[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6587895B2 - Contactless power supply system - Google Patents

Contactless power supply system Download PDF

Info

Publication number
JP6587895B2
JP6587895B2 JP2015202062A JP2015202062A JP6587895B2 JP 6587895 B2 JP6587895 B2 JP 6587895B2 JP 2015202062 A JP2015202062 A JP 2015202062A JP 2015202062 A JP2015202062 A JP 2015202062A JP 6587895 B2 JP6587895 B2 JP 6587895B2
Authority
JP
Japan
Prior art keywords
coil
power
spiral coils
power receiving
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015202062A
Other languages
Japanese (ja)
Other versions
JP2017076654A (en
Inventor
健次 勝代
健次 勝代
耕一 山野上
耕一 山野上
人士 川口
人士 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Imasen Electric Industrial Co Ltd
Original Assignee
Hiroshima University NUC
Imasen Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Imasen Electric Industrial Co Ltd filed Critical Hiroshima University NUC
Priority to JP2015202062A priority Critical patent/JP6587895B2/en
Publication of JP2017076654A publication Critical patent/JP2017076654A/en
Application granted granted Critical
Publication of JP6587895B2 publication Critical patent/JP6587895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、非接触給電システムに関し、特に、地上に設置された送電コイルと車体下面に設置された受電コイルとの間で非接触給電を行うプラグインハイブリッド車や電気自動車用の非接触給電システムに好適な技術に関する。   The present invention relates to a non-contact power feeding system, and more particularly to a non-contact power feeding system for a plug-in hybrid vehicle or an electric vehicle that performs non-contact power feeding between a power transmission coil installed on the ground and a power receiving coil installed on a lower surface of a vehicle body. It relates to a technique suitable for the above.

外部電力でバッテリ充電されるプラグインハイブリッド車(PHEV)や電気自動車(EV)では、充電ケーブルの接続作業の煩わしさ、衣服の汚れ、雨天時の不安などから、ワイヤレスでの給電(非接触給電)のニーズが高くなっている。   For plug-in hybrid vehicles (PHEVs) and electric vehicles (EVs) that are charged with external power, wireless charging (non-contact charging) due to the troublesome work of connecting the charging cable, dirt on clothes, anxiety during rainy weather, etc. ) Needs are increasing.

非接触給電には、地上側の1次コイルと車上側の2次コイルとの間の電磁誘導を利用する電磁誘導式と、磁界共鳴を利用する磁界共鳴式とがある。このうち電磁誘導式は、電力伝送効率が非常に高いが、1次コイルと2次コイルとを十分に近づけなければならないという特徴がある。一方、磁界共鳴式は、1次コイルと2次コイルとの距離がある程度大きくてもよいが、電磁誘導式に比べて電力伝送効率が低いという特徴がある。従来、給電部(1次コイル)と受電部(2次コイル)との位置ずれがあっても車体外の漏れ磁束の影響を抑制する電磁誘導式の非接触給電装置が提案されている(例えば、特許文献1参照)。また、従来、複数の送受電コイルの組み合わせを持ち、車の位置ずれに応じて対抗するコイルを使用する非接触給電装置が提案されている(例えば、特許文献2参照)。   Non-contact power feeding includes an electromagnetic induction type that uses electromagnetic induction between a primary coil on the ground side and a secondary coil on the vehicle upper side, and a magnetic field resonance type that uses magnetic field resonance. Among them, the electromagnetic induction type has a very high power transmission efficiency, but has a feature that the primary coil and the secondary coil must be sufficiently close to each other. On the other hand, the magnetic field resonance type may have a certain distance between the primary coil and the secondary coil, but has a feature that the power transmission efficiency is lower than that of the electromagnetic induction type. Conventionally, there has been proposed an electromagnetic induction type non-contact power feeding device that suppresses the influence of leakage magnetic flux outside the vehicle body even if there is a positional deviation between the power feeding unit (primary coil) and the power receiving unit (secondary coil) (for example, , See Patent Document 1). Conventionally, there has been proposed a non-contact power feeding device that has a combination of a plurality of power transmission / reception coils and uses a coil that opposes according to the displacement of the vehicle (see, for example, Patent Document 2).

特開2011−49230号公報JP 2011-49230 A 特開2015−19551号公報JP2015-19551A

非接触給電システムで使用されるコイルのタイプとしてヘリカルコイルとスパイラルコイルがあるが、自動車用の非接触給電システムの国際標準化において、1次コイルおよび2次コイルとしてスパイラルコイルを採用することが決定した。スパイラルコイルは、ヘリカルコイルに比べて位置ずれ(横ずれ)に弱いため、コイルの位置ずれ対策が重要になる。   There are helical coils and spiral coils as the types of coils used in non-contact power supply systems, but it was decided to adopt spiral coils as primary and secondary coils in international standardization of non-contact power supply systems for automobiles. . Since the spiral coil is weaker in positional deviation (lateral deviation) than the helical coil, it is important to take measures against the positional deviation of the coil.

上記問題に鑑み、本発明は、自動車向けの非接触給電システムにおいて、1次コイルと2次コイルとの間に位置ずれが発生しても電力伝送効率を良好に保つことを課題とする。   In view of the above problems, an object of the present invention is to maintain good power transmission efficiency even when a positional deviation occurs between a primary coil and a secondary coil in a non-contact power feeding system for automobiles.

本発明の一局面に従った非接触給電システムは、地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して送電コイルと受電コイルとの間で非接触給電を行う非接触給電システムであって、送電コイルが1個のスパイラルコイルで構成されており、受電コイルが複数のスパイラルコイルに分割されており、前記送電コイルの外縁形状と前記受電コイルの外縁形状とは略同じであり、前記複数のスパイラルコイルが前記受電コイルの外縁形状を複数に分割した各形状を外縁形状として有し、前記複数のスパイラルコイルは、互いに車幅方向に離間しており、前記複数のスパイラルコイルがそれぞれ載置された複数のコイルコアは、互いに車幅方向に離間しているものである。 A non-contact power feeding system according to one aspect of the present invention is a non-contact power feeding system in which a power transmission coil installed on the ground and a power receiving coil installed on a lower surface of a vehicle body face each other and perform non-contact power feeding between the power transmitting coil and the power receiving coil. In the contact power supply system, the power transmission coil is configured by one spiral coil, the power reception coil is divided into a plurality of spiral coils, and the outer edge shape of the power transmission coil and the outer edge shape of the power reception coil are substantially the same. are the same, have a respective shape by the plurality of spiral coils were divided outer edge of the receiving coil into a plurality as outer edge, the plurality of spiral coils are spaced apart in the vehicle width direction to each other, said plurality of The plurality of coil cores on which the spiral coils are respectively placed are separated from each other in the vehicle width direction .

これによると、受電コイルが複数のスパイラルコイルに分割されていることにより、送電コイルに対して受電コイルが位置ずれしても、各スパイラルコイルで発生する起電力を足し合わせて受電コイル全体として大きな電力を発生させることができる。   According to this, since the power receiving coil is divided into a plurality of spiral coils, even if the power receiving coil is misaligned with respect to the power transmitting coil, the electromotive force generated in each spiral coil is added together to make the power receiving coil as a whole large. Electric power can be generated.

具体的には、複数のスパイラルコイルは受電コイルの外縁形状を車幅方向に2等分した2個のスパイラルコイルである。   Specifically, the plurality of spiral coils are two spiral coils obtained by dividing the outer edge shape of the power receiving coil into two equal parts in the vehicle width direction.

これによると、車幅方向の位置ずれに対応することができる。   According to this, it is possible to deal with a positional shift in the vehicle width direction.

また、具体的には、複数のスパイラルコイルは受電コイルの外縁形状を車幅方向に3分割した3個のスパイラルコイルである。   Specifically, the plurality of spiral coils are three spiral coils obtained by dividing the outer edge shape of the power receiving coil into three in the vehicle width direction.

これによると、車幅方向の位置ずれにより細やかに対応することができる。   According to this, it is possible to cope with the details by the positional deviation in the vehicle width direction.

本発明の他の局面に従った非接触給電システムでは、地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して前記送電コイルと前記受電コイルとの間で非接触給電を行う非接触給電システムであって、前記送電コイルが1個のスパイラルコイルで構成されており、前記受電コイルが複数のスパイラルコイルに分割されており、前記複数のスパイラルコイルが前記受電コイルの外縁形状を複数に分割した各形状を外縁形状として有し、前記複数のスパイラルコイルが前記受電コイルの外縁形状を車幅方向に3分割した3個のスパイラルコイルであり、3個のスパイラルコイルのうち両端のスパイラルコイルの車幅方向の幅を送電コイルと受電コイルとの位置ずれ許容量に等しくする。 In the non-contact power feeding system according to another aspect of the present invention, the power transmission coil installed on the ground and the power receiving coil installed on the lower surface of the vehicle body face each other, and the non-contact power feeding is performed between the power transmission coil and the power receiving coil. The power transmission coil is configured by one spiral coil, the power reception coil is divided into a plurality of spiral coils, and the plurality of spiral coils are outer edges of the power reception coil. Each of the shapes divided into a plurality of shapes is used as an outer edge shape, and the plurality of spiral coils are three spiral coils obtained by dividing the outer edge shape of the power receiving coil into three in the vehicle width direction. The width in the vehicle width direction of the spiral coils at both ends is made equal to the allowable positional deviation between the power transmission coil and the power reception coil.

これによると、送電コイルと受電コイルとの位置ずれ許容範囲内で電力伝送効率を良好に保つことができる。   According to this, it is possible to maintain good power transmission efficiency within an allowable range of misalignment between the power transmission coil and the power reception coil.

また、本発明の他の局面に従った非接触給電システムでは、地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して前記送電コイルと前記受電コイルとの間で非接触給電を行う非接触給電システムであって、前記送電コイルが1個のスパイラルコイルで構成されており、前記受電コイルが複数のスパイラルコイルに分割されており、前記複数のスパイラルコイルが前記受電コイルの外縁形状を複数に分割した各形状を外縁形状として有し、複数のスパイラルコイルは受電コイルの外縁形状を車長方向および車幅方向に4分割した4個のスパイラルコイルである。 Further, in the non-contact power feeding system according to another aspect of the present invention, the power transmission coil installed on the ground and the power receiving coil installed on the lower surface of the vehicle body face each other and are not between the power transmitting coil and the power receiving coil. A contactless power supply system for performing contact power supply, wherein the power transmission coil is configured by one spiral coil, the power reception coil is divided into a plurality of spiral coils, and the plurality of spiral coils are the power reception coils. The outer edge shape is divided into a plurality of shapes as outer edge shapes, and the plurality of spiral coils are four spiral coils obtained by dividing the outer edge shape of the power receiving coil into four in the vehicle length direction and the vehicle width direction.

これによると、車長方向および車幅方向の位置ずれに対応することができる。   According to this, it is possible to deal with a positional shift in the vehicle length direction and the vehicle width direction.

上記非接触給電システムは、複数のスパイラルコイルのそれぞれに発生する起電力を整流する複数の整流回路を備え、複数の整流回路の出力が直列接続または並列接続されていてもよい。   The non-contact power supply system may include a plurality of rectifier circuits that rectify electromotive forces generated in the plurality of spiral coils, and outputs of the plurality of rectifier circuits may be connected in series or in parallel.

本発明によると、送電コイル(1次コイル)と受電コイル(2次コイル)との間に位置ずれが発生しても電力伝送効率を良好に保つことができる。   According to the present invention, even if a positional deviation occurs between the power transmission coil (primary coil) and the power reception coil (secondary coil), the power transmission efficiency can be kept good.

本発明の一実施形態に係る非接触給電システムの概略図Schematic of the non-contact electric power feeding system which concerns on one Embodiment of this invention 一例に係る送電コイルの平面図および断面図Plan view and sectional view of power transmission coil according to an example 一例に係る受電コイル(2分割)の平面図および断面図Plan view and sectional view of power receiving coil (two-part) according to an example 複数に分割されたスパイラルコイルを電気的に直列接続した電気回路図Electrical circuit diagram in which spiral coils divided into multiple parts are electrically connected in series 複数に分割されたスパイラルコイルを電気的に並列接続した電気回路図Electrical circuit diagram in which spiral coils divided into multiple parts are electrically connected in parallel 図3の受電コイルが設置された車体の下面図3 is a bottom view of the vehicle body on which the power receiving coil of FIG. 3 is installed. 送電コイルと受電コイルとの位置ずれがない場合とある場合の磁束を説明する図The figure explaining magnetic flux in the case where there is no position shift with a power transmission coil and a power reception coil 送電コイルと受電コイルとの位置ずれと結合係数との関係を示すグラフThe graph which shows the relationship between the position shift of a power transmission coil and a power reception coil, and a coupling coefficient 別例に係る受電コイル(3分割)が設置された車体の下面図Bottom view of a vehicle body with a receiving coil (3 divisions) installed according to another example さらに別例に係る受電コイル(4分割)が設置された車体の下面図Furthermore, the bottom view of the vehicle body in which the power receiving coil (4 divisions) according to another example is installed

以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。   Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.

なお、発明者(ら)は、当業者が本発明を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。また、図面に描かれた各部材の寸法、厚み、細部の詳細形状などは実際のものとは異なることがある。   The inventor (s) provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present invention, and these are intended to limit the subject matter described in the claims. Not what you want. In addition, the dimensions, thicknesses, detailed shapes of details, and the like of each member depicted in the drawings may be different from actual ones.

図1は、本発明の一実施形態に係る非接触給電システムの概略を示す。例えば、本実施形態に係る非接触給電システムは、プラグインハイブリッド車や電気自動車などの自動車100のバッテリ30をワイヤレスで充電する磁界共鳴式の非接触給電システムである。   FIG. 1 shows an outline of a non-contact power feeding system according to an embodiment of the present invention. For example, the non-contact power feeding system according to the present embodiment is a magnetic resonance type non-contact power feeding system that wirelessly charges a battery 30 of a vehicle 100 such as a plug-in hybrid vehicle or an electric vehicle.

本実施形態に係る非接触給電システムにおいて、地上に地上装置200および送電ユニット60が設置されている。自動車100と地上装置200とは無線300により通信できるようになっている。自動車100は、バッテリ30の充電量を判断し、地上装置200に対して無線300を通じて適宜給電の開始/停止を要求する。地上装置200は、自動車100からの要求に従って自動車100への電気エネルギーの供給/停止をコントロールする。   In the non-contact power feeding system according to the present embodiment, the ground device 200 and the power transmission unit 60 are installed on the ground. The automobile 100 and the ground device 200 can communicate with each other by the radio 300. The automobile 100 determines the amount of charge of the battery 30 and requests the ground device 200 to start / stop power supply appropriately through the radio 300. The ground device 200 controls supply / stop of electric energy to the vehicle 100 according to a request from the vehicle 100.

自動車100へ電気エネルギーを供給する場合、地上装置200は、商用電力(AC電源)から85kHz帯(81.38k〜90kHz)の3kWクラスの高周波電流を生成する。地上装置200が生成した高周波電流はケーブル201を通じて送電ユニット60に通電される。送電ユニット60には図略の送電コイル(1次コイル)が収容されており、当該送電コイルに高周波電流が通電されることで送電ユニット60に強力な磁界が発生する。   When supplying electric energy to the automobile 100, the ground device 200 generates a 3 kW class high-frequency current in the 85 kHz band (81.38 k to 90 kHz) from commercial power (AC power supply). The high-frequency current generated by the ground device 200 is supplied to the power transmission unit 60 through the cable 201. A power transmission coil (primary coil) (not shown) is accommodated in the power transmission unit 60, and a strong magnetic field is generated in the power transmission unit 60 when a high-frequency current is passed through the power transmission coil.

一方、自動車100において、車体下面に受電ユニット10が設置されている。バッテリ30を充電する場合、受電ユニット10が送電ユニット60と上下に対向する位置に来るように自動車100を移動させる。受電ユニット10と送電ユニット60とのギャップは100〜160mmである。   On the other hand, in the automobile 100, the power receiving unit 10 is installed on the lower surface of the vehicle body. When charging the battery 30, the automobile 100 is moved so that the power receiving unit 10 comes to a position facing the power transmission unit 60 in the vertical direction. The gap between the power reception unit 10 and the power transmission unit 60 is 100 to 160 mm.

受電ユニット10には図略の受電コイル(2次コイル)およびコンデンサからなる共振回路が収容されており、当該受電コイルが送電ユニット60で発生した磁界に晒されることで当該共振回路が共鳴して受電ユニット10に高周波電流が発生する。受電ユニット10に発生した高周波電流は整流器20により直流電流に変換されてバッテリ30に充電される。このように、本実施形態に係るシステムでは、地上装置200から自動車100へ磁界共鳴によりワイヤレスで電気エネルギーが供給される。   The power reception unit 10 accommodates a resonance circuit including a power reception coil (secondary coil) and a capacitor (not shown). The resonance circuit is resonated when the power reception coil is exposed to a magnetic field generated by the power transmission unit 60. A high frequency current is generated in the power receiving unit 10. The high frequency current generated in the power receiving unit 10 is converted into a direct current by the rectifier 20 and charged to the battery 30. Thus, in the system according to the present embodiment, electric energy is supplied wirelessly from the ground device 200 to the automobile 100 by magnetic field resonance.

バッテリ30にはインバータ40が接続されている。自動車100を走行させる場合、インバータ40がバッテリ30に蓄電された直流電流を交流電流に変換して自動車100の動力源である電動モータ50を駆動する。   An inverter 40 is connected to the battery 30. When driving the automobile 100, the inverter 40 converts the direct current stored in the battery 30 into an alternating current and drives the electric motor 50 that is a power source of the automobile 100.

図2は、一例に係る送電コイルの平面図および断面図である。送電ユニット60には送電コイル61が収容されている。送電コイル61は、直径5.4mmの絶縁被覆電線62を円形の渦巻き状に2段8回巻きしたスパイラルコイルであり、外径は350mm、内径は260mmである。送電コイル61は、フェライトなどの磁性体で形成された円盤状のコイルコア63上に取り付けられている。コイルコア63の直径は400mmである。   FIG. 2 is a plan view and a cross-sectional view of a power transmission coil according to an example. A power transmission coil 61 is accommodated in the power transmission unit 60. The power transmission coil 61 is a spiral coil in which an insulating coated electric wire 62 having a diameter of 5.4 mm is wound in two rounds and eight times in a circular spiral shape, and has an outer diameter of 350 mm and an inner diameter of 260 mm. The power transmission coil 61 is mounted on a disk-shaped coil core 63 made of a magnetic material such as ferrite. The diameter of the coil core 63 is 400 mm.

図3は、一例に係る受電コイル(2分割)の平面図および断面図である。受電ユニット10には受電コイル11が収容されている。受電コイル11は、その円形の外縁形状(直径350mm)を2等分するように2個の半円形のスパイラルコイル11a、11bに分割されている。スパイラルコイル11a、11bは、いずれも直径5.4mmの絶縁被覆電線12を半円形の渦巻き状に1段8回巻きしたコイルであり、外形の半径は175mm、内径の半径は130mmである。スパイラルコイル11a、11bは、それぞれ、フェライトなどの磁性体で形成された半円盤状のコイルコア13a、13b上に取り付けられている。コイルコア13a、13bの半径は200mmである。   FIG. 3 is a plan view and a cross-sectional view of a power receiving coil (divided into two parts) according to an example. A power receiving coil 11 is accommodated in the power receiving unit 10. The power receiving coil 11 is divided into two semicircular spiral coils 11a and 11b so that the circular outer edge shape (diameter 350 mm) is divided into two equal parts. Each of the spiral coils 11a and 11b is a coil obtained by winding an insulating coated electric wire 12 having a diameter of 5.4 mm into a semicircular spiral 8 times in one stage, and has an outer radius of 175 mm and an inner radius of 130 mm. The spiral coils 11a and 11b are respectively mounted on semi-disc shaped coil cores 13a and 13b made of a magnetic material such as ferrite. The radius of the coil cores 13a and 13b is 200 mm.

なお、受電コイル11の形状は送電コイル61の形状と同じにする必要はない。例えば、受電コイル11の外径および内径を上記よりも100mmずつ小さく(外径250mm、内径160mm)してもよい。このように受電コイル11を小型化することで、受電ユニット10のコストを低減することができ、また、受電ユニット10の取り付け作業が容易になる。   Note that the shape of the power receiving coil 11 is not necessarily the same as the shape of the power transmitting coil 61. For example, the outer diameter and inner diameter of the power receiving coil 11 may be made smaller by 100 mm than the above (outer diameter 250 mm, inner diameter 160 mm). By reducing the size of the power receiving coil 11 in this way, the cost of the power receiving unit 10 can be reduced, and the mounting operation of the power receiving unit 10 is facilitated.

また、送電コイル61および受電コイル11ともに円形である必要はない。例えば、送電コイル61および/または受電コイル11を車幅方向に長い長円形や楕円形にしてもよい。   Further, neither the power transmission coil 61 nor the power reception coil 11 needs to be circular. For example, the power transmission coil 61 and / or the power reception coil 11 may be oval or oval long in the vehicle width direction.

図4は、複数に分割されたスパイラルコイルを電気的に直列接続した電気回路図の例である。スパイラルコイル11a、11bに共振コンデンサ14a、14bがそれぞれ接続され、LC共振回路を構成している。整流回路15a、15bにこれらLC共振回路がそれぞれ接続されている。整流回路15a、15bは、それぞれ、LC共振回路に発生した高周波電流を全波整流して直流電流を出力する。整流回路15aの正出力端子はリアクトル16の一端に接続され、整流回路15aの負出力端子は整流回路1bの正出力端子に接続されている。そして、平滑コンデンサ17が、リアクトル16の他端と整流回路1bの負出力端子に接続されている。 FIG. 4 is an example of an electric circuit diagram in which spiral coils divided into a plurality are electrically connected in series. Resonance capacitors 14a and 14b are connected to the spiral coils 11a and 11b, respectively, to form an LC resonance circuit. These LC resonance circuits are connected to the rectifier circuits 15a and 15b, respectively. The rectifier circuits 15a and 15b respectively perform full-wave rectification on the high-frequency current generated in the LC resonance circuit and output a direct current. The positive output terminal of the rectifier circuit 15a is connected to one end of the reactor 16, the negative output terminal of the rectifier circuit 15a is connected to the positive output terminal of the rectifier circuit 1 5 b. The smoothing capacitor 17 is connected to the other end of the reactor 16 to the negative output terminal of the rectifier circuit 1 5 b.

図5は、複数に分割されたスパイラルコイルを電気的に並列接続した電気回路図の例である。スパイラルコイル11a、11bに共振コンデンサ14a、14bがそれぞれ接続され、LC共振回路を構成している。整流回路15a、15bにこれらLC共振回路がそれぞれ接続されている。整流回路15a、15bは、それぞれ、LC共振回路に発生した高周波電流を全波整流して直流電流を出力する。整流回路15a、15bの正出力端子はリアクトル16の一端に接続されている。そして、平滑コンデンサ17が、リアクトル16の他端と整流回路1a、1bの負出力端子に接続されている。 FIG. 5 is an example of an electric circuit diagram in which spiral coils divided into a plurality are electrically connected in parallel. Resonance capacitors 14a and 14b are connected to the spiral coils 11a and 11b, respectively, to form an LC resonance circuit. These LC resonance circuits are connected to the rectifier circuits 15a and 15b, respectively. The rectifier circuits 15a and 15b respectively perform full-wave rectification on the high-frequency current generated in the LC resonance circuit and output a direct current. Positive output terminals of the rectifier circuits 15 a and 15 b are connected to one end of the reactor 16. The smoothing capacitor 17 is connected to the other end of the reactor 16 and the negative output terminals of the rectifier circuits 1 5 a and 15 b.

このように、スパイラルコイル11a、11bが接続された整流回路1a、1bの出力を直列接続してもよいし、あるいは並列接続してもよい。 Thus, the spiral coils 11a, to the output of 11b is connected rectifier circuit 1 5 a, 1 5 b may be connected in series or may be connected in parallel.

なお、図4および図5に示した電気回路においてリアクトル16は省略可能である。   In addition, the reactor 16 is omissible in the electric circuit shown in FIG. 4 and FIG.

図6は、図3の受電コイルが設置された車体の下面図である。受電ユニット10は、例えば、車両後部の左右後輪の間に設置されている。自動車100の下面は鉄やアルミニウムなどでできたアンダーカバー101で覆われており、受電ユニット10に収容された受電コイル11はそのようなアンダーカバー101に取り付けられている。より詳細には、受電コイル11を構成するスパイラルコイル11a、11bが取り付けられたコイルコア13a、13bがアンダーカバー101に取り付けられている。   FIG. 6 is a bottom view of the vehicle body on which the power receiving coil of FIG. 3 is installed. The power receiving unit 10 is installed between the left and right rear wheels at the rear of the vehicle, for example. The lower surface of the automobile 100 is covered with an under cover 101 made of iron or aluminum, and the power receiving coil 11 accommodated in the power receiving unit 10 is attached to the under cover 101. More specifically, the coil cores 13 a and 13 b to which the spiral coils 11 a and 11 b constituting the power receiving coil 11 are attached are attached to the under cover 101.

ここで重要なのは、受電ユニット10が、スパイラルコイル11a、11bが車幅方向の左右に位置するような向きでアンダーカバー101に取り付けられるということである。すなわち、受電ユニット10が取り付けられた状態において、受電コイル11は、外縁形状を車幅方向に2等分した2個のスパイラルコイル11a、11bで構成される。   What is important here is that the power receiving unit 10 is attached to the under cover 101 in such an orientation that the spiral coils 11a and 11b are positioned on the left and right in the vehicle width direction. That is, in a state in which the power receiving unit 10 is attached, the power receiving coil 11 includes two spiral coils 11a and 11b obtained by dividing the outer edge shape into two equal parts in the vehicle width direction.

このようにスパイラルコイル11a、11bを車幅方向の左右に配置する理由は、自動車100がバッテリ充電のために所定位置に駐車する場合、車長方向の位置は車止めにより規制できるのに対して車幅方向にはそのようなものがなく車幅方向の位置が規制できないため、送電ユニット60に対する受電ユニット10の車幅方向の位置ずれが発生し易いと考えられるからである。   The reason why the spiral coils 11a and 11b are arranged on the left and right in the vehicle width direction is that when the automobile 100 is parked at a predetermined position for charging the battery, the position in the vehicle length direction can be regulated by a vehicle stop. This is because there is no such thing in the width direction, and the position in the vehicle width direction cannot be regulated, so that it is considered that the power receiving unit 10 is likely to be displaced in the vehicle width direction with respect to the power transmission unit 60.

図7は、送電コイルと受電コイルとの位置ずれがない場合とある場合の磁束を説明する図である。同図は、送電コイル61と受電コイル11を平面視した図である。なお、便宜のため、受電コイル11を送電コイル61よりも小さく描いている。   FIG. 7 is a diagram for explaining the magnetic flux when there is no positional deviation between the power transmission coil and the power reception coil. FIG. 3 is a plan view of the power transmission coil 61 and the power reception coil 11. For convenience, the power receiving coil 11 is drawn smaller than the power transmitting coil 61.

送電コイル61に高周波電流が通電されることで送電コイル61に磁束70で示したような磁界が発生する。送電コイル61で発生した磁束70がスパイラルコイル11a、11bに伝わることにより、磁界共鳴によりスパイラルコイル11a、11bのそれぞれに高周波電流が発生する。   When a high-frequency current is applied to the power transmission coil 61, a magnetic field as indicated by the magnetic flux 70 is generated in the power transmission coil 61. When the magnetic flux 70 generated in the power transmission coil 61 is transmitted to the spiral coils 11a and 11b, a high-frequency current is generated in each of the spiral coils 11a and 11b by magnetic field resonance.

送電コイル61と受電コイル11との位置ずれがない場合、受電コイル11を構成するスパイラルコイル11a、11bに伝わる磁束70の向きは同じになる。一方、受電コイル11の位置がずれてスパイラルコイル11aが送電コイル61の平面視内側、スパイラルコイル11bが送電コイル61の平面視外側にあるとき、受電コイル11を構成するスパイラルコイル11a、11bに伝わる磁束70の向きは互いに逆向きになる。   When there is no position shift between the power transmission coil 61 and the power reception coil 11, the direction of the magnetic flux 70 transmitted to the spiral coils 11a and 11b constituting the power reception coil 11 is the same. On the other hand, when the position of the power receiving coil 11 is shifted and the spiral coil 11 a is inside the plan view of the power transmission coil 61 and the spiral coil 11 b is outside the plan view of the power transmission coil 61, it is transmitted to the spiral coils 11 a and 11 b constituting the power receiving coil 11. The directions of the magnetic flux 70 are opposite to each other.

もし、受電コイル11が1個の円形のスパイラルコイルで構成されていた場合、送電コイル61と受電コイル11との位置ずれが大きくなると受電コイル11に伝わる磁束70が打ち消し合って弱まり、受電コイル11に発生する起電力が低下してしまう。一方、本実施形態のように受電コイル11を複数のスパイラルコイル(例えば、スパイラルコイル11a、11b)に分割することで、送電コイル61と受電コイル11との位置ずれが大きくなっても各スパイラルコイルにおいて互いに独立に起電力が発生する。したがって、各スパイラルコイルで発生した起電力を足し合わせることで、受電コイル11全体として大きな電力を発生させることができる。   If the power receiving coil 11 is composed of one circular spiral coil, the magnetic flux 70 transmitted to the power receiving coil 11 cancels and weakens when the positional deviation between the power transmitting coil 61 and the power receiving coil 11 increases. The electromotive force generated in the battery is reduced. On the other hand, by dividing the power receiving coil 11 into a plurality of spiral coils (for example, the spiral coils 11a and 11b) as in the present embodiment, each spiral coil even if the positional deviation between the power transmitting coil 61 and the power receiving coil 11 increases. The electromotive forces are generated independently of each other. Therefore, by adding the electromotive forces generated in the spiral coils, a large amount of power can be generated as the entire power receiving coil 11.

図7の例では、送電コイル61と受電コイル11との位置ずれがない場合とある場合とでスパイラルコイル11bに発生する起電圧の向きが反転するため、スパイラルコイル11aとスパイラルコイル11bの電気的な接続を切り替える必要がある。そこで、図4および図5に示したように、スパイラルコイル11a、11bともに直流に整流後に直列接続または並列接続することで、各スパイラルコイルに発生する起電圧の向きにかかわらず、各スパイラルコイルで発生した起電力を足し合わせることができるようになっている。   In the example of FIG. 7, the direction of the electromotive voltage generated in the spiral coil 11b is reversed depending on whether the power transmission coil 61 and the power receiving coil 11 are not misaligned. Need to switch connections. Therefore, as shown in FIGS. 4 and 5, both the spiral coils 11a and 11b are connected in series or in parallel after being rectified to direct current, so that each spiral coil can be connected regardless of the direction of the electromotive voltage generated in each spiral coil. The generated electromotive force can be added together.

次に、本実施形態に係る非接触給電システムにおける電力伝送効率の実証結果を示す。図8は、送電コイルと受電コイルとの位置ずれと結合係数との関係を示すグラフである。ここで、送電コイル61および受電コイル11ともに外径を350mm、内径を260mmとする。「コイルずれ」は送電コイル61および受電コイル11の中心どうしのずれを指し、送電コイル61および受電コイル11の中心が合っている場合(図7の「(a)コイル位置ずれなし」の状態)をコイルずれ0mmである。一方、図7の「(b)コイル位置ずれあり」の状態はコイルずれ120mmに相当する。   Next, the verification result of the power transmission efficiency in the non-contact power feeding system according to the present embodiment is shown. FIG. 8 is a graph showing the relationship between the positional deviation between the power transmission coil and the power reception coil and the coupling coefficient. Here, both the power transmission coil 61 and the power reception coil 11 have an outer diameter of 350 mm and an inner diameter of 260 mm. “Coil shift” refers to a shift between the centers of the power transmission coil 61 and the power reception coil 11, and the centers of the power transmission coil 61 and the power reception coil 11 are aligned (the state of “(a) no coil position shift” in FIG. 7). The coil deviation is 0 mm. On the other hand, the state of “(b) Coil position deviation” in FIG. 7 corresponds to a coil deviation of 120 mm.

受電コイル11が1個の円形のスパイラルコイルで構成されている従来例、および、受電コイル11が2個のスパイラルコイル11a、11bに分割された本実施形態のいずれも、コイルずれが大きくなるに従って送電コイル61と受電コイル11との結合係数が低下する。しかし、コイルずれが70mmを超えた辺りから、本実施形態の方が従来例よりも結合係数を高めに維持することができている。すなわち、受電コイル11を2個のスパイラルコイル11a、11bに分割した効果が現れている。   In both the conventional example in which the power receiving coil 11 is configured by one circular spiral coil and the present embodiment in which the power receiving coil 11 is divided into two spiral coils 11a and 11b, the coil deviation increases. The coupling coefficient between the power transmission coil 61 and the power reception coil 11 is reduced. However, since the coil deviation exceeds 70 mm, the present embodiment can maintain a higher coupling coefficient than the conventional example. That is, the effect of dividing the power receiving coil 11 into two spiral coils 11a and 11b appears.

受電コイル11の分割数は3以上でもよい。受電コイル11を3個以上のスパイラルコイルに分割することで、送電コイル61と受電コイル11との位置ずれにより細やかに対応することができる。   The number of divisions of the power receiving coil 11 may be three or more. By dividing the power receiving coil 11 into three or more spiral coils, it is possible to respond more precisely to the positional deviation between the power transmitting coil 61 and the power receiving coil 11.

例えば、受電コイル11が送電コイル61に対して車幅方向にずれる場合、受電コイル11の右端または左端の一部が送電コイル61の平面視外側に出て受電コイル11の大部分は送電コイル61の平面視内側にあることが考えられる。そこで、受電コイル11を車幅方向に3分割してもよい。図9は、別例に係る受電コイル(3分割)が設置された車体の下面図である。受電コイル11は、その円形の外縁形状を車幅方向に3分割した3個のスパイラルコイル11a、11b、11cを有する。ここで、両端のスパイラルコイル11a、11bよりも真ん中のスパイラルコイル11cを大きめにしておく。   For example, when the power receiving coil 11 is shifted in the vehicle width direction with respect to the power transmitting coil 61, a part of the right end or the left end of the power receiving coil 11 comes out to the outside in plan view of the power transmitting coil 61 and most of the power receiving coil 11 is the power transmitting coil 61. It can be considered that it is inside the plan view. Therefore, the power receiving coil 11 may be divided into three in the vehicle width direction. FIG. 9 is a bottom view of a vehicle body provided with a power receiving coil (three-part division) according to another example. The power receiving coil 11 includes three spiral coils 11a, 11b, and 11c obtained by dividing the circular outer edge shape into three in the vehicle width direction. Here, the middle spiral coil 11c is made larger than the spiral coils 11a and 11b at both ends.

特に、両端のスパイラルコイル11a、11bの車幅方向の幅を、送電コイル61と受電コイル11との位置ずれ許容量(例えば100mm)に合わせることが好ましい。これにより、送電コイル61と受電コイル11との位置ずれ許容範囲内で電力伝送効率を良好に保つことができる。   In particular, it is preferable that the width in the vehicle width direction of the spiral coils 11a and 11b at both ends is matched with the allowable displacement (for example, 100 mm) between the power transmission coil 61 and the power reception coil 11. As a result, the power transmission efficiency can be kept good within the allowable range of displacement between the power transmission coil 61 and the power reception coil 11.

また、受電コイル11が送電コイル61に対して車長方向にずれることも考慮すると、受電コイル11を車長方向および車幅方向に4分割してもよい。図10は、さらに別例に係る受電コイル(4分割)が設置された車体の下面図である。受電コイル11は、その円形の外縁形状を車長方向および車幅方向に4分割した4個のスパイラルコイル11a、11b、11c、11dを有する。各スパイラルコイルの形状および大きさは同じである。このように、受電コイル11を車長方向および車幅方向に4分割することで、車長方向のずれに対しても対応することができる。   Further, considering that the power receiving coil 11 is displaced in the vehicle length direction with respect to the power transmitting coil 61, the power receiving coil 11 may be divided into four in the vehicle length direction and the vehicle width direction. FIG. 10 is a bottom view of a vehicle body on which a power receiving coil (four divisions) according to another example is installed. The power receiving coil 11 has four spiral coils 11a, 11b, 11c, and 11d obtained by dividing the circular outer edge shape into four in the vehicle length direction and the vehicle width direction. The shape and size of each spiral coil are the same. In this way, by dividing the power receiving coil 11 into four in the vehicle length direction and the vehicle width direction, it is possible to cope with displacement in the vehicle length direction.

なお、受電コイル11をさらに多くのスパイラルコイルに分割することも可能であるが、スパイラルコイルの数が増えるとその分電気抵抗も大きくなるため、受電コイル11の分割数は2〜4が適当である。   It is possible to divide the power receiving coil 11 into a larger number of spiral coils. However, as the number of spiral coils increases, the electrical resistance increases accordingly. is there.

以上のように、本発明における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。   As described above, the embodiments have been described as examples of the technology in the present invention. For this purpose, the accompanying drawings and detailed description are provided.

したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。   Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.

また、上述の実施の形態は、本発明における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。   Moreover, since the above-mentioned embodiment is for demonstrating the technique in this invention, a various change, replacement, addition, abbreviation, etc. can be performed in a claim or its equivalent range.

上記では、便宜のため、磁界共鳴式の非接触給電システムを例に本発明における技術を説明したが、本発明は、磁界共鳴式の非接触給電システムに限定されず、電磁誘導式の非接触給電システムにも適用可能である。   In the above, for the sake of convenience, the technology in the present invention has been described by taking a magnetic resonance type non-contact power feeding system as an example. However, the present invention is not limited to the magnetic field resonance type non-contact power feeding system, and is not limited to an electromagnetic induction type non-contact power feeding system. It can also be applied to a power supply system.

11 受電コイル
11a スパイラルコイル
11b スパイラルコイル
11c スパイラルコイル
11d スパイラルコイル
61 送電コイル
16a 整流回路
16b 整流回路
DESCRIPTION OF SYMBOLS 11 Power receiving coil 11a Spiral coil 11b Spiral coil 11c Spiral coil 11d Spiral coil 61 Power transmission coil 16a Rectifier circuit 16b Rectifier circuit

Claims (7)

地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して前記送電コイルと前記受電コイルとの間で非接触給電を行う非接触給電システムであって、
前記送電コイルが1個のスパイラルコイルで構成されており、
前記受電コイルが複数のスパイラルコイルに分割されており、
前記送電コイルの外縁形状と前記受電コイルの外縁形状とは略同じであり、
前記複数のスパイラルコイルが前記受電コイルの外縁形状を複数に分割した各形状を外縁形状として有し、
前記複数のスパイラルコイルは、互いに車幅方向に離間しており、
前記複数のスパイラルコイルがそれぞれ載置された複数のコイルコアは、互いに車幅方向に離間している
ことを特徴とする非接触給電システム。
A non-contact power feeding system in which a power transmission coil installed on the ground and a power receiving coil installed on the lower surface of a vehicle body face each other and perform non-contact power feeding between the power transmission coil and the power receiving coil,
The power transmission coil is composed of one spiral coil;
The power receiving coil is divided into a plurality of spiral coils;
The outer edge shape of the power transmission coil and the outer edge shape of the power receiving coil are substantially the same,
Each shape in which the plurality of spiral coils were divided outer edge of the receiving coil into a plurality possess as outer edge,
The plurality of spiral coils are separated from each other in the vehicle width direction,
The non-contact power feeding system, wherein the plurality of coil cores on which the plurality of spiral coils are respectively placed are separated from each other in the vehicle width direction .
前記複数のスパイラルコイルが前記受電コイルの外縁形状を車幅方向に2等分した2個のスパイラルコイルである、請求項1に記載の非接触給電システム。   2. The non-contact power feeding system according to claim 1, wherein the plurality of spiral coils are two spiral coils obtained by equally dividing an outer edge shape of the power receiving coil into two in the vehicle width direction. 前記複数のスパイラルコイルが前記受電コイルの外縁形状を車幅方向に3分割した3個のスパイラルコイルである、請求項1に記載の非接触給電システム。   The non-contact power feeding system according to claim 1, wherein the plurality of spiral coils are three spiral coils obtained by dividing the outer edge shape of the power receiving coil into three in the vehicle width direction. 地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して前記送電コイルと前記受電コイルとの間で非接触給電を行う非接触給電システムであって、
前記送電コイルが1個のスパイラルコイルで構成されており、
前記受電コイルが複数のスパイラルコイルに分割されており、
前記複数のスパイラルコイルが前記受電コイルの外縁形状を複数に分割した各形状を外縁形状として有し、
前記複数のスパイラルコイルが前記受電コイルの外縁形状を車幅方向に3分割した3個のスパイラルコイルであり、
前記3個のスパイラルコイルのうち両端のスパイラルコイルの車幅方向の幅が前記送電コイルと前記受電コイルとの位置ずれ許容量に等しい
ことを特徴とする非接触給電システム。
A non-contact power feeding system in which a power transmission coil installed on the ground and a power receiving coil installed on the lower surface of a vehicle body face each other and perform non-contact power feeding between the power transmission coil and the power receiving coil,
The power transmission coil is composed of one spiral coil;
The power receiving coil is divided into a plurality of spiral coils;
Each of the plurality of spiral coils has each shape obtained by dividing the outer edge shape of the power receiving coil into a plurality of outer edge shapes,
The plurality of spiral coils are three spiral coils obtained by dividing the outer edge shape of the power receiving coil into three in the vehicle width direction;
Of the three spiral coils, the width in the vehicle width direction of the spiral coils at both ends is equal to the allowable positional deviation between the power transmission coil and the power reception coil.
A non-contact power feeding system characterized by that .
地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して前記送電コイルと前記受電コイルとの間で非接触給電を行う非接触給電システムであって、
前記送電コイルが1個のスパイラルコイルで構成されており、
前記受電コイルが複数のスパイラルコイルに分割されており、
前記複数のスパイラルコイルが前記受電コイルの外縁形状を複数に分割した各形状を外縁形状として有し、
前記複数のスパイラルコイルが前記受電コイルの外縁形状を車長方向および車幅方向に4分割した4個のスパイラルコイルである、
ことを特徴とする非接触給電システム。
A non-contact power feeding system in which a power transmission coil installed on the ground and a power receiving coil installed on the lower surface of a vehicle body face each other and perform non-contact power feeding between the power transmission coil and the power receiving coil,
The power transmission coil is composed of one spiral coil;
The power receiving coil is divided into a plurality of spiral coils;
Each of the plurality of spiral coils has a shape obtained by dividing the outer edge shape of the power receiving coil into a plurality of outer edge shapes,
The plurality of spiral coils are four spiral coils obtained by dividing the outer edge shape of the power receiving coil into four in the vehicle length direction and the vehicle width direction.
A non-contact power feeding system characterized by that .
地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して前記送電コイルと前記受電コイルとの間で非接触給電を行う非接触給電システムであって、
前記送電コイルが1個のスパイラルコイルで構成されており、
前記受電コイルが複数のスパイラルコイルに分割されており、
前記複数のスパイラルコイルが前記受電コイルの外縁形状を複数に分割した各形状を外縁形状として有し、
前記複数のスパイラルコイルのそれぞれに発生する起電力を整流する複数の整流回路を備え、
前記複数の整流回路の出力が直列接続されている、
ことを特徴とする非接触給電システム。
A non-contact power feeding system in which a power transmission coil installed on the ground and a power receiving coil installed on the lower surface of a vehicle body face each other and perform non-contact power feeding between the power transmission coil and the power receiving coil,
The power transmission coil is composed of one spiral coil;
The power receiving coil is divided into a plurality of spiral coils;
Each of the plurality of spiral coils has each shape obtained by dividing the outer edge shape of the power receiving coil into a plurality of outer edge shapes,
A plurality of rectifier circuits for rectifying the electromotive force generated in each of the plurality of spiral coils;
The outputs of the plurality of rectifier circuits are connected in series,
A non-contact power feeding system characterized by that .
前記複数のスパイラルコイルのそれぞれに発生する起電力を整流する複数の整流回路を備え、
前記複数の整流回路の出力が並列接続されている、請求項1に記載の非接触給電システム。
A plurality of rectifier circuits for rectifying the electromotive force generated in each of the plurality of spiral coils;
The contactless power feeding system according to claim 1, wherein outputs of the plurality of rectifier circuits are connected in parallel.
JP2015202062A 2015-10-13 2015-10-13 Contactless power supply system Active JP6587895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015202062A JP6587895B2 (en) 2015-10-13 2015-10-13 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202062A JP6587895B2 (en) 2015-10-13 2015-10-13 Contactless power supply system

Publications (2)

Publication Number Publication Date
JP2017076654A JP2017076654A (en) 2017-04-20
JP6587895B2 true JP6587895B2 (en) 2019-10-09

Family

ID=58549552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202062A Active JP6587895B2 (en) 2015-10-13 2015-10-13 Contactless power supply system

Country Status (1)

Country Link
JP (1) JP6587895B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347619B2 (en) * 2009-03-24 2013-11-20 日産自動車株式会社 Non-contact power feeding device and electric vehicle
JP2013523066A (en) * 2010-03-10 2013-06-13 ウィトリシティ コーポレーション Wireless energy transfer converter
EP2849314A4 (en) * 2012-05-09 2015-12-16 Toyota Motor Co Ltd Vehicle capable of contact-free power reception
DE102013101150A1 (en) * 2013-02-05 2014-08-21 Conductix-Wampfler Gmbh Coil unit and device for inductive transmission of electrical energy
JP2015019551A (en) * 2013-07-12 2015-01-29 本田技研工業株式会社 Non-contact power supply system
JP6281963B2 (en) * 2014-02-24 2018-02-21 光電子株式会社 Non-contact power transmission device and non-contact power transmission method

Also Published As

Publication number Publication date
JP2017076654A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US10340078B2 (en) Coil topologies for inductive power transfer
US10202045B2 (en) Vehicle with shielded power receiving coil
EP2828951B1 (en) Winding arrangements in wireless power transfer systems
US10279691B2 (en) Contactless feeding pad and contactless feeding device
US10014105B2 (en) Coil unit and wireless power transmission device
US10002708B2 (en) Coil unit and wireless power transmission device
US20150028687A1 (en) Power transmitting device, power receiving device and power transfer system
WO2014069445A1 (en) Power transmission system
JP2013219210A (en) Non-contact power transmission device
JP6003565B2 (en) Non-contact power feeding device
US20160197492A1 (en) Contactless power transmission device
US20140306655A1 (en) Contactless battery charger
EP2765584A1 (en) Power reception device, power transmission device, and power transmission system
WO2013099222A1 (en) Non-contact charging device
KR20170078746A (en) Power reception apparatus and power transmission apparatus
JP2013207727A (en) Antenna coil
US10332677B2 (en) Power reception device and power transmission device
CN107078563B (en) Power transmission system, power transmission device, and power reception device
EP3217514A1 (en) Coil device, contactless power supply system, and auxiliary magnetic member
JP2013215073A (en) Feeding apparatus and power reception apparatus for non-contact power transmission system
JP2014023262A (en) Noncontact power supply unit
JP6587895B2 (en) Contactless power supply system
JP6684579B2 (en) Contactless power supply system
JP6040510B2 (en) Power transmission system
JP2014093797A (en) Power transmission system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6587895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250