[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6590895B2 - 画像形成装置及び画像形成方法 - Google Patents

画像形成装置及び画像形成方法 Download PDF

Info

Publication number
JP6590895B2
JP6590895B2 JP2017223072A JP2017223072A JP6590895B2 JP 6590895 B2 JP6590895 B2 JP 6590895B2 JP 2017223072 A JP2017223072 A JP 2017223072A JP 2017223072 A JP2017223072 A JP 2017223072A JP 6590895 B2 JP6590895 B2 JP 6590895B2
Authority
JP
Japan
Prior art keywords
image
density
detection
mode
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017223072A
Other languages
English (en)
Other versions
JP2019095522A (ja
Inventor
下村 正樹
正樹 下村
慶樹 工藤
慶樹 工藤
洋 北
洋 北
和弘 船谷
和弘 船谷
圭太 佐藤
圭太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017223072A priority Critical patent/JP6590895B2/ja
Priority to CN202111147218.6A priority patent/CN113777898B/zh
Priority to CN201811356195.8A priority patent/CN109814346B/zh
Priority to US16/194,811 priority patent/US10539907B2/en
Publication of JP2019095522A publication Critical patent/JP2019095522A/ja
Application granted granted Critical
Publication of JP6590895B2 publication Critical patent/JP6590895B2/ja
Priority to US16/728,421 priority patent/US10962899B2/en
Priority to US17/198,550 priority patent/US11287762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0806Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller
    • G03G15/0808Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller characterised by the developer supplying means, e.g. structure of developer supply roller
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5033Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor
    • G03G15/5041Detecting a toner image, e.g. density, toner coverage, using a test patch
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/10Apparatus for electrographic processes using a charge pattern for developing using a liquid developer
    • G03G15/104Preparing, mixing, transporting or dispensing developer
    • G03G15/105Detection or control means for the toner concentration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/1615Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support relating to the driving mechanism for the intermediate support, e.g. gears, couplings, belt tensioning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5008Driving control for rotary photosensitive medium, e.g. speed control, stop position control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5054Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5054Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt
    • G03G15/5058Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an intermediate image carrying member or the characteristics of an image on an intermediate image carrying member, e.g. intermediate transfer belt or drum, conveyor belt using a test patch
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5062Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an image on the copy material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/55Self-diagnostics; Malfunction or lifetime display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5075Remote control machines, e.g. by a host
    • G03G15/5087Remote control machines, e.g. by a host for receiving image data
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00033Image density detection on recording member
    • G03G2215/00037Toner image detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00033Image density detection on recording member
    • G03G2215/00037Toner image detection
    • G03G2215/00042Optical detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00059Image density detection on intermediate image carrying member, e.g. transfer belt
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00067Image density detection on recording medium

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)

Description

本発明は、画像形成装置及び画像形成方法に関し、特に、現像剤供給部材による像担持体への現像剤の供給量を制御する濃度可変画像形成モードを有する画像形成装置に関する。
画像形成装置の分野において、入力画像信号と、その入力画像信号に対応した出力画像の濃度との相関関係を曲線で表したγカーブがある。また、入力画像信号に対してリニアな出力画像の濃度特性を得るように、入力画像信号の階調を変換する所謂ルックアップテーブルが知られている。このルックアップテーブルを用いた補正を所謂γ補正と呼ぶ。また、画像形成装置の動作環境、継続動作時間等によりこのγカーブが崩れてしまった場合に、画像形成装置が、ベルト上に検知用画像を形成し、γカーブを再作成し、ルックアップテーブルを補正することが知られている(例えば、特許文献1参照)。
近年、益々の画質向上が画像形成装置に求められているが、その指標の一つとして色域(Color Gamut)が存在する。画像形成装置における色域とは、画像形成装置が出力可能な色再現範囲のことであり、色域が広いほど色再現範囲が広く画像形成装置として優位であることを意味する。そして、この色域を拡大する手法の一つに、記録材上の現像剤量を増やす等の手法が考えられる。特許文献1には、現像ローラの回転速度を変えて2次色の色味を調整する提案が開示されている。色味調整が目的の構成であり記録材上の現像剤量を増やす目的ではないものの、この技術を応用すれば色域を広げることが可能である。すなわち現像ローラの回転速度を上げることで現像剤量を増やすことが可能である。
特開平8−227222号公報
しかしながら、従来技術では、検知用画像の形成に関して、次のような課題がある。現像ローラの回転速度など、プロセス条件を変更した場合は、プロセス条件ごとに検知用画像の形成及び検知が必要になってくる。しかし、その都度、プロセス条件ごとに検知用画像を形成し検知していては、ダウンタイムが増えてしまう。
本発明は、このような状況のもとでなされたもので、検知用画像の形成及び検出に係るダウンタイムを低減することを目的とする。
上述した課題を解決するために、本発明は、以下の構成を備える。
(1)感光ドラムと、前記感光ドラム上の静電潜像をトナーにより現像しトナー像を形成する現像ローラと、前記感光ドラム上に形成されたトナー像が転写される、又は、担持している記録材に前記トナー像が転写されるベルトと、前記ベルト上に形成された検知用画像の濃度を検知する検知手段と、前記感光ドラムの周速に対する前記現像ローラの周速差が第1周速差の第1のモードと、前記周速差が第1周速差よりも大きな第2のモードとで画像形成が可能な画像形成装置であって、前記第1のモードにおける前記検知手段による前記検知用画像の第1検知結果に基づき、入力画像データに対する濃度出力が第1濃度出力特性となるように前記入力画像データの階調を変換する第1変換手段を演算する制御手段と、記憶手段と、を備え、前記制御手段は、前記第1のモードでの検知結果と補正情報とに基づき、前記第2のモードにおいて前記入力画像データに対する濃度出力が第2濃度出力特性となるように前記入力画像データの階調を変換する第2変換手段を生成し、更に、前記第2のモードにおける前記検知手段による前記検知用画像の第2検知結果と、前記第1検知結果と、に基づき前記補正情報を更新することを特徴とする画像形成装置。
(2)感光ドラムと、前記感光ドラム上の静電潜像をトナーにより現像しトナー像を形成する現像ローラと、前記感光ドラム上に形成されたトナー像が転写される、又は、担持している記録材に前記トナー像が転写されるベルトと、前記ベルト上に形成された検知用画像の濃度を検知する検知手段と、第1のモードにおいて前記検知手段により前記検知用画像の濃度を検知した結果に基づいて前記第1のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す第1の特性を求める第1の検知用画像実測を実行する制御手段と、記憶手段と、を備える画像形成装置であって、前記制御手段は、前記第1の特性に基づいて、前記第1のモードにおける色域とは異なる色域で画像形成を行う第2のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す特性を予測する予測濃度補正を実行し、予測した特性を用いて前記第2のモードにおける画像形成を行い、前記第2のモードにおいて前記検知手段により前記検知用画像の濃度を検知した結果に基づいて前記第2のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す第2の特性を求める第2の検知用画像実測を実行し、前記第2の特性と前記予測した特性とに基づき補正値を求め、求めた補正値を用いて前記予測した特性を補正するとともに求めた補正値を前記記憶手段に記憶し、更に、前記第2の検知用画像実測を実行することなく前記記憶手段に記憶された補正値を用いて前記予測した特性を補正することを特徴とする画像形成装置。
本発明によれば、検知用画像の形成及び検出に係るダウンタイムを低減することができる。
実施例1、2の画像形成装置の概略構成図 実施例1、2の画像形成ステーションの概略構成図、感光ドラム層構成の概略説明図 実施例1の感光ドラムの表面電位の概略説明図 実施例1、2の濃度センサ構成の概略説明図、濃度センサ出力の概略説明図 実施例1、2のコントローラ処理の概略説明図 実施例1の通常プリントモード時、広色域プリントモード時のルックアップテーブル概略説明図 実施例1の現像ローラの周速、感光ドラムの使用度合いによる濃度の概略説明図 実施例1の感光ドラム使用度合いによる光量に対する表面電位の概略説明図、現像ユニットの使用度合いによる濃度の概略説明図 実施例1の通常プリントモードと広色域プリントモードにおける濃度比の概略説明図 実施例1の濃度補正の制御方法を示すフローチャート 実施例1の検証で得られたγカーブを示すグラフ 実施例2の濃度補正の制御方法を示すフローチャート 実施例2の検証で得られたγカーブを示すグラフ 実施例3の濃度補正の制御方法を示すフローチャート
以下、本発明を実施するための形態を、実施例により図面を参照しながら詳しく説明する。
[画像形成装置]
図1は実施例1の画像形成装置200の概略構成図である。画像形成装置200は、インライン方式、中間転写方式を採用したフルカラーレーザープリンタである。また、第1のモードである通常プリントモードと、通常プリントモードにおける色域とは異なる色域の第2のモードである広色域プリントモードで画像形成を行うことが可能な画像形成装置である。ホストコンピュータ(以下、ホストPCとする)(不図示)からコントローラ201を介しエンジンコントローラ202に入力される画像情報に従って、画像形成装置200は転写材としての記録材203にフルカラー画像を形成する。画像形成装置200は記憶手段である不揮発メモリ230を有し、コントローラ201は後述する差分ΔL(i)等の情報を不揮発メモリ230に保存する。
画像形成装置200は、色毎に画像形成ステーションSY、SM、SC、SKを有する。例としてイエローにおける画像形成ステーションSYを図2(A)に示す。画像形成ステーションSYは、プロセスカートリッジ204Yと、図示矢印A方向に回転する中間転写ベルト205と、中間転写ベルト205を介してプロセスカートリッジ204Yと反対側に配置されている1次転写ローラ206Yとから構成される。以降、図示矢印A方向を、回転方向Aという。プロセスカートリッジ204Yは、不揮発メモリ234Yを有している。不揮発メモリ234Yには、例えば、現在のトナーの使用量(以下、トナー使用量という)や現在のドラムユニット310の使用量等の情報が記憶されている。不揮発メモリ234Yに記憶されているこれらの情報は、プリントが実行されると逐次更新される。各画像形成ステーションSY、SM、SC、SKは中間転写ベルト205の回転方向Aに並んで配置されており、形成される色が異なることを除いて実質的に同じである。したがって、以下、特に区別を要しない場合は、いずれかの色用に設けられた要素であることを表すための添え字Y、M、C、Kは省略して総括的に説明する。
プロセスカートリッジ204は、像担持体としての感光ドラム301を有する。感光ドラム301は駆動手段(不図示)により図示矢印B方向に回転駆動される。帯電ローラ302は高電圧電源(不図示)から高電圧を印加されることで、感光ドラム301表面を均一に帯電する。次に、露光手段であるスキャナユニット207がエンジンコントローラ202に入力される画像情報に基づいて感光ドラム301へレーザー光を照射し、感光ドラム301表面に静電潜像を形成する。現像剤供給手段としての現像ローラ303は駆動手段(不図示)によって図示矢印C方向に回転しており、表面にコートされた電荷を帯びた現像剤としてのトナーが感光ドラム301表面の静電潜像に沿って付着することで静電潜像が可視像になる。以下、トナーによる可視像をトナー像と表記する。
感光ドラム301の基層は接地されており、1次転写ローラ206には高電圧電源(不図示)によりトナーと逆極性の電圧が印加されている。そのため1次転写ローラ206と感光ドラム301とで形成されるニップ部において電界が形成され、トナー像が感光ドラム301から中間転写ベルト205へ転写される。なお、中間転写ベルト205は、対向ローラ217によっても張架されており、中間転写ベルト205を挟んで対向ローラ217の反対側には、検知手段である濃度センサ218が設けられている。
中間転写ベルト205に転写しきれずに感光ドラム301表面に残ったトナーは、ドラムクリーニングブレード304によって感光ドラム301から除去され、廃トナー容器305に集められる。トナー補給ローラ306は、図示矢印D方向に回転することで現像ローラ303へトナーの補給を行い、攪拌機307は図示矢印E方向に回転することでトナー補給ローラ306へトナーの補給を行う。トナー規制ブレード308は固定されているため、現像ローラ303は自身の回転によりトナー規制ブレード308と摺擦する。現像ローラ303表面にコートされたトナーは、この摺擦部で帯電されながら量を規制され、その結果、濃度の安定した現像が可能になる。以降、現像ローラ303、攪拌機307、トナー補給ローラ306、トナー規制ブレード308からなる構成をまとめて現像ユニット309と呼ぶ。また、感光ドラム301、帯電ローラ302、ドラムクリーニングブレード304、廃トナー容器305、からなる構成をまとめてドラムユニット310と呼ぶ。
実施例1の画像形成装置200は、基準画像形成モードとしての通常プリントモードに加えて、濃度可変画像形成モードとしての広色域プリントモードを利用することが可能である。広色域プリントモードは、感光ドラム301の周速に対する現像ローラ303の周速(以下、周速差と表記する)を通常プリントモードに比べて上げること、及び電位コントラストを上げることで感光ドラム301上(感光ドラム上)の単位表面積あたりの現像材量を増やし、広色域化を実現する。以下、現像材量をトナー量ともいう。すなわち、広色域プリントモードでは、周速差を大きくすることによって、通常プリントモードに比べてトナーの供給量を増やす。それとともに、感光ドラム301の表面電位を設定する必要があるが、電位コントラストの設定に関しては後に詳述する。
中間転写ベルト205が回転方向Aに回転することで、各色の画像形成ステーションSで生成されたトナー像が中間転写ベルト205上(ベルト上)に形成され搬送される。給紙カセット208には記録材203が積載収納されている。給紙スタート信号に基づき給紙ローラ209が駆動されることで記録材203は給紙される。記録材203はレジストレーションローラ対(以下、レジストローラ対という)210を介して2次転写ローラ211と2次転写対向ローラ212とで形成されたニップ部(以下、2次転写部ともいう)に所定のタイミングで搬送される。
具体的には、中間転写ベルト205上のトナー像の先端部と記録材203の先端部とが重なるタイミングで記録材203は搬送される。記録材203が2次転写ローラ211と2次転写対向ローラ212の間で狭持搬送される間、2次転写ローラ211には電源装置(不図示)からトナーと逆極性の電圧が印加される。2次転写対向ローラ212が接地されているため、2次転写ローラ211と2次転写対向ローラ212の間には電界が形成される。この電界により中間転写ベルト205から記録材203へとトナー像が転写される。記録材203は2次転写ローラ211と2次転写対向ローラ212の間のニップ部を通過した後、定着装置213によって加熱及び加圧処理を受ける。これにより記録材203上のトナー像は記録材203に定着される。その後、記録材203が排出口214から排出トレイ215へ搬送され、画像形成プロセスが完了となる。一方、2次転写部で転写しきれなかった中間転写ベルト205上のトナーは、クリーニング部材216によって中間転写ベルト205から除去され、中間転写ベルト205は再び画像形成が可能な状態にリフレッシュされる。
画像形成装置200は、操作部300を備えている。操作部300は、テンキーやタッチパネル等を有しており、ユーザによりプリントに関する情報の入力がなされたり、画像形成装置200の状態を示す情報が表示されたりする。
[感光ドラム]
図2(B)に感光ドラム301の層構成を示す。感光ドラム301は下層から、次のように構成されている。感光ドラム301は、アルミニウム等の導電性材料からなるドラム基体311、光の干渉を抑え上層の接着性を向上させる下引き層312、キャリアを生成する電荷発生層313、発生したキャリアを輸送する電荷輸送層314、からなる。ドラム基体311は接地されており、感光ドラム301の表面が帯電ローラ302により帯電されることで感光ドラム301内側から外側に向けた電界が形成される。スキャナユニット207によるレーザー光Lが感光ドラム301に照射されると電荷発生層313でキャリア(+丸)が生成される。このキャリアは上述した電界により移動し(破線)、感光ドラム301表面の電荷(−丸)と対になることで感光ドラム301の表面電位を変化させる。
[感光ドラムの表面電位等]
通常プリントモードと広色域プリントモードにおける感光ドラム301の表面電位について図3を用いて説明する。図3において、縦軸は電位[−V]を示す。まず、帯電ローラ302により感光ドラム301表面が帯電された電位を帯電電位Vdとする。その後、露光されることによって感光ドラム301の表面電位は露光電位Vlに変化する。現像ローラ303は高電圧電源(不図示)により現像電位Vdcになるように電圧が印加されている。現像電位Vdcは露光電位Vlと帯電電位Vdの間に設定されている。このため、非露光部では現像ローラ303表面にコートされているトナーが感光ドラム301側に現像される方向とは逆方向に電界が形成され、露光部では感光ドラム301側に現像される方向へ電界が形成される。この電界により露光部ではトナーが現像されるが、トナーが現像されるほどトナー電荷により感光ドラム301の表面電位が上昇するため露光部における電界は弱くなる。よって、周速差を大きくしてトナー供給量を増やそうとしても、ある周速差で感光ドラム301上のトナー量が飽和してしまう。感光ドラム301上のトナー量を増やすためには十分な電位コントラスト(Vdc−Vl)を設定する必要がある。ここで、電位コントラストVdc−VlをVcontとする。しかし、帯電電圧による電荷が露光により十分消失した状態で露光量を増やしたとしても、感光ドラム301内部の電界が弱まっているため、電荷発生層313で生成されたキャリアが表面に移動することはなく、電位が変化しない。そのため、より高い電位コントラストVcontを設定するためには、より高い帯電電圧が必要になる。
以上より、実施例1の構成における通常プリントモードでは、周速差を140%、Vd_n=−500V、Vdc_n=−350V、Vl_n=−100Vを採用する。また、広色域プリントモードでは、周速差を280%、Vd_w=−850V、Vdc_w=−600V、Vl_w=−120Vを採用する。ここで、帯電電圧Vd、現像電位Vdc、露光電位Vlをそれぞれ、通常プリントモードではVd_n、Vdc_n、Vl_nと表記し、広色域プリントモードではVd_w、Vdc_w、Vl_wと表記している。各プリントモードにおける各電位は、現像ローラ303表面にコートされているトナーを現像するのに必要十分な値で設定されている。そのため何らかの要因で電位が変動しても現像されるトナー量は変わらず濃度が安定する。しかし、仮に通常プリントモードにおいて広色域プリントモードの各電位を採用したとすると、電位が変動するとそれに伴い現像されるトナー量も変化するため濃度が安定しない。以上より、実施例1では濃度安定性の観点から通常プリントモードにおける各電位はVd_w、Vdc_w、Vl_wではなくVd_n、Vdc_n、Vl_nを採用する。
[濃度センサ]
電子写真方式の画像形成装置では、カートリッジの使用状態や使用環境等、いろいろな条件によって印刷物の色味が変化する。そのため、適宜濃度を測定し、画像形成装置本体内の制御機構へフィードバックする必要がある。濃度測定手段としての濃度センサ218の概略構成を図4(A)に記す。トナー像Tは画像形成ステーションSにおいて中間転写ベルト205表面に転写された後、中間転写ベルト205の回転に伴って対向ローラ217の位置まで搬送される。中間転写ベルト205を境に対向ローラ217と逆側に濃度センサ218が配置されている。濃度センサ218は、主に発光素子219と正反射受光素子220と乱反射受光素子221とから構成されている。発光素子219が赤外光を発光し、その光がトナー像Tの表面で反射される。正反射受光素子220は、トナー像Tの位置に対し正反射方向に配置されており、トナー像Tの位置での正反射光を検知する。乱反射受光素子221は、トナー像Tに対し正反射方向以外の位置に配置されており、トナー像Tの位置での乱反射光を検知する。Aは上述した中間転写ベルト205の回転方向Aであり、図4(A)において中間転写ベルト205は、紙面の奥から手前に向かって搬送されている。
[センサ出力]
図4(B)に濃度センサ218の出力結果を記す。図4(B)は、横軸が16進数で表された(Hex)画像データを示し、縦軸が濃度センサ218の出力(センサ出力)を示す。トナー量が少ないトナー像T、言い換えれば画像データが小さい値の場合は、濃度センサ218は平滑で鏡面かつ黒色である中間転写ベルト205表面からの反射を検知するため、正反射検知出力401(点線)が大きく、乱反射検知出力402(破線)が小さい。中間転写ベルト205の表面性に比べてトナー粒径は大きいため、トナーが増えると、言い換えれば画像データが大きな値になると、正反射検知出力401が小さくなり、乱反射検知出力402が大きくなる。正反射検知出力401は乱反射成分を含んでいるため、正反射検知出力401から乱反射検知出力402に基づき乱反射成分を減じることで、濃度と相関のあるセンサ出力403(実線)を得ることができる。以上より、濃度センサ218による正反射光及び乱反射光の検知結果に基づいて濃度が算出される。
[乱反射検知出力]
上記で説明したセンサ出力を用いることで、広色域プリントモードの検知用画像の実測を行える。しかし、検知用画像のトナー量(階調値の大きな検知用画像)が多くなった場合、上記のセンサでは精度が低下してしまう。以下、乱反射検知出力402を正反射検知出力(乱反射出力減算後)403で補正することで精度を向上させる仕組みについて説明する。なお、例えば、特開2002−236402号公報等に詳細が記載されている。
図4(C)は、中間転写ベルト205表面のトナー像Tを濃度センサ218で検知した場合の、正反射検知出力(乱反射出力減算後)403と乱反射検知出力402を示している。横軸が濃度、縦軸が検知出力である。ここでは、イエロートナーを濃度センサ218により検知した場合の検知出力を例に挙げて説明する。403は、所定のタイミングで濃度センサ218により検知した正反射検知出力である。402は、403と同じ所定のタイミングで濃度センサ218により検知した乱反射検知出力である。正反射検知出力403は、中間転写ベルト205の表面を検知しているとき(すなわち、濃度0のとき)が検知出力は最も高い。一方、正反射検知出力403は、濃度が1になるあたりで検知出力が下限の0に張り付いている。このことから、正反射検知出力403は、低濃度側では検知精度が高いが、高濃度側では検知精度が低いことがわかる。
乱反射検知出力402は、濃度の増加に伴い上昇していく。低濃度側では、正反射検知出力403よりも値の変動が小さいため検知精度は劣るが、高濃度側では、良好な検知精度を示すことがわかる。そこで、高濃度側の濃度検知を正規化した乱反射検知出力で行うことで、濃度検知精度を上げることが出来る。
以下、正反射検知出力を用いた乱反射検知出力の正規化補正手順を図4(C)を用いて説明する。まず、下地出力値により正規化された正反射検知出力403は一意に決まるので、実施例3では、濃度0.5における検知出力を基準値Pとする。図4(C)より、濃度0.5における正規化前の乱反射検知出力402はP1となっている。
そこでP/P1の値を正規化前の乱反射検知出力402にかけ、正規化後の乱反射検知出力404を得る。そして、コントローラ201は、所定の濃度以上(例えば濃度0.5以上)の階調を持つ検知用画像の検知より、乱反射検知出力404を検知/取得する。
以上の手順により正規化後の乱反射検知出力404を得られるので、高濃度領域(例えば濃度0.5以上)においても、より正確な濃度検知が可能になる。
[画像処理]
次に濃度センサ218によって得られた色味情報がどのように補正に用いられるかを説明する。図5にコントローラ処理の流れの概要を示す。一般的にPCLやPostScript等のページ記述言語PDL(Page Description Language)で記述されたプリントジョブが、ホストPC222等からコントローラ201へ送信される。コントローラ201は、主にRIP(Raster Image Processor)部223、色変換部224、γ補正部225、ハーフトーニング部226を介してエンジンコントローラ202へYMCKのビットマップ情報を送信する。
具体的には、RIP部223は、ホストPC222から送られてきたPDLで記述されたプリントジョブをファイル解析(インタプリタ)し、画像形成装置200の解像度に応じたRGBのビットマップ化を行う。一般的に、液晶ディスプレイの色再現範囲に比べて電子写真方式の画像形成装置の色再現範囲の方が狭い。そのため、次の色変換部224において、デバイス間の色再現範囲の違いを考慮し、できるだけ色味を一致させるようなカラーマッチングを行う。また、色変換部224は、RGBデータからYMCKデータへの変換等も行う。その後、γ補正部225では、ガンマの補正を行い、ハーフトーニング部226では、ディザ等の階調表現処理が行われる。濃度センサ218によって得られた検知結果は、γ補正部225によって適切な画像データを選択するために用いられる。
[ルックアップテーブル]
図6(A)にルックアップテーブル(LUT,Lookup Table)を示す。図6(A)で、第1象限はルックアップテーブルのグラフを示し、横軸が16進数(Hex)で表された入力画像データを示し、縦軸が16進数で表された使用する画像データを示す。第2象限は補正前のγカーブ(以下、補正前γカーブともいう)を示し、横軸が反射濃度を示し、縦軸は第1象限と同様に使用する画像データを示す。なお、反射濃度を単に濃度ともいう。また、γカーブとは、入力画像データ(i)と入力画像データに対応した実際の出力画像濃度との関係を示した曲線である。第3象限は補正後のγカーブ(以下、補正後γカーブともいう)を示し、横軸が第2象限と同様に反射濃度(濃度出力)を示し、縦軸が入力画像データ(Hex)を示す。図6(A)中第2象限に示されたグラフが補正前γカーブである。通常、補正前γカーブは線形性を有していない。そのため、入力画像データをそのまま使わず、線形性を保つような画像データを選択して使う。この入力画像データと実際に使用する画像データの相関を示すテーブルをルックアップテーブルと呼ぶ。そして現在の画像形成装置本体の特性に合わせてルックアップテーブルを作り直すことをガンマ補正(以下、γ補正と表記する)と呼ぶ。図6(A)中第3象限にあるように、入力画像データと反射濃度との関係に線形性があるのが理想とする。なお、このグラフは、一般的な入力画像データと反射濃度との関係等を示すグラフである。このグラフのデータは、例えば、記録材203に印刷した定着後の画像の濃度を外部の測定器等により測定した結果に基づき得たデータである。例えば、この例では、図6(A)中第2象限に示す現状の画像形成装置本体の特性(補正前γカーブ)を考慮すると、80hの入力画像データに対する理想的な濃度を得るには、実際にはC0hの画像データを使用する必要があることがわかる。
補正前γカーブは現在の画像形成装置自体の特性であり、カートリッジや使用環境等様々な条件で変化する。これは通常プリントモードと広色域プリントモードといったプリントモードの違いにおいても同様である。図6(B)のグラフは、図6(A)と同様のグラフであり横軸、縦軸等の説明は省略する。図6(B)は、通常プリントモードに最適化されたルックアップテーブル(第1変換手段)を用いて、広色域プリントモードで印刷を行ったときの反射濃度の線形性からのズレを表している。図6(B)中、第2象限の破線が通常プリントモードにおける画像形成装置本体の特性を表し、この破線のグラフは図6(A)の第2象限のグラフと同じものである。また、図6(B)中、第2象限の実線が広色域プリントモードにおける画像形成装置本体の特性(補正前γカーブ)を表している。広色域プリントモードは、感光ドラム301に対する現像ローラ303の周速差を上げることでトナー量を増やすプリントモードである。そのため、広色域プリントモードでは、画像データ全域において通常プリントモードに対して反射濃度が高い。80hの入力画像データで画像形成を行うと、通常プリントモードであれば反射濃度0.6程度であったものに対し、広色域プリントモードでは反射濃度が1.0まで増加している。つまり、入力画像データ80hに対して、通常プリントモードにおけるLUTを使用すると、使用する画像データはC0hとなる。このため、広色域プリントモードでの濃度が、実現すべき濃度である0.6よりも濃い1.0となってしまう。
その結果、図6(B)中、第3象限に示すように、通常プリントモードにおける補正後γカーブ(破線)が線形性を有していたのに対し、広色域プリントモードにおける補正後γカーブ(実線)が線形性を有さず、いびつな形になってしまう。そのため、通常であれば広色域プリントモードにおいても通常プリントモード同様、濃度センサ218を用いてガンマを把握した上で広色域プリントモード用にルックアップテーブルを得る必要がある。しかし、広色域プリントモード用のLUTを得るためには、通常プリントモードとは別に広色域プリントモードにおいても、中間転写ベルト205上に検知用のトナー像(検知用画像)を形成し、濃度センサ218によって検知用のトナー像の濃度を測定する工程が必要となる。このため、広色域プリントモードにおけるLUTを得るために、ダウンタイムが生じてしまう。
[予測濃度補正について]
実施例1では、精度が良いものの、ダウンタイムが生じてしまう検知用画像実測と、精度は検知用画像実測に劣るものの、ダウンタイムが生じない予測濃度補正との両方を組み合わせる。これにより、安定した色味を再現しつつ、検知用画像実測の実行頻度を抑制できるようにする。実施例1における予測濃度補正について説明する。予測濃度補正は、通常プリントモードにおける濃度情報と所定の情報とに基づいて、広色域プリントモードにおけるルックアップテーブルを作成することでγ補正を行う。所定の情報とは、例えば、感光ドラム301に対する現像ローラ303の周速差及びカートリッジの使用に関する情報等である。以下、通常プリントモードから広色域プリントモードの濃度情報を算出するにあたって必要なパラメータ(上述した所定の情報)について説明する。
[現像ローラ303の周速差]
図7(A)に広色域プリントモードにおける電位設定、すなわち、Vd_w=−850V、Vdc_w=−600V、Vl_w=−120Vの下、周速差を変化させたときの濃度を示す。図7(A)は、横軸に画像データ、縦軸に濃度(OD)を示す。周速差は140%、200%、240%、280%の場合のデータである。どの階調(画像データ)においても周速差が大きくなると濃度も高くなっていることがわかる。これまでも説明した通り、これは周速差を上げることで感光ドラム301へのトナー供給量が増えるためである。よって、通常プリントモードにおける濃度情報から広色域プリントモードにおける濃度情報を算出するためには、周速差をパラメータとして含める必要がある。
[感光ドラム301の使用度合い]
図7(B)に、使用度合いの異なるドラムユニットにおける広色域プリントモードでの濃度の差を示す。図7(B)の横軸、縦軸は図7(A)と同様であり説明を省略する。ドラムユニット310Aは新品であり、ドラムユニット310Bは記録材203を20000枚印刷したものであり、ドラムユニット310Cは記録材203を50000枚印刷したものである。記録材203の印刷枚数が増えるにつれて、言い換えれば、感光ドラム301の使用が進むにつれて、画像データ全域で濃度が低く(薄く)なっている。これは、使用によりスキャナユニット207の光量に対する感光ドラム301の感度が変化しているためである。
図8(A)にスキャナユニット207による光量と感光ドラム301の表面電位の特性イメージを示す。図8(A)は、横軸にスキャナユニット207の光量を示し、縦軸に感光ドラム301の表面電位[−V]を示す。また、301Aは新品の感光ドラムを示し、301Bは使用が進んだ(旧品の)感光ドラムを示す。感光ドラム301は、使用により最表層である電荷輸送層314が削れて厚みが薄くなる。感光ドラム301の厚みが薄くなると、静電容量が増えるため、表面に帯電する電荷量に対する表面電位の感度が鈍くなる。そのため、新品の感光ドラム301Aと同じ露光電位Vlまで露光により電位を低下させようとすると、新品の感光ドラム301Aでは光量Laで十分なのに対し、旧品の感光ドラム301Bではより多くの光量Lbが必要になる(Lb>La)。これは、新品の感光ドラム301Aで実現した濃度と同じ濃度にしようとすると、旧品の感光ドラム301Bではより高い画像データが必要になる、ということと同じ意味である。
以上より、濃度がドラムユニット310の記録材203の印刷枚数に依存していることがわかる。また、図7(B)のデータからは、ドラムユニット310Bはドラムユニット310Aとドラムユニット310Cのほぼ中間にプロットされていることから、記録材203の印刷による濃度の変化と印刷枚数との間には線形の相関があると考えられる。
[現像ユニット309の使用度合い]
図8(B)に、使用度合いの異なる現像ユニット309における広色域プリントモードの濃度を示す。図8(B)の横軸、縦軸は、図7と同様であり説明を省略する。新品の現像ユニット309Aと印字率5%で記録材203を3000枚印刷した現像ユニット309Bでは、新品の現像ユニット309Aの方が画像データ全域で濃度が薄い。これは、初期に小粒径トナーが比較的消費されやすく、かつトナー規制ブレード308との摺擦で帯電しやすいことに起因する。上述した通り、トナーが現像されるに従ってトナー自身の電荷に起因してVdcとの電位差が小さくなっていく。この現象を、電位コントラストVcont(=Vdc−Vl)が埋まっていく、と表現する。電位コントラストVcontがトナーの電荷により埋まっていくと、次第に現像されなくなる。高帯電であればより多く電位コントラストVcontを埋めてしまうため、その結果濃度が低くなる。なお、ここでいう高帯電とは、マイナス方向に大きいことを指し、図3のグラフの縦軸においては、上に行くほど高くなる。また、現像ユニット309Bと同じ印字率5%で、記録材203を30000枚印刷した現像ユニット309Cでは、現像ユニット309Bとほぼ濃度が変わらない。これは、実施例1の構成では、記録材203が3000枚程度印刷されたタイミングで、小粒径トナーがほぼ消費されていると考えられる。
以上より、濃度がトナー使用量に依存していることがわかる。印字率5%で記録材203を3000枚印刷したときのトナー使用量は、全体のトナー量に比べると微量である。このことから、実施例1においては、印字率5%で記録材203を3000枚相当印刷したときのトナー使用量までは濃度が線形に変化するとし、それ以降、濃度は変化せず一定であるとする。
図7(A)、(B)、図8(B)により、通常プリントモードにおける濃度情報と広色域プリントモードにおける濃度情報との間には、現像ローラ303の周速差、ドラムユニット310の使用度合い、トナーの消費度合い等が影響することがわかる。そのため、各条件(所定の条件)での通常プリントモードと広色域プリントモードにおける濃度情報の相関テーブルを予め用意しておくことで、通常プリントモードに加えて広色域プリントモードにおいて濃度測定を行うことなく色味調整を行うことが可能である。
[相関テーブルの作成]
以下、具体的に相関テーブルをどのように作成し、どのように適用するか説明する。相関テーブルを作成するために必要なデータは、次のようなデータとなる。ドラムユニット310の新品と使用が進んだ寿命相当品、及び現像ユニット309の新品と印字率5%で記録材203を3000枚程度印刷したもの、を用いた場合の周速差毎の通常プリントモードと広色域プリントモードの記録材203上の濃度データである。これらの濃度データは、例えば、開発工程等において、記録材203上に形成された定着後の画像の濃度を、外部の測定器等によって測定し、得られたデータに基づいたものである。なお、最終的に記録材203上に形成された画像で望ましい濃度が得られるようにするために、定着後の記録材203上の画像の濃度を外部の測定器等によって測定している。このため、コントローラ201内の記憶部(不図示)等には、定着後の画像の濃度を測定して得られたデータと、定着前の画像の濃度を濃度センサ218によって測定して得られたデータとの相関を示すテーブルが予め格納されているものとする。上述した通り、広色域プリントモードでは、周速差280%である。通常プリントモードの周速差140%の濃度情報に基づいて広色域プリントモードの周速差280%における濃度を算出するための相関テーブルを、図9に記す。図9は、横軸に画像データ(階調)を示し、縦軸に濃度比を示す。
相関テーブルとは、両プリントモードの濃度比のことであり、広色域プリントモードにおける濃度を通常プリントモードにおける濃度で割ったものとして定義する。低濃度側(又は低階調側、画像データの値が小さい側)では通常プリントモードにおける濃度が低いため濃度比が高く、濃度が上がるにつれて濃度比が小さくなる傾向にある。また、新品のドラムユニット310Aの方が、記録材203を50000枚印刷した後の感光ドラム301を用いたドラムユニット310Cよりも濃度比が大きい。これは、ドラムユニット310A及び310Cにおいて、通常プリントモードにおける濃度の差に比べて広色域プリントモードにおける濃度の差が大きいことに起因する。広色域プリントモードにおける濃度の差は図7(B)を用いて説明した通りである。
広色域プリントモードにおける濃度を算出したい場合は、まず、現在のトナー使用量が、プロセスカートリッジ204に搭載された不揮発メモリ234に記憶されたデータに基づき算出される。上述した通り、濃度は印字率5%で記録材203を3000枚印刷した場合に相当するトナー使用量(所定の使用量)までは線形で変化し、それ以降は一定となる。そのため、ドラムユニット310Aかつ現像ユニット309Aの相関テーブル601(第1の濃度比)と、ドラムユニット310Aかつ現像ユニット309Bの相関テーブル603(第2の濃度比)から、次の(1)が算出される。すなわち、(1)ドラムユニット310Aかつ現在の現像ユニット309の相関テーブルが算出される。(1)の相関テーブルの算出には、トナー使用量が用いられる。
具体的には、現在の現像ユニット309が印字率5%で記録材203を3000枚以上印刷した場合に相当する量でトナーを消費していた場合には、このときの相関テーブルは相関テーブル603と同じである。また、現在の現像ユニットが印字率5%で記録材203を3000枚未満しか印刷していない場合には、このときの相関テーブルは相関テーブル601と相関テーブル603の間になり、トナー使用量に応じて線形に変化するとして相関テーブルが算出される。
同様に、ドラムユニット310Cかつ現像ユニット309Aの相関テーブル602(第3の濃度比)と、ドラムユニット310Cかつ現像ユニット309Bの相関テーブル604(第4の濃度比)から、次の(2)が算出される。すなわち、(2)ドラムユニット310Cかつ現在の現像ユニット309の相関テーブルが算出される。次に、プロセスカートリッジ204に搭載された不揮発メモリ234に記憶されたデータに基づき、現在のドラムユニット310の使用量が算出される。そして、(1)ドラムユニット310Aかつ現在の現像ユニット309の相関テーブル、(2)ドラムユニット310Cかつ現在の現像ユニット309の相関テーブルの2つから、現在のドラムユニット310かつ現在の現像ユニットの相関テーブルが算出される。(2)の相関テーブルの算出には、ドラムユニット310の使用量が用いられる。
ドラムユニット310の使用量に対する濃度への影響は上述した通り、使用量に応じて線形に変化するとして算出する。つまり、例えば記録材203を25000枚印刷したドラムユニット310であれば、ドラムユニット310Aかつ現在の現像ユニットの相関テーブルと、ドラムユニット310Cかつ現在の現像ユニットの相関テーブルのちょうど間になる。
以上のように、実施例1の画像形成装置では、通常プリントモードにおける濃度情報(濃度センサ218による検知結果)と現像ローラ303の周速差等のパラメータによる相関テーブルを用いる。これにより、広色域プリントモードにおけるルックアップテーブルをダウンタイム無しに得ることができる。実施例1では、以上のようにして、広色域プリントモードにおけるルックアップテーブルを得、γ補正を行うことで予測濃度補正を行う。なお、周速差以外に必要なパラメータとしては、感光ドラム301の使用度合い、トナーの消費度合い、等が挙げられる。ただし、実施例1の構成では、現像ローラ303の周速差を採用したがトナー供給量を制御するためのパラメータであればよく、周速差には限定されない。また、その他のパラメータによって濃度情報が変化する場合はそれらも含める必要がある。具体的に例えば、現像ローラ303の回転時間が挙げられる。これは、現像ローラ303とトナー規制ブレード308の間の摺擦によりトナー規制ブレード308の表面が摩耗し、規制後の現像ローラ303表面にコートされたトナー量が変化するといった現象による。
なお、実施例1では、通常プリントモードにおける濃度センサ218による検知結果に基づいて広色域プリントモードのルックアップテーブルを予測した。例えば、広色域プリントモードにおける濃度センサ218による検知結果に基づいて通常プリントモードのルックアップテーブルを予測してもよい。また、ここでは、第1のモード及び第2のモードを通常プリントモード及び広色域プリントモードとして説明している。しかし、予測濃度補正は、他のプリントモード、例えばトナー消費量を抑えたトナー節約プリントモードに対応した画像形成装置にも適用可能である。この場合は、通常プリントモードにおける濃度センサ218による検知結果に基づいて、トナー節約プリントモードにおけるルックアップテーブルが予測される。なお、トナー節約プリントモードにおける濃度センサ218による検知結果に基づいて通常プリントモードのルックアップテーブルを予測してもよい。
[実施例1の濃度制御について]
実施例1では、トナー量を変えた場合も予測濃度補正情報に実測情報を加味して補正した予測濃度補正情報を用いる。ここで、予測濃度補正情報とは、上述した予測濃度補正において得られた情報、具体的には、広色域プリントモードの予測濃度補正による補正前γカーブ(後述するLγpredicted(i))である。また、実測情報とは、予測濃度補正による補正前γカーブと、濃度センサ218によって検知した広色域プリントモードの検知用画像実測による補正前γカーブ(後述するLγdetected(i))との差分(後述するΔL(i))であり差分情報である。これにより、実施例1では、安定した色味を再現しつつ、検知用画像実測の実行頻度を抑制することができる。実施例1の制御方法について、図10のフローチャートを用いて説明する。また、フローチャートの説明に続き、実施例1の効果について検証する。
画像形成装置200が起動すると、コントローラ201は、S2以降の処理を開始する。S2でコントローラ201は、第1の検知用画像実測である通常プリントモードの検知用画像実測を実行する。そして、通常プリントモード時の補正前γカーブRγdetected(i)が得られ、更に第1濃度出力特性となるようにするルックアップテーブルがコントローラ201により演算される。なお、iは入力画像データ(40h、C0h等)である。S3でコントローラ201は、図7(A)、(B)、図8(B)に示すような、検知用画像実測を実行したときの現像ローラ303の周速差、ドラムユニット310の使用度合い、トナーの消費度合い等のパラメータによる相関テーブルから、次の値を算出する。すなわち、コントローラ201は、広色域プリントモードにおける補正前γカーブを予測濃度補正により求めるために、補正前γカーブRγdetected(i)の補正値を算出する。以下、通常プリントモードの検知用画像実測による補正前γカーブRγdetected(i)を補正する為の補正値をΔLpredicted(i)と表記する。
広色域プリントモードの予測濃度補正による特性である補正前γカーブをLγpredicted(i)とすると、Lγpredicted(i)は、以下の式(1)で表される。
Lγpredicted(i)=Rγdetected(i)+ΔLpredicted(i) 式(1)
ここで、補正値ΔLpredictedは、上述したように、図7(A)、(B)、図8から求められるが、更に図6を用いて説明する。上述したように、図6(B)の第2象限において、実線は広色域プリントモードの補正前γカーブであり、破線は通常プリントモードの補正前γカーブであり、いずれも定着後の画像濃度より求められている。そして図6(B)において、補正値ΔLγpredicted(i)は、2つの補正前γカーブの差に相当する。
S4でコントローラ201は、広色域プリントモードの検知用画像実測による補正前γカーブLγdetected(i)と、広色域プリントモードの予測濃度補正による補正前γカーブLγpredicted(i)との差分ΔL(i)が、不揮発メモリ230に保存されているか否かを判断する。先に述べたように、画像形成装置やトナーカートリッジの個体差の補正が難しい予測濃度補正よりも、濃度センサ218を用いた検知用画像実測の方が、精度が向上する可能性が高い。検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)に基づき算出された差分ΔL(i)が不揮発メモリ230に保存されているのであれば、保存された差分ΔL(i)を用いる方がよい。保存された差分ΔL(i)を用いて、広色域プリントモードの予測濃度補正による補正前γカーブLγpredicted(i)を補正することで、画像形成装置やトナーカートリッジの個体差の補正を精度よく行うことができる。また、不揮発メモリ230に保存された差分ΔL(i)を用いることで、広色域プリントモードにおける検知用画像実測を実行する頻度を低減することもできる。
差分ΔL(i)は以下の式(2)で表される。なお、不揮発メモリ230には、差分ΔL(i)を保存してもよいし、検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)を保存してもよい。
ΔL(i)=Lγdetected(i)−Lγpredicted(i) 式(2)
S4でコントローラ201は、差分ΔL(i)が不揮発メモリ230に保存されていないと判断した場合、処理をS5に進める。S5でコントローラ201は、第2の検知用画像実測である広色域プリントモードの検知用画像実測を実行する。コントローラ201は、広色域プリントモードの検知用画像実測を実行することにより、補正前γカーブLγdetected(i)を算出する。S6でコントローラ201は、上述した式(2)を用いて差分ΔL(i)を算出する。具体的には、コントローラ201は、S5で算出した検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)と、S3で算出した予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)と、から差分ΔL(i)を算出する。コントローラ201は、算出した差分ΔL(i)を不揮発メモリ230に保存する。これにより、次回からは、不揮発メモリ230に保存された差分ΔL(i)を用いて補正前γカーブLγpredicted(i)の補正が行われることとなる。この差分ΔL(i)が差分情報に相当する。
S7でコントローラ201は、広色域プリントモードの予測濃度補正による補正前γカーブLγpredicted(i)の補正を実行する。コントローラ201は、補正後のγカーブを、以下の式(3)を用いて算出する。なお、広色域プリントモードにおける検知結果に基づく補正後のγカーブをLγcorrected(i)とする。
Lγcorrected(i)=Lγpredicted(i)+ΔL(i) 式(3)
式(3)に記載したγカーブを補正するルックアップテーブルが第2変換手段に相当する。このように、不揮発メモリ230に差分ΔL(i)が保存されていなかった場合には、広色域プリントモードの検知用画像実測(S5)が通常プリントモードの検知用画像実測(S2)及び予測濃度補正(S3)とともに行われる。このため、検知用画像実測が実行された直後は、Lγcorrected(i)=Lγdetected(i)(=Lγpredicted(i)+ΔL(i)=Lγpredicted(i)+(Lγdetected(i)−Lγpredicted(i)))となる。その後、予測濃度補正が実行されることで広色域プリントモードの補正前γカーブLγpredicted(i)が更新され、Lγcorrected(i)も更新される。
一方、S4でコントローラ201は、差分ΔL(i)が不揮発メモリ230に保存されていると判断した場合、処理をS7に進める。これは、過去に広色域プリントモードの検知用画像実測が実行され、S6で不揮発メモリ230に差分ΔL(i)が保存された場合である。この場合は、広色域プリントモードにおける検知用画像実測は実行されない。S7でコントローラ201は、S3で算出した予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)と、不揮発メモリ230に保存されている差分ΔL(i)とから、Lγcorrected(i)(=Lγpredicted(i)+ΔL(i))を算出する。S8でコントローラ201は、ユーザが広色域プリントモードを実行した際に、S7の式(3)で算出した、Lγcorrected(i)を用いてルックアップテーブル(第2変換手段)を作り直し(γ補正を行い)、広色域プリントモードでの画像形成を行う。コントローラ201によりLγcorrected(i)を用いてルックアップテーブル(第2変換手段)が作成される際の目標出力濃度が、先に説明した第1濃度出力特性に対し第2濃度出力特性となる。
S9でコントローラ201は、通常プリントモードの検知用画像実測を実行する条件(実行条件と図示)が満たされたか否かを判断する。S9でコントローラ201は、通常プリントモードの検知用画像実測を実行する条件が満たされていないと判断した場合、処理をS8に戻し、S8で得られたγ補正の結果を用いて広色域プリントモードでの画像形成を行う。S9でコントローラ201は、通常プリントモードの検知用画像実測を実行する条件を満たしたと判断した場合、処理をS2に戻し、通常プリントモードの検知用画像実測を実行する。ここで、通常プリントモードの検知用画像実測を実行する条件とは、例えば、画像形成装置200が、所定の印刷枚数を超えた場合や、カートリッジの交換、使用環境の変動等で色味変動のおそれがある等の条件をいう。
[効果の検証]
以上、述べた実施例1の制御を採用した濃度制御と、予測濃度補正のみで濃度制御を行った場合(差分ΔLpredicted(i)を用いた補正を行わない制御)とで、濃度制御の精度にどれだけの差が生じるか検証を行った。この検証においては、温度23℃、湿度50%の環境において、以下の順でそれぞれ確認する方法を採った。
〔1〕 画像形成装置200において、通常プリントモードの検知用画像実測を実行し、広色域プリントモードの予測濃度補正による補正前γカーブLγpredicted(i)を得る(図10 S3)。
〔2〕 広色域プリントモードの検知用画像実測を実行し、補正前γカーブLγdetected(i)を得る(図10 S5)。
〔3〕 予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)(〔1〕)と検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)(〔2〕)とから、差分ΔL(i)を得る(図10 S6)。
〔4〕 画像形成装置200の色味変動を起こすため、印字率5%でA4用紙を5000枚印刷する(色味変動、図10 S9 Yes)。
〔5〕 再度、通常プリントモードの検知用画像実測を実行し、広色域プリントモードの予測濃度補正による補正前γカーブLγpredicted(5000)(i)を得る(図10 S3)。ここで、〔1〕の補正前γカーブLγpredicted(i)と区別するため、5000枚印刷後に得られた補正前γカーブをLγpredicted(5000)(i)と表記している。また、〔3〕で得られた差分ΔL(i)で補正したLγcorrected(5000)(i)(=Lγpredicted(5000)(i)+ΔL(i))を算出する(図10 S4 Yes、S7)。
〔6〕 精度検証のため、再度、広色域プリントモードの検知用画像実測を実行し、補正前γカーブLγdetected(5000)(i)を得る。ここで、〔2〕の補正前γカーブLγdetected(i)と区別するため、5000枚印刷後に得られた補正前γカーブをLγdetected(5000)(i)と表記している。
〔7〕 〔5〕で得られたLγpredicted(5000)(i)と、〔3〕で得られた差分ΔL(i)に基づき補正したLγpredicted(5000)(i)+ΔL(i)(=Lγcorrected(5000)(i))とで、どちらが〔6〕で得られた補正前γカーブLγdetected(5000)(i)に近いかを確認する。
図11(A)は、上述した〔1〕〜〔3〕で得られた、予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)、検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)、差分ΔL(i)を示す。図11(A)は横軸に入力画像データ(i)、縦軸に記録材203上の濃度(出力濃度)を示し、後述の図11も同様である。また、破線と×で示される曲線は、予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)を示す。実線と○で示される曲線は、検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)を示す。点線と黒い△で示される曲線は、差分ΔL(i)(=Lγdetected(i)−Lγpredicted(i))を示す。
実施例1では、通常プリントモードと広色域プリントモードの検知用画像実測では、入力画像データを変化させた17個のパッチトナー像(検知用画像)を中間転写ベルト205表面に形成して濃度センサ218を用いて検知する。そのため、線毎に17個の点を打っている(入力画像データ0を除く)。図11(A)に示すように、予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)と検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)とは、ある程度一致しているものの、一部にずれが生じていることがわかる。
次に、〔4〕で5000枚の記録材203に画像形成を行った後、〔5〕〜〔7〕で得られた予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(5000)(i)を図11(B)に示す。また、検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(5000)(i)、Lγcorrected(5000)(i)+ΔL(i)も図11(B)に示す。また、破線と×で示される曲線は、予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(5000)(i)を示す。実線と○で示される曲線は、実測濃度制御による広色域プリントモードの補正前γカーブLγdetected(5000)(i)を示す。点線と黒い△で示される曲線は、Lγcorrected(5000)(i)+ΔL(i)を示す。〔3〕で得られた差分ΔL(i)で補正した、Lγcorrected(5000)(i)+ΔL(i)の方が、予測濃度補正による補正前γカーブLγpredicted(5000)(i)よりも検知用画像実測による補正前γカーブLγdetected(5000)(i)に近いことがわかる。以上の結果から、実施例1の制御を採用することで、検知用画像実測の実行頻度を削減しつつ、安定した色味を再現できることが検証できた。
なお、実施例1では、補正前γカーブLγdetected(i)を差分ΔL(i)によって補正する形態を説明してきたがこれに限定されることはない。Lγdetected(i)とRγdetected(i)との差分をΔL’(i)とし、以後Rγdetected(i)からこのΔL(i)を用いて、Lγcorrected(i)を求めるようにしてもよい。しかしながら、差分ΔL(i)の値は差分ΔL’(i)に比べ小さいので、環境変化等による誤差/ばらつきが小さいというメリットがある。また、実施例1においては、差分ΔL(i)が不揮発メモリ230に保存されていなければ、広色域プリントモードの検知用画像実測を実行し、差分ΔL(i)を算出していた。しかし、差分ΔL(i)が不揮発メモリ230に保存されていた場合であっても、必要に応じて広色域プリントモードにおける検知用画像実測を実行し、再度、差分ΔL(i)を算出してもよい。
以上、実施例1によれば、検知用画像の形成及び検出に係るダウンタイムを低減することができる。
実施例2においては、実施例1と同様の制御に加え、検知用画像実測の実行時と予測濃度補正の実行時とで、画像形成装置の状態が近くなる場合に差分ΔL(i)を再度、算出することを特徴とする。ここで、画像形成装置の状態が近いということは、次のことを意味する。例えば、同じ画像形成装置において、Aという状態から500枚プリントした状態をB、1000枚プリントした状態をCとする。Aの状態及びCの状態における環境が23℃50%であるのに対して、Bの状態における環境が10℃15%環境であったとする。そうすると、Cの状態に近いのはAの状態ということになる。このような場合、実施例2では、Bの状態で広色域プリントモードの検知用画像実測が実行されたとしても、差分ΔL(i)はCの状態に近いAの状態における値が採用される。以下、実施例2について説明する。
[画像形成装置の構成、検知用画像実測と予測濃度補正の概略]
実施例2で使用する画像形成装置、検知用画像実測と予測濃度補正の基本的な構成及び動作は、実施例1で説明したものと同じである。したがって、実施例2での再度の詳しい説明は省略する。実施例2において実施例1と異なる点は、広色域プリントモードの検知用画像実測による補正前γカーブLγdetected(i)と、広色域プリントモードの予測濃度補正による補正前γカーブLγpredicted(i)との差分ΔL(i)の算出に関する内容である。実施例1では、通常プリントモードの検知用画像実測が実行された際に、不揮発メモリ230に差分ΔL(i)が保存されていなかった場合に、続けて広色域プリントモードの検知用画像実測を実行し、差分ΔL(i)を算出していた。その場合、広色域プリントモードの予測濃度補正と検知用画像実測の差分ΔL(i)の精度は良いが、通常プリントモードの検知用画像実測とともに広色域プリントモードの検知用画像実測が行われるため、長いダウンタイムが発生するおそれがある。ユーザによっては、濃度制御の精度よりもダウンタイムの短さを優先したい場合もあるため、広色域プリントモードの検知用画像実測の実行タイミングをユーザが指定した任意のタイミングとしたいが、その場合、以下のような課題が発生する。
通常プリントモードの検知用画像実測が実行されると、広色域プリントモードの予測濃度補正が行われる。この広色域プリントモードの予測濃度補正が実行されたときの画像形成装置200の状態と、ユーザが指定したタイミングで広色域プリントモードの検知用画像実測が実行されたときの画像形成装置200の状態とが、異なる場合がある。このような場合、算出された差分ΔL(i)の精度が低下してしまう。本来、算出される差分ΔL(i)は、カートリッジを含む画像形成装置200の個体差を示している。しかし、広色域プリントモードの予測濃度補正と広色域プリントモードの検知用画像実測の実行タイミングが異なると、差分ΔL(i)には、使用が進んだことに起因する変動や環境変動等による変化が含まれてしまう。実施例2では、このような課題をふまえ、広色域プリントモードの予測濃度補正実行時と検知用画像実測実行時の画像形成装置200の状態を比較し、最も状態の近い場合の差分ΔL(i)を補正値として採用する。なお、コントローラ201は、検知用画像実測実行時の補正前γカーブLγdetected(i)及び差分ΔL(i)を不揮発メモリ230に保存するとともに、差分ΔL(i)を算出したときの画像形成装置の状態に関する情報も、差分ΔL(i)に関連付けて保存する。
また、実施例2では、検知用画像実測の実行タイミングをユーザが指定した任意のタイミングとしている。画像形成装置200は、指定手段である操作部300を有し、ユーザは操作部300を介して検知用画像実測の実行タイミングを指定する。操作部300は、例えばタッチパネル液晶等である。また、画像形成装置200に接続されたパーソナルコンピュータ等の外部機器のプリンタドライバ等から指定してもよい。
[実施例2の濃度制御について]
実施例2の制御手順の説明を図12のフローチャートを用いて説明する。また、続けて効果について検証する。画像形成装置200が起動すると、コントローラ201はS12以降の処理を実行する。S12でコントローラ201は、通常プリントモードの検知用画像実測を実行する。これにより、通常プリントモード時のγ補正が行われるとともに、通常プリントモードの補正前γカーブRγdetected(i)が算出される。
S13でコントローラ201は、図7(A)、(B)、図8(B)に示すような、検知用画像実測を実行したときの現像ローラ303の周速差、ドラムユニット310の使用度合い、トナーの消費度合い等のパラメータによる相関テーブルから、次の値を算出する。すなわち、コントローラ201は、広色域プリントモードにおける補正前γカーブを予測濃度補正により求めるため、補正前γカーブRγdetected(i)及びΔLpredicted(i)よりLγpredicted(i)を算出する。Lγpredicted(i)について、詳細は実施例1で説明した通りである。
S14でコントローラ201は、差分ΔL(i)が、不揮発メモリ230に保存されているか否かを判断する。差分ΔL(i)について、詳細は実施例1で説明した通りである。
コントローラ201は、S14で差分ΔL(i)が不揮発メモリ230に保存されていないと判断した場合、処理をS15に進める。S15でコントローラ201は、ユーザによって広色域プリントモードの検知用画像実測を実行するように指定されているか否かを判断する。コントローラ201は、S15でユーザによって広色域プリントモードの検知用画像実測を実行しないように指定されていると判断した場合、処理をS16に進める。S16でコントローラ201は、S13で算出した予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)からルックアップテーブルを作り直し(γ補正を行い)、広色域プリントモードで画像形成を行って、処理を終了する。S16の処理では、検知用画像実測は実行されず、また、不揮発メモリ230に差分ΔL(i)が保存されていないため、差分ΔL(i)による補正前γカーブLγpredicted(i)の補正も行われない。
コントローラ201は、S15でユーザによって広色域プリントモードの検知用画像実測を実行するように指定されていると判断した場合、処理をS17に進める。S17でコントローラ201は、広色域プリントモードで検知用画像実測を実行し、補正前γカーブLγdetected(i)を算出する。コントローラ201は、算出した補正前γカーブLγdetected(i)と、現在の画像形成装置200の状態を示す情報とを、不揮発メモリ230に保存する。S18でコントローラ201は、S17で算出した検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)と、S13で算出した予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)とから、差分ΔL(i)を算出する。ここで、差分ΔL(i)(=Lγdetected(i)−Lγpredicted(i))である。S19でコントローラ201は、Lγcorrected(i)(=Lγpredicted(i)+ΔL(i))を算出する。S20でコントローラ201は、S19で算出したLγcorrected(i)からルックアップテーブルを作り直し(γ補正を行い)、広色域プリントモードで画像形成を行って、処理を終了する。
コントローラ201は、S14で不揮発メモリ230に差分ΔL(i)が保存されていると判断した場合、処理をS21に進める。S21でコントローラ201は、ユーザによって広色域プリントモードの検知用画像実測を実行するように指定されているか否かを判断する。S21でコントローラ201は、ユーザによって広色域プリントモードの検知用画像実測を実行しないように指定されていると判断した場合、処理をS19に進める。S19でコントローラ201は、検知用画像実測を実行することなく、不揮発メモリ230に保存されている差分ΔL(i)を用いてLγcorrected(i)を算出する。以降の処理は上述したため省略する。
コントローラ201は、S21でユーザによって広色域プリントモードの検知用画像実測を実行するように指定されていると判断した場合、処理をS22に進める。S22でコントローラ201は、広色域プリントモードで検知用画像実測を実行し、補正前γカーブLγdetected(i)を算出する。コントローラ201は、算出した補正前γカーブLγdetected(i)と、現在の画像形成装置200の状態を示す情報とを、不揮発メモリ230に保存する。
S23でコントローラ201は、差分ΔL(i)を更新する必要があるか否かを判断すべく次の処理を行う。すなわち、不揮発メモリ230に保存されている過去の広色域プリントモードの検知用画像実測を実行したとき及びS22での画像形成装置の状態のうち、どれが現在のLγpredicted(i)を求めた際の画像形成装置の状態に最も状態が近いかを判断する。具体的には、コントローラ201は、現在の画像形成装置の状態と、不揮発メモリ230に保存されている過去の複数の画像形成装置の状態とS22での状態とを逐次比較していき、それらの中で最もS22での状態に近い画像形成装置の状態に関連付けられているLγdetected(i)を特定する。
上述したように、精度のよい差分ΔL(i)を得るためには、本来は、予測濃度補正とともに検知用画像実測を行う必要がある。しかし、ダウンタイムの短さを優先し、これらの制御をともに実行できない場合は、可能な限り、画像形成装置200の状態が近い条件で算出された差分ΔL(i)(=Lγdetected(i)−Lγpredicted(i))を得るようにする。これにより、実施例2では差分ΔL(i)の精度を良くすることができる。
(画像形成装置の状態を示す情報について)
実施例2では、画像形成装置200の状態を表す指標として、以下の3つを定義する。そして、予測濃度補正と検知用画像実測を実行したときの画像形成装置200の状態の近さを示す指数として「離れ指数」を算出する。画像形成装置200の状態の近さは、時間の経過とともに変化する要因に基づき決定される。
A.印刷枚数の差分÷出力濃度が0.1変動する印刷枚数(実施例2では、例えば5000枚)
B.画像形成装置の設置環境の絶対水分量の差分÷出力濃度が0.1変動する絶対水分量変動(実施例2では、例えば2.5g/m
C.感光ドラム温度の差分÷出力濃度が0.1変動する感光ドラム温度変動(実施例2では、例えば5℃)
ここで、Aは記録材203に印刷することによる画像形成装置200の劣化による濃度変動を示す。Bは画像形成装置200の設置環境の違いによる濃度変動を示す。Cは感光ドラム301の温度が変化することにより、感光ドラム301の抵抗変動が起きることで感光ドラム電位(感光ドラムの表面電位)が変動することによる濃度変動を示す。それぞれを出力濃度が0.1変動する条件で除することで正規化している。これらA〜Cの合計値が最も小さい補正前γカーブLγdetected(i)を用いて差分ΔL(i)を算出することで、差分ΔL(i)を算出する際の精度を向上させることができる。
図12のフローチャートの説明に戻る。S24でコントローラ201は、S23で選択(抽出)した補正前γカーブLγdetected(i)が、今回、S22で検知用画像実測を実行することで算出した補正前γカーブLγdetected(i)か否かを判断する。S24でコントローラ201は、S23で選択したLγdetected(i)が今回算出したLγdetected(i)ではないと判断した場合、処理をS25に進める。S25でコントローラ201は、S22で検知用画像実測により算出された補正前γカーブLγdetected(i)から、そのγカーブを目標のγカーブに補正するようにするルックアップテーブルを作り直す(γ補正を行い)。そしてそれを用い、広色域プリントモードで画像形成が画像形成装置により行われ、処理を終了する。このように、広色域プリントモードにおける画像形成が実行される前に広色域プリントモードで検知用画像実測が実行された場合には、実測に基づいて得られた補正前γカーブLγdetected(i)を用いることで、精度良く画像形成を実行することが可能となる。
S24でコントローラ201は、S23で選択したLγdetected(i)が、今回、S22で検知用画像実測を実行することで算出した補正前γカーブLγdetected(i)であると判断した場合、処理をS18に進める。S18でコントローラ201は、S22で算出した検知用画像実測による補正前γカーブLγdetected(i)とS13で算出した予測濃度補正による補正前γカーブLγpredicted(i)とから差分ΔL(i)を算出する。言い換えれば、コントローラ201は、差分ΔL(i)を更新する。コントローラ201は、更新した差分ΔL(i)を不揮発メモリ230に保存する。S19でコントローラ201は、S18で算出した差分ΔL(i)を用いてLγcorrected(i)を算出する。S20でコントローラ201は、S19で算出したLγcorrected(i)からルックアップテーブルを作り直し(γ補正を行い)、広色域プリントモードで画像形成を行い、処理を終了する。
なお、S17からS25までの処理と並行して、コントローラ201が通常プリントモードの検知用画像実測を実行するか否かをモニタする構成としてもよい。S17からS25までの間に、コントローラ201が通常プリントモードの検知用画像実測を実行すると判断した場合には、図10のS2以降の処理を実行してもよい。ここで、コントローラ201は、濃度が大きく変化したと判断した場合に通常プリントモードの検知用画像実測を実行すると判断する。なお、濃度が大きく変化する場合としては、例えば、前回の通常プリントモードの検知用画像実測の実行から画像形成枚数が所定の枚数を超えた場合や、環境変動があった場合等が該当する。
[効果の検証]
以上、述べた実施例2の制御を採用した濃度制御と、予測濃度補正のみで濃度制御を行った場合とで、濃度制御の精度にどれだけの差が生じるか検証を行った。この検証においては、画像形成装置の設置環境を変化させて、以下の順で確認する方法を採った。
〔1〕 23℃50%環境(絶対水分量8.9g/m)において、通常プリントモードの検知用画像実測を実行し、広色域プリントモードの予測濃度補正による補正前γカーブLγpredicted(i)を得る。また、これとともに広色域プリントモードの検知用画像実測を実行し、補正前γカーブLγdetected(i)を得る。
〔2〕 画像形成装置200の色味変動を起こすため、設置環境を23℃55%環境(絶対水分量9.8g/m)に変える。上述した「離れ指数」としては、Bのケースとなり、(9.8−8.9)/2.5=0.36となる。
〔3〕 広色域プリントモードの検知用画像実測を実行し、補正前γカーブL実1(i)を得る。ここで、〔1〕の補正前γカーブLγdetected(i)と区別するため、設置環境を変えた後に得られた補正前γカーブをLγdetected(1)(i)と表記している。
〔4〕 予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)(〔1〕)と、検知用画像実測による広色域プリントモードの補正前γカーブL実1(i)(〔3〕)とから、差分ΔL1(i)を得る。ここで、〔3〕で得られた補正前γカーブLγdetected(1)(i)に基づき得たことを明確にするために、差分をΔL1(i)と表記している。
〔5〕 画像形成装置200の色味変動を起こすため、設置環境を24℃60%環境(絶対水分量11.3g/m)に変える。「離れ指数」としては、Bのケースとなり、(11.3−8.9)/2.5=0.96となる。すなわち、〔2〕の離れ指数(=0.36)よりも、今回の離れ指数(=0.96)の方が大きくなる。
〔6〕 広色域プリントモードの検知用画像実測を実行し、補正前γカーブLγdetected(2)(i)を得る。ここで、〔1〕の補正前γカーブLγdetected(i)、〔3〕の補正前γカーブLγdetected(1)(i)と区別するため、更に設置環境を変えた後に得られた補正前γカーブをLγdetected(2)(i)と表記している。
〔7〕 予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)(〔1〕)と、検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(2)(i)(〔6〕)とから、差分ΔL2(i)を得る。ここで、〔6〕で得られた補正前γカーブLγdetected(2)(i)に基づき得たことを明確にするために、差分をΔL2(i)と表記している。
〔8〕 〔1〕で得られた予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)を、〔4〕で得られた差分ΔL1(i)で補正し、Lγcorrected(1)(i)(=Lγpredicted(i)+ΔL1(i))を得る。また、〔1〕で得られた予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)を、〔7〕で得られた差分ΔL2(i)で補正し、Lγcorrected(2)(i)(=Lγpredicted(i)+ΔL2(i))を得る。そして、Lγcorrected(1)(i)とLγcorrected(2)(i)とのどちらが、〔1〕で得られた検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)に近いかを確認する。
図13は、上述した検証において得られた、予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)、検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)を示す。また、図13は、Lγcorrected(1)(i)(=Lγpredicted(i)+ΔL1(i))、Lγcorrected(2)(i)(=Lγpredicted(i)+ΔL2(i))も示す。図13において、横軸に入力画像データ、縦軸に記録材203上の出力濃度を示す。また、破線と×で示される曲線は、予測濃度補正による広色域プリントモードの補正前γカーブLγpredicted(i)を示す。実線と○で示される曲線は、検知用画像実測による広色域プリントモードの補正前γカーブLγdetected(i)を示す。点線と黒い△で示される曲線は、Lγcorrected(1)(i)(=Lγpredicted(i)+ΔL1(i))を示す。破線と◇で示される曲線は、Lγcorrected(2)(i)(=Lγpredicted(i)+ΔL2(i))を示す。図13では、見易さのため、濃度差が大きかった、低濃度側(入力画像データの0h〜80h)を拡大している。
図13に示すように、離れ指数の小さい実測補正済みL予1(i)(=Lγpredicted(i)+ΔL1(i))の方が、離れ指数の大きいLγcorrected(2)(i)(=Lγpredicted(i)+ΔL2(i))より、〔1〕の補正前γカーブLγdetected(i)に近い結果となっている。以上の結果から、実施例2の制御を採用することで、予測濃度補正と実測濃度制とをともに実行できない場合でも、検知用画像実測の実行頻度を削減しつつ、安定した色味を再現できることが検証できた。
なお、実施例2において説明した、画像形成装置200の状態を表す指標は、特に限定するものではなく、使用する画像形成装置に合わせて最適な構成としてよい。また、実施例2においては、広色域プリントモードの検知用画像実測が実行されたときに、差分ΔL(i)を再度算出しているが、例えば予測濃度補正が実行されたときに再度算出してもよい。
以上、実施例2によれば、検知用画像の形成及び検出に係るダウンタイムを低減することをよりユーザの要望に沿って実現することができる。
実施例3は、実施例1と同様の制御であるが、以下の内容が異なる。実施例1、2ではγカーブを用いて差分ΔL(i)を算出していたが、実施例3ではLUT(ルックアップテーブル)を用いて計算を行う点である。
[画像形成装置の構成の概略]
実施例3で使用する画像形成装置、検知用画像実測と予測濃度補正の基本的な構成及び動作は説明した実施例1で説明したものと同じである。したがって、実施例3での再度の詳しい説明は省略する。
[実施例3の濃度制御について]
以下、実施例3で実施例1と異なる、LUT(ルックアップテーブル)を用いて予測濃度補正と検知用画像実測の差分を計算し、予測濃度補正情報を補正する方法について図14のフローチャートを用いて説明する。コントローラ201は、画像形成装置200が起動すると、S22以降の処理を開始する。S22でコントローラ201は、通常プリントモードの検知用画像実測を実行し、通常プリントモード時のγ補正を行うとともに、通常プリントモードのルックアップテーブルRLUTdetected(i)を得る。このRLUTdetected(i)が第1変換手段に相当する。
S23でコントローラ201は、ルックアップテーブルRLUTdetected(i)の補正値ΔLLUTpredictedを次のようにして得る。すなわち、図7(A)、(B)、図8(B)に示すような、検知用画像実測実行時の現像ローラ303の周速差、ドラムユニット310の使用度合い、トナーの消費度合い等のパラメータによる相関テーブルから広色域プリントモードにした場合の補正値ΔLLUTpredicted(i)を得る。広色域プリントモードの予測濃度補正による補正前ルックアップテーブルLLUTpredicted(i)は以下の式であらわされる。
LUTpredicted(i)=RLUTdetected(i)+ΔLLUTpredicted(i) 式(4)
S24でコントローラ201は、差分ΔLLUT(i)が画像形成装置200に搭載された不揮発メモリ230に保存されているか否かを判断する。ここで、差分ΔLLUT(i)は、広色域プリントモードの検知用画像実測による補正前ルックアップテーブルLLUTdetected(i)と、広色域プリントモードの予測濃度補正による補正前ルックアップテーブルLLUTpredicted(i)との差分である(LLUTdetected(i)−LLUTpredicted(i))。ここで補正前ルックアップテーブルLLUTdetected(i)が変換手段に相当する。また、差分ΔLLUTが補正情報に相当する。
先に述べたように、個体差の補正が難しい予測濃度補正よりも濃度センサ218を用いた検知用画像実測の方が精度として勝る可能性が高い。検知用画像実測による広色域プリントモードの補正前ルックアップテーブルLLUTdetected(i)があるのであれば、その差分を用いて、広色域プリントモードの予測濃度補正による補正前ルックアップテーブルLLUTpredicted(i)を補正する。これにより、画像形成装置200の個体差の補正を行うことができる。差分ΔLLUT(i)の式は以下の式(5)で表される。
ΔLLUT(i)=LLUTdetected(i)−LLUTpredicted(i) 式(5)
S24でコントローラ201は、差分ΔLLUT(i)が保存されていないと判断した場合、処理をS25に進める。S25でコントローラ201は、広色域プリントモードの検知用画像実測を実行する。S26でコントローラ201は、式(5)を用いて差分ΔLLUT(i)を算出する。S27でコントローラ201は、広色域プリントモードの予測濃度補正による補正前ルックアップテーブルLLUTpredicted(i)の補正を実行する。補正後のルックアップテーブをLLUTcorrected(i)とする。補正式は以下の式(6)になる。
LUTcorrected(i)=LLUTpredicted(i)+ΔLLUT(i) 式(6)
なお、広色域プリントモードの予測濃度補正と検知用画像実測が同時に行われる。このため、検知用画像実測実行直後は、LLUTcorrected(i)=LLUTdetected(i)となる。その後、予測濃度補正が実行されることでLLUTpredicted(i)が更新され、LLUTcorrected(i)も更新される。
S24でコントローラ201は、過去に広色域プリントモードの検知用画像実測が実行されており、ΔLLUT(i)が保存されていると判断した場合、処理をS27に進める。S28でコントローラ201は、ユーザが広色域プリントモードを実行した際に、S27の式(6)で算出したLLUTcorrected(i)を用いて画像形成を行う。S29でコントローラ201は、通常プリントモードの検知用画像実測を実行するための条件が満たされたか否かを判断する。S29でコントローラ201は、検知用画像実測を実行するための条件を満たしたと判断した場合は、処理をS22に戻す。S29でコントローラ201は、検知用画像実測を実行するための条件を満たしていないと判断した場合、処理をS28に戻し、検知用画像実測が実行されるまでは、S28で得られたルックアップテーブルを用いて画像形成を行う。なお、検知用画像実測は、画像形成装置200が通紙耐久、カートリッジの交換や使用環境変動などで色味変動が懸念される場合に実行され、通常プリントモードの検知用画像実測実行条件を満たした場合は、再びS22の処理に進む。
なお、実施例3にて説明した検知用画像実測や予測濃度補正の構成は特に限定するものではなく、使用する画像形成装置に合わせて最適な構成として良い。実施例3においては、差分ΔLLUT(i)が保存されていなければ、広色域プリントモードの検知用画像実測を実行し、ΔLLUT(i)を算出していた。しかし、差分ΔLLUT(i)が保存されていても、必要に応じて濃度補正を実行し、再度算出しても良い。
以上、実施例3によれば、検知用画像の形成及び検出に係るダウンタイムを低減することをよりユーザの要望に沿って実現することができる。
[その他の実施例]
実施例1、2では、通常プリントモードにおけるRγdetected(i)から広色域プリントモードにおけるLγpredicted(i)を求め、更にLγdetected(i)を求めて差分ΔL(i)を求めた。そして、差分ΔL(i)が不揮発メモリ230に保存されている場合等には、差分ΔL(i)を用いて、Lγpredicted(i)を補正しLγcorrected(i)を求めた。しかし、広色域プリントモードにおけるLγdetected(i)と通常プリントモードにおけるRγdetected(i)との差分に基づき求めてもよい。この場合、例えば以下のようにしてLγcorrected(i)が求められる。
Lγcorrected(i)=Rγdetected(i)+(Lγdetected(i)−Rγdetected(i))
なお、差分を求める際には、同じ条件又は可能な限り近い条件で得られた値を用いた方が精度が高くなる。このため、差分(Lγdetected(i)−Rγdetected(i))よりも差分ΔL(i)を用いた方が精度が良いといえる。
以上は、実施例3のルックアップテーブルを用いる方法についても同様である。
以上、その他の実施例によっても、検知用画像の形成及び検出に係るダウンタイムを低減することをよりユーザの要望に沿って実現することができる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
201 コントローラ
205 中間転写ベルト
206 1次転写ローラ
207 スキャナユニット
218 濃度センサ
230 不揮発メモリ
301 感光ドラム
303 現像ローラ

Claims (24)

  1. 感光ドラムと、
    前記感光ドラム上の静電潜像をトナーにより現像しトナー像を形成する現像ローラと、
    前記感光ドラム上に形成されたトナー像が転写される、又は、担持している記録材に前記トナー像が転写されるベルトと、
    前記ベルト上に形成された検知用画像の濃度を検知する検知手段と、
    前記感光ドラムの周速に対する前記現像ローラの周速差が第1周速差の第1のモードと、前記周速差が第1周速差よりも大きな第2のモードとで画像形成が可能な画像形成装置であって、
    前記第1のモードにおける前記検知手段による前記検知用画像の第1検知結果に基づき、入力画像データに対する濃度出力が第1濃度出力特性となるように前記入力画像データの階調を変換する第1変換手段を演算する制御手段と、
    記憶手段と、を備え、
    前記制御手段は、前記第1のモードでの検知結果と補正情報とに基づき、前記第2のモードにおいて前記入力画像データに対する濃度出力が第2濃度出力特性となるように前記入力画像データの階調を変換する第2変換手段を生成し、
    更に、前記第2のモードにおける前記検知手段による前記検知用画像の第2検知結果と、前記第1検知結果と、に基づき前記補正情報を更新することを特徴とする画像形成装置。
  2. 前記制御手段は、前記第1検知結果と前記第2検知結果との差分により前記補正情報を更新することを特徴とする請求項1に記載の画像形成装置。
  3. 前記制御手段は、前記第1検知結果に基づき求められた前記第1変換手段と前記補正情報に基づき、前記第2変換手段を生成することを特徴とする請求項1に記載の画像形成装置。
  4. 前記制御手段は、前記第1検知結果に基づき求められた前記第1変換手段と、前記第2検知結果に基づき求められた変換手段とに基づき、前記補正情報を更新することを特徴とする請求項1又は請求項3に記載の画像形成装置。
  5. 感光ドラムと、
    前記感光ドラム上の静電潜像をトナーにより現像しトナー像を形成する現像ローラと、
    前記感光ドラム上に形成されたトナー像が転写される、又は、担持している記録材に前記トナー像が転写されるベルトと、
    前記ベルト上に形成された検知用画像の濃度を検知する検知手段と、
    第1のモードにおいて前記検知手段により前記検知用画像の濃度を検知した結果に基づいて前記第1のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す第1の特性を求める第1の検知用画像実測を実行する制御手段と、
    記憶手段と、
    を備える画像形成装置であって、
    前記制御手段は、前記第1の特性に基づいて、前記第1のモードにおける色域とは異なる色域で画像形成を行う第2のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す特性を予測する予測濃度補正を実行し、予測した特性を用いて前記第2のモードにおける画像形成を行い、
    前記第2のモードにおいて前記検知手段により前記検知用画像の濃度を検知した結果に基づいて前記第2のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す第2の特性を求める第2の検知用画像実測を実行し、前記第2の特性と前記予測した特性とに基づき補正値を求め、求めた補正値を用いて前記予測した特性を補正するとともに求めた補正値を前記記憶手段に記憶し、
    更に、前記第2の検知用画像実測を実行することなく前記記憶手段に記憶された補正値を用いて前記予測した特性を補正することを特徴とする画像形成装置。
  6. 前記補正値は、前記第2の特性と前記予測した特性との差分であることを特徴とする請求項5に記載の画像形成装置。
  7. 前記第2の検知用画像実測を実行するか否かを指定する指定手段を備え、
    前記制御手段は、前記指定手段により前記第2の検知用画像実測を実行するように指定されている場合には、前記記憶手段に補正値が記憶されているか否かにかかわらず、前記第2の検知用画像実測を実行することを特徴とする請求項6に記載の画像形成装置。
  8. 前記制御手段は、前記記憶手段に補正値が記憶されておらず、かつ前記指定手段により前記第2の検知用画像実測を実行しないように指定されている場合には、前記予測した特性を補正することなく前記第2のモードにおける画像形成に用いることを特徴とする請求項7に記載の画像形成装置。
  9. 前記制御手段は、前記記憶手段に補正値が記憶されておらず、かつ前記指定手段により前記第2の検知用画像実測を実行するように指定されている場合には、前記第2の検知用画像実測を実行して第2の特性を求め、求めた第2の特性に基づき補正値を算出し、算出した補正値により前記予測した特性を補正して前記第2のモードにおける画像形成に用いることを特徴とする請求項7に記載の画像形成装置。
  10. 前記記憶手段には、前記第2の検知用画像実測を実行した際の第1の画像形成装置の状態と、前記補正値を求めたよりも前に求められた第2の画像形成装置の状態とが記憶されており、
    前記制御手段は、前記記憶手段に記憶された複数の第2の特性の中から、前記予測した特性を求めたときの前記画像形成装置の状態と最も近い状態の画像形成装置の状態を特定し、
    最も近いと特定された画像形成装置の状態が第1の画像形成装置の状態である場合は、前記第2の特性に基づき補正値を更新し、更新した補正値により前記予測した特性を補正して前記第2のモードにおける画像形成に用い
    ることを特徴とする請求項7に記載の画像形成装置。
  11. 前記制御手段は、前記予測した特性を求めたときの前記画像形成装置の状態と最も近い状態の画像形成装置の状態を、時間の経過とともに変化する要因に基づき決定される指数により特定することを特徴とする請求項10に記載の画像形成装置。
  12. 前記要因には、画像形成枚数、画像形成装置が設置された環境の絶対水分量、前記感光ドラムの温度変動の少なくとも1つが含まれることを特徴とする請求項11に記載の画像形成装置。
  13. 前記記憶手段に補正値が記憶されており、かつ前記指定手段により前記第2の検知用画像実測を実行しないように設定されている場合には、前記記憶手段に記憶されている補正値により前記予測した特性を補正して前記第2のモードにおける画像形成に用いることを特徴とする請求項7に記載の画像形成装置。
  14. 前記制御手段は、前記第1のモードにおいて前記検知手段により前記検知用画像を検知した結果と、前記現像ローラから前記感光ドラムに供給されるトナーの供給量を制御するためのパラメータと、に基づいて、前記予測濃度補正による前記予測した特性を求めることを特徴とする請求項5から請求項13のいずれか1項に記載の画像形成装置。
  15. 前記パラメータは、前記感光ドラムの回転速度に対する前記現像ローラの回転速度の差である周速差、又は前記現像ローラの回転時間であることを特徴とする請求項14に記載の画像形成装置。
  16. 前記制御手段は、所定の条件における前記第1のモード及び前記第2のモードで得られた濃度のデータと、現在のトナーの使用量と、現在の感光ドラムの使用の度合いと、に基づいて、現在の感光ドラム及び現在の現像ローラについての画像データと前記第1のモードで得られた濃度と前記第2のモードで得られた濃度との濃度比を求め、前記第1のモードにおける前記検知手段による検知結果と前記濃度比とに基づいて、前記予測した特性を求めることを特徴とする請求項15に記載の画像形成装置。
  17. 前記所定の条件における前記第1のモード及び前記第2のモードで得られた濃度のデータとは、
    新品の感光ドラムと新品の現像ローラを用いて求められた前記第1のモードにおける濃度と前記第2のモードにおける濃度との第1の濃度比と、
    新品の感光ドラムと所定の枚数の記録材に画像形成を行った現像ローラを用いて求められた前記第1のモードにおける濃度と前記第2のモードにおける濃度との第2の濃度比と、
    使用が進んだ感光ドラムと新品の現像ローラを用いて求められた前記第1のモードにおける濃度と前記第2のモードにおける濃度との第3の濃度比と、
    使用が進んだ感光ドラムと所定の枚数の記録材に画像形成を行った現像ローラを用いて求められた前記第1のモードにおける濃度と前記第2のモードにおける濃度との第4の濃度比と、
    であることを特徴とする請求項16に記載の画像形成装置。
  18. 前記感光ドラムと、前記現像ローラと、不揮発メモリと、を有するカートリッジを備え、
    前記トナーの使用量のデータ及び前記感光ドラムの使用の度合いのデータは、前記不揮発メモリに記憶されていることを特徴とする請求項16又は請求項17に記載の画像形成装置。
  19. 前記濃度は、前記周速差が大きくなるほど濃くなることを特徴とする請求項15から請求項18のいずれか1項に記載の画像形成装置。
  20. 前記濃度は、前記感光ドラムの使用が進むほど薄くなることを特徴とする請求項15から請求項19のいずれか1項に記載の画像形成装置。
  21. 前記濃度は、所定の使用量となるまでは前記現像ローラの使用が進むほど濃くなり、前記所定の使用量となった後は一定となることを特徴とする請求項15から請求項20のいずれか1項に記載の画像形成装置。
  22. 前記第2のモードは、前記現像ローラの回転速度を前記第1のモードにおける前記現像ローラの回転速度よりも高くするモードであることを特徴とする請求項1から請求項21のいずれか1項に記載の画像形成装置。
  23. 感光ドラムと、前記感光ドラム上の静電潜像をトナーにより現像しトナー像を形成する現像ローラと、前記感光ドラム上に形成されたトナー像が転写される、又は、担持している記録材に前記トナー像が転写されるベルトと、前記ベルト上に形成された検知用画像の濃度を検知する検知手段と、前記感光ドラムの周速に対する前記現像ローラの周速差が第1周速差の第1のモードと、前記周速差が第1周速差よりも大きな第2のモードとで画像形成が可能な画像形成装置による画像形成方法であって、
    前記画像形成装置は、前記第1のモードにおける前記検知手段による前記検知用画像の第1検知結果に基づき、入力画像データに対する濃度出力が第1濃度出力特性となるように前記入力画像データの階調を変換する第1変換手段を制御手段により演算する制御手段と、記憶手段と、を備え、
    前記制御手段によって、前記第1のモードでの検知結果と補正情報とに基づき、前記第2のモードにおいて前記入力画像データに対する濃度出力が第2濃度出力特性となるように前記入力画像データの階調を変換する第2変換手段を生成し、更に、前記第2のモードにおける前記検知手段による前記検知用画像の第2検知結果と、前記第1検知結果と、に基づき前記補正情報を更新する工程を備えることを特徴とする画像形成方法。
  24. 感光ドラムと、前記感光ドラム上の静電潜像をトナーにより現像しトナー像を形成する現像ローラと、前記感光ドラム上に形成されたトナー像が転写される、又は、担持している記録材に前記トナー像が転写されるベルトと、前記ベルト上に形成された検知用画像の濃度を検知する検知手段と、第1のモードにおいて前記検知手段により前記検知用画像の濃度を検知した結果に基づいて前記第1のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す第1の特性を求める第1の検知用画像実測を実行する制御手段と、記憶手段と、を備える画像形成装置による画像形成方法であって、
    前記制御手段によって、前記第1の特性に基づいて、前記第1のモードにおける色域とは異なる色域で画像形成を行う第2のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す特性を予測する予測濃度補正を実行し、予測した特性を用いて前記第2のモードにおける画像形成を行う工程と、
    前記第2のモードにおいて前記検知手段により前記検知用画像の濃度を検知した結果に基づいて前記第2のモードにおける入力画像データと前記入力画像データに対応する濃度との関係を示す第2の特性を求める第2の検知用画像実測を実行し、前記第2の特性と前記予測した特性とに基づき補正値を求め、求めた補正値を用いて前記予測した特性を補正するとともに求めた補正値を前記記憶手段に記憶する工程と、
    更に、前記第2の検知用画像実測を実行することなく前記記憶手段に記憶された補正値を用いて前記予測した特性を補正する工程と、
    を備えることを特徴とする画像形成方法。
JP2017223072A 2017-11-20 2017-11-20 画像形成装置及び画像形成方法 Active JP6590895B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017223072A JP6590895B2 (ja) 2017-11-20 2017-11-20 画像形成装置及び画像形成方法
CN202111147218.6A CN113777898B (zh) 2017-11-20 2018-11-15 图像形成装置和图像形成方法
CN201811356195.8A CN109814346B (zh) 2017-11-20 2018-11-15 图像形成装置和图像形成方法
US16/194,811 US10539907B2 (en) 2017-11-20 2018-11-19 Image forming apparatus and image forming method
US16/728,421 US10962899B2 (en) 2017-11-20 2019-12-27 Image forming apparatus and image forming method determining characteristic relating image data and density
US17/198,550 US11287762B2 (en) 2017-11-20 2021-03-11 Image forming apparatus and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017223072A JP6590895B2 (ja) 2017-11-20 2017-11-20 画像形成装置及び画像形成方法

Publications (2)

Publication Number Publication Date
JP2019095522A JP2019095522A (ja) 2019-06-20
JP6590895B2 true JP6590895B2 (ja) 2019-10-16

Family

ID=66532351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017223072A Active JP6590895B2 (ja) 2017-11-20 2017-11-20 画像形成装置及び画像形成方法

Country Status (3)

Country Link
US (3) US10539907B2 (ja)
JP (1) JP6590895B2 (ja)
CN (2) CN113777898B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034617B2 (ja) 2017-07-13 2022-03-14 キヤノン株式会社 画像形成装置
US10948842B2 (en) 2018-05-08 2021-03-16 Canon Kabushiki Kaisha Image forming apparatus
JP7404674B2 (ja) * 2019-06-28 2023-12-26 ブラザー工業株式会社 画像記録装置
JP7516127B2 (ja) 2020-06-19 2024-07-16 キヤノン株式会社 画像形成装置
JP2022178634A (ja) * 2021-05-20 2022-12-02 キヤノン株式会社 印刷システム、印刷装置と情報処理装置及びそれらの制御方法、並びにプログラム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227222A (ja) 1995-02-20 1996-09-03 Canon Inc 多色画像形成装置
JPH10224612A (ja) * 1997-02-04 1998-08-21 Canon Inc 画像処理方法及び装置並びに記憶媒体
JP3684018B2 (ja) * 1997-02-04 2005-08-17 キヤノン株式会社 画像処理方法及び装置及びプログラム及び記憶媒体
JP3576709B2 (ja) * 1996-07-22 2004-10-13 キヤノン株式会社 画像形成装置及び方法
EP1220547A4 (en) * 1999-09-17 2005-09-21 Nature Technology Co Ltd IMAGE ENTRY SYSTEM, IMAGE PROCESSOR AND CAMERA THEREFOR
JP2002079718A (ja) * 2000-09-06 2002-03-19 Canon Inc 画像形成方法およびそのシステム
JP4745512B2 (ja) * 2001-02-09 2011-08-10 キヤノン株式会社 カラー画像形成装置
JP2003156904A (ja) * 2001-11-20 2003-05-30 Canon Inc 画像形成装置
US6603934B2 (en) * 2001-12-21 2003-08-05 Kabushiki Kaisha Toshiba Method and apparatus for forming image
JP4506345B2 (ja) * 2004-08-11 2010-07-21 富士ゼロックス株式会社 印刷制御装置、方法及びプログラム
JP4990111B2 (ja) * 2007-11-30 2012-08-01 京セラドキュメントソリューションズ株式会社 シート搬送装置
JP5428799B2 (ja) * 2009-11-20 2014-02-26 株式会社リコー 画像濃度制御方法および画像形成装置
JP5871515B2 (ja) * 2011-08-16 2016-03-01 キヤノン株式会社 画像形成装置及び濃度情報取得方法
JP2013114252A (ja) * 2011-12-01 2013-06-10 Canon Inc 画像形成装置
JP2013125190A (ja) * 2011-12-15 2013-06-24 Konica Minolta Business Technologies Inc 画像形成装置および画像形成条件変更方法
JP2016018200A (ja) * 2014-07-11 2016-02-01 キヤノン株式会社 画像形成装置
JP2016085455A (ja) * 2014-10-28 2016-05-19 ブラザー工業株式会社 画像形成装置、制御方法およびプログラム
JP6478631B2 (ja) 2014-12-26 2019-03-06 キヤノン株式会社 画像形成装置
JP2016224144A (ja) * 2015-05-28 2016-12-28 京セラドキュメントソリューションズ株式会社 画像形成装置
JP6274170B2 (ja) * 2015-09-16 2018-02-07 コニカミノルタ株式会社 画像形成システム、画像濃度補正方法及び画像形成装置
JP6344361B2 (ja) 2015-10-08 2018-06-20 コニカミノルタ株式会社 画像形成装置及び画像形成方法
JP6672033B2 (ja) * 2016-03-22 2020-03-25 キヤノン株式会社 画像形成装置、画像形成システム、及びプログラム
JP2017173466A (ja) * 2016-03-22 2017-09-28 キヤノン株式会社 画像形成装置
JP6818422B2 (ja) * 2016-03-31 2021-01-20 キヤノン株式会社 画像形成装置
US9801250B1 (en) * 2016-09-23 2017-10-24 Feit Electric Company, Inc. Light emitting diode (LED) lighting device or lamp with configurable light qualities
JP7034617B2 (ja) 2017-07-13 2022-03-14 キヤノン株式会社 画像形成装置
JP7051345B2 (ja) * 2017-09-19 2022-04-11 キヤノン株式会社 画像形成装置及びその制御方法、並びにプログラム

Also Published As

Publication number Publication date
US10962899B2 (en) 2021-03-30
CN113777898A (zh) 2021-12-10
US11287762B2 (en) 2022-03-29
US10539907B2 (en) 2020-01-21
CN109814346B (zh) 2021-10-01
US20190155188A1 (en) 2019-05-23
CN113777898B (zh) 2023-07-25
US20200133160A1 (en) 2020-04-30
JP2019095522A (ja) 2019-06-20
US20210263443A1 (en) 2021-08-26
CN109814346A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
JP6590895B2 (ja) 画像形成装置及び画像形成方法
US9274481B2 (en) Image forming apparatus
US10627762B2 (en) Image forming apparatus and computer readable storage medium storing program
US11294315B2 (en) Image forming apparatus operable in modes having different color gamuts
US8395816B2 (en) System and method for gradually adjusting a look-up table for a print engine in order to improve the regulation of color quality of printed images
US7860413B2 (en) Image forming apparatus and method therefor as well as program and storage medium thereof
JP7395365B2 (ja) 画像形成装置
CN108243292B (zh) 控制器、记录介质以及校准控制方法
JP4827417B2 (ja) 画像形成装置
US9904244B2 (en) Image forming apparatus for stabilizing a developing property of a developer in a developing device with respect to a current environmental state
JP5707379B2 (ja) 画像形成装置およびプログラム
JP6189698B2 (ja) 画像形成装置
JP2017097033A (ja) 画像形成装置
JP2006091300A (ja) トナー濃度制御装置および画像形成装置
JP2022000680A (ja) 画像形成装置
JP2023077875A (ja) 画像形成装置
JP2017097035A (ja) 画像形成装置
JP2017097034A (ja) 画像形成装置
JP2017097032A (ja) 画像形成装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190917

R151 Written notification of patent or utility model registration

Ref document number: 6590895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151