyo Kagaku Dojin (1989)).

96穴プレートに100μLの10%仔牛胎児血清を含むRPMI1640培地に懸濁した2×10個のマウス由来腹腔マクロファージを播種し、37℃、5%CO下で2時間培養してプレートに細胞を接着後に、CpG DNA及びCpG DNAとシゾフィランの複合体を添加し、37℃、5%CO下で24時間培養後に培養上清を回収した。培養上清中に含まれるマウスの全IL−12量の測定は、Mouse Interleukin-12 Total ELISA(ENDOGEN社製)を利用し、付属のプロトコールにしたがって測定した。培養上清に含まれる全IL−12量は、CpG DNA単独投与よりも複合体である本発明の免疫刺激剤の方が、多く含まれていた。この差が2倍以上の系を生理活性ありとして○、同程度の場合を×として結果を示す。表には、DタイプのCpG DNAを含む複合体の結果を示すが、KタイプのCpG DNAを含む複合体でも結果は同様であった。 Seed 2 × 10 5 mouse-derived peritoneal macrophages suspended in RPMI 1640 medium containing 100 μL of 10% fetal calf serum in a 96-well plate, and incubate at 37 ° C. in 5% CO 2 for 2 hours. After adhesion, CpG DNA and a complex of CpG DNA and Schizophyllan were added, and the culture supernatant was recovered after culturing for 24 hours at 37 ° C. under 5% CO 2 . Measurement of the total amount of IL-12 in mice contained in the culture supernatant was performed using Mouse Interleukin-12 Total ELISA (manufactured by ENDOGEN) according to the attached protocol. The total amount of IL-12 contained in the culture supernatant was higher in the immunostimulant of the present invention in the complex than administration of CpG DNA alone. The results are shown as ○ when the difference is more than twice as high as the physiological activity, and × when the difference is about the same. The table shows the results for complexes containing D-type CpG DNA, but the results were similar for complexes containing K-type CpG DNA.

S1、S2、S3を用いたS−d(A)40−D35の複合体において、多角度光散乱測定から算出した分子量を慣性半径に対してプロットしたグラフを図1に示す。シゾフィランの分子量の増加に伴い形成される複合体の分子量及び慣性半径が大きくなっていることがわかった。作製した複合体の生理活性を評価したところ、分子量、慣性半径が大きい複合体は高い活性を示したが、慣性半径の小さい複合体の活性は非常に小さかった。これは分子量の小さいシゾフィランでは複合化率が低く複合体の存在比が少ないため、さらに小さい分子ほど細胞へ取り込まれにくい(シゾフィランの受容体に認識されにくい)ためと考えられる(表6及び7参照)。 In the composite of Sd (A) 40- D35 using S1, S2, and S3, the graph which plotted the molecular weight computed from the multi-angle light scattering measurement with respect to the radius of inertia is shown in FIG. It was found that the molecular weight and the radius of inertia of the complex formed with the increase of the molecular weight of schizophyllan were increased. When the physiological activity of the prepared complex was evaluated, the complex having a large molecular weight and radius of inertia exhibited high activity, but the activity of a complex having a small radius of inertia was very small. This is considered to be due to the fact that the smaller molecule of schizophyllan has a lower conjugation ratio and the smaller abundance ratio of the complex, the smaller molecules are less likely to be taken up into cells (less recognized by the receptors of schizophyllan) (see Tables 6 and 7). ).

Figure 0006501247
Figure 0006501247

Figure 0006501247
Figure 0006501247

実施例5:ポリヌクレオチド/シゾフィラン複合体の調製濃度及び分岐度と生理活性との関係
S3を用いた、S−d(A)40−D35の複合体において、実施例2では、複合体の調製には、シゾフィランを0.25N NaOH溶液で、濃度15mg/mLに溶解して、シゾフィランを1本鎖に解離させたのち、ポリ(デオキシリボヌクレオチド/シゾフィラン複合体)溶液とリン酸緩衝液(330mM NaHPO、pH4.5)とを混合した。シゾフィランとポリ(デオキシリボヌクレオチド/シゾフィラン複合体)の濃度を5倍、10倍、30倍と濃くしていくと、複合体の分子量が増加するとともに、X線小角散乱で測定した散乱強度の散乱角度依存性(I∝qと表す。ここでqは散乱ベクトルの絶対値)が、qが10−1から1nm−1の範囲で、ポリヌクレオチド/シゾフィラン複合体の濃度が低い場合には、a=−1であったが、濃度が増加するにつれて符号は常に負であるものの、aの絶対値|a|が増加していった。また、同様の測定を、S4を用いたS−d(A)40−D35の複合体においても実施した。S4の場合は濃度を基準の1/100から調製した。
Example 5 Preparation of Polynucleotide / Schizofiran Complex and Relationship Between Concentration and Branching Degree and Physiological Activity In the complex of Sd (A) 40 -D35 using S3, in Example 2, the preparation of the complex The solution is to dissolve schizophyllan in 0.25N NaOH solution to a concentration of 15 mg / mL to dissociate schizophyllan into single strands, and then use poly (deoxyribonucleotide / schizophyllan complex) solution and phosphate buffer (330 mM NaH). 2 PO 4 (pH 4.5) was mixed. As the concentration of schizophyllan and poly (deoxyribonucleotide / schizophyllan complex) is increased to 5, 10 and 30 times, the molecular weight of the complex increases and the scattering angle of the scattering intensity measured by small-angle X-ray scattering The dependence (denoted as I∝q a , where q is the absolute value of the scattering vector) is a when q is in the range of 10 −1 to 1 nm −1 and the concentration of the polynucleotide / schizophyllan complex is low. Although the sign was always negative as the concentration increased, the absolute value | a | of a increased. Similar measurements were also performed on Sd (A) 40 -D35 complexes using S4. In the case of S4, the concentration was prepared from 1/100 of the standard.

S3を用いた、S−d(A)20−D35及びS D35−d(A)40の複合体においてシゾフィランの濃度を高くするにつれ枝分かれ構造を有する複合体(|a|>1)が生成されるようになり、生理活性が低下することがわかった。複合体の枝分かれ構造が細胞への取り込みに影響、つまり受容体への被認識能が低下していることが考えられる。S4を用いた複合体においても、やはり同様に枝分かれ構造を有することで生理活性が無くなっていることがわかる。さらにシゾフィランの分子量の低下に伴う慣性半径の低下によりS3と比較すると生理活性も大きく低下したと考えられる(表8参照)。 A complex (| a |> 1) having a branched structure is formed as the concentration of Schizophyllan is increased in the complex of Sd (A) 20 -D 35 and SD 35-d (A) 40 using S3. It was found that the physiological activity decreased. It is considered that the branched structure of the complex affects cellular uptake, that is, the ability to recognize the receptor is reduced. Also in the complex using S4, it is understood that the physiological activity is lost by having the branched structure as well. Furthermore, it is considered that the physiological activity is also greatly reduced as compared to S3 due to the reduction of the radius of inertia accompanying the reduction of the molecular weight of schizophyllan (see Table 8).

Figure 0006501247
Figure 0006501247

Claims (4)

シゾフィランと、
前記シゾフィランと水素結合を介して結合し、CpG配列を有するポリデオキシリボヌクレオチド又は該ポリデオキシリボヌクレオチドにおいてホスホジエステル結合の一部又は全部がホスホロチオエート結合もしくはホスホロジチオエート結合で置換されたポリデオキシリボヌクレオチド誘導体とを含み、
前記ポリデオキシリボヌクレオチド又は前記ポリデオキシリボヌクレオチド誘導体の分子鎖1本と前記シゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成しており、
多角度光散乱測定又はX線小角散乱による慣性半径の測定値が20nm以上200nm以下であり、
X線小角散乱を用いて測定したX線の散乱強度Iを、下記の式(I)で定義されるq値の対数に対しプロットした場合、qが10−1nm−1から1nm−1の範囲における傾きaが−1.5以上−0.5以下であり、
前記ポリデオキシリボヌクレオチド又は前記ポリデオキシリボヌクレオチドの誘導体のうち、前記シゾフィランと水素結合を介して結合する部分の重合度が60以上であることを特徴とする免疫賦活用ポリヌクレオチド/シゾフィラン複合体。
Figure 0006501247
なお、式(I)において、θはX線の散乱角を表し、λはX線の波長を表す。
With sizofilan,
Linked via the schizophyllan hydrogen bonds, and a poly deoxyribonucleic nucleotide derivative some or all of the phosphodiester bonds in the poly deoxyribonucleic polynucleotide or the polypeptide deoxyribonucleic nucleotides were replaced by phosphorothioate bonds or phosphorodithioate bonds having a CpG sequence Including
Forms a complex with the polypeptide deoxyribonucleic polynucleotide or triple helix structure composed of the polypeptide deoxyribonucleic nucleotide derivative chains one with a molecular chain two of said schizophyllan,
The measurement value of the radius of inertia by multi-angle light scattering measurement or small-angle X-ray scattering is 20 nm or more and 200 nm or less,
When the scattered intensity I of X-rays measured using small-angle X-ray scattering is plotted against the logarithm of q value defined by the following formula (I), q is 10 −1 nm −1 to 1 nm −1 slope a is -1.5 or more in the range -0.5 Ri der below,
An immunostimulatory polynucleotide / schizophyllan complex , wherein a polymerization degree of a portion of the polydeoxyribonucleotide or the derivative of the polydeoxyribonucleotide bound to the schizophyllan via a hydrogen bond is 60 or more .
Figure 0006501247
In equation (I), θ represents the scattering angle of X-rays, and λ represents the wavelength of X-rays.
シゾフィランと、  With sizofilan,
前記シゾフィランと水素結合を介して結合し、CpG配列を有するポリデオキシリボヌクレオチド又は該ポリデオキシリボヌクレオチドにおいてホスホジエステル結合の一部又は全部がホスホロチオエート結合もしくはホスホロジチオエート結合で置換されたポリデオキシリボヌクレオチド誘導体とを含み、  A polydeoxyribonucleotide having a CpG sequence and a polydeoxyribonucleotide having a CpG sequence or a polydeoxyribonucleotide derivative in which part or all of phosphodiester bonds in the polydeoxyribonucleotide is substituted with a phosphorothioate bond or a phosphorodithioate bond, which is bound to the schizophyllan via hydrogen bond Including
前記ポリデオキシリボヌクレオチド又は前記ポリデオキシリボヌクレオチド誘導体の分子鎖1本と前記シゾフィランの分子鎖2本とからなる三重螺旋構造を有する複合体を形成しており、  Forming a complex having a triple helical structure comprising one molecular chain of the polydeoxyribonucleotide or the polydeoxyribonucleotide derivative and two molecular chains of the schizophyllan,
多角度光散乱測定又はX線小角散乱による慣性半径の測定値が20nm以上200nm以下であり、  The measurement value of the radius of inertia by multi-angle light scattering measurement or small-angle X-ray scattering is 20 nm or more and 200 nm or less,
X線小角散乱を用いて測定したX線の散乱強度Iを、下記の式(I)で定義されるq値の対数に対しプロットした場合、qが10  When the scattered intensity I of the X-ray measured using small-angle X-ray scattering is plotted against the logarithm of the q value defined by the following formula (I), q is 10 −1-1 nmnm −1-1 から1nmTo 1 nm −1-1 の範囲における傾きaが−1.5以上−0.5以下であり、In the range of −1.5 to −0.5,
前記ポリデオキシリボヌクレオチド又は前記ポリデオキシリボヌクレオチドの誘導体のうち、前記シゾフィランと水素結合を介して結合する部分の重合度が10以上であり、且つポリデオキシリボヌクレオチドにおいてホスホジエステル結合がホスホロジチオエート結合に置換されたポリデオキシリボヌクレオチドの誘導体であることを特徴とする免疫賦活用ポリヌクレオチド/シゾフィラン複合体。  In the polydeoxyribonucleotide or the derivative of the polydeoxyribonucleotide, the degree of polymerization of the moiety bonded to the schizophyllan via hydrogen bond is 10 or more, and in the polydeoxyribonucleotide, the phosphodiester bond is substituted to the phosphorodithioate bond An immunostimulatory polynucleotide / schizophyllan complex, characterized in that it is a derivative of the polydeoxyribonucleotide.
Figure 0006501247
Figure 0006501247
なお、式(I)において、θはX線の散乱角を表し、λはX線の波長を表す。  In equation (I), θ represents the scattering angle of X-rays, and λ represents the wavelength of X-rays.
分子量が1×10以上3×10以下であることを特徴とする請求項1又は2記載の免疫賦活用ポリヌクレオチド/シゾフィラン複合体。 The immunostimulatory polynucleotide / schizophyllan complex according to claim 1 or 2, wherein the molecular weight is 1 × 10 5 or more and 3 × 10 6 or less. 請求項1からのいずれか1項記載の免疫賦活用ポリヌクレオチド/シゾフィラン複合体を含む医薬組成物。 A pharmaceutical composition comprising the immunostimulatory polynucleotide / schizophyllan complex according to any one of claims 1 to 3 .
JP2014253763A 2014-12-16 2014-12-16 Immunostimulatory polynucleotide / schizophyllan complex and pharmaceutical composition containing the same Active JP6501247B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014253763A JP6501247B2 (en) 2014-12-16 2014-12-16 Immunostimulatory polynucleotide / schizophyllan complex and pharmaceutical composition containing the same
PCT/JP2015/085276 WO2016098832A1 (en) 2014-12-16 2015-12-16 Polynucleotide/schizophyllan composite and pharmaceutical composition including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253763A JP6501247B2 (en) 2014-12-16 2014-12-16 Immunostimulatory polynucleotide / schizophyllan complex and pharmaceutical composition containing the same

Publications (2)

Publication Number Publication Date
JP2016113404A JP2016113404A (en) 2016-06-23
JP6501247B2 true JP6501247B2 (en) 2019-04-17

Family

ID=56126716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253763A Active JP6501247B2 (en) 2014-12-16 2014-12-16 Immunostimulatory polynucleotide / schizophyllan complex and pharmaceutical composition containing the same

Country Status (2)

Country Link
JP (1) JP6501247B2 (en)
WO (1) WO2016098832A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195270B2 (en) * 2014-02-06 2019-02-05 Japan Science And Technology Agency Peptide/β-1,3-glucan complex and production method thereof and pharmaceutical composition containing peptide/β-1,3-glucan complex
WO2016103703A1 (en) * 2014-12-25 2016-06-30 国立研究開発法人医薬基盤・健康・栄養研究所 Non-aggregating immunostimulatory oligonucleotides
JPWO2022075460A1 (en) * 2020-10-09 2022-04-14
KR20230107833A (en) 2020-11-12 2023-07-18 다이이찌 산쿄 가부시키가이샤 Complex of beta glucan and nucleic acid with controlled particle diameter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790189B2 (en) * 2003-05-15 2010-09-07 Mitsui Sugar Co., Ltd. Immunostimulating agents
JP2008100919A (en) * 2006-10-17 2008-05-01 Japan Science & Technology Agency Nucleic acid/polysaccharide complex useful for preventing th2 cell-associated disease

Also Published As

Publication number Publication date
JP2016113404A (en) 2016-06-23
WO2016098832A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6993649B2 (en) Oligonucleotide-containing complexes with immunostimulatory activity and their uses
JP6383740B2 (en) Peptide / β-1,3-glucan complex and pharmaceutical composition containing the same
JP4850512B2 (en) Immunostimulant
JP6501247B2 (en) Immunostimulatory polynucleotide / schizophyllan complex and pharmaceutical composition containing the same
JP6698069B2 (en) CpG spacer oligonucleotide-containing complex having immunostimulatory activity and use thereof
JPWO2020067400A1 (en) Antigen Peptide-Adjuvant An immunoinducer containing a nucleotide conjugate and a pharmaceutical composition containing the same.
JP6715775B2 (en) Non-aggregating immunostimulatory oligonucleotide
JP7184366B2 (en) Immunity inducer and pharmaceutical composition containing the same
WO2021132528A1 (en) Short-chain cpg-containing oligodeoxynucleotide with linked polydeoxyadenylic acid, complex containing said oligodeoxynucleotide, and use thereof
WO2022094102A1 (en) Immunostimulatory oligonucleotides for the prevention and treatment of covid-19

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R150 Certificate of patent or registration of utility model

Ref document number: 6501247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150