[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6593129B2 - Hybrid vehicle and control method thereof - Google Patents

Hybrid vehicle and control method thereof Download PDF

Info

Publication number
JP6593129B2
JP6593129B2 JP2015230480A JP2015230480A JP6593129B2 JP 6593129 B2 JP6593129 B2 JP 6593129B2 JP 2015230480 A JP2015230480 A JP 2015230480A JP 2015230480 A JP2015230480 A JP 2015230480A JP 6593129 B2 JP6593129 B2 JP 6593129B2
Authority
JP
Japan
Prior art keywords
voltage battery
motor generator
hybrid vehicle
exhaust gas
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015230480A
Other languages
Japanese (ja)
Other versions
JP2017094985A (en
Inventor
憲仁 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015230480A priority Critical patent/JP6593129B2/en
Priority to PCT/JP2016/084693 priority patent/WO2017090639A1/en
Publication of JP2017094985A publication Critical patent/JP2017094985A/en
Application granted granted Critical
Publication of JP6593129B2 publication Critical patent/JP6593129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明はハイブリッド車両及びその制御方法に関し、更に詳しくは、燃費悪化を最小に抑制しつつ、NOxの浄化率を向上することができるハイブリッド車両及びその制御方法に関する。   The present invention relates to a hybrid vehicle and a control method therefor, and more particularly, to a hybrid vehicle and a control method therefor that can improve the NOx purification rate while minimizing deterioration in fuel consumption.

近年、燃費向上及び環境対策などの観点から、車両の運転状態に応じて複合的に制御されるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両(以下「HEV」という。)が注目されている。このHEVにおいては、車両の加速時や発進時には、モータージェネレーターによる駆動力のアシストが行われる一方で、慣性走行時や制動時にはモータージェネレーターによる回生発電が行われる(例えば、特許文献1を参照)。   In recent years, a hybrid vehicle (hereinafter referred to as “HEV”) including a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle has attracted attention from the viewpoint of improving fuel efficiency and environmental measures. Yes. In the HEV, when the vehicle is accelerated or started, the driving force is assisted by the motor generator, while regenerative power generation is performed by the motor generator during inertia traveling or braking (see, for example, Patent Document 1).

このHEVのエンジンにディーゼルエンジンを用いる場合には、排ガスに含有される粒子状物質(PM)や窒素酸化物(NOx)などの有害物質を除去する排ガス浄化システムが必要となる。前者のPMについては、セラミックス製のハニカム状多孔体のフィルターによりPMを捕集するPM捕集フィルターが主に用いられている。また、後者のNOxについては、尿素水と選択還元型触媒(以下、「SCR触媒」という。)とを用いる尿素SCRシステムが注目されている(例えば、特許文献2を参照)。   When a diesel engine is used for this HEV engine, an exhaust gas purification system for removing harmful substances such as particulate matter (PM) and nitrogen oxide (NOx) contained in the exhaust gas is required. As for the former PM, a PM collection filter for collecting PM by a ceramic honeycomb porous filter is mainly used. As for the latter NOx, a urea SCR system using urea water and a selective reduction catalyst (hereinafter referred to as “SCR catalyst”) has attracted attention (see, for example, Patent Document 2).

この尿素SCRシステムは、排ガス中に噴射されて加熱された尿素水が加水分解して生じたアンモニア(NH3)を、SCR触媒の存在下で還元剤として作用させるSCR反応により排ガス中のNOxを浄化するものである。 In this urea SCR system, ammonia (NH 3 ) generated by hydrolysis of urea water injected and heated in exhaust gas is converted into NOx in the exhaust gas by an SCR reaction that acts as a reducing agent in the presence of the SCR catalyst. It is something to purify.

しかし、上記のSCR触媒は、触媒温度が低温(例えば、活性化温度未満)になると、NOxの浄化率が低下するため、排ガス中のNOxの大部分が浄化されずに大気中に放出されるおそれがある。   However, since the SCR catalyst has a low NOx purification rate when the catalyst temperature becomes low (for example, below the activation temperature), most of the NOx in the exhaust gas is released into the atmosphere without being purified. There is a fear.

ここで、一般にディーゼルエンジンにおいては、NOxの発生量の減少と燃費とはトレードオフの関係にあることが知られている。そのため、上記のようなSCR触媒におけるNOxの浄化率の低下に応じて、ディーゼルエンジンのNOxの発生量を減少させようとすると、燃費が悪化してしまうことになる。   Here, it is generally known that in a diesel engine, a reduction in the amount of NOx generated and fuel consumption are in a trade-off relationship. Therefore, if an attempt is made to reduce the amount of NOx generated in the diesel engine in accordance with the decrease in the NOx purification rate in the SCR catalyst as described above, the fuel efficiency will be deteriorated.

特開2002−238105号公報JP 2002-238105 A 特開2001−37008号公報JP 2001-37008 A

本発明の目的は、燃費悪化を最小に抑制しつつ、NOxの浄化率を向上することができるハイブリッド車両及びその制御方法を提供することにある。   An object of the present invention is to provide a hybrid vehicle and a control method thereof that can improve the NOx purification rate while minimizing deterioration of fuel consumption.

上記の目的を達成する本発明のハイブリッド車両は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの排ガスが流れる排気通路に上流側から順に介設された尿素水を供給する噴射ノズル及び選択還元型触媒を有する排ガス浄化システムと、制御装置と、を備えたハイブリッド車両において、前記モータージェネレーターに順に高電圧バッテリー、低電圧バッテリーを電気的に接続して、前記制御装置は、前記ハイブリッド車両が加速時又は定常走行時であるときに、前記選択還元型触媒の温度が予め設定されたしきい温度未満となった場合には、前記モータージェネレーターに発電を開始させて、前記モータージェネレーターを発電させて得た電力を前記高電圧バッテリーに充電するとともに、前記高電圧バッテリーに充電された電力を前記低電圧バッテリーの充電に用いることで前記高電圧バッテリーの充電率を予め設定された上限値未満に維持する期間を延長し、前記高電圧バッテリーの充電率が前記上限値に達したときには前記モータージェネレーターの発電を停止する制御を行うことを特徴とするものである。 The hybrid vehicle of the present invention that achieves the above-described object is provided with a hybrid system having a motor generator connected to an output shaft that transmits engine power, and an exhaust passage through which exhaust gas of the engine flows in order from the upstream side. In a hybrid vehicle comprising an injection nozzle for supplying urea water and an exhaust gas purification system having a selective reduction catalyst, and a control device, a high voltage battery and a low voltage battery are electrically connected to the motor generator in order, When the hybrid vehicle is accelerating or steady running, and the temperature of the selective catalytic reduction catalyst is lower than a preset threshold temperature, the control device starts generating power to the motor generator. The electric power obtained by generating the motor generator is And charging the high voltage battery using the power charged in the low voltage battery to extend a period for maintaining the charge rate of the high voltage battery below a preset upper limit value, When the charging rate of the high-voltage battery reaches the upper limit value, control for stopping the power generation of the motor generator is performed.

また、上記の目的を達成する本発明のハイブリッド車両の制御方法は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの排ガスが流れる排気通路に上流側から順に介設された尿素水を供給する噴射ノズル及び選択還元型触媒を有する排ガス浄化システムと、前記モータージェネレーターに順に電気的に接続された高電圧バッテリー及び低電圧バッテリーと、を備えたハイブリッド車両の制御方法であって、前記ハイブリッド車両が加速時又は定常走行時であるときに、前記選択還元型触媒の温度が予め設定されたしきい温度未満となった場合には、前記モータージェネレーターによる発電を開始して、前記モータージェネレーターを発電させて得た電力を前記高電圧バッテリーに充電するとともに、前記高電圧バッテリーに充電された電力を前記低電圧バッテリーの充電に用いることで前記高電圧バッテリーの充電率を予め設定された上限値未満に維持する期間を延長し、前記高電圧バッテリーの充電率が前記上限値に達したときには前記モータージェネレーターの発電を停止することを特徴とするものである。 In addition, the hybrid vehicle control method of the present invention that achieves the above object includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, and an exhaust passage through which exhaust gas from the engine flows from upstream. An exhaust gas purification system having an injection nozzle for supplying urea water and a selective catalytic reduction catalyst, which are sequentially provided , and a high-voltage battery and a low-voltage battery that are electrically connected to the motor generator in order, and a hybrid vehicle. In the control method, when the temperature of the selective catalytic reduction catalyst becomes lower than a preset threshold temperature when the hybrid vehicle is accelerating or steady running, power generation by the motor generator is performed. starting, the high voltage bus power obtained by power generation the motor generator Charging the terry and using the power charged in the high-voltage battery for charging the low-voltage battery to extend the period for maintaining the charge rate of the high-voltage battery below a preset upper limit, When the charging rate of the high voltage battery reaches the upper limit value, the power generation of the motor generator is stopped .

本発明のハイブリッド車両及びその制御方法によれば、モータージェネレーターからエンジンに発電による負荷が加わるので、排ガスの温度が上昇して選択還元型触媒の温度が高温になるため、NOxの浄化率を向上することができる。また、エンジンへの負荷上昇により消費されたエネルギーは、モータージェネレーターの発電により回収されるため、燃費悪化を最小に抑制することが可能となる。   According to the hybrid vehicle and the control method thereof of the present invention, since a load due to power generation is applied from the motor generator to the engine, the temperature of the exhaust gas increases and the temperature of the selective catalytic reduction catalyst becomes high, thereby improving the NOx purification rate. can do. Further, since the energy consumed by the load increase on the engine is recovered by the power generation of the motor generator, it is possible to suppress the deterioration of the fuel consumption to the minimum.

本発明の実施形態からなるハイブリッド車両の構成図である。It is a block diagram of the hybrid vehicle which consists of embodiment of this invention.

このハイブリッド車両(以下「HEV」という。)は、普通乗用車のみならず、バスやトラックなどを含む車両であり、車両の運転状態に応じて複合的に制御されるディーゼルエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えている。   This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and includes a diesel engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle. The hybrid system 30 is provided.

ディーゼルエンジン10においては、エンジン本体11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランクシャフト13が回転駆動される。このクランクシャフト13の回転動力は、クランクシャフト13の一端部に接続するクラッチ14(例えば、湿式多板クラッチなど)を通じてトランスミッション20に伝達される。   In the diesel engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11. The rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.

トランスミッション20には、HEVの運転状態と予め設定されたマップデータとに基づいて決定された目標変速段へ、変速用アクチュエーター21を用いて自動的に変速するAMT又はATが用いられている。なお、トランスミッション20は、AMTのような自動変速式に限るものではなく、ドライバーが手動で変速するマニュアル式であってもよい。   The transmission 20 uses an AMT or an AT that automatically shifts to a target shift speed determined based on the HEV operating state and preset map data using the shift actuator 21. The transmission 20 is not limited to an automatic transmission type such as AMT, and may be a manual type in which a driver manually changes gears.

トランスミッション20で変速された回転動力は、プロペラシャフト22を通じてデファレンシャル23に伝達され、一対の駆動輪24にそれぞれ駆動力として分配される。   The rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to each of the pair of drive wheels 24 as drive power.

ハイブリッドシステム30は、モータージェネレーター31と、そのモータージェネレーター31に順に電気的に接続するインバーター35、高電圧バッテリー32、DC/DCコンバーター33及び低電圧バッテリー34とを有している。   The hybrid system 30 includes a motor generator 31, an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in order.

高電圧バッテリー32としては、リチウムイオンバッテリーやニッケル水素バッテリーなどが好ましく例示される。また、低電圧バッテリー34には鉛バッテリーが用いられる。   Preferred examples of the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery. The low voltage battery 34 is a lead battery.

DC/DCコンバーター33は、高電圧バッテリー32と低電圧バッテリー34との間における充放電の方向及び出力電圧を制御する機能を有している。また、低電圧バッテリー34は、各種の車両電装品36に電力を供給する。   The DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34. The low voltage battery 34 supplies power to various vehicle electrical components 36.

このハイブリッドシステム30における種々のパラメータ、例えば、電流値、電圧値やSOCなどは、BMS39により検出される。   Various parameters in the hybrid system 30 such as a current value, a voltage value, and an SOC are detected by the BMS 39.

モータージェネレーター31は、回転軸37に取り付けられた第1プーリー15とエンジン本体11の出力軸であるクランクシャフト13の他端部に取り付けられた第2プーリー16との間に掛け回された無端状のベルト状部材17を介して、ディーゼルエンジン10との間で動力を伝達する。なお、2つのプーリー15、16及びベルト状部材17の代わりに、ギヤボックスなどを用いて動力を伝達することもできる。また、モータージェネレーター31に接続するエンジン本体11の出力軸は、クランクシャフト13に限るものではなく、例えばエンジン本体11とトランスミッション20との間の伝達軸やプロペラシャフト22であっても良い。   The motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the diesel engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.

このモータージェネレーター31は、エンジン本体11を始動するスターターモーター(図示せず)の代わりに、クランキングを行う機能も有している。   The motor generator 31 has a function of cranking instead of a starter motor (not shown) that starts the engine body 11.

排ガス浄化システム40は、排気通路41に介設された太径の触媒コンバーター42と、その触媒コンバーター42の上流側の排気通路41に設置された尿素水の噴射ノズル43とを有している。触媒コンバーター42内にはSCR触媒44が格納されている。なお、排ガス浄化システム40においては、NH3スリップを防止するために、触媒コンバーター42の下流側の排気通路41に酸化触媒(図示せず)を設ける場合もある。 The exhaust gas purification system 40 includes a large-diameter catalytic converter 42 interposed in the exhaust passage 41 and a urea water injection nozzle 43 installed in the exhaust passage 41 on the upstream side of the catalytic converter 42. An SCR catalyst 44 is stored in the catalytic converter 42. In the exhaust gas purification system 40, an oxidation catalyst (not shown) may be provided in the exhaust passage 41 on the downstream side of the catalytic converter 42 in order to prevent NH 3 slip.

SCR触媒44は、コージェライトや酸化アルミニウムや酸化チタン等で形成されるハニカム構造等の担体に、鉄イオン交換アルミノシリケートや銅イオン交換アルミノシリケートなどのゼオライト触媒を担持して形成される。   The SCR catalyst 44 is formed by supporting a zeolite catalyst such as iron ion exchange aluminosilicate or copper ion exchange aluminosilicate on a carrier having a honeycomb structure formed of cordierite, aluminum oxide, titanium oxide or the like.

触媒コンバーター42の入口近傍には、SCR触媒44に流入する排ガス45の温度を測定する排ガス温度センサ93が設けられている。この排ガス温度センサ93の検出値は、直接的な測定が困難であるSCR触媒44の温度を代用するものとして扱うことができる。   An exhaust gas temperature sensor 93 that measures the temperature of the exhaust gas 45 flowing into the SCR catalyst 44 is provided in the vicinity of the inlet of the catalytic converter 42. The detected value of the exhaust gas temperature sensor 93 can be treated as a substitute for the temperature of the SCR catalyst 44, which is difficult to measure directly.

これらのディーゼルエンジン10、ハイブリッドシステム30及び排ガス浄化システム40は、制御装置80により制御される。   These diesel engine 10, hybrid system 30 and exhaust gas purification system 40 are controlled by a control device 80.

ハイブリッドシステム30については、HEVの発進時や加速時には、ハイブリッドシステム30は高電圧バッテリー32から電力を供給されたモータージェネレーター31により駆動力の少なくとも一部をアシストする一方で、慣性走行時や制動時においては、モータージェネレーター31による回生発電を行い、余剰の運動エネルギーを電力に変換して高電圧バッテリー32を充電する。   With respect to the hybrid system 30, when the HEV starts or accelerates, the hybrid system 30 assists at least part of the driving force by the motor generator 31 supplied with power from the high-voltage battery 32, while at the time of inertia traveling or braking. In, regenerative power generation by the motor generator 31 is performed, and surplus kinetic energy is converted into electric power to charge the high voltage battery 32.

また、排ガス浄化システム40については、ディーゼルエンジン10の運転状態に応じて、噴射ノズル43から適量の尿素水を噴射する。   Further, with respect to the exhaust gas purification system 40, an appropriate amount of urea water is injected from the injection nozzle 43 in accordance with the operation state of the diesel engine 10.

このようなHEVにおいて、制御装置80は、HEVが加速時又は定常走行時であるときに、排ガス温度センサ93の検出値で代用されるSCR触媒44の温度が予め設定されたしきい温度T未満となった場合には、ハブリッドシステム30を通じてモータージェネレーター31に発電を開始させる制御を行う。   In such HEV, the controller 80 determines that the temperature of the SCR catalyst 44 that is substituted by the detected value of the exhaust gas temperature sensor 93 is less than a preset threshold temperature T when the HEV is accelerating or steady running. If it becomes, the motor generator 31 is controlled to start power generation through the hybrid system 30.

ここで「加速時又は定常走行時」とは、気筒12への燃料噴射が定常的又は増加的に行われている状態を指すものとする。また、予め設定されたしきい温度Tとしては、SCR触媒44の活性化温度の下限値(例えば、約150〜200℃)が例示される。   Here, “acceleration or steady travel” refers to a state in which fuel injection into the cylinder 12 is performed constantly or incrementally. Moreover, as the preset threshold temperature T, the lower limit (for example, about 150-200 degreeC) of the activation temperature of the SCR catalyst 44 is illustrated.

このような制御を行うことにより、モータージェネレーター31からディーゼルエンジン10に発電による負荷が加わるので、排ガス45の温度が上昇して、SCR触媒44の温度が高温になるため、NOxの浄化率を向上することができるのである。   By performing such control, a load due to power generation is applied from the motor generator 31 to the diesel engine 10, so that the temperature of the exhaust gas 45 rises and the temperature of the SCR catalyst 44 becomes high, thereby improving the NOx purification rate. It can be done.

また、ディーゼルエンジン10への負荷上昇により消費されたエネルギーは、上述したようにモータージェネレーターの発電により回収されるため、燃費悪化を最小に抑制することが可能となる。   Moreover, since the energy consumed by the load increase to the diesel engine 10 is collect | recovered by the electric power generation of a motor generator as mentioned above, it becomes possible to suppress deterioration in fuel consumption to the minimum.

更には、排ガス45の温度が上昇することにより、噴射ノズル43から噴射された尿素水の加水分解の促進に寄与し、気相状態でSCR触媒44に到達するようになることも、NOxの浄化率の向上に寄与する。   Furthermore, when the temperature of the exhaust gas 45 rises, it contributes to the promotion of hydrolysis of urea water injected from the injection nozzle 43 and reaches the SCR catalyst 44 in a gas phase state. It contributes to the improvement of the rate.

上記の制御におけるモータージェネレーター31の発電により得られた電力は、高電圧バッテリー32に充電される。そこで、高電圧バッテリー32の劣化を防止する観点から、BMS39が検出したSOC値が予め設定された上限値Xに達したときには、モータージェネレーター31の発電を停止する制御を行うことが望ましい。   The high voltage battery 32 is charged with the electric power obtained by the power generation of the motor generator 31 in the above control. Therefore, from the viewpoint of preventing deterioration of the high voltage battery 32, it is desirable to perform control to stop the power generation of the motor generator 31 when the SOC value detected by the BMS 39 reaches the preset upper limit value X.

この上限値Xは、通常は高電圧バッテリー32の定格最大容量に対してSOC値が70〜90%となる状態である。   This upper limit value X is normally a state in which the SOC value is 70 to 90% with respect to the rated maximum capacity of the high voltage battery 32.

なお、高電圧バッテリー32に充電された電力を、DC/DCコンバーター33を通じて低電圧バッテリー34の充電に用いるようにすることで、高電圧バッテリー32のSOC値を上限値X未満に維持する期間を延長するようにしても良い。   The power charged in the high voltage battery 32 is used for charging the low voltage battery 34 through the DC / DC converter 33, so that the SOC value of the high voltage battery 32 is maintained below the upper limit value X. It may be extended.

10 ディーゼルエンジン
30 ハイブリッドシステム
31 モータージェネレーター
32 高電圧バッテリー
33 DC/DCコンバーター
40 排ガス浄化システム
41 排気通路
42 触媒コンバーター
43 噴射ノズル
44 SCR触媒
45 排ガス
80 制御装置
93 排ガス温度センサ
DESCRIPTION OF SYMBOLS 10 Diesel engine 30 Hybrid system 31 Motor generator 32 High voltage battery 33 DC / DC converter 40 Exhaust gas purification system 41 Exhaust passage 42 Catalytic converter 43 Injection nozzle 44 SCR catalyst 45 Exhaust gas 80 Controller 93 Exhaust gas temperature sensor

Claims (2)

エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの排ガスが流れる排気通路に上流側から順に介設された尿素水を供給する噴射ノズル及び選択還元型触媒を有する排ガス浄化システムと、制御装置と、を備えたハイブリッド車両において、
前記モータージェネレーターに順に高電圧バッテリー、低電圧バッテリーを電気的に接続して、
前記制御装置は、前記ハイブリッド車両が加速時又は定常走行時であるときに、前記選択還元型触媒の温度が予め設定されたしきい温度未満となった場合には、前記モータージェネレーターに発電を開始させて、前記モータージェネレーターを発電させて得た電力を前記高電圧バッテリーに充電するとともに、前記高電圧バッテリーに充電された電力を前記低電圧バッテリーの充電に用いることで前記高電圧バッテリーの充電率を予め設定された上限値未満に維持する期間を延長し、前記高電圧バッテリーの充電率が前記上限値に達したときには前記モータージェネレーターの発電を停止する制御を行うように構成されていることを特徴とするハイブリッド車両。
A hybrid system having a motor generator connected to an output shaft for transmitting engine power, an injection nozzle for supplying urea water sequentially from an upstream side to an exhaust passage through which exhaust gas from the engine flows, and a selective reduction catalyst In a hybrid vehicle comprising an exhaust gas purification system having a control device,
A high voltage battery and a low voltage battery are electrically connected to the motor generator in order,
When the hybrid vehicle is accelerating or steady running, and the temperature of the selective catalytic reduction catalyst is lower than a preset threshold temperature, the control device starts generating power to the motor generator. And charging the high-voltage battery with the electric power obtained by generating the motor generator, and using the electric power charged in the high-voltage battery for charging the low-voltage battery. Is configured to perform control to stop the power generation of the motor generator when the charging rate of the high voltage battery reaches the upper limit value. A featured hybrid vehicle.
エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの排ガスが流れる排気通路に上流側から順に介設された尿素水を供給する噴射ノズル及び選択還元型触媒を有する排ガス浄化システムと、前記モータージェネレーターに順に電気的に接続された高電圧バッテリー及び低電圧バッテリーと、を備えたハイブリッド車両の制御方法であって、
前記ハイブリッド車両が加速時又は定常走行時であるときに、前記選択還元型触媒の温度が予め設定されたしきい温度未満となった場合には、前記モータージェネレーターによる発電を開始して、前記モータージェネレーターを発電させて得た電力を前記高電圧バッテリーに充電するとともに、前記高電圧バッテリーに充電された電力を前記低電圧バッテリーの充電に用いることで前記高電圧バッテリーの充電率を予め設定された上限値未満に維持する期間を延長し、前記高電圧バッテリーの充電率が前記上限値に達したときには前記モータージェネレーターの発電を停止することを特徴とするハイブリッド車両の制御方法。
A hybrid system having a motor generator connected to an output shaft for transmitting engine power, an injection nozzle for supplying urea water sequentially from an upstream side to an exhaust passage through which exhaust gas from the engine flows, and a selective reduction catalyst A control method for a hybrid vehicle comprising an exhaust gas purification system having a high voltage battery and a low voltage battery electrically connected in sequence to the motor generator ,
When the hybrid vehicle is in acceleration or steady running, and the temperature of the selective catalytic reduction catalyst becomes lower than a preset threshold temperature, power generation by the motor generator is started , and the motor The power obtained by generating the generator is charged to the high-voltage battery, and the power charged in the high-voltage battery is used for charging the low-voltage battery, so that the charging rate of the high-voltage battery is preset. A control method for a hybrid vehicle, characterized in that a period of time during which the battery is maintained below an upper limit value is extended and power generation by the motor generator is stopped when the charging rate of the high voltage battery reaches the upper limit value .
JP2015230480A 2015-11-26 2015-11-26 Hybrid vehicle and control method thereof Active JP6593129B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015230480A JP6593129B2 (en) 2015-11-26 2015-11-26 Hybrid vehicle and control method thereof
PCT/JP2016/084693 WO2017090639A1 (en) 2015-11-26 2016-11-24 Hybrid electric vehicle and method of controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230480A JP6593129B2 (en) 2015-11-26 2015-11-26 Hybrid vehicle and control method thereof

Publications (2)

Publication Number Publication Date
JP2017094985A JP2017094985A (en) 2017-06-01
JP6593129B2 true JP6593129B2 (en) 2019-10-23

Family

ID=58763220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230480A Active JP6593129B2 (en) 2015-11-26 2015-11-26 Hybrid vehicle and control method thereof

Country Status (2)

Country Link
JP (1) JP6593129B2 (en)
WO (1) WO2017090639A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102371252B1 (en) * 2017-10-25 2022-03-04 현대자동차 주식회사 System and method of controlling vehicle in cold start

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179262A (en) * 2007-01-25 2008-08-07 Nissan Motor Co Ltd Warming-up controller
JP2013060091A (en) * 2011-09-13 2013-04-04 Hitachi Automotive Systems Ltd Control device of vehicle
JP5966962B2 (en) * 2013-02-14 2016-08-10 トヨタ自動車株式会社 Hybrid vehicle travel control device
JP6191237B2 (en) * 2013-05-21 2017-09-06 いすゞ自動車株式会社 Hybrid electric vehicle and control method thereof
JP6115307B2 (en) * 2013-05-21 2017-04-19 いすゞ自動車株式会社 Hybrid electric vehicle and control method thereof

Also Published As

Publication number Publication date
JP2017094985A (en) 2017-06-01
WO2017090639A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6939605B2 (en) Hybrid vehicle control device
JP5929699B2 (en) Control device for hybrid vehicle
JP5660104B2 (en) vehicle
JP2009115050A (en) Exhaust emission control device for hybrid electric vehicle
JP2016155410A (en) Control method of hybrid vehicle
JP6149510B2 (en) Hybrid vehicle and control method thereof
JP6648550B2 (en) Hybrid vehicle and control method thereof
JP6459583B2 (en) Control method of hybrid vehicle
JP6191237B2 (en) Hybrid electric vehicle and control method thereof
KR101967829B1 (en) Control device for hybrid vehicle
JP6244657B2 (en) Hybrid electric vehicle
JP6593129B2 (en) Hybrid vehicle and control method thereof
JP2016155409A (en) Control method of hybrid vehicle
JP2009051466A (en) Control device for vehicle, control method, program for executing the same method and recording medium with program recorded thereon
JP6115307B2 (en) Hybrid electric vehicle and control method thereof
JP6565634B2 (en) Hybrid vehicle and control method thereof
WO2020080063A1 (en) Hybrid system, hybrid system control device, and hybrid system control method
JP5617286B2 (en) Vehicle and control method thereof
JP2005282528A (en) Hybrid electric car
JP5200801B2 (en) Control device for hybrid vehicle
JP2017136935A (en) Hybrid vehicle and control method thereof
JP2017178006A (en) Hybrid vehicle and control method therefor
WO2020085003A1 (en) Hybrid system, hybrid system control device, and hybrid system control method
JP2005282527A (en) Hybrid electric car
JP2022059691A (en) Hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150