[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6588219B2 - Polycarbonate resin composition - Google Patents

Polycarbonate resin composition Download PDF

Info

Publication number
JP6588219B2
JP6588219B2 JP2015085984A JP2015085984A JP6588219B2 JP 6588219 B2 JP6588219 B2 JP 6588219B2 JP 2015085984 A JP2015085984 A JP 2015085984A JP 2015085984 A JP2015085984 A JP 2015085984A JP 6588219 B2 JP6588219 B2 JP 6588219B2
Authority
JP
Japan
Prior art keywords
component
weight
bis
polycarbonate resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015085984A
Other languages
Japanese (ja)
Other versions
JP2016204480A (en
Inventor
祐樹 松本
祐樹 松本
泰規 稲澤
泰規 稲澤
仁美 佐藤
仁美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2015085984A priority Critical patent/JP6588219B2/en
Publication of JP2016204480A publication Critical patent/JP2016204480A/en
Application granted granted Critical
Publication of JP6588219B2 publication Critical patent/JP6588219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明はポリカーボネート樹脂組成物およびその成形品に関するものである。さらに詳細には、ポリカーボネート系樹脂、ポリプロピレン系樹脂、スチレン系熱可塑性エラストマーを含む樹脂組成物にガラス繊維および/または炭素繊維を添加することにより、機械特性、耐薬品性、長期耐クリープ特性が改良されたポリカーボネート樹脂組成物に関するものである。   The present invention relates to a polycarbonate resin composition and a molded product thereof. More specifically, mechanical properties, chemical resistance, and long-term creep resistance are improved by adding glass fibers and / or carbon fibers to a resin composition containing a polycarbonate resin, polypropylene resin, and styrene thermoplastic elastomer. It is related with the made polycarbonate resin composition.

ポリカーボネート樹脂は、優れた機械特性、熱特性を有しているため、OA機器分野、電子電気機器分野、および自動車分野など様々な分野で広く利用されている。しかしながら、ポリカーボネート樹脂は溶融粘度が高いため加工性に乏しく、また、非晶樹脂であることから、特に家庭用あるいは業務用洗剤などへの耐薬品性に難点をもつ。そのため、これらの欠点を補うべく、ポリオレフィン系樹脂を添加することが知られているが、単純添加ではポリカーボネート樹脂とポリオレフィン系樹脂の相溶性が低く、層状剥離等が生じて、十分な機械特性が得られにくいため、実用化に乏しい状態にある。   Polycarbonate resins have excellent mechanical and thermal properties, and are therefore widely used in various fields such as the OA equipment field, the electronic and electrical equipment field, and the automobile field. However, polycarbonate resin has poor workability due to its high melt viscosity, and since it is an amorphous resin, it has difficulty in chemical resistance, particularly for household or commercial detergents. For this reason, it is known to add a polyolefin resin to compensate for these drawbacks, but simple addition has low compatibility between the polycarbonate resin and the polyolefin resin, resulting in delamination and the like, and sufficient mechanical properties. Since it is difficult to obtain, it is in a poor state of practical use.

そこで、ポリカーボネート樹脂とポリオレフィン系樹脂の相溶性を高め、実用的な機械特性を付与するべく、種々の樹脂組成物が提案されている。例えば、水酸基含有ビニルモノマーでグラフト変性させたエラストマーを相溶化剤として添加する方法(特許文献1、2参照)や、水酸基含有ビニルモノマーで変性させたポリプロピレンを相溶化剤とし、エチレンと炭素数4以上のα−オレフィンからなるエチレン−α−オレフィン共重合体を耐衝撃剤とする方法(特許文献3、4参照)、末端カルボキシル化ポリカーボネート樹脂とエポキシ化ポリプロピレン樹脂を使用する方法(特許文献5参照)、末端カルボキシ化ポリカーボネート樹脂と無水マレイン酸変性ポリプロピレン樹脂を使用する方法(特許文献6参照)、スチレン−エチレン・ブチレン−スチレンブロック共重合体を相溶化剤として添加する方法(特許文献7参照)、スチレン−エチレン・プロピレン−スチレン共重合体を添加する方法(特許文献8参照)などがあるが、いずれもポリカーボネートの実用範囲の域を超えるほどの耐薬品性とPC/ABS並みの実用に耐えうる機械特性を両立するに至っていない。   Accordingly, various resin compositions have been proposed in order to enhance the compatibility of the polycarbonate resin and the polyolefin resin and to provide practical mechanical properties. For example, a method in which an elastomer graft-modified with a hydroxyl group-containing vinyl monomer is added as a compatibilizing agent (see Patent Documents 1 and 2), or a polypropylene modified with a hydroxyl group-containing vinyl monomer is used as a compatibilizing agent. A method using an ethylene-α-olefin copolymer composed of the above α-olefin as an impact resistance agent (see Patent Documents 3 and 4), a method using a terminal carboxylated polycarbonate resin and an epoxidized polypropylene resin (see Patent Document 5) ), A method using a terminal carboxylated polycarbonate resin and a maleic anhydride-modified polypropylene resin (see Patent Document 6), a method of adding a styrene-ethylene-butylene-styrene block copolymer as a compatibilizing agent (see Patent Document 7) Styrene-ethylene / propylene-styrene copolymer Although there is a method of adding it (see Patent Document 8), none of them has achieved both chemical resistance that exceeds the practical range of polycarbonate and mechanical properties that can withstand practical use comparable to PC / ABS.

また、ポリカーボネートを含む樹脂組成物に対して剛性を始めとする機械特性を付与する方法は多々報告されているが、ポリカーボネートとポリプロピレンの両方を含む樹脂組成物に対して剛性、長期耐クリープ特性を付与する方法はほとんど報告例がないのが現状である。   In addition, many methods for imparting mechanical properties such as rigidity to resin compositions containing polycarbonate have been reported, but the resin composition containing both polycarbonate and polypropylene has rigidity and long-term creep resistance. At present, there are almost no reports on the method of granting.

特開平7−330972号公報JP-A-7-330972 特開平8−134277号公報JP-A-8-134277 特開2005−132937号公報JP 2005-132937 A 特開昭54−53162号公報JP 54-53162 A 特開昭63−215750号公報JP-A-63-215750 特開昭63−215752号公報Japanese Unexamined Patent Publication No. 63-215752 特開平5−17633号公報Japanese Patent Laid-Open No. 5-17633 特開2000−17120号公報JP 2000-17120 A

上記に鑑み、本発明の目的は優れた機械特性、耐薬品性、長期耐クリープ特性を有するポリカーボネート樹脂組成物を提供することにある。   In view of the above, an object of the present invention is to provide a polycarbonate resin composition having excellent mechanical properties, chemical resistance, and long-term creep resistance.

本発明者は上記課題を解決すべく鋭意検討を行った結果、ポリカーボネート系樹脂、ポリプロピレン系樹脂、スチレン系熱可塑性エラストマーを含む樹脂組成物にガラス繊維および/または炭素繊維を添加することにより、機械特性、耐薬品性、長期耐クリープ特性を高い次元で満足するポリカーボネート樹脂組成物を得る方法を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has added a glass fiber and / or a carbon fiber to a resin composition containing a polycarbonate resin, a polypropylene resin, and a styrene thermoplastic elastomer. A method for obtaining a polycarbonate resin composition satisfying properties, chemical resistance, and long-term creep resistance at a high level has been found, and the present invention has been completed.

本発明によれば、上記課題は、(A)ポリカーボネート系樹脂(A成分)および(B)ポリプロピレン系樹脂(B成分)の合計100重量部に対し、(C)スチレン系熱可塑性エラストマー(C成分)1〜15重量部並びに(D)ガラス繊維(D−1成分)および炭素繊維(D−2成分)からなる群より選ばれる少なくとも一種の強化繊維状充填材(D成分)1〜100重量部を含むポリカーボネート樹脂組成物により達成される。   According to the present invention, the above-mentioned problem is that (C) styrene-based thermoplastic elastomer (C component) with respect to a total of 100 parts by weight of (A) polycarbonate-based resin (A component) and (B) polypropylene-based resin (B component). 1) to 15 parts by weight and (D) 1 to 100 parts by weight of at least one reinforcing fibrous filler (D component) selected from the group consisting of glass fibers (D-1 component) and carbon fibers (D-2 component) It is achieved by a polycarbonate resin composition containing

以下、本発明の詳細について説明する。
(A成分:ポリカーボネート系樹脂)
本発明において使用されるポリカーボネート系樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
Details of the present invention will be described below.
(A component: polycarbonate resin)
The polycarbonate resin used in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。   Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). ) Propane (commonly called bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 ′-(p-phenylenediisopropylidene) diphenol, 4,4 ′-(m-phenylenediisopropyl Pyridene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) Examples include fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. A preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred from the viewpoint of impact resistance, and is widely used.

本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
In the present invention, in addition to bisphenol A-based polycarbonate, which is a general-purpose polycarbonate, it is possible to use a special polycarbonate produced using other dihydric phenols as the A component.
For example, as part or all of the dihydric phenol component, 4,4 ′-(m-phenylenediisopropylidene) diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis (4-hydroxy) Phenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as “Bis-TMC”), 9,9-bis (4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. It is suitable for applications where the demands for change and shape stability are particularly severe. These dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.

殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that the component A constituting the resin composition is a copolymerized polycarbonate of the following (1) to (3). is there.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Of 20 to 80 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymer polycarbonate in which TMC is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).

これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。
These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be mixed and used for the bisphenol A type polycarbonate generally used.
The production method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580. ing.

なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
Of the various polycarbonates described above, those having a water absorption and Tg (glass transition temperature) adjusted within the following ranges by adjusting the copolymer composition, etc. have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage after molding, it is particularly suitable in a field where form stability is required.
(I) polycarbonate having a water absorption of 0.05 to 0.15%, preferably 0.06 to 0.13% and Tg of 120 to 180 ° C, or (ii) Tg of 160 to 250 ° C, Polycarbonate which is preferably 170 to 230 ° C. and has a water absorption of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.

ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
Here, the water absorption of the polycarbonate is a value obtained by measuring the moisture content after being immersed in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. Moreover, Tg (glass transition temperature) is a value calculated | required by the differential scanning calorimeter (DSC) measurement based on JISK7121.
As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.

前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。   In producing the aromatic polycarbonate resin by the interfacial polymerization method using the dihydric phenol and the carbonate precursor, a catalyst, a terminal terminator, and an antioxidant for preventing the dihydric phenol from being oxidized as necessary. Etc. may be used. The aromatic polycarbonate resin of the present invention is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester copolymerized with an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. Carbonate resin, copolymer polycarbonate resin copolymerized with bifunctional alcohol (including alicyclic), and polyester carbonate resin copolymerized with such bifunctional carboxylic acid and bifunctional alcohol are included. Moreover, the mixture which mixed 2 or more types of the obtained aromatic polycarbonate resin may be sufficient.

分岐ポリカーボネート樹脂は、本発明の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。   The branched polycarbonate resin can impart anti-drip performance and the like to the resin composition of the present invention. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.

分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01〜1モル%、より好ましくは0.05〜0.9モル%、さらに好ましくは0.05〜0.8モル%である。   The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is preferably a total of 100 mol% of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound. It is 0.01-1 mol%, More preferably, it is 0.05-0.9 mol%, More preferably, it is 0.05-0.8 mol%.

また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合については1H−NMR測定により算出することが可能である。   In particular, in the case of the melt transesterification method, a branched structural unit may be generated as a side reaction, and the amount of the branched structural unit is preferably 100% by mole in total with the structural unit derived from dihydric phenol. The content is preferably 0.001 to 1 mol%, more preferably 0.005 to 0.9 mol%, and still more preferably 0.01 to 0.8 mol%. In addition, about the ratio of this branched structure, it is possible to calculate by 1H-NMR measurement.

脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。   The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of aliphatic difunctional carboxylic acids include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid, and other straight-chain saturated aliphatic dicarboxylic acids, and cyclohexanedicarboxylic acid. Preferred are alicyclic dicarboxylic acids such as As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.

本発明のポリカーボネート系樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。   Reaction formats such as interfacial polymerization, melt transesterification, carbonate prepolymer solid phase transesterification, and ring-opening polymerization of cyclic carbonate compounds, which are methods for producing the polycarbonate-based resin of the present invention, are various documents and patent publications. This is a well-known method.

本発明の樹脂組成物を製造するにあたり、ポリカーボネート系樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1×10〜5×10であり、より好ましくは1.4×10〜3×10、さらに好ましくは1.4×10〜2.4×10である。粘度平均分子量が1×10未満のポリカーボネート系樹脂では、良好な機械的特性が得られない場合がある。一方、粘度平均分子量が5×10を超える芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る場合がある。 In producing the resin composition of the present invention, the viscosity average molecular weight (M) of the polycarbonate-based resin is not particularly limited, but is preferably 1 × 10 4 to 5 × 10 4 , more preferably 1.4 × 10. 4 to 3 × 10 4 , more preferably 1.4 × 10 4 to 2.4 × 10 4 . With a polycarbonate resin having a viscosity average molecular weight of less than 1 × 10 4 , good mechanical properties may not be obtained. On the other hand, a resin composition obtained from an aromatic polycarbonate resin having a viscosity average molecular weight exceeding 5 × 10 4 may be inferior in versatility in that it has poor fluidity during injection molding.

なお、前記ポリカーボネート系樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有するポリカーボネート系樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量7×10〜3×10のポリカーボネート系樹脂A−1−1−1成分)、および粘度平均分子量1×10〜3×10の芳香族ポリカーボネート樹脂(A−1−1−2成分)からなり、その粘度平均分子量が1.6×10〜3.5×10であるポリカーボネート系樹脂(A−1−1成分)(以下、“高分子量成分含有ポリカーボネート系樹脂”と称することがある)も使用できる。 In addition, the said polycarbonate-type resin may be obtained by mixing that whose viscosity average molecular weight is outside the said range. In particular, a polycarbonate resin having a viscosity average molecular weight exceeding the above range (5 × 10 4 ) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding which may be used when molding a reinforced resin material into a structural member. Such improvement in moldability is even better than that of the branched polycarbonate. As a more preferable aspect, the A component has a viscosity average molecular weight of 7 × 10 4 to 3 × 10 5 polycarbonate resin A-1-1-1 component), and the viscosity average molecular weight of 1 × 10 4 to 3 × 10 4 . Polycarbonate resin (A-1-1 component) consisting of an aromatic polycarbonate resin (A-1-1-2 component) and having a viscosity average molecular weight of 1.6 × 10 4 to 3.5 × 10 4 , Sometimes referred to as “high molecular weight component-containing polycarbonate resin”).

かかる高分子量成分含有ポリカーボネート系樹脂(A−1−1成分)において、A−1−1−1成分の分子量は7×10〜2×10が好ましく、より好ましくは8×10〜2×10、さらに好ましくは1×10〜2×10、特に好ましくは1×10〜1.6×10である。またA−1−1−2成分の分子量は1×10〜2.5×10が好ましく、より好ましくは1.1×10〜2.4×10、さらに好ましくは1.2×10〜2.4×10、特に好ましくは1.2×10〜2.3×10である。 In such a high molecular weight component-containing polycarbonate resin (A-1-1 component), the molecular weight of the A-1-1-1 component is preferably 7 × 10 4 to 2 × 10 5 , more preferably 8 × 10 4 to 2. × 10 5 , more preferably 1 × 10 5 to 2 × 10 5 , and particularly preferably 1 × 10 5 to 1.6 × 10 5 . The molecular weight of the A-1-1-2 component is preferably 1 × 10 4 to 2.5 × 10 4 , more preferably 1.1 × 10 4 to 2.4 × 10 4 , and still more preferably 1.2 ×. 10 4 to 2.4 × 10 4 , particularly preferably 1.2 × 10 4 to 2.3 × 10 4 .

高分子量成分含有ポリカーボネート系樹脂(A−1−1成分)は前記A−1−1−1成分とA−1−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A−1−1成分100重量%中、A−1−1−1成分が2〜40重量%の場合であり、より好ましくはA−1−1−1成分が3〜30重量%であり、さらに好ましくはA−1−1−1成分が4〜20重量%であり、特に好ましくはA−1−1−1成分が5〜20重量%である。   The high molecular weight component-containing polycarbonate resin (A-1-1 component) is a mixture of the A-1-1-1 component and the A-1-1-2 component in various proportions so as to satisfy a predetermined molecular weight range. It can be obtained by adjusting. Preferably, in 100% by weight of the A-1-1 component, the A-1-1-1 component is 2 to 40% by weight, and more preferably, the A-1-1-1 component is 3 to 30% by weight. More preferably, the A-1-1-1 component is 4 to 20% by weight, and particularly preferably the A-1-1-1 component is 5 to 20% by weight.

また、A−1−1成分の調製方法としては、(1)A−1−1−1成分とA−1−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−1−1−1成分および/またはA−1−1−2成分とを混合する方法などを挙げることができる。   Moreover, as a preparation method of A-1-1 component, (1) The method of superposing | polymerizing each A-1-1-1 component and A-1-1-2 component independently, and mixing these, (2 ) A method for producing an aromatic polycarbonate resin showing a plurality of polymer peaks in a molecular weight distribution chart by GPC method represented by the method disclosed in Japanese Patent Application Laid-Open No. 5-306336 in the same system. And (3) an aromatic polycarbonate resin obtained by the production method (production method (2)) and A separately produced A. Examples thereof include a method of mixing the 1-1-1 component and / or the A-1-1-2 component.

本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
The viscosity average molecular weight referred to in the present invention is first determined by using an Ostwald viscometer from a solution in which 0.7 g of polycarbonate is dissolved in 100 ml of methylene chloride at 20 ° C. with a specific viscosity (η SP ) calculated by the following formula:
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
The viscosity average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 M 0.83
c = 0.7

尚、本発明のポリカーボネート樹脂組成物におけるポリカーボネート系樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。   The viscosity average molecular weight of the polycarbonate resin in the polycarbonate resin composition of the present invention is calculated as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is sufficiently dried to obtain a solid component that dissolves in methylene chloride. A specific viscosity at 20 ° C. is determined from a solution obtained by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.

本発明のポリカーボネート系樹脂(A成分)としてポリカーボネート−ポリジオルガノシロキサン共重合樹脂を使用することも出来る。ポリカーボネート−ポリジオルガノシロキサン共重合樹脂とは下記一般式(1)で表される二価フェノールおよび下記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂であることが好ましい。   A polycarbonate-polydiorganosiloxane copolymer resin can also be used as the polycarbonate-based resin (component A) of the present invention. The polycarbonate-polydiorganosiloxane copolymer resin is a copolymer prepared by copolymerizing a dihydric phenol represented by the following general formula (1) and a hydroxyaryl-terminated polydiorganosiloxane represented by the following general formula (3). A polymerized resin is preferred.

Figure 0006588219
Figure 0006588219

[上記一般式(1)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式(2)で表される基からなる群より選ばれる少なくとも一つの基である。] [In General Formula (1), R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or 6 to 6 carbon atoms. 20 cycloalkyl groups, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 3 to 14 carbon atoms, aryloxy groups having 3 to 14 carbon atoms, carbon atoms Represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group. E and f are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula (2). . ]

Figure 0006588219
Figure 0006588219

[上記一般式(2)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。] [In the general formula (2), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, carbon Represents a group selected from the group consisting of an aryl group having 3 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, or a carbon atom having 1 to 18 carbon atoms. Alkyl groups, alkoxy groups having 1 to 10 carbon atoms, cycloalkyl groups having 6 to 20 carbon atoms, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 3 carbon atoms. -14 aryl group, aryloxy group having 6 to 10 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, nitro group, aldehyde group, cyano group and It represents a group selected from the group consisting of carboxyl groups, and when there are a plurality thereof, they may be the same or different, g is an integer of 1 to 10, and h is an integer of 4 to 7. ]

Figure 0006588219
Figure 0006588219

[上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10〜300の自然数である。Xは炭素数2〜8の二価脂肪族基である。] [In General Formula (3), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substitution having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number Q is 0 or a natural number, and p + q is a natural number of 10 to 300. X is a C2-C8 divalent aliphatic group. ]

一般式(1)で表される二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。   Examples of the dihydric phenol (I) represented by the general formula (1) include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3'-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropyl) Phenyl) propane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2, -Bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2- Bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9,9-bis (4-hydroxyphenyl) Fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 4,4 ′ -Dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldi Enyl ether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfide, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 4,4 '-Dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl-4,4'-sulfonyldiphenol, 4,4'- Dihydroxy-3,3′-diphenyldiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfide, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis (4-hydro Xylphenyl) cyclohexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6] decane, 4,4 ′-(1, 3-adamantanediyl) diphenol, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, and the like.

なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。   Among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis { 2- (4-hydroxyphenyl) propyl} benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4 Hydroxyphenyl) cyclohexane (BPZ), 4,4'-sulfonyl diphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred. Among them, 2,2-bis (4-hydroxyphenyl) propane having excellent strength and good durability is most preferable. Moreover, you may use these individually or in combination of 2 or more types.

上記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。

Figure 0006588219
As the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula (3), for example, the following compounds are preferably used.
Figure 0006588219

ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、2−アリルフェノール、イソプロペニルフェノール、2−メトキシ−4−アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2−アリルフェノール)末端ポリジオルガノシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2−アリルフェノール)末端ポリジメチルシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。   The hydroxyaryl-terminated polydiorganosiloxane (II) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It is easily produced by hydrosilylation reaction at the end of a polysiloxane chain having a degree of polymerization of. Of these, (2-allylphenol) -terminated polydiorganosiloxane and (2-methoxy-4-allylphenol) -terminated polydiorganosiloxane are preferred, and (2-allylphenol) -terminated polydimethylsiloxane, especially (2-methoxy-4) -Allylphenol) -terminated polydimethylsiloxane is preferred. The hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw / Mn) of 3 or less. The molecular weight distribution (Mw / Mn) is more preferably 2.5 or less, and even more preferably 2 or less, in order to develop further excellent low outgassing properties and low temperature impact properties during high temperature molding. When the upper limit of such a suitable range is exceeded, the amount of outgas generated during high temperature molding is large, and the low temperature impact property may be inferior.

また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10〜300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10〜200、より好ましくは12〜150、更に好ましくは14〜100である。かかる好適な範囲の下限未満では、ポリカーボネート−ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。   In order to achieve high impact resistance, the diorganosiloxane polymerization degree (p + q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is suitably 10 to 300. The degree of diorganosiloxane polymerization (p + q) is preferably 10 to 200, more preferably 12 to 150, and still more preferably 14 to 100. If the amount is less than the lower limit of the preferable range, the impact resistance characteristic of the polycarbonate-polydiorganosiloxane copolymer is not effectively exhibited. If the upper limit of the preferable range is exceeded, poor appearance appears.

A成分で使用されるポリカーボネート−ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1〜50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5〜30重量%、さらに好ましくは1〜20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、1H−NMR測定により算出することが可能である。   The polydiorganosiloxane content in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin used in the component A is preferably 0.1 to 50% by weight. The polydiorganosiloxane component content is more preferably 0.5 to 30% by weight, still more preferably 1 to 20% by weight. Above the lower limit of the preferred range, the impact resistance and flame retardancy are excellent, and below the upper limit of the preferred range, a stable appearance that is hardly affected by the molding conditions is easily obtained. Such polydiorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1H-NMR measurement.

本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。
また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。
In the present invention, hydroxyaryl-terminated polydiorganosiloxane (II) may be used alone or in combination of two or more.
Further, within the range not hindering the present invention, other comonomer other than the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is within a range of 10% by weight or less based on the total weight of the copolymer. It can also be used together.

本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。
二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。
In the present invention, a mixed solution containing an oligomer having a terminal chloroformate group is prepared in advance by a reaction of a dihydric phenol (I) and a carbonate-forming compound in a mixed solution of an organic solvent insoluble in water and an alkaline aqueous solution. To do.
In producing the oligomer of the dihydric phenol (I), the whole amount of the dihydric phenol (I) used in the method of the present invention may be converted into an oligomer at one time, or a part of the dihydric phenol (I) is used as a post-added monomer at the latter stage interface. You may add to a polycondensation reaction as a reaction raw material. The post-added monomer is added to allow the subsequent polycondensation reaction to proceed rapidly, and it is not necessary to add it when it is not necessary.

このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。
炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。
Although the method of this oligomer production | generation reaction is not specifically limited, Usually, the method performed in a solvent in presence of an acid binder is suitable.
The use ratio of the carbonate-forming compound may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Moreover, when using gaseous carbonate ester-forming compounds, such as phosgene, the method of blowing this into a reaction system can be employ | adopted suitably.

前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。   Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. The use ratio of the acid binder may be appropriately determined in consideration of the stoichiometric ratio (equivalent) of the reaction as described above. Specifically, it is preferable to use 2 equivalents or slightly more acid binder than the number of moles of dihydric phenol (I) used to form the oligomer (usually 1 mole corresponds to 2 equivalents). .

前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。   As said solvent, what is necessary is just to use a solvent inert to various reaction, such as what is used for manufacture of a well-known polycarbonate, individually or as a mixed solvent. Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene. In particular, a halogenated hydrocarbon solvent such as methylene chloride is preferably used.

オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。   The reaction pressure for oligomer formation is not particularly limited, and any of normal pressure, pressurization, and reduced pressure may be used, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of −20 to 50 ° C., and in many cases, heat is generated with the polymerization, so it is desirable to cool with water or ice. Although the reaction time depends on other conditions and cannot be defined unconditionally, it is usually carried out in 0.2 to 10 hours. The pH range of the oligomer formation reaction is the same as the known interfacial reaction conditions, and the pH is always adjusted to 10 or more.

本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(4)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート−ポリジオルガノシロキサン共重合体を得る。   In the present invention, after obtaining a mixed solution containing an oligomer of dihydric phenol (I) having a terminal chloroformate group in this way, the molecular weight distribution (Mw / Mn) is up to 3 while stirring the mixed solution. A highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (4) is added to the dihydric phenol (I), and the polyhydroxyorganosiloxane (II) and the oligomer are interfacially polycondensed. As a result, a polycarbonate-polydiorganosiloxane copolymer is obtained.

Figure 0006588219
Figure 0006588219

(上記一般式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10〜300の自然数である。Xは炭素数2〜8の二価脂肪族基である。) In (the general formula (4), R 3, R 4, R 5, R 6, R 7 and R 8 are each independently a hydrogen atom, substituted 6-12 alkyl group carbon atoms or from 1 to 12 carbon atoms Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number Q is 0 or a natural number, p + q is a natural number of 10 to 300. X is a divalent aliphatic group having 2 to 8 carbon atoms.)

界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。
二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。
In performing the interfacial polycondensation reaction, an acid binder may be appropriately added in consideration of the stoichiometric ratio (equivalent) of the reaction. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Specifically, when the hydroxyaryl-terminated polydiorganosiloxane (II) to be used or a part of the dihydric phenol (I) as described above is added as a post-added monomer to this reaction stage, It is preferable to use 2 equivalents or an excess amount of alkali with respect to the total number of moles of monovalent phenol (I) and hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mole corresponds to 2 equivalents).
The polycondensation by interfacial polycondensation reaction between the oligomer of dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is carried out by vigorously stirring the above mixture.

かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p−tert−ブチルフェノール、p−クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100〜0.5モル、好ましくは50〜2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。
重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。
かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。
In such a polymerization reaction, a terminal terminator or a molecular weight modifier is usually used. Examples of the terminal terminator include compounds having a monohydric phenolic hydroxyl group. In addition to ordinary phenol, p-tert-butylphenol, p-cumylphenol, tribromophenol, etc., long-chain alkylphenols, aliphatic carboxylic acids Examples include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenylalkyl acid ester, alkyl ether phenol and the like. The amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, based on 100 mol of all dihydric phenol compounds used, and it is naturally possible to use two or more compounds in combination. is there.
In order to accelerate the polycondensation reaction, a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added.
The reaction time of such a polymerization reaction is preferably 30 minutes or more, more preferably 50 minutes or more. If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.

分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート−ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート−ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート−ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート−ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%、特に好ましくは0.05〜0.4モル%である。なお、かかる分岐構造量については1H−NMR測定により算出することが可能である。   A branching agent can be used in combination with the above dihydric phenol compound to form a branched polycarbonate-polydiorganosiloxane. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate-polydiorganosiloxane copolymer resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl). ) Heptene-2,2,4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol and the like Lisphenol, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenone Examples thereof include tetracarboxylic acid and acid chlorides thereof, among which 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are included. 1,1,1-tris (4-hydroxyphenyl) ethane is particularly preferable. The ratio of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol%, more preferably 0.005 to 0 in the total amount of the aromatic polycarbonate-polydiorganosiloxane copolymer resin. 0.9 mol%, more preferably 0.01 to 0.8 mol%, particularly preferably 0.05 to 0.4 mol%. Such a branched structure amount can be calculated by 1H-NMR measurement.

反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。   The reaction pressure can be any of reduced pressure, normal pressure, and increased pressure. Usually, it can be suitably carried out at normal pressure or about the pressure of the reaction system. The reaction temperature is selected from the range of −20 to 50 ° C., and in many cases, heat is generated with the polymerization, so it is desirable to cool with water or ice. Since the reaction time varies depending on other conditions such as the reaction temperature, it cannot be generally specified, but it is usually performed in 0.5 to 10 hours.

場合により、得られたポリカーボネート−ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηsp/c]のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として取得することもできる。
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として回収することができる。 ポリカーボネート−ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1〜40nmの範囲が好ましい。かかる平均サイズはより好ましくは1〜30nm、更に好ましくは5〜25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。これにより耐衝撃性および外観に優れたポリカーボネート樹脂組成物が提供される。
In some cases, the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and / or chemical treatment (polymer reaction, crosslinking treatment, partial decomposition treatment, etc.) to obtain a desired reduction. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity [η sp / c].
The obtained reaction product (crude product) can be recovered as a polycarbonate-polydiorganosiloxane copolymer resin having a desired purity (purity) after various post-treatments such as a known separation and purification method. The average size of the polydiorganosiloxane domain in the polycarbonate-polydiorganosiloxane copolymer resin molded article is preferably in the range of 1 to 40 nm. The average size is more preferably 1 to 30 nm, still more preferably 5 to 25 nm. If it is less than the lower limit of such a suitable range, the impact resistance and flame retardancy are not sufficiently exhibited, and if it exceeds the upper limit of such a suitable range, the impact resistance may not be stably exhibited. Thereby, a polycarbonate resin composition excellent in impact resistance and appearance is provided.

本発明におけるポリカーボネート−ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズは、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<1 0°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1〜100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート−ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度I を測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズを求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズを、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。   The average domain size of the polydiorganosiloxane domain of the polycarbonate-polydiorganosiloxane copolymer resin molded article in the present invention was evaluated by the small angle X-ray scattering (SAXS) method. The small-angle X-ray scattering method is a method for measuring diffuse scattering / diffraction generated in a small-angle region within a scattering angle (2θ) <10 °. In this small-angle X-ray scattering method, if there are regions with different electron densities of about 1 to 100 nm in the substance, the X-ray diffuse scattering is measured by the difference in electron density. The particle diameter of the measurement object is obtained based on the scattering angle and the scattering intensity. In the case of a polycarbonate-polydiorganosiloxane copolymer resin having an aggregated structure in which polydiorganosiloxane domains are dispersed in a polycarbonate polymer matrix, X-ray diffuse scattering occurs due to the difference in electron density between the polycarbonate matrix and the polydiorganosiloxane domain. The scattering intensity I at each scattering angle (2θ) in the range where the scattering angle (2θ) is less than 10 ° is measured, the small-angle X-ray scattering profile is measured, the polydiorganosiloxane domain is a spherical domain, and the particle size distribution varies. Assuming the presence of, the simulation is performed using a commercially available analysis software from the temporary particle size and the temporary particle size distribution model to obtain the average size of the polydiorganosiloxane domain. According to the small-angle X-ray scattering method, the average size of polydiorganosiloxane domains dispersed in a polycarbonate polymer matrix, which cannot be measured accurately by observation with a transmission electron microscope, can be measured accurately, simply and with good reproducibility. it can. The average domain size means the number average of individual domain sizes.

本発明に関連して用いる用語「平均ドメインサイズ」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。   The term “average domain size” used in connection with the present invention is a measured value obtained by measuring a thickness of 1.0 mm of a three-stage plate produced by the method described in the Examples by the small-angle X-ray scattering method. Show. In addition, the analysis was performed using an isolated particle model that does not take into account the interparticle interaction (interparticle interference).

(B成分:ポリプロピレン系樹脂)
本発明の樹脂組成物はB成分として、ポリプロピレン系樹脂を含有する。ポリプロピレン樹脂は、プロピレンの重合体であるが、本発明においては、他のモノマーとの共重合体も含む。本発明のポリプロピレン樹脂の例には、ホモポリプロピレン樹脂、プロピレンとエチレンおよび炭素数4〜10のα−オレフィンとのブロック共重合体(「ブロックポリプロピレン」ともいう)、プロピレンとエチレンおよび炭素数4〜10のα−オレフィンとのランダム共重合体(「ランダムポリプロピレン」ともいう)が含まれる。なお、「ブロックポリプロピレン」と「ランダムポリプロピレン」を合わせて、「ポリプロピレン共重合体」ともいう。
(B component: polypropylene resin)
The resin composition of the present invention contains a polypropylene resin as the B component. Polypropylene resin is a polymer of propylene, but in the present invention, it also includes copolymers with other monomers. Examples of the polypropylene resin of the present invention include a homopolypropylene resin, a block copolymer of propylene, ethylene, and an α-olefin having 4 to 10 carbon atoms (also referred to as “block polypropylene”), propylene, ethylene, and 4 to 4 carbon atoms. 10 random copolymers with α-olefin (also referred to as “random polypropylene”). “Block polypropylene” and “random polypropylene” are also collectively referred to as “polypropylene copolymer”.

本発明においては、ポリプロピレン樹脂として上記のホモポリプロピレン樹脂、ブロックポリプロピレン、ランダムポリプロピレンの1種あるいは2種以上を使用してよく、中でもホモポリプロピレン、ブロックポリプロピレンが好ましい。
ポリプロピレン共重合体に用いられる炭素数4〜10のα−オレフィンの例には、1−ブテン、1−ペンテン、イソブチレン、3−メチル−1−ブテン、1−ヘキセン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセンが含まれる。
ポリプロピレン共重合体中のエチレンの含有量は、全モノマー中、5質量%以下であることが好ましい。ポリプロピレン共重合体中の炭素数4〜10のα−オレフィンの含有量は、全モノマー中20質量%以下であることが好ましい。
ポリプロピレン共重合体は、プロピレンとエチレンとの共重合体、またはプロピレンと1−ブテンとの共重合体であることが好ましく、特にプロピレンとエチレンとの共重合体が好ましい。
In the present invention, one or more of the above-mentioned homopolypropylene resin, block polypropylene, and random polypropylene may be used as the polypropylene resin, and among them, homopolypropylene and block polypropylene are preferable.
Examples of the α-olefin having 4 to 10 carbon atoms used for the polypropylene copolymer include 1-butene, 1-pentene, isobutylene, 3-methyl-1-butene, 1-hexene, and 3,4-dimethyl-1. -Butene, 1-heptene, 3-methyl-1-hexene are included.
The content of ethylene in the polypropylene copolymer is preferably 5% by mass or less in all monomers. The content of the α-olefin having 4 to 10 carbon atoms in the polypropylene copolymer is preferably 20% by mass or less in all monomers.
The polypropylene copolymer is preferably a copolymer of propylene and ethylene or a copolymer of propylene and 1-butene, and particularly preferably a copolymer of propylene and ethylene.

本発明におけるポリプロピレン樹脂のメルトフローレイト(230℃、2.16kg)は、0.1〜5g/10minであることが好ましく、0.2〜4g/10minであることがより好ましく、0.3〜3g/10minであることが特に好ましい。ポリプロピレン樹脂のメルトフローレイトが0.1g/10min未満では高粘度のため成形性に劣り、5g/10minを越えると十分な靭性が発現しない場合がある。なお、メルトフローレイトは「MFR」とも呼ばれる。なお、MFRはISO1133に準拠して測定した。   The melt flow rate (230 ° C., 2.16 kg) of the polypropylene resin in the present invention is preferably 0.1 to 5 g / 10 min, more preferably 0.2 to 4 g / 10 min, and 0.3 to 3 g / 10 min is particularly preferable. If the melt flow rate of the polypropylene resin is less than 0.1 g / 10 min, the moldability is inferior due to high viscosity, and if it exceeds 5 g / 10 min, sufficient toughness may not be exhibited. The melt flow rate is also called “MFR”. In addition, MFR was measured based on ISO1133.

本発明の樹脂組成物中におけるポリカーボネート系樹脂(A成分)とポリプロピレン系樹脂(B成分)との割合は両者の合計100重量部において、A成分は30〜80重量部が好ましく、より好ましくは40〜70重量部、さらに好ましくは45〜60重量部、B成分は好ましくは20〜70重量部、より好ましくは30〜60重量部、さらに好ましくは40〜55重量部である。A成分が30重量部未満では、機械特性が十分に発現せず、長期耐クリープ特性が低くなり、80重量部を超えると耐薬品性が悪くなる場合がある。   The ratio of the polycarbonate resin (A component) and the polypropylene resin (B component) in the resin composition of the present invention is 100 parts by weight in total, and the A component is preferably 30 to 80 parts by weight, more preferably 40 parts. -70 weight part, More preferably, it is 45-60 weight part, B component becomes like this. Preferably it is 20-70 weight part, More preferably, it is 30-60 weight part, More preferably, it is 40-55 weight part. If the component A is less than 30 parts by weight, the mechanical properties are not sufficiently exhibited, the long-term creep resistance is lowered, and if it exceeds 80 parts by weight, the chemical resistance may be deteriorated.

(C成分:スチレン系熱可塑性エラストマー)
本発明の樹脂組成物はC成分としてスチレン系熱可塑性エラストマーを含有する。本発明で使用するスチレン系熱可塑性エラストマーは下記式(I)または(II)で表されるブロック共重合体であることが好ましい。
X−(Y−X)n …(I)
(X−Y)n …(II)
(C component: Styrenic thermoplastic elastomer)
The resin composition of the present invention contains a styrenic thermoplastic elastomer as the C component. The styrenic thermoplastic elastomer used in the present invention is preferably a block copolymer represented by the following formula (I) or (II).
X- (Y-X) n (I)
(XY) n (II)

一般式(I)および(II)におけるXは芳香族ビニル重合体ブロックで、式(I)においては分子鎖両末端で重合度が同じであってもよいし、異なっていてもよい。また、Yとしてはブタジエン重合体ブロック、イソプレン重合体ブロック、ブタジエン/イソプレン共重合体ブロック、水添されたブタジエン重合体ブロック、水添されたイソプレン重合体ブロック、水添されたブタジエン/イソプレン共重合体ブロック、部分水添されたブタジエン重合体ブロック、部分水添されたイソプレン重合体ブロックおよび部分水添されたブタジエン/イソプレン共重合体ブロックの中から選ばれた少なくとも1種である。また、nは1以上の整数である。   X in the general formulas (I) and (II) is an aromatic vinyl polymer block, and in the formula (I), the degree of polymerization may be the same or different at both ends of the molecular chain. Y represents a butadiene polymer block, an isoprene polymer block, a butadiene / isoprene copolymer block, a hydrogenated butadiene polymer block, a hydrogenated isoprene polymer block, a hydrogenated butadiene / isoprene copolymer. It is at least one selected from a polymer block, a partially hydrogenated butadiene polymer block, a partially hydrogenated isoprene polymer block, and a partially hydrogenated butadiene / isoprene copolymer block. N is an integer of 1 or more.

具体例としては、スチレン−エチレン・ブチレン−スチレン共重合体、スチレン−エチレン・プロピレン−スチレン共重合体、スチレン−エチレン・エチレン・プロピレン−スチレン共重合体、スチレン−ブタジエン−ブテン−スチレン共重合体、スチレン−ブタジエン−スチレン共重合体、スチレン−イソプレン−スチレン共重合体、スチレン−水添ブタジエンジブロック共重合体、スチレン−水添イソプレンジブロック共重合体、スチレン−ブタジエンジブロック共重合体、スチレン−イソプレンジブロック共重合体等が挙げられ、その中でもスチレン−エチレン・ブチレン−スチレン共重合体、スチレン−エチレン・プロピレン−スチレン共重合体、スチレン−エチレン・エチレン・プロピレン−スチレン共重合体、スチレン−ブタジエン−ブテン−スチレン共重合体が最も好適である。   Specific examples include styrene-ethylene / butylene-styrene copolymers, styrene-ethylene / propylene / styrene copolymers, styrene / ethylene / ethylene / propylene / styrene copolymers, and styrene / butadiene / butene / styrene copolymers. Styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, styrene-hydrogenated butadiene diblock copolymer, styrene-hydrogenated isoprene block copolymer, styrene-butadiene diblock copolymer, Examples include styrene-isoprene diblock copolymers, among which styrene-ethylene / butylene-styrene copolymers, styrene-ethylene / propylene / styrene copolymers, styrene / ethylene / ethylene / propylene / styrene copolymers, Styrene-Butaji Down - butene - styrene copolymer are most preferred.

前記ブロック共重合体におけるX成分の含有量は20〜80重量%、好ましくは30〜75重量%、より好ましくは40〜70重量%の範囲にあることが望ましい。この量が20重量%未満では樹脂組成物の剛性および衝撃強度が低下し、また80重量%を超えると衝撃強度が低下する場合があるため、いずれも好ましくない。   The content of the X component in the block copolymer is 20 to 80% by weight, preferably 30 to 75% by weight, more preferably 40 to 70% by weight. If this amount is less than 20% by weight, the rigidity and impact strength of the resin composition are lowered, and if it exceeds 80% by weight, the impact strength may be lowered.

スチレン系熱可塑性エラストマーの重量平均分子量は25万以下が好ましく、20万以下がより好ましく、15万以下がさらに好ましい。重量平均分子量が25万を超えると、成形加工性が低下し、ポリカーボネート樹脂組成物中の分散性も悪化する場合がある。また、重量平均分子量の下限については特に限定されないが、4万以上が好ましく、5万以上がより好ましい。なお、重量平均分子量は以下の方法で測定した。すなわち、ゲルパーミエーションクロマトグラフにより、ポリスチレン換算で分子量を測定し、重量平均分子量を算出した。本発明におけるスチレン系熱可塑性エラストマーのメルトフローレイト(230℃、2.16kg)は、0.1〜10g/10minであることが好ましく、0.15〜9g/10minであることがより好ましく、0.2〜8g/10minであることが特に好ましい。スチレン系熱可塑性エラストマーのメルトフローレイトが0.1g/10min未満および、10g/10minを越えると十分な靭性が発現しない場合がある。なお、MFRはISO1133に準拠して230℃、2.16kg荷重にて測定した。   The weight average molecular weight of the styrenic thermoplastic elastomer is preferably 250,000 or less, more preferably 200,000 or less, and further preferably 150,000 or less. When the weight average molecular weight exceeds 250,000, the moldability is lowered and the dispersibility in the polycarbonate resin composition may be deteriorated. The lower limit of the weight average molecular weight is not particularly limited, but is preferably 40,000 or more, more preferably 50,000 or more. The weight average molecular weight was measured by the following method. That is, the molecular weight was measured in terms of polystyrene by gel permeation chromatography, and the weight average molecular weight was calculated. The melt flow rate (230 ° C., 2.16 kg) of the styrenic thermoplastic elastomer in the present invention is preferably 0.1 to 10 g / 10 min, more preferably 0.15 to 9 g / 10 min, 0 It is particularly preferably 2 to 8 g / 10 min. If the melt flow rate of the styrenic thermoplastic elastomer is less than 0.1 g / 10 min and exceeds 10 g / 10 min, sufficient toughness may not be exhibited. MFR was measured at 230 ° C. and 2.16 kg load according to ISO1133.

C成分の含有量は、A成分とB成分との合計100重量部に対し、1〜15重量部であり、好ましくは2〜14重量部、より好ましくは3〜13重量部である。含有量が1重量部未満では衝撃強度および長期耐クリープ特性の低下が発生し、15重量部を超えると剛性および長期耐クリープ特性が低下する。   Content of C component is 1-15 weight part with respect to a total of 100 weight part of A component and B component, Preferably it is 2-14 weight part, More preferably, it is 3-13 weight part. When the content is less than 1 part by weight, impact strength and long-term creep resistance are deteriorated, and when it exceeds 15 parts by weight, rigidity and long-term creep resistance are deteriorated.

(D成分:ガラス繊維および/または炭素繊維)
本発明の樹脂組成物はD成分として、ガラス繊維(D−1成分)および炭素繊維(D−2成分)からなる群より選ばれる少なくとも一種の繊維状充填材を含有する。
(D component: glass fiber and / or carbon fiber)
The resin composition of the present invention contains at least one fibrous filler selected from the group consisting of glass fibers (D-1 component) and carbon fibers (D-2 component) as the D component.

(D−1成分:ガラス繊維)
D−1成分として用いるガラス繊維としては、丸型断面を有するガラス繊維、繊維長断面の長径の平均値が7〜50μm、長径と短径の比(長径/短径)の平均値が1.5〜8である扁平断面ガラス繊維、ガラスミルドファイバーが好適に例示される。
上記のガラス繊維のガラス組成は、Aガラス、Cガラス、およびEガラス等に代表される各種のガラス組成が適用され、特に限定されない。かかるガラス繊維は、必要に応じてTiO、SO、およびP等の成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。かかるガラス繊維は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、またはアルミネートカップリング剤等で表面処理が施されたものが機械的強度の向上の点から好ましい。また、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましく、エポキシ系樹脂、ウレタン系樹脂が機械的強度の点から特に好ましい。集束処理されたガラス繊維の集束剤付着量は、ガラス繊維100重量%中、好ましくは0.1〜3重量%、より好ましくは0.2〜1重量%である。
(D-1 component: glass fiber)
As the glass fiber used as the component D-1, the glass fiber having a round cross section, the average value of the major axis of the fiber major section is 7 to 50 μm, and the average value of the ratio of major axis to minor axis (major axis / minor axis) is 1. The flat cross-section glass fiber and glass milled fiber which are 5-8 are illustrated suitably.
Various glass compositions represented by A glass, C glass, E glass, etc. are applied to the glass composition of said glass fiber, and it is not specifically limited. Such glass fibers may contain components such as TiO 2 , SO 3 , and P 2 O 5 as necessary. Among these, E glass (non-alkali glass) is more preferable. Such a glass fiber is preferably subjected to a surface treatment with a known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent from the viewpoint of improving mechanical strength. In addition, those that have been subjected to bundling treatment with olefin resin, styrene resin, acrylic resin, polyester resin, epoxy resin, urethane resin, etc. are preferable. From the viewpoint of mechanical strength, epoxy resin and urethane resin are preferred. Particularly preferred. The amount of the sizing agent attached to the glass fiber subjected to the sizing treatment is preferably 0.1 to 3% by weight, more preferably 0.2 to 1% by weight in 100% by weight of the glass fiber.

(D−2成分:炭素繊維)
本発明の炭素繊維としては、例えば金属コートカーボンファイバー、カーボンミルドファイバー、気相成長カーボンファイバー等のカーボンファイバー、およびカーボンナノチューブ等が挙げられる。カーボンナノチューブは繊維径0.003〜0.1μm、単層、2層、および多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。これらの中でも機械的強度に優れる点において、カーボンファイバーが好ましい。
カーボンファイバーとしては、セルロース系、ポリアクリロニトリル系、およびピッチ系などのいずれも使用可能である。また芳香族スルホン酸類またはそれらの塩のメチレ型結合による重合体と溶媒よりなる原料組成を紡糸または成形し、次いで炭化するなどの方法に代表される不融化工程を経ない紡糸を行う方法により得られたものも使用可能である。更に汎用タイプ、中弾性率タイプ、および高弾性率タイプのいずれも使用可能である。これらの中でも特にポリアクリロニトリル系の高弾性率タイプが好ましい。
(D-2 component: carbon fiber)
Examples of the carbon fiber of the present invention include carbon fibers such as metal-coated carbon fibers, carbon milled fibers, and vapor-grown carbon fibers, and carbon nanotubes. The carbon nanotube may be any one of a fiber diameter of 0.003 to 0.1 μm, a single layer, a double layer, and a multilayer, and a multilayer (so-called MWCNT) is preferable. Among these, carbon fiber is preferable in terms of excellent mechanical strength.
As the carbon fiber, any of cellulose, polyacrylonitrile, pitch and the like can be used. Also obtained by a method in which a raw material composition composed of a polymer and a solvent based on a methyle bond of aromatic sulfonic acids or their salts is spun or molded and then carbonized without passing through an infusibilization step represented by a method such as carbonization. It is also possible to use those that have been used. Furthermore, any of general-purpose type, medium elastic modulus type, and high elastic modulus type can be used. Among these, polyacrylonitrile-based high elastic modulus type is particularly preferable.

また、カーボンファイバーの表面はマトリックス樹脂との密着性を高め、機械的強度を向上する目的で酸化処理されることが好ましい。酸化処理方法は特に限定されないが、例えば、(1)炭素繊維を酸もしくはアルカリまたはそれらの塩、あるいは酸化性気体により処理する方法、(2)炭素繊維化可能な繊維または炭素繊維を、含酸素化合物を含む不活性ガスの存在下、700℃以上の温度で焼成する方法、および(3)炭素繊維を酸化処理した後、不活性ガスの存在下で熱処理する方法などが好適に例示される。   The surface of the carbon fiber is preferably oxidized for the purpose of improving the adhesion with the matrix resin and improving the mechanical strength. The oxidation treatment method is not particularly limited. For example, (1) a method in which carbon fiber is treated with an acid or alkali or a salt thereof, or an oxidizing gas, and (2) a fiber or carbon fiber that can be converted into carbon fiber is oxygenated. Preferred examples include a method of firing at a temperature of 700 ° C. or higher in the presence of an inert gas containing a compound, and (3) a method of heat-treating in the presence of an inert gas after oxidizing the carbon fiber.

金属コートカーボンファイバーは、カーボンファイバーの表面に金属層をコートしたものである。金属としては、銀、銅、ニッケル、およびアルミニウムなどが挙げられ、ニッケルが金属層の耐腐食性の点から好ましい。金属コートの方法としては、メッキ法および蒸着法等の公知の方法が挙げられ、中でもメッキ法が好適に利用される。また、かかる金属コートカーボンファイバーの場合も、元となるカーボンファイバーとしては上記のカーボンファイバーとして挙げたものが使用可能である。金属被覆層の厚みは好ましくは0.1〜1μm、より好ましくは0.15〜0.5μmである。更に好ましくは0.2〜0.35μmである。   The metal-coated carbon fiber is obtained by coating the surface of the carbon fiber with a metal layer. Examples of the metal include silver, copper, nickel, and aluminum, and nickel is preferable from the viewpoint of the corrosion resistance of the metal layer. Examples of the metal coating method include known methods such as a plating method and a vapor deposition method, and among them, the plating method is preferably used. In addition, in the case of such metal-coated carbon fiber, as the original carbon fiber, those mentioned as the above carbon fiber can be used. The thickness of the metal coating layer is preferably 0.1 to 1 μm, more preferably 0.15 to 0.5 μm. More preferably, it is 0.2-0.35 micrometer.

かかるカーボンファイバー、金属コートカーボンファイバーは、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましい。特にウレタン系樹脂、エポキシ系樹脂で処理された炭素繊維は、機械的強度に優れることから本発明において好適である。
D成分の含有量は、A成分とB成分との合計100重量部に対して、1〜100 重量部であり、好ましくは5〜50重量部、より好ましくは6〜40重量部である。D成分の含有量が1重量部未満ではD成分の配合に期待される特性、例えば、剛性、長期耐クリープ特性の向上が不十分となる。一方、100重量部を超える場合には、強度が低下したり、剛性の向上により材料への応力が大きくかかるようになるため一定歪みを加える耐薬品性試験で評価される耐薬品性が低下したり、押出ができなくなる。
Such carbon fibers and metal-coated carbon fibers are preferably subjected to a bundling treatment with an olefin resin, a styrene resin, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, or the like. In particular, carbon fibers treated with a urethane resin or an epoxy resin are suitable in the present invention because of excellent mechanical strength.
Content of D component is 1-100 weight part with respect to a total of 100 weight part of A component and B component, Preferably it is 5-50 weight part, More preferably, it is 6-40 weight part. When the content of the D component is less than 1 part by weight, the properties expected for the blending of the D component, such as rigidity and long-term creep resistance, are insufficient. On the other hand, if the amount exceeds 100 parts by weight, the strength decreases, and the stress on the material is increased due to the improvement in rigidity. Or extrusion becomes impossible.

(E成分:リン系熱安定剤)
本発明の樹脂組成物はE成分としてリン系熱安定剤を含有することができる。リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。
具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
(E component: Phosphorus heat stabilizer)
The resin composition of the present invention can contain a phosphorus-based heat stabilizer as the E component. Examples of phosphorus stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine.
Specifically, as the phosphite compound, for example, triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl Phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di -N-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, dis Allyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite, phenylbisphenol A Examples include pentaerythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, and dicyclohexyl pentaerythritol diphosphite.

更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトなどが例示される。   Further, as other phosphite compounds, those which react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Examples include butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite and 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite.

ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。   Examples of the phosphate compound include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, Examples thereof include diisopropyl phosphate, and triphenyl phosphate and trimethyl phosphate are preferable.

ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。   Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi. Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl)- 4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (Di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)- More preferred is phenyl-phenylphosphonite. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.

ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。
Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
Tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.

上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でも、ホスホナイト化合物もしくは下記一般式(5)で表されるホスファイト化合物が好ましい。   The phosphorus stabilizers can be used alone or in combination of two or more. Among the phosphorus stabilizers, phosphonite compounds or phosphite compounds represented by the following general formula (5) are preferable.

Figure 0006588219
(式(5)中、RおよびR’は炭素数6〜30のアルキル基または炭素数6〜30のアリール基を表し、互いに同一であっても異なっていてもよい。)
Figure 0006588219
(In Formula (5), R and R ′ represent an alkyl group having 6 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and may be the same or different from each other.)

上記の如く、ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。
また上記式(5)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。
As described above, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferable as the phosphonite compound, and the stabilizer containing phosphonite as a main component is Sandostab P-EPQ (trademark, manufactured by Clariant). ) And Irgafos P-EPQ (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and both can be used.
Among the above formulas (5), more preferred phosphite compounds are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di). -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite.

ジステアリルペンタエリスリトールジホスファイトは、アデカスタブPEP−8(商標、旭電化工業(株)製)、JPP681S(商標、城北化学工業(株)製)として市販されておりいずれも利用できる。ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトは、アデカスタブPEP−24G(商標、旭電化工業(株)製)、Alkanox P−24(商標、Great Lakes社製)、Ultranox P626(商標、GE Specialty Chemicals社製)、Doverphos S−9432(商標、Dover Chemical社製)、並びにIrgaofos126および126FF(商標、CIBA SPECIALTY CHEMICALS社製)などとして市販されておりいずれも利用できる。ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトはアデカスタブPEP−36(商標、旭電化工業(株)製)として市販されており容易に利用できる。またビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトは、アデカスタブPEP−45(商標、旭電化工業(株)製)、およびDoverphos S−9228(商標、Dover Chemical社製)として市販されておりいずれも利用できる。   Distearyl pentaerythritol diphosphite is commercially available as ADK STAB PEP-8 (trademark, manufactured by Asahi Denka Kogyo Co., Ltd.) and JPP681S (trademark, manufactured by Johoku Chemical Industry Co., Ltd.), and any of them can be used. Bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite is ADK STAB PEP-24G (trademark, manufactured by Asahi Denka Kogyo Co., Ltd.), Alkanox P-24 (trademark, manufactured by Great Lakes), Ultranox. P626 (trademark, manufactured by GE Specialty Chemicals), Doverphos S-9432 (trademark, manufactured by Dover Chemical), and Irgafos 126 and 126FF (trademark, manufactured by CIBA SPECIALTY CHEMICALS) are also available. Bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite is commercially available as ADK STAB PEP-36 (trademark, manufactured by Asahi Denka Kogyo Co., Ltd.) and can be easily used. Further, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite is produced by ADK STAB PEP-45 (trademark, manufactured by Asahi Denka Kogyo Co., Ltd.) and Doverphos S-9228 (trademark). , Manufactured by Dober Chemical Co.) and any of them can be used.

リン系熱安定剤はフェノール系熱安定剤と併用されるのが更に好ましく、リン系熱安定剤の含有量はA成分とB成分との合計100重量部に対して、好ましくは0.001〜3.0重量部、より好ましくは0.01〜2.0重量部、さらに好ましくは0.05〜1.0重量部である。E成分の含有量が0.001重量部未満では機械特性が十分に発現せず、3.0重量部を超えても機械特性を十分に発現しない場合がある。フェノール系熱安定剤と併用の場合はA成分とB成分との合計100重量部に対し、0.01〜1.0重量部のリン系熱安定剤および0.05〜1.0重量部のフェノール系熱安定剤が配合されることがより好ましい。   The phosphorus heat stabilizer is more preferably used in combination with a phenol heat stabilizer, and the content of the phosphorus heat stabilizer is preferably 0.001 to 100 parts by weight in total of the A component and the B component. The amount is 3.0 parts by weight, more preferably 0.01 to 2.0 parts by weight, still more preferably 0.05 to 1.0 parts by weight. If the content of the E component is less than 0.001 part by weight, the mechanical properties may not be sufficiently exhibited, and if it exceeds 3.0 parts by weight, the mechanical properties may not be sufficiently exhibited. In the case of combined use with a phenol-based heat stabilizer, 0.01 to 1.0 part by weight of a phosphorus-based heat stabilizer and 0.05 to 1.0 part by weight of the total of 100 parts by weight of the component A and the component B More preferably, a phenol-based heat stabilizer is blended.

(F成分:フェノール系熱安定剤)
本発明の樹脂組成物はF成分としてフェノール系熱安定剤を含有することができる。フェノール系熱安定剤としては一般的にヒンダードフェノール、セミヒンダードフェノール、レスヒンダードフェノール化合物が挙げられるが、ポリプロピレン系樹脂に対して熱安定処方を施すという観点で特にヒンダードフェノール化合物がより好適に用いられる。かかるヒンダードフェノール化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレートなどが例示される。上記化合物の中でも、本発明において、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好適に用いられ、さらに加工時の熱分解による機械特性低下の抑制に優れるものとして、下記式(6)で表される(3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、および下記式(7)で表される1,3,5−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオンがより好適に用いられる。
(F component: Phenolic heat stabilizer)
The resin composition of the present invention can contain a phenol-based heat stabilizer as the F component. Phenol-based heat stabilizers generally include hindered phenols, semi-hindered phenols, and less-hindered phenol compounds. Particularly, hindered phenol compounds are more preferable from the viewpoint of applying a heat-stable formulation to polypropylene resins. Preferably used. Examples of such hindered phenol compounds include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert -Butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylamino) Methyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl) -6-tert-butylphenol), 4,4'-methylenebis (2,6 Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol), 2,2 ′ -Ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert) -Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl) Ru-5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1, -Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4'-thiobis (6-tert-butyl-m-cresol), 4,4'-thiobis (3- Methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4 ′ -Di-thiobis (2,6-di-tert-butylphenol), 4,4'-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodie Renbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-tert- Butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl -2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Cyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, tetrakis [methylene-3- (3,5-di-tert-butyl- 4-hydroxyphenyl) propionate] methane, triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, triethylene glycol-N-bis-3- (3- tert-butyl-4-hydroxy-5-methylphenyl) acetate, 3,9-bis [2 {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) acetyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, tetrakis [Methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, 1,3,5-trimethyl-2,4,6-tris (3-tert-butyl-4-hydroxy Examples include -5-methylbenzyl) benzene and tris (3-tert-butyl-4-hydroxy-5-methylbenzyl) isocyanurate. Among the above compounds, tetrakis [methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl-) is used in the present invention. (4-Hydroxyphenyl) propionate is preferably used, and is further excellent in suppressing deterioration of mechanical properties due to thermal decomposition during processing (3, 3 ′, 3 ″, 5, 5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl) tri-p-cresol and 1 represented by the following formula (7) , 3,5-tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione is more preferred. Used.

Figure 0006588219
Figure 0006588219

Figure 0006588219
Figure 0006588219

上記フェノール系熱安定剤は、単独でまたは2種以上を組合せて使用することができる。
F成分の含有量は、A成分とB成分との合計100重量部に対し、好ましくは0.05〜1.0重量部であり、より好ましくは0.07〜0.8重量部、さらに好ましくは0.1〜0.5重量部である。含有量が0.05重量部未満では加工時の熱分解抑制効果が発現せず、機械特性の低下が発生する場合があり、1.0重量部を超えても機械特性が低下する場合がある。
The said phenol-type heat stabilizer can be used individually or in combination of 2 or more types.
The content of the F component is preferably 0.05 to 1.0 part by weight, more preferably 0.07 to 0.8 part by weight, further preferably 100 parts by weight of the total of the A component and the B component. Is 0.1 to 0.5 parts by weight. If the content is less than 0.05 parts by weight, the effect of suppressing thermal decomposition during processing is not manifested, and mechanical properties may be deteriorated. If the content exceeds 1.0 parts by weight, the mechanical properties may be deteriorated. .

(その他の添加剤)
(i)離型剤
本発明のポリカーボネート樹脂組成物には、その成形時の生産性向上や成形品の歪みの低減を目的として、更に離型剤を配合することが好ましい。かかる離型剤としては公知のものが使用できる。例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1−アルケン重合体など。酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。中でも好ましい離型剤として脂肪酸エステルが挙げられる。かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数としては、3〜32の範囲、より好適には5〜30の範囲である。かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール〜ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。本発明の脂肪酸エステルにおいては多価アルコールがより好ましい。
(Other additives)
(I) Release agent It is preferable to mix | blend a release agent with the polycarbonate resin composition of this invention for the purpose of the productivity improvement at the time of the shaping | molding, and the reduction of the distortion of a molded article. Known release agents can be used. For example, saturated fatty acid ester, unsaturated fatty acid ester, polyolefin wax (polyethylene wax, 1-alkene polymer, etc., which may be modified with a functional group-containing compound such as acid modification), silicone compound, fluorine compound ( And fluorine oil represented by polyfluoroalkyl ether), paraffin wax, beeswax and the like. Among these, fatty acid esters are preferable as a release agent. Such fatty acid esters are esters of aliphatic alcohols and aliphatic carboxylic acids. Such an aliphatic alcohol may be a monohydric alcohol or a dihydric or higher polyhydric alcohol. Moreover, as carbon number of this alcohol, it is the range of 3-32, More preferably, it is the range of 5-30. Examples of such monohydric alcohols include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, seryl alcohol, and triacontanol. Examples of such polyhydric alcohols include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), ditrimethylolpropane, xylitol, sorbitol, and mannitol. In the fatty acid ester of the present invention, a polyhydric alcohol is more preferable.

一方、脂肪族カルボン酸は炭素数3〜32であることが好ましく、特に炭素数10〜22の脂肪族カルボン酸が好ましい。該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、ベヘン酸、イコサン酸、およびドコサン酸などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14〜20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。特にステアリン酸およびパルミチン酸が好ましい。   On the other hand, the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, and particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms. Examples of the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid, behenic acid, Mention may be made of saturated aliphatic carboxylic acids such as icosanoic acid and docosanoic acid, and unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and cetreic acid . Among the above, aliphatic carboxylic acids having 14 to 20 carbon atoms are preferable. Of these, saturated aliphatic carboxylic acids are preferred. In particular, stearic acid and palmitic acid are preferred.

ステアリン酸やパルミチン酸など上記の脂肪族カルボン酸は通常、牛脂や豚脂などに代表される動物性油脂およびパーム油やサンフラワー油に代表される植物性油脂などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって本発明の脂肪酸エステルの製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる脂肪族カルボン酸、殊にステアリン酸やパルミチン酸が好ましく使用される。   The above aliphatic carboxylic acids such as stearic acid and palmitic acid are usually produced from natural fats and oils such as animal fats such as beef tallow and lard and vegetable oils such as palm oil and sunflower oil. Therefore, these aliphatic carboxylic acids are usually a mixture containing other carboxylic acid components having different numbers of carbon atoms. Accordingly, in the production of the fatty acid ester of the present invention, aliphatic carboxylic acids produced from such natural fats and oils and in the form of a mixture containing other carboxylic acid components, particularly stearic acid and palmitic acid are preferably used.

本発明の脂肪酸エステルは、部分エステルおよび全エステル(フルエステル)のいずれであってもよい。しかしながら部分エステルでは通常水酸基価が高くなり高温時の樹脂の分解などを誘発しやすいことから、より好適にはフルエステルである。本発明の脂肪酸エステルにおける酸価は、熱安定性の点から好ましく20以下、より好ましくは4〜20の範囲、更に好ましくは4〜12の範囲である。尚、酸価は実質的に0を取り得る。また脂肪酸エステルの水酸基価は、0.1〜30の範囲がより好ましい。更にヨウ素価は、10以下が好ましい。尚、ヨウ素価は実質的に0を取り得る。これらの特性はJIS K 0070に規定された方法により求めることができる。   The fatty acid ester of the present invention may be either a partial ester or a total ester (full ester). However, partial esters are more preferably full esters because they usually have a high hydroxyl value and tend to induce decomposition of the resin at high temperatures. The acid value in the fatty acid ester of the present invention is preferably 20 or less, more preferably 4 to 20 and even more preferably 4 to 12 from the viewpoint of thermal stability. The acid value can be substantially zero. The hydroxyl value of the fatty acid ester is more preferably in the range of 0.1-30. Further, the iodine value is preferably 10 or less. The iodine value can be substantially zero. These characteristics can be obtained by a method defined in JIS K 0070.

離型剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.005〜2重量部、より好ましくは0.01〜1重量部、更に好ましくは0.05〜0.5重量部である。かかる範囲においては、ポリカーボネート樹脂組成物は良好な離型性および離ロール性を有する。特にかかる量の脂肪酸エステルは良好な色相を損なうことなく良好な離型性および離ロール性を有するポリカーボネート樹脂組成物を提供する。   The content of the release agent is preferably 0.005 to 2 parts by weight, more preferably 0.01 to 1 part by weight, and still more preferably 0.05 to 100 parts by weight of the total of the component A and the component B. -0.5 parts by weight. In such a range, the polycarbonate resin composition has good release properties and release properties. In particular, such an amount of fatty acid ester provides a polycarbonate resin composition having good release properties and roll release properties without impairing good hue.

(ii)紫外線吸収剤
本発明のポリカーボネート樹脂組成物は紫外線吸収剤を含有することができる。ベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。
(Ii) Ultraviolet absorber The polycarbonate resin composition of the present invention may contain an ultraviolet absorber. In the benzophenone series, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy- 5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydridolate benzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) ) Methane, 2-hydroxy Examples include -4-n-dodecyloxybenzophenone and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.

ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。   In the benzotriazole series, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 Di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- ( 2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis (1,3-benzoxazine-4 -One), and 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-hydroxy-5-methacryloxy) Copolymerization of ethylphenyl) -2H-benzotriazole with vinyl monomer copolymerizable with the monomer And 2- (2′-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole and a copolymer of vinyl monomer copolymerizable with the monomer, 2-hydroxyphenyl-2H-benzotriazole skeleton A polymer having

ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。   In the hydroxyphenyl triazine series, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5) -Triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl) -1,3,5-triazin-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-butyloxyphenol Illustrated. Furthermore, the phenyl group of the above exemplary compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. Examples of the compound are phenyl groups.

環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。
シアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
In the cyclic imino ester system, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazine) -4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), and the like.
In the case of cyanoacrylate, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenylacryloyl) oxy ] Methyl) propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene and the like.

さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。   Further, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, whereby the ultraviolet-absorbing monomer and / or the light-stable monomer having a hindered amine structure, and an alkyl (meth) acrylate. A polymer type ultraviolet absorber obtained by copolymerization with a monomer such as may be used. Preferred examples of the UV-absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of (meth) acrylate. The

上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相(透明性)の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
紫外線吸収剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.01〜2重量部、より好ましくは0.02〜2重量部、さらに好ましくは0.03〜1重量部、更に好ましくは0.05〜0.5重量部である。
Of these, benzotriazoles and hydroxyphenyltriazines are preferred from the viewpoint of ultraviolet absorbing ability, and cyclic iminoesters and cyanoacrylates are preferred from the viewpoint of heat resistance and hue (transparency). You may use the said ultraviolet absorber individually or in mixture of 2 or more types.
The content of the ultraviolet absorber is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 2 parts by weight, and still more preferably 0.03 based on a total of 100 parts by weight of the component A and the component B. To 1 part by weight, more preferably 0.05 to 0.5 part by weight.

(iii)ヒンダードアミン系光安定剤
本発明のポリカーボネート樹脂組成物はヒンダードアミン系光安定剤を含有することができる。ヒンダードアミン系光安定剤は一般にHALS(Hindered Amine Light Stabilizer)と呼ばれ、2,2,6,6−テトラメチルピペリジン骨格を構造中に有する化合物であり、例えば、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルアセトキシ)−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアリルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−(エチルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(シクロヘキシルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)オキサレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)テレフタレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)カーボネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)オキサレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)マロネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)アジペート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)テレフタレート、N,N’−ビス−2,2,6,6−テトラメチル−4−ピペリジニル−1,3−ベンゼンジカルボキシアミド、1,2−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)エタン、α,α’−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−p−キシレン、ビス(2,2,6,6−テトラメチル−4−ピペリジルトリレン−2,4−ジカルバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,5−トリカルボキシレート、N,N’,N’’,N’’’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,4−トリカルボキシレート、1−[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}ブチル]−4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6−テトラメチルピペリジン、及び1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β’,β’−テトラメチル−3,9−[2,4,8,10−テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物などが挙げられる。
(Iii) Hindered amine light stabilizer The polycarbonate resin composition of the present invention may contain a hindered amine light stabilizer. The hindered amine light stabilizer is generally called HALS (Hindered Amine Light Stabilizer) and is a compound having a 2,2,6,6-tetramethylpiperidine skeleton in the structure. For example, 4-acetoxy-2,2,6 , 6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2, 2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2, 2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine, 4-benzylo Xyl-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4- (ethylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, bis (2,2,6,6- Tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2,2,6,6-tetramethyl-4-piperidyl) malonate, bis (2 , 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) adipate, bis (2 2,6,6-tetramethyl-4-piperidyl) terephthalate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) carbonate, bis (1,2,2,6,6-pentamethyl-4) -Piperidyl) oxalate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2 , 2,6,6-pentamethyl-4-piperidyl) adipate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) terephthalate, N, N′-bis-2,2,6,6- Tetramethyl-4-piperidinyl-1,3-benzenedicarboxamide, 1,2-bis (2,2,6,6-tetramethyl-4-piperidyloxy) ethane, α, α′-bis (2, , 6,6-tetramethyl-4-piperidyloxy) -p-xylene, bis (2,2,6,6-tetramethyl-4-piperidyltolylene-2,4-dicarbamate, bis (2,2, 6,6-tetramethyl-4-piperidyl) -hexamethylene-1,6-dicarbamate, tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene-1,3,5-tricarboxy Rate, N, N ′, N ″, N ′ ″-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino ) -Triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl- 4-piperidyl) -1,6-hexamethylenedi A polycondensation product of amine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3, 5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino} ], Tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) ) -1,2,3,4-butanetetracarboxylate, tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene-1,3,4-tricarboxylate, 1- [2- {3- (3,5-Di-t-bu Til-4-hydroxyphenyl) propionyloxy} butyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] 2,2,6,6-tetramethylpiperidine, and 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinol and β, β, β ′, β′-tetramethyl-3,9- [2,4 , 8,10-tetraoxaspiro (5,5) undecane] condensate with diethanol.

ヒンダードアミン系光安定剤はピペリジン骨格中の窒素原子の結合相手により大きく分けて、N−H型(窒素原子に水素が結合)、N−R型(窒素原子にアルキル基(R)が結合)、N−OR型(窒素原子にアルコキシ基(OR)が結合)の3タイプがあるが、ポリカーボネート樹脂に適用する際、ヒンダードアミン系光安定剤の塩基性の観点から、低塩基性であるN−R型、N−OR型を用いるのがより好ましい。   The hindered amine light stabilizers are roughly classified according to the binding partner of the nitrogen atom in the piperidine skeleton, the NH type (hydrogen is bonded to the nitrogen atom), the NR type (the alkyl group (R) is bonded to the nitrogen atom), There are three types of N-OR type (an alkoxy group (OR) is bonded to a nitrogen atom), but when applied to a polycarbonate resin, N-R is a low basicity from the viewpoint of the basicity of the hindered amine light stabilizer. More preferably, the N-OR type is used.

上記化合物の中でも、本発明において、下記式(8)で表される化合物がより好適に用いられる。

Figure 0006588219
Among the above compounds, in the present invention, a compound represented by the following formula (8) is more preferably used.
Figure 0006588219

上記ヒンダードアミン系光安定剤は、単独でまたは2種以上を組合せて使用することができる。
ヒンダードアミン系光安定剤の含有量は、A成分およびB成分の合計100重量部に対し、0〜1重量部であることが好ましく、0.05〜1重量部がより好ましく、さらに好ましくは0.08〜0.7重量部、特に好ましくは0.1〜0.5重量部である。ヒンダードアミン系光安定剤の含有量が1重量部より多いとガス発生による外観不良やポリカーボネート樹脂の分解による物性低下が起こる場合があり好ましくない。また、0.05重量部未満であると、十分な耐光性が発現しない場合がある。
The said hindered amine light stabilizer can be used individually or in combination of 2 or more types.
The content of the hindered amine light stabilizer is preferably 0 to 1 part by weight, more preferably 0.05 to 1 part by weight, and still more preferably 0. It is 08-0.7 weight part, Most preferably, it is 0.1-0.5 weight part. When the content of the hindered amine light stabilizer is more than 1 part by weight, it is not preferable because an appearance defect due to gas generation and a decrease in physical properties due to decomposition of the polycarbonate resin may occur. Further, if it is less than 0.05 parts by weight, sufficient light resistance may not be exhibited.

(iv)染顔料
本発明のポリカーボネート樹脂組成物は更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。また極微量の染顔料による着色、かつ鮮やかな発色性を有するポリカーボネート樹脂組成物もまた提供可能である。
(Iv) Dye / pigment The polycarbonate resin composition of the present invention can further provide a molded product containing various dyes / pigments and exhibiting various design properties. By blending a fluorescent brightening agent or other fluorescent dye that emits light, a better design effect that makes use of the luminescent color can be imparted. Further, a polycarbonate resin composition having coloring with a very small amount of dye / pigment and vivid coloring can also be provided.

本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。   Examples of the fluorescent dye (including a fluorescent brightening agent) used in the present invention include a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, and a xanthene fluorescent dye. And xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Among these, coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes are preferable because they have good heat resistance and little deterioration during molding of the polycarbonate resin.

上記ブルーイング剤および蛍光染料以外の染料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、各種板状フィラーに金属被膜または金属酸化物被膜を有するものが好適である。
上記の染顔料の含有量は、A成分とB成分との合計100重量部に対して、0.00001〜1重量部が好ましく、0.00005〜0.5重量部がより好ましい。
Examples of dyes other than the above bluing agents and fluorescent dyes include perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone And dyes such as dyes, dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes. Furthermore, the resin composition of this invention can mix | blend a metallic pigment, and can also obtain a better metallic color. As the metallic pigment, those having a metal film or a metal oxide film on various plate-like fillers are suitable.
The content of the dye / pigment is preferably 0.00001 to 1 part by weight and more preferably 0.00005 to 0.5 part by weight with respect to 100 parts by weight of the total of the A component and the B component.

(v)その他の熱安定剤
本発明のポリカーボネート樹脂組成物には、上記のリン系熱安定剤およびフェノール系熱安定剤以外の他の熱安定剤を配合することもできる。かかるその他の熱安定剤は、これらの安定剤および酸化防止剤のいずれかと併用されることが好ましく、特に両者と併用されることが好ましい。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤(かかる安定剤の詳細は特開平7−233160号公報に記載されている)が好適に例示される。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば上記社製のIrganox HP−2921が好適に例示される。本発明においてもかかる予め混合された安定剤を利用することもできる。ラクトン系安定剤の配合量は、A成分とB成分との合計100重量部に対し、好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
(V) Other heat stabilizers The polycarbonate resin composition of the present invention may contain other heat stabilizers other than the phosphorus heat stabilizer and the phenol heat stabilizer. Such other heat stabilizers are preferably used in combination with any of these stabilizers and antioxidants, and particularly preferably used in combination with both. Examples of such other heat stabilizers include lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene (such stabilizers). Is described in detail in JP-A-7-233160). Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and can be used. Furthermore, a stabilizer obtained by mixing the compound with various phosphite compounds and hindered phenol compounds is commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. In the present invention, such a premixed stabilizer can also be used. The blending amount of the lactone stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight with respect to 100 parts by weight of the total of the A component and the B component.

またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかる安定剤は、樹脂組成物が回転成形に適用される場合に特に有効である。かかるイオウ含有安定剤の配合量は、A成分とB成分との合計100重量部に対して、好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。   Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Illustrated. Such a stabilizer is particularly effective when the resin composition is applied to rotational molding. The amount of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, based on 100 parts by weight of the total of the component A and the component B. is there.

(vi)光高反射用白色顔料
本発明のポリカーボネート樹脂組成物には光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては硫化亜鉛、酸化亜鉛、硫酸バリウム、炭酸カルシウム、焼成カオリンなどが挙げられる。かかる光高反射用白色顔料の含有量は、A成分とB成分との合計100重量部に対して、3〜30重量部が好ましく、8〜25重量部がより好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。
(Vi) White pigment for high light reflection The polycarbonate resin composition of the present invention can be provided with a light reflection effect by blending a white pigment for high light reflection. Examples of such white pigments include zinc sulfide, zinc oxide, barium sulfate, calcium carbonate, and calcined kaolin. The content of the white pigment for high light reflection is preferably 3 to 30 parts by weight, more preferably 8 to 25 parts by weight with respect to 100 parts by weight as a total of the A component and the B component. Two or more kinds of white pigments for high light reflection can be used in combination.

(vii)難燃剤
本発明のポリカーボネート樹脂組成物には難燃剤を配合して難燃性を付与することができる。かかる難燃剤としては従来、熱可塑性樹脂、特にポリカーボネート系樹脂の難燃剤として知られる各種の化合物が適用できるが、より好適には、(i)ハロゲン系難燃剤(例えば、臭素化ポリカーボネート化合物など)(ii)リン系難燃剤(例えば、モノホスフェート化合物、ホスフェートオリゴマー化合物ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、ホスホン酸アミド化合物、およびホスファゼン化合物など)、(iii)金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、および錫酸金属塩系難燃剤など)、(iv)シリコーン化合物からなるシリコーン系難燃剤である。尚、難燃剤として使用される化合物の配合は難燃性の向上のみならず、各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。
(Vii) Flame retardant A flame retardant can be mix | blended with the polycarbonate resin composition of this invention, and a flame retardance can be provided. As such a flame retardant, conventionally, various compounds known as a flame retardant for thermoplastic resins, particularly polycarbonate resins, can be applied. More preferably, (i) halogen flame retardants (for example, brominated polycarbonate compounds) (Ii) Phosphorous flame retardants (eg, monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, phosphonic acid amide compounds, and phosphazene compounds), (iii) metal salt flame retardants (eg, organic sulfonic acid) Alkali (earth) metal salts, borate metal salt flame retardants, stannate metal salt flame retardants, etc.), and (iv) silicone flame retardants comprising silicone compounds. The compounding of the compound used as a flame retardant not only improves the flame retardancy but also provides, for example, an improvement in antistatic properties, fluidity, rigidity, and thermal stability based on the properties of each compound.

難燃剤の含有量は、A成分とB成分との合計100重量部に対し、好ましくは0.01〜30重量部であり、より好ましくは0.05〜28重量部、さらに好ましくは0.08〜25重量部である。難燃剤の含有量が0.01重量部未満の場合、十分な難燃性が得られない場合があり、30重量部を超えた場合、衝撃強度および耐薬品性の低下が大きい場合がある。   The content of the flame retardant is preferably 0.01 to 30 parts by weight, more preferably 0.05 to 28 parts by weight, still more preferably 0.08 with respect to a total of 100 parts by weight of the component A and the component B. ~ 25 parts by weight. When the content of the flame retardant is less than 0.01 parts by weight, sufficient flame retardancy may not be obtained, and when it exceeds 30 parts by weight, the impact strength and chemical resistance may be greatly reduced.

(viii)他の樹脂
本発明の樹脂組成物には、他の樹脂を本発明の効果を発揮する範囲において、少割合使用することもできる。
かかる他の樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレン等のポリオレフィン樹脂、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂等の樹脂が挙げられる。
(Viii) Other resins In the resin composition of the present invention, other resins may be used in a small proportion within a range where the effects of the present invention are exhibited.
Examples of such other resins include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, and polyethylene. Examples of the resin include polyolefin resin, polymethacrylate resin, phenol resin, and epoxy resin.

(ix)その他充填材
本発明の樹脂組成物には、他の充填材を本発明の効果を発揮する範囲において、少割合使用することもできる。
かかる他の充填材としてはチタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維
、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填剤、ワラストナイト、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラス・ビーズ、セラミックビ−ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどの非繊維状充填剤が挙げられる。
(Ix) Other fillers In the resin composition of the present invention, other fillers can be used in a small proportion within a range in which the effects of the present invention are exhibited.
Such other fillers include fibrous fillers such as potassium titanate whisker, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone koji fiber, metal fiber, wollastonite, sericite, kaolin, Metallic compounds such as silicates such as mica, clay, bentonite, asbestos, talc and alumina silicate, swellable layered silicates such as montmorillonite and synthetic mica, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide Non-fibrous fillers such as carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and silica Can be mentioned.

(x)その他の添加剤
その他、本発明の芳香族ポリカーボネート樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。
かかる添加剤としては、摺動剤(例えばPTFE粒子)、H成分以外の着色剤(例えばカーボンブラックなどの顔料、染料)、光拡散剤(例えばアクリル架橋粒子、シリコン架橋粒子、極薄ガラスフレーク、炭酸カルシウム粒子)、蛍光染料、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、およびフォトクロミック剤などが挙げられる。
(X) Other additives In addition, the aromatic polycarbonate resin composition of the present invention may contain a small amount of additives known per se for imparting various functions and improving properties to the molded product. it can. These additives are used in usual amounts as long as the object of the present invention is not impaired.
Examples of such additives include sliding agents (for example, PTFE particles), colorants other than the H component (for example, pigments and dyes such as carbon black), light diffusing agents (for example, acrylic crosslinked particles, silicon crosslinked particles, ultrathin glass flakes, Calcium carbonate particles), fluorescent dyes, inorganic phosphors (for example, phosphors having aluminate as a mother crystal), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents, photocatalytic antifouling agents (for example, particulate oxidation) (Titanium, fine particle zinc oxide), radical generator, infrared absorber (heat ray absorber), photochromic agent and the like.

(ポリカーボネート脂組成物の製造)
本発明のポリカーボネート樹脂組成物を製造するには、任意の方法が採用される。例えばA成分〜D成分および任意に他の添加剤を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどによりかかる予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、その後ペレタイザーによりペレット化する方法が挙げられる。
(Manufacture of polycarbonate fat composition)
Arbitrary methods are employ | adopted in order to manufacture the polycarbonate resin composition of this invention. For example, the components A to D and optionally other additives are sufficiently mixed using a premixing means such as a V-type blender, a Henschel mixer, a mechanochemical apparatus, an extrusion mixer, and then extruded granulated as necessary. There is a method of granulating such a premixed mixture using a vessel or a briquetting machine, then melt-kneading with a melt-kneader represented by a vent type twin screw extruder, and then pelletizing with a pelletizer.

他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。各成分の一部を予備混合する方法としては例えば、A成分以外の成分を予め予備混合した後、A成分のポリカーボネート樹脂に混合または押出機に直接供給する方法が挙げられる。   In addition, a method of supplying each component independently to a melt kneader represented by a vent type twin screw extruder, or a part of each component is premixed and then supplied to the melt kneader independently of the remaining components. The method of doing is also mentioned. Examples of a method of premixing a part of each component include a method of premixing components other than the component A in advance and then mixing the components with the polycarbonate resin of the component A or directly supplying them to an extruder.

予備混合する方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。   As a premixing method, for example, when a component having a powder form is included as the component A, a part of the powder and an additive to be blended are mixed to produce a master batch of the additive diluted with the powder. A method using a master batch can be mentioned. Furthermore, the method etc. which supply one component independently from the middle of a melt extruder are mentioned. In addition, when there exists a liquid thing in the component to mix | blend, what is called a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt extruder.

押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
As the extruder, one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. From the vent, a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to remove a foreign substance from the resin composition by installing a screen for removing the foreign substance mixed in the extrusion raw material in the zone in front of the extruder die. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (such as a disk filter), and the like.
Examples of the melt kneader include a banbury mixer, a kneading roll, a single screw extruder, a multi-screw extruder having three or more axes, in addition to a twin screw extruder.

上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。   The resin extruded as described above is directly cut into pellets, or after forming strands, the strands are cut with a pelletizer to be pelletized. When it is necessary to reduce the influence of external dust during pelletization, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, various methods already proposed for polycarbonate resin for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation or transportation. In addition, it is possible to appropriately reduce bubbles (vacuum bubbles) generated inside the strands and pellets. By these prescriptions, it is possible to increase the molding cycle and reduce the occurrence rate of defects such as silver. Moreover, although the shape of a pellet can take common shapes, such as a cylinder, a prism, and a spherical shape, it is a cylinder more suitably. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.

(本発明の樹脂組成物からなる成形品について)
本発明における樹脂組成物は、通常上述の方法で得られたペレットを射出成形して各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。
(About a molded article made of the resin composition of the present invention)
The resin composition in the present invention can usually produce various products by injection molding the pellets obtained by the above-described method. In such injection molding, not only a normal molding method but also an injection compression molding, an injection press molding, a gas assist injection molding, a foam molding (including those by injection of a supercritical fluid), an insert molding, depending on the purpose as appropriate. A molded product can be obtained using an injection molding method such as in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultrahigh-speed injection molding. The advantages of these various molding methods are already widely known. Moreover, either a cold runner system or a hot runner system can be selected for molding.

また本発明における樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。   Moreover, the resin composition in this invention can also be used in the form of various profile extrusion molded products, a sheet | seat, a film, etc. by extrusion molding. For forming sheets and films, an inflation method, a calendar method, a casting method, or the like can also be used. It is also possible to form a heat-shrinkable tube by applying a specific stretching operation. The resin composition of the present invention can be formed into a molded product by rotational molding, blow molding or the like.

本発明の樹脂組成物が利用される成形品の具体例としては、生活資材・建材・インテリア用品やOA機器・家電製品の内部部品やハウジングなどへの応用に好適なものである。これらの製品としては例えば、パソコン、ノートパソコン、CRTディスプレー、プリンター、携帯端末、携帯電話、コピー機、ファックス、記録媒体(CD、CD−ROM、DVD、PD、FDDなど)ドライブ、パラボラアンテナ、電動工具、VTR、テレビ、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器、照明機器、冷蔵庫、エアコン、タイプライター、ワードプロセッサー、スーツケースや清掃用具などの生活資材などを挙げることができ、これらの筐体などの各種部品に本発明の熱可塑性樹脂組成物から形成された樹脂製品を使用することができる。またその他の樹脂製品としては、ディフレクター部品、カーナビケーション部品、カーステレオ部品などの車両用部品を挙げることができる。   Specific examples of the molded article in which the resin composition of the present invention is used are suitable for application to living materials, building materials, interior goods, OA equipment, home appliances, internal parts, housings, and the like. These products include, for example, personal computers, notebook computers, CRT displays, printers, mobile terminals, mobile phones, copiers, fax machines, recording media (CD, CD-ROM, DVD, PD, FDD, etc.) drives, parabolic antennas, electric motors. Tools, VTRs, TVs, irons, hair dryers, rice cookers, microwave ovens, audio equipment, audio equipment such as audio / laser discs (registered trademark) / compact discs, lighting equipment, refrigerators, air conditioners, typewriters, word processors, suitcases And household materials such as cleaning tools, etc., and resin products formed from the thermoplastic resin composition of the present invention can be used for various parts such as these casings. Examples of other resin products include vehicle parts such as deflector parts, car navigation parts, and car stereo parts.

本発明のポリカーボネート樹脂組成物は、機械特性、耐薬品性および長期耐クリープ特性を高い次元で両立していることから、屋外/屋内に限らず、住宅設備用途、建材用途、生活資材用途、インフラ設備用途、自動車用途、OA・EE用途、屋外機器用途、その他の各種分野において幅広く有用である。したがって本発明の奏する産業上の効果は極めて大である。   Since the polycarbonate resin composition of the present invention has a high level of mechanical properties, chemical resistance and long-term creep resistance properties, it is not limited to the outdoors / indoors, but is also used for housing equipment, building materials, daily life materials, and infrastructure. It is widely useful in facilities, automobiles, OA / EE applications, outdoor equipment applications, and other various fields. Therefore, the industrial effect exhibited by the present invention is extremely great.

本発明者が現在最良と考える発明の形態は、上記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。   The form of the invention that the present inventor considers to be the best is an aggregation of the preferable ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.

以下に実施例をあげて本発明を更に説明する。なお、特に説明が無い限り実施例中の部は重量部、%は重量%である。なお、評価は下記の方法によって実施した。
(ポリカーボネート樹脂組成物の評価)
(i)長期耐クリープ特性
下記方法で得られたISO曲げ試験片を用いて、60℃雰囲気下、荷重13MPaの負荷をかけ、処理前の歪み量と100時間後の歪み量の測定を実施した。なお、長期耐クリープ特性は下記式より算出した。
長期耐クリープ特性(%)=100×[(100時間後の歪み量)−(処理前の歪み量)]/(処理前の歪み量)
The following examples further illustrate the present invention. Unless otherwise specified, parts in the examples are parts by weight, and% is% by weight. Evaluation was carried out by the following method.
(Evaluation of polycarbonate resin composition)
(I) Long-term creep resistance characteristics Using an ISO bending test piece obtained by the following method, a load of 13 MPa was applied in an atmosphere of 60 ° C., and the amount of strain before treatment and the amount of strain after 100 hours were measured. . The long-term creep resistance was calculated from the following formula.
Long-term creep resistance (%) = 100 × [(amount of strain after 100 hours) − (amount of strain before treatment)] / (amount of strain before treatment)

(ii)耐薬品性
下記の方法で得られたISO引張試験片を用いて、3点曲げ試験法にて、0.5%歪みをかけた後、マジックリン、バスマジックリンおよびトイレマジックリン(全て、花王(株)製)を含浸させた布をかけ、23℃で96時間放置した後に、外観変化の有無を確認した。なお、評価は下記の基準で実施した。
○:外観変化が見られないもの
△:微細なクラックの発生が見られるもの
×:破断にいたるような大きなクラックが見られるもの
(Ii) Chemical resistance After applying 0.5% strain by the three-point bending test method using an ISO tensile test piece obtained by the following method, magicrin, bath magicrin and toilet magiclin ( All were covered with a cloth impregnated with Kao Co., Ltd. and allowed to stand at 23 ° C. for 96 hours, and then the presence or absence of changes in appearance was confirmed. The evaluation was performed according to the following criteria.
◯: No change in appearance Δ: Fine cracks are observed ×: Large cracks leading to breakage are observed

(iii)曲げ弾性率
下記の方法で得られたISO曲げ試験片を用いて、ISO 178に従い、曲げ弾性率の測定を実施した。
(Iii) Flexural modulus The flexural modulus was measured according to ISO 178 using the ISO bending specimen obtained by the following method.

(iv)シャルピー衝撃強度
下記の方法で得られたISO曲げ試験片を用いて、ISO 179に従い、ノッチ無のシャルピー衝撃強度の測定を実施した。
(Iv) Charpy impact strength According to ISO 179, the Charpy impact strength without a notch was measured using the ISO bending test piece obtained by the following method.

[実施例1〜30、比較例1〜8]
表1〜表4に示す組成で、B成分のポリプロピレン系樹脂を除く成分からなる混合物を押出機の第1供給口から供給した。かかる混合物はV型ブレンダーで混合して得た。B成分のポリプロピレン系樹脂は、第2供給口からサイドフィーダーを用いて供給した。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α−38.5BW−3V)を使用し、スクリュー回転数230rpm、吐出量25kg/h、ベントの真空度3kPaで溶融混練しペレットを得た。なお、押出温度については、第1供給口からダイス部分まで260℃で実施した。
得られたペレットの一部は、90〜100℃で6時間熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、シリンダー温度260℃、金型温度70℃にて評価用の試験片(ISO引張試験片(ISO527−1及びISO527−2準拠)、ISO曲げ試験片(ISO178およびISO179準拠))を成形した。
[Examples 1-30, Comparative Examples 1-8]
The mixture which consists of a component except the polypropylene resin of B component with the composition shown in Table 1-Table 4 was supplied from the 1st supply port of the extruder. Such a mixture was obtained by mixing with a V-type blender. B component polypropylene resin was supplied from the second supply port using a side feeder. Extrusion is performed using a vent type twin screw extruder (Nippon Steel Works TEX30α-38.5BW-3V) with a diameter of 30 mmφ and melt kneading at a screw rotation speed of 230 rpm, a discharge rate of 25 kg / h, and a vacuum degree of the vent of 3 kPa. Pellets were obtained. In addition, about extrusion temperature, it implemented at 260 degreeC from the 1st supply port to the die part.
A part of the obtained pellets was dried in a hot air circulation dryer at 90 to 100 ° C. for 6 hours, and then evaluated for evaluation at a cylinder temperature of 260 ° C. and a mold temperature of 70 ° C. using an injection molding machine. Pieces (ISO tensile test pieces (conforming to ISO527-1 and ISO527-2) and ISO bending test pieces (conforming to ISO178 and ISO179)) were molded.

なお、表1〜表4中の記号表記の各成分は下記の通りである。
(A成分)
A−1:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量25,100のポリカーボネート樹脂粉末、帝人(株)製 パンライトL−1250WQ(製品名))
A−2:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量22,400のポリカーボネート樹脂粉末、帝人(株)製 パンライトL−1225WP(製品名))
A−3:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量19,800のポリカーボネート樹脂粉末、帝人(株)製 パンライトL−1225WX(製品名))
A−4:ポリカーボネート−ポリジオルガノシロキサン共重合樹脂(粘度平均分子量19,800、PDMS量8.4%、PDMS重合度37)
(B成分)
B−1:ポリプロピレン樹脂(ホモポリマー、MFR:2.0g/10min、(株)サンアロマー製 サンアロマーPL400A(製品名))
B−2:ポリプロピレン樹脂(ホモポリマー、MFR:0.5g/10min、(株)サンアロマー製 サンアロマーVS200A(製品名))
B−3:ポリプロピレン樹脂(ホモポリマー、MFR:10g/10min、(株)サンアロマー製 サンアロマーVS700A(製品名))
B−4:ポリプロピレン樹脂(ブロックポリマー、MFR:1.5g/10min、(株)サンアロマー製 サンアロマーVB370BA(製品名))
(C成分)
C−1:スチレン−エチレン・プロピレン−スチレンブロック共重合体(スチレン含有量:65wt%、MFR:0.4g/10min、(株)クラレ製 セプトン2104(製品名))
C−2:スチレン−エチレン・プロピレン−スチレンブロック共重合体(スチレン含有量:30wt%、MFR:70g/10min、(株)クラレ製 セプトン2002(製品名))
C−3:スチレン−エチレン・ブチレン−スチレンブロック共重合体(スチレン含有量:67wt%、MFR:2.0g/10min、旭化成ケミカルズ(株)製 タフテックH1043(製品名))
C−4:スチレン−ブタジエン・ブチレン−スチレンブロック共重合体(スチレン含有量:67wt%、MFR:28g/10min、旭化成ケミカルズ(株)製 タフテックP2000(製品名))
(D成分)
(D−1成分)
GFー1:円形断面チョップドガラス繊維(日東紡績(株)製;CSG 3PE−455(商品名)、長径13μm、カット長3mm、ウレタン系集束剤)
GF−2:円形断面チョップドガラス繊維(日東紡績(株)製;CSG 3PE−937(商品名)、長径13μm、カット長3mm、エポキシ系集束剤)
GF−3:扁平断面チョップドガラス繊維(日東紡績(株)製;CSG 3PA−830(商品名)、長径27μm、短径4μm、カット長3mm、エポキシ系集束剤)
(D−2成分)
CF−1:炭素繊維(東邦テナックス(株)製;HT C422、径7μm)
CF−2:ニッケルコート炭素繊維(東邦テナックス(株)製;HT C923、径7.5μm)
(E成分)
E−1:リン系熱安定剤(トリメチルフォスフェート、大八化学工業(株)製 TMP(製品名))
E−2:リン系熱安定剤(トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、チバスペシャルティケミカルズ(株)製;Irgafos168(商品名))
(F成分)
F−1:フェノール系熱安定剤(オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、分子量531、BASFジャパン(株)製 Irganox 1076(製品名))
F−2:フェノール系熱安定剤(3,3´,3´´,5,5´,5´´−ヘキサ−tert−ブチル−a,a´,a´´−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、分子量775、BASFジャパン(株)製 Irganox 1330(製品名))
F−3:フェノール系熱安定剤(1,3,5−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、分子量784、BASFジャパン(株)製 Irganox 3114(製品名))
In addition, each component of the symbol description in Table 1-Table 4 is as follows.
(A component)
A-1: Aromatic polycarbonate resin (polycarbonate resin powder having a viscosity average molecular weight of 25,100 made from bisphenol A and phosgene by a conventional method, Panlite L-1250WQ (product name) manufactured by Teijin Limited)
A-2: Aromatic polycarbonate resin (polycarbonate resin powder having a viscosity average molecular weight of 22,400 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WP (product name) manufactured by Teijin Ltd.)
A-3: Aromatic polycarbonate resin (polycarbonate resin powder having a viscosity average molecular weight of 19,800 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WX (product name) manufactured by Teijin Limited)
A-4: Polycarbonate-polydiorganosiloxane copolymer resin (viscosity average molecular weight 19,800, PDMS amount 8.4%, PDMS polymerization degree 37)
(B component)
B-1: Polypropylene resin (homopolymer, MFR: 2.0 g / 10 min, manufactured by Sun Allomer, Sun Allomer PL400A (product name))
B-2: Polypropylene resin (homopolymer, MFR: 0.5 g / 10 min, Sun Allomer VS200A (product name) manufactured by Sun Allomer Co., Ltd.)
B-3: Polypropylene resin (homopolymer, MFR: 10 g / 10 min, Sun Allomer VS700A (product name) manufactured by Sun Allomer Co., Ltd.)
B-4: Polypropylene resin (Block polymer, MFR: 1.5 g / 10 min, Sun Allomer VB370BA (product name) manufactured by Sun Allomer Co., Ltd.)
(C component)
C-1: Styrene-ethylene-propylene-styrene block copolymer (styrene content: 65 wt%, MFR: 0.4 g / 10 min, Kuraray Co., Ltd. Septon 2104 (product name))
C-2: Styrene-ethylene / propylene-styrene block copolymer (styrene content: 30 wt%, MFR: 70 g / 10 min, Kuraray Co., Ltd. Septon 2002 (product name))
C-3: Styrene-ethylene-butylene-styrene block copolymer (styrene content: 67 wt%, MFR: 2.0 g / 10 min, Tuftec H1043 (product name) manufactured by Asahi Kasei Chemicals Corporation)
C-4: Styrene-butadiene-butylene-styrene block copolymer (styrene content: 67 wt%, MFR: 28 g / 10 min, manufactured by Asahi Kasei Chemicals Corporation Tuftec P2000 (product name))
(D component)
(D-1 component)
GF-1: Circular cross-section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd .; CSG 3PE-455 (trade name), major axis 13 μm, cut length 3 mm, urethane sizing agent)
GF-2: Circular cross-section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd .; CSG 3PE-937 (trade name), major axis 13 μm, cut length 3 mm, epoxy sizing agent)
GF-3: chopped glass fiber with flat cross section (manufactured by Nitto Boseki Co., Ltd .; CSG 3PA-830 (trade name), major axis 27 μm, minor diameter 4 μm, cut length 3 mm, epoxy-based sizing agent)
(D-2 component)
CF-1: Carbon fiber (manufactured by Toho Tenax Co., Ltd .; HT C422, diameter 7 μm)
CF-2: Nickel-coated carbon fiber (manufactured by Toho Tenax Co., Ltd .; HT C923, diameter 7.5 μm)
(E component)
E-1: Phosphorus heat stabilizer (trimethyl phosphate, TMP (product name) manufactured by Daihachi Chemical Industry Co., Ltd.)
E-2: Phosphorus heat stabilizer (Tris (2,4-di-tert-butylphenyl) phosphite, manufactured by Ciba Specialty Chemicals, Inc .; Irgafos 168 (trade name))
(F component)
F-1: Phenol heat stabilizer (octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, molecular weight 531, Irganox 1076 (product name) manufactured by BASF Japan Ltd.)
F-2: Phenol-based heat stabilizer (3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4, 6-triyl) tri-p-cresol, molecular weight 775, manufactured by BASF Japan Ltd. Irganox 1330 (product name))
F-3: Phenol-based heat stabilizer (1,3,5-tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H , 3H, 5H) -trione, molecular weight 784, Irganox 3114 (product name) manufactured by BASF Japan Ltd.)

Figure 0006588219
Figure 0006588219

Figure 0006588219
Figure 0006588219

Figure 0006588219
Figure 0006588219

Figure 0006588219
Figure 0006588219

上記表1〜表4から本発明の配合により、機械特性、耐薬品性及び長期耐クリープ特性を高次元で満足するポリカーボネート樹脂組成物が得られることが分かる。   From the above Tables 1 to 4, it can be seen that a polycarbonate resin composition satisfying mechanical properties, chemical resistance and long-term creep resistance at a high level can be obtained by blending the present invention.

Claims (9)

(A)ポリカーボネート系樹脂(A成分)および(B)ポリプロピレン系樹脂(B成分)の合計100重量部に対し、(C)水添ポリジエン単位が水添イソプレン単位であり、エチレン・プロピレンブロック単位を有するブロック共重合体または水添ポリジエン単位が部分水添ブタジエン単位であり、ブダジエン・ブチレンブロック単位を有するブロック共重合体であるスチレン系熱可塑性エラストマー(C成分)1〜15重量部並びに(D)ガラス繊維(D−1成分)および炭素繊維(D−2成分)からなる群より選ばれる少なくとも一種の繊維状充填材(D成分)1〜100重量部を含み、A成分およびB成分の割合(重量比)(A/B)が80/20〜30/70であるポリカーボネート樹脂組成物。 (A) The hydrogenated polydiene unit is a hydrogenated isoprene unit, and the ethylene / propylene block unit is based on 100 parts by weight of the total of polycarbonate resin (component A) and (B) polypropylene resin (component B). 1-15 parts by weight of a styrenic thermoplastic elastomer (component C) which is a block copolymer having a block copolymer or hydrogenated polydiene unit having a partially hydrogenated butadiene unit and a butadiene-butylene block unit , and (D) Including 1 to 100 parts by weight of at least one fibrous filler (D component) selected from the group consisting of glass fiber (D-1 component) and carbon fiber (D-2 component), the ratio of A component and B component ( A polycarbonate resin composition having a weight ratio (A / B) of 80/20 to 30/70. C成分のスチレン単位の含有量が40〜70重量%である請求項1に記載のポリカーボネート樹脂組成物。   The polycarbonate resin composition according to claim 1, wherein the content of styrene units in component C is 40 to 70% by weight. C成分の230℃、2.16kg荷重でのMFRが0.1〜10g/10minである請求項1または2に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 1 or 2 , wherein the MFR of Component C at 230 ° C and a load of 2.16 kg is 0.1 to 10 g / 10 min. B成分の230℃、2.16kg荷重でのMFRが0.1〜5g/10minである請求項1〜のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 3 , wherein the B component has an MFR of 0.1 to 5 g / 10 min at 230 ° C and a load of 2.16 kg. 樹脂成分100重量部に対し、(E)リン系熱安定剤(G成分)を0.05〜1.0重量部含む請求項1〜のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 4 , comprising 0.05 to 1.0 part by weight of (E) a phosphorus-based heat stabilizer (G component) with respect to 100 parts by weight of the resin component. 樹脂成分100重量部に対し、(F)フェノール系熱安定剤(F成分)を0.05〜1.0重量部含む請求項1〜のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 5 , comprising 0.05 to 1.0 part by weight of (F) a phenol-based heat stabilizer (F component) with respect to 100 parts by weight of the resin component. F成分が下記式(6)または(7)で表される構造を有する化合物である請求項に記載のポリカーボネート樹脂組成物。
Figure 0006588219
Figure 0006588219
The polycarbonate resin composition according to claim 6 , wherein the F component is a compound having a structure represented by the following formula (6) or (7).
Figure 0006588219
Figure 0006588219
請求項1〜のいずれかに記載のポリカーボネート樹脂組成物からなる射出成形品。 An injection-molded article comprising the polycarbonate resin composition according to any one of claims 1 to 7 . 請求項1〜のいずれかに記載のポリカーボネート樹脂組成物からなる構造部材。 Structural members made of a polycarbonate resin composition according to any one of claims 1-7.
JP2015085984A 2015-04-20 2015-04-20 Polycarbonate resin composition Active JP6588219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085984A JP6588219B2 (en) 2015-04-20 2015-04-20 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085984A JP6588219B2 (en) 2015-04-20 2015-04-20 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JP2016204480A JP2016204480A (en) 2016-12-08
JP6588219B2 true JP6588219B2 (en) 2019-10-09

Family

ID=57487573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085984A Active JP6588219B2 (en) 2015-04-20 2015-04-20 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JP6588219B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190014544A (en) * 2016-06-03 2019-02-12 코베스트로 도이칠란트 아게 A multilayer composite material containing a specific copolycarbonate as a matrix material
JP6975651B2 (en) * 2018-01-24 2021-12-01 帝人株式会社 Laminated body and fiber reinforced resin composite composed of it
WO2020138222A1 (en) 2018-12-27 2020-07-02 宇部マテリアルズ株式会社 Polycarbonate resin composition and method for producing same, masterbatch pellet, and molded article
JP7219332B2 (en) * 2019-03-04 2023-02-07 帝人株式会社 Polycarbonate resin composition
JP7283928B2 (en) * 2019-03-14 2023-05-30 帝人株式会社 Aromatic polycarbonate resin composition
JP7111905B2 (en) * 2019-08-21 2022-08-02 帝人株式会社 Polycarbonate resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930185B2 (en) * 1981-06-03 1984-07-25 出光石油化学株式会社 Polycarbonate resin composition
US4568723A (en) * 1984-11-08 1986-02-04 Mobil Oil Company Blends of polypropylene, polycarbonate and a saturated styrene-ethylene-butylene-styrene rubber
JPH0517633A (en) * 1991-07-08 1993-01-26 Idemitsu Petrochem Co Ltd Polypropylene resin composition
JPH0718152A (en) * 1993-06-30 1995-01-20 Calp Corp Electrostatic charge-substaining composite material
JP4086585B2 (en) * 2002-08-08 2008-05-14 テクノポリマー株式会社 Thermoplastic resin composition
JP2014058610A (en) * 2012-09-14 2014-04-03 Tsubakuro Kagaku Kogyo Kk Resin molding
JP6133642B2 (en) * 2013-03-21 2017-05-24 帝人株式会社 Polycarbonate resin composition and molded article thereof
JP6392506B2 (en) * 2013-07-17 2018-09-19 帝人株式会社 Polycarbonate resin composition

Also Published As

Publication number Publication date
JP2016204480A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6588219B2 (en) Polycarbonate resin composition
JP6328985B2 (en) Polycarbonate resin composition
JP5592046B2 (en) Flame retardant polycarbonate resin composition with excellent antistatic properties
JP2011219553A (en) Flame-retardant resin composition
JP6807634B2 (en) Fiber reinforced polypropylene resin composition
JP2016003329A (en) Polycarbonate resin composition
JP6577162B2 (en) Transparent flame retardant thermoplastic resin composition and molded article thereof
JP6495669B2 (en) Flame retardant polycarbonate resin composition
JP2016125025A (en) Polycarbonate resin composition
JP7090652B2 (en) Reusable medical box
JP2016130291A (en) Flame-retardant polycarbonate resin composition
JP7208069B2 (en) Fiber-reinforced polypropylene resin composition
JP7260251B2 (en) Flame-retardant polycarbonate resin composition
JP7283928B2 (en) Aromatic polycarbonate resin composition
JP2016113480A (en) Flame-retardant polycarbonate resin composition
JP7267839B2 (en) Flame-retardant polycarbonate resin composition
JP6976438B2 (en) Polycarbonate resin composition
JP2018016756A (en) Polycarbonate resin composition
JP2020132830A (en) Method for manufacturing resin composition
JP7219332B2 (en) Polycarbonate resin composition
JP7428558B2 (en) Flame retardant polycarbonate resin composition
WO2017145682A1 (en) Block member for rain water storage tank
JP2023110207A (en) Flame-retardant polycarbonate resin composition and molded article thereof
JP2023137248A (en) Flame-retardant polycarbonate resin composition and molding thereof
JP2023113987A (en) Polycarbonate resin composition and molding of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190912

R150 Certificate of patent or registration of utility model

Ref document number: 6588219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150