〔実施の形態の概要〕 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。
1.以下を含むIE型トレンチゲートIGBT:(a)第1の主面及び第2の主面を有する半導体基板;(b)前記半導体基板内に設けられ、第1導電型を有するドリフト領域;(c)前記第1の主面上に設けられたセル形成領域;(d)前記セル形成領域内に設けられ、各々が第1線状単位セル領域および第2線状単位セル領域を有する多数の線状単位セル領域;(e)前記第1の主面上に設けられたメタルゲート電極;(f)前記第1の主面上に設けられたメタルエミッタ電極、 ここで、各第1線状単位セル領域は、以下を有する:(x1)前記ドリフト領域の前記第1の主面上から内部に亘って設けられた線状アクティブセル領域;(x2)前記メタルゲート電極に電気的に接続され、前記線状アクティブセル領域を両側から挟むように前記第1の主面の表面の第1および第2のトレンチ内に、それぞれ設けられた第1および第2の線状トレンチゲート電極;(x3)前記ドリフト領域の前記第1主面側表面領域に設けられ、前記第1導電型と反対導電型の第2導電型を有するボディ領域;(x4)前記第1および第2の線状トレンチゲート電極を境界として、前記線状アクティブセル領域を両側から挟むように、両側に隣接して設けられた線状インアクティブセル領域;(x5)前記線状インアクティブセル領域において、前記第1主面側表面領域のほぼ全面に設けられ、前記ボディ領域と同一導電型であって、これよりも深いフローティング領域;(x6)前記ボディ領域の前記第1主面側表面領域に設けられた前記第1導電型のエミッタ領域、 更に、ここで、各第2線状単位セル領域は、以下を有する:(y1)前記ドリフト領域の前記第1の主面上から内部に亘って設けられた線状ホールコレクタセル領域;(y2)前記メタルエミッタ電極に電気的に接続され、前記線状ホールコレクタセル領域を両側から挟むように前記第1の主面の表面の第3および第4のトレンチ内に、それぞれ設けられた第3および第4の線状トレンチゲート電極;(y3)前記ドリフト領域の前記第1主面側表面領域に設けられた前記ボディ領域;(y4)前記第3および第4の線状トレンチゲート電極を境界として、前記線状ホールコレクタセル領域を両側から挟むように、両側に隣接して設けられた前記線状インアクティブセル領域;(y5)前記線状インアクティブセル領域において、前記第1主面側表面領域のほぼ全面に設けられ、前記ボディ領域と同一導電型であって、これよりも深い前記フローティング領域。
2.前記項1の半導体装置の製造方法において、前記線状アクティブセル領域の幅は、前記線状インアクティブセル領域の幅よりも狭い。
3.前記項1または2の半導体装置の製造方法において、前記フローティング領域の深さは、前記第1および第2のトレンチの下端よりも深い。
4.前記項1から3のいずれか一つの半導体装置の製造方法において、前記線状ホールコレクタセル領域には、前記エミッタ領域は設けられていない。
5.前記項1から4のいずれか一つの半導体装置の製造方法において、前記線状アクティブセル領域の幅と前記線状ホールコレクタセル領域の幅は、ほぼ等しい。
6.前記項1から5のいずれか一つの半導体装置の製造方法において、前記線状アクティブセル領域は、以下を有する:(x1a)その長さ方向に於いて区切られたアクティブセクション;(x1b)その長さ方向に於いて区切られた前記エミッタ領域を有さないインアクティブセクション。
7.前記項1から6のいずれか一つの半導体装置の製造方法において、前記第3および第4の線状トレンチゲート電極のエミッタ接続部と、これにコンタクトするコンタクト溝は、ほぼ直交している。
8.前記項1から6のいずれか一つの半導体装置の製造方法において、前記第3および第4の線状トレンチゲート電極のエミッタ接続部にコンタクトするコンタクト溝は、平面的に前記エミッタ接続部に内包されている。
9.前記項1から4および6から8のいずれか一つの半導体装置の製造方法において、前記線状アクティブセル領域の幅は、前記線状ホールコレクタセル領域の幅よりも狭い。
10.前記項1から9のいずれか一つの半導体装置の製造方法において、各第1線状単位セル領域は、更に以下を有する:(x7)前記線状アクティブセル領域において、前記ボディ領域の下部の前記ドリフト領域に設けられ、不純物濃度が前記ドリフト領域よりも高く、前記エミッタ領域よりも低い前記第1導電型の第1のホールバリア領域、 更に、各第2線状単位セル領域は、更に以下を有する:(y6)前記線状ホールコレクタセル領域において、前記ボディ領域の下部の前記ドリフト領域に設けられ、不純物濃度が前記ドリフト領域よりも高く、前記エミッタ領域よりも低い前記第1導電型の第2のホールバリア領域。
11.以下を含むIE型トレンチゲートIGBT:(a)第1の主面及び第2の主面を有する半導体基板;(b)前記半導体基板内に設けられ、第1導電型を有するドリフト領域;(c)前記第1の主面上に設けられたセル形成領域;(d)前記セル形成領域内に設けられた多数の線状単位セル領域;(e)前記第1の主面上に設けられたメタルゲート電極;(f)前記第1の主面上に設けられたメタルエミッタ電極、 ここで、各線状単位セル領域は、以下を有する:(d1)前記ドリフト領域の前記第1の主面上から内部に亘って設けられた線状ハイブリッドセル領域;(d2)前記メタルエミッタ電極に電気的に接続され、前記線状ハイブリッドセル領域を両側から挟むように前記第1の主面の表面の第1および第2のトレンチ内に、それぞれ設けられた第1および第2の線状トレンチゲート電極;(d3)前記ドリフト領域の前記第1主面側表面領域に設けられ、前記第1導電型と反対導電型の第2導電型を有するボディ領域;(d4)前記第1および第2の線状トレンチゲート電極を境界として、前記線状アクティブセル領域を両側から挟むように、両側に隣接して設けられた線状インアクティブセル領域;(d5)前記線状インアクティブセル領域において、前記第1主面側表面領域のほぼ全面に設けられ、前記ボディ領域と同一導電型であって、これよりも深いフローティング領域;(d6)前記線状ハイブリッドセル領域内に設けられ、相互にほぼ対称である第1および第2の線状ハイブリッドサブセル領域;(d7)前記メタルゲート電極に電気的に接続され、前記第1および第2の線状ハイブリッドサブセル領域の境界をなす第3のトレンチ内に設けられた第3の線状トレンチゲート電極;(d8)前記第1および第2の線状ハイブリッドサブセル領域のそれぞれに於いて、前記第3のトレンチに近接するように、前記ボディ領域の前記第1主面側表面領域に設けられた前記第1導電型のエミッタ領域。
12.前記項11の半導体装置の製造方法において、前記線状インアクティブセル領域の幅は、前記第1および第2の線状ハイブリッドサブセル領域のそれぞれに幅よりも広い。
13.前記項11または12の半導体装置の製造方法において、前記フローティング領域の深さは、前記第1および第2のトレンチの下端よりも深い。
14.前記項11から13のいずれか一つの半導体装置の製造方法において、前記第1および第2の線状ハイブリッドサブセル領域に於いて、それぞれ前記第1および第2のトレンチに近接する側には、前記エミッタ領域は設けられていない。
15.前記項11から14のいずれか一つの半導体装置の製造方法において、前記第1および第2の線状ハイブリッドサブセル領域の幅は、相互にほぼ等しい。
16.前記項11から15のいずれか一つの半導体装置の製造方法において、前記第1および第2の線状ハイブリッドサブセル領域は、以下を有する:(d1a)その長さ方向に於いて区切られたアクティブセクション;(d1b)その長さ方向に於いて区切られた前記エミッタ領域を有さないインアクティブセクション。
17.前記項11から16のいずれか一つの半導体装置の製造方法において、前記第1および第2の線状トレンチゲート電極のエミッタ接続部にコンタクトするコンタクト溝は、平面的に前記エミッタ接続部に内包されている。
18.前記項11から16のいずれか一つの半導体装置の製造方法において、前記第1および第2の線状トレンチゲート電極は、それぞれ以下を有する:(d2a)前記ボディ領域の下部の前記ドリフト領域に設けられ、不純物濃度が前記ドリフト領域よりも高く、前記エミッタ領域よりも低い前記第1導電型のホールバリア領域。
19.以下を含むIE型トレンチゲートIGBT:(a)第1の主面及び第2の主面を有する半導体基板;(b)前記半導体基板内に設けられ、第1導電型を有するドリフト領域;(c)前記第1の主面上に設けられたセル形成領域;(d)前記セル形成領域内に設けられ、各々が第1線状単位セル領域および第2線状単位セル領域を有する多数の線状単位セル領域;(e)前記第1の主面上に設けられたメタルゲート電極;(f)前記第1の主面上に設けられたメタルエミッタ電極、 ここで、各第1線状単位セル領域は、以下を有する:(x1)前記ドリフト領域の前記第1の主面上から内部に亘って設けられた線状アクティブセル領域;(x2)前記メタルゲート電極に電気的に接続され、前記線状アクティブセル領域を両側から挟むように前記第1の主面の表面の第1および第2のトレンチ内に、それぞれ設けられた第1および第2の線状トレンチゲート電極;(x3)前記ドリフト領域の前記第1主面側表面領域に設けられ、前記第1導電型と反対導電型の第2導電型を有するボディ領域;(x4)前記第1および第2の線状トレンチゲート電極を境界として、前記線状アクティブセル領域を両側から挟むように、両側に隣接して設けられた線状インアクティブセル領域;(x5)前記線状インアクティブセル領域において、前記第1主面側表面領域のほぼ全面に設けられ、前記ボディ領域と同一導電型であって、これよりも深いフローティング領域;(x6)前記ボディ領域の前記第1主面側表面領域に設けられた前記第1導電型のエミッタ領域;(x7)前記線状インアクティブセル領域の端部に沿って前記第1の主面の表面設けられた端部トレンチ;(x8)前記端部トレンチに沿って、前記セル形成領域の周辺外部に設けられたゲート配線;(x9)前記ゲート配線下方の前記第1主面側表面領域から前記端部トレンチの近傍まで延在し、前記ボディ領域よりも深く、前記メタルエミッタ電極に電気的に接続された第2導電型領域。
20.前記項19の半導体装置の製造方法において、前記第2導電型領域は、前記フローティング領域とほぼ同時に形成される。
21.前記項19または20の半導体装置の製造方法において、前記第2導電型領域は、前記端部トレンチよりも深い。
〔本願における記載形式、基本的用語、用法の説明〕 1.本願において、実施の態様の記載は、必要に応じて、便宜上複数のセクションに分けて記載する場合もあるが、特にそうでない旨明示した場合を除き、これらは相互に独立別個のものではなく、単一の例の各部分、一方が他方の一部詳細または一部または全部の変形例等である。また、原則として、同様の部分は繰り返しを省略する。また、実施の態様における各構成要素は、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、必須のものではない。
更に、本願において、「半導体装置」というときは、主に、各種トランジスタ(能動素子)単体、またはそれらを中心に、抵抗、コンデンサ等を半導体チップ等(たとえば単結晶シリコン基板)上に集積したものをいう。ここで、各種トランジスタの代表的なものとしては、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)に代表されるMISFET(Metal Insulator Semiconductor Field Effect Transistor)を例示することができる。このとき、各種単体トランジスタの代表的なものとしては、パワーMOSFETやIGBT(Insulated Gate Bipolar Transistor)を例示することができる。これらは、一本にパワー系半導体デバイスに分類され、その中には、パワーMOSFET、IGBTの外、バイポーラパワートランジスタ、サイリスタ(Thyristor)、パワーダイオード等を含む。
パワーMOSFETの代表的な形態は、表面にソース電極があり、裏面にドレイン電極がある2重拡散型縦型パワーMOSFET(Double Duffused Vertical Power MOSFET)であるが、この2重拡散型縦型パワーMOSFETには、主に2種類に分類でき、第1は実施形態において主に説明するプレーナゲート(Planar Gate)型であり、第2はU−MOSFET等のトレンチゲート(Trench Gate)型である。
パワーMOSFETには、その他に、LD−MOSFET(Lateral−Diffused MOSFET)がある。
2.同様に実施の態様等の記載において、材料、組成等について、「AからなるX」等といっても、特にそうでない旨明示した場合および文脈から明らかに、そうでない場合を除き、A以外の要素を主要な構成要素のひとつとするものを排除するものではない。たとえば、成分についていえば、「Aを主要な成分として含むX」等の意味である。たとえば、「シリコン部材」等といっても、純粋なシリコンに限定されるものではなく、SiGe合金やその他シリコンを主要な成分とする多元合金、その他の添加物等を含む部材も含むものであることはいうまでもない。同様に、「酸化シリコン膜」、「酸化シリコン系絶縁膜」等と言っても、比較的純粋な非ドープ酸化シリコン(Undoped Silicon Dioxide)だけでなく、FSG(Fluorosilicate Glass)、TEOSベース酸化シリコン(TEOS-based silicon oxide)、SiOC(Silicon Oxicarbide)またはカーボンドープ酸化シリコン(Carbon-doped Silicon oxide)またはOSG(Organosilicate glass)、PSG(Phosphorus Silicate Glass)、BPSG(Borophosphosilicate Glass)等の熱酸化膜、CVD酸化膜、SOG(Spin ON Glass)、ナノクラスタリングシリカ(Nano-Clustering Silica:NCS)等の塗布系酸化シリコン、これらと同様な部材に空孔を導入したシリカ系Low-k絶縁膜(ポーラス系絶縁膜)、およびこれらを主要な構成要素とする他のシリコン系絶縁膜との複合膜等を含むことは言うまでもない。
また、酸化シリコン系絶縁膜と並んで、半導体分野で常用されているシリコン系絶縁膜としては、窒化シリコン系絶縁膜がある。この系統の属する材料としては、SiN,SiCN,SiNH,SiCNH等がある。ここで、「窒化シリコン」というときは、特にそうでない旨明示したときを除き、SiNおよびSiNHの両方を含む。同様に、「SiCN」というときは、特にそうでない旨明示したときを除き、SiCNおよびSiCNHの両方を含む。
3.同様に、図形、位置、属性等に関して、好適な例示をするが、特にそうでない旨明示した場合および文脈から明らかにそうでない場合を除き、厳密にそれに限定されるものではないことは言うまでもない。
4.さらに、特定の数値、数量に言及したときも、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、その特定の数値を超える数値であってもよいし、その特定の数値未満の数値でもよい。
5.「ウエハ」というときは、通常は半導体装置(半導体集積回路装置、電子装置も同じ)をその上に形成する単結晶シリコンウエハを指すが、エピタキシャルウエハ、SOI基板、LCDガラス基板等の絶縁基板と半導体層等の複合ウエハ等も含むことは言うまでもない。
6.先に、パワーMOSFETについて説明したのと同様に、IGBTは、一般にプレーナゲート(Planar Gate)型とトレンチゲート(Trench Gate)型に大別される。このトレンチゲート型IGBTは、比較的オン抵抗が低いが、伝導度変調を更に促進してオン抵抗を更に低くするために、IE(Injection Enhancement)効果を利用した「IE型トレンチゲートIGBT」(または、「アクティブセル間引き型トレンチゲートIGBT」)が開発されている。IE型トレンチゲートIGBTは、セル領域に於いて、実際にエミッタ電極に接続されたアクティブセル(Active Cell)と、フローティングPボディ領域を有するインアクティブセル(Inactive Cell)を交互に、または、櫛の歯状に配置することにより、半導体基板のデバイス主面側(エミッタ側)にホール(正孔)が蓄積しやすい構造としたものである。
なお、本願に於いては、アクティブセルが複数種類存在する。第1は、実際にN+エミッタ領域を有しトレンチゲート電極がメタルゲート電極に電気的に接続された真性アクティブセル(具体的には、線状アクティブセル領域)である。第2は、N+エミッタ領域を有せずトレンチゲート電極がメタルエミッタ電極に電気的に接続された擬似的アクティブセル(具体的には、線状ホールコレクタセル領域)である。第3は、真性アクティブセルと擬似的アクティブセルを組み合わせたハイブリッドセル(具体的には、線状ハイブリッドセル領域)である。
7.本願においては、IE型トレンチゲートIGBTの内、主要なアクティブセルの幅が、主要なインアクティブセルの幅よりも狭いものを「狭アクティブセルIE型トレンチゲートIGBT」と呼ぶ。
また、トレンチゲートを横切る方向を「セルの幅方向」とし、これと直交するトレンチゲート(リニアゲート部分)の延在方向(長手方向)を「セルの長さ方向」とする。
本願に於いては、主に「線状単位セル領域」(たとえば線状アクティブセル領域と線状インアクティブセル領域から構成される)を主に扱うが、この線状単位セル領域が周期的に繰り返して、半導体チップの内部領域に配列されて、「セル形成領域」を構成している。
このセル領域の周りには、通常、セル周辺接合領域が設けられており、更にその周りには、フローティングフィールドリング(Floating Field Ring)またはフィールドリミッティングリング(Field Limiting Ring)等が設けられ、終端構造を構成している。ここで、フローティングフィールドリングまたはフィールドリミッティングリングとは、ドリフト領域の表面(デバイス面)にP型ボディ領域(P型ウエル領域)とは分離して設けられ、それと同一導電形を有するとともに類似した濃度(主接合に逆方向電圧が印加されたときに完全空乏化しない程度の濃度である)を有し、リング状にセル領域を1重又は多重に取り巻く不純物領域または不純物領域群を言う。
また、これらのフローティングフィールドリングには、フィールドプレート(Field Plate)が設けられることがある。このフィールドプレートとは、フローティングフィールドリングに接続された導電体膜パターンであって、絶縁膜を介してドリフト領域の表面(デバイス面)の上方に延在し、リング状にセル領域を取り巻く部分を言う。
セル領域を構成する周期要素としての線状単位セル領域は、例えば図5の例等では、線状アクティブセル領域を中心に両側に半幅の線状インアクティブセル領域を配置したものをセットとして扱うのが合理的であるが、具体的に個別に線状インアクティブセル領域を説明する場合には、両側に分離しているため不便であるので、その場合には、具体的な一体の部分を線状インアクティブセル領域という。
〔実施の形態の詳細〕 実施の形態について更に詳述する。各図中において、同一または同様の部分は同一または類似の記号または参照番号で示し、説明は原則として繰り返さない。
また、添付図面においては、却って、煩雑になる場合または空隙との区別が明確である場合には、断面であってもハッチング等を省略する場合がある。これに関連して、説明等から明らかである場合等には、平面的に閉じた孔であっても、背景の輪郭線を省略する場合がある。更に、断面でなくとも、空隙でないことを明示するために、ハッチングを付すことがある。
なお、IE型トレンチゲートIGBTについて開示した先行特許出願としては、たとえば日本特願第2011−109341号(日本出願日2011年5月16日)がある。
1.本願の主要な実施の形態のアウトラインの説明(主に図1から図3) このセクションでは、具体的な例を示して、先の定義等を補足するとともに、本願の代表的具体例に関して、その概要を説明するとともに、全体の予備的な説明を行う。
なお、ここでは、非対称型デバイス(Asymmetric device)を例に取り具体的に説明するが、対称型デバイス(Symmetric device)にも、ほぼそのまま適用できることは言うまでもない。
図1は本願の一実施の形態のアウトラインを説明するためのIE型トレンチゲートIGBTデバイスチップのセル領域およびその周辺の上面模式レイアウト図である。図2は図1のセル領域端部切り出し領域R1のX−X’断面に対応するデバイス模式断面図である。図3は本願の前記一実施の形態に関する図1の線状単位セル領域およびその周辺R5の拡大上面図である。これらに基づいて、本願の主要な実施の形態のアウトラインを説明する。
(1)セル領域およびその周辺の平面構造の説明(主に図1): まず、本願の主な対象であるIE型トレンチゲートIGBTのデバイスチップ2の内部領域(終端構造の最外部であるガードリング等の内側の部分、すなわち、チップ2の主要部)の上面図を図1に示す。図1に示すように、チップ2(半導体基板)の内部領域の主要部は、セル形成領域10によって占有されている。セル形成領域10の外周部には、これを取り巻くように、環状を呈し、P型のセル周辺接合領域35が設けられている。このセル周辺接合領域35の外側には、間隔を置いて、単数又は複数の環状を呈し、P型のフローティングフィールドリング36(すなわちフィールドリミッティングリング)が設けられており、セル周辺接合領域35、フィールドプレート4(図4参照)、ガードリング3(図4参照)等とともに、セル形成領域10に対する終端構造を構成している。
セル形成領域10には、この例では、多数の線状単位セル領域40が敷き詰められており、これらの端部領域には、一対又はそれ以上(片方についていえば、1列又は数列程度)のダミーセル領域34(線状ダミーセル領域)が配置されている。
(2)狭アクティブセル型単位セルおよび交互配列方式の説明(主に図2): 次に、図1のセル領域端部切り出し領域R1のX−X’断面を図2に示す。図2に示すように、チップ2の裏面1b(半導体基板の裏側主面または第2の主面)の半導体領域(この例では、シリコン単結晶領域)には、P+型コレクタ領域18が設けられており、その表面にはメタルコレクタ電極17が設けられている。半導体基板2の主要部を構成するN−型ドリフト領域20(第1導電型のドリフト領域)とP+型コレクタ領域18との間には、N型フィールドストップ領域19が設けられている。
一方、N−型ドリフト領域20の表面側1a(半導体基板の表側主面または第1の主面)の半導体領域には、多数のトレンチ21が設けられており、その中には、ゲート絶縁膜22を介して、トレンチゲート電極14が埋め込まれている。これらのトレンチゲート電極14は、その機能に従って、メタルゲート電極5(具体的には、メタルゲート配線7)またはエミッタ電極8に接続されている。
また、これらのトレンチ21は、各領域を区画する働きをしており、たとえば、ダミーセル領域34は、一対のトレンチ21によって両側から区画されており、その内の一つのトレンチ21によって、セル形成領域10とセル周辺接合領域35が区画されている。このセル周辺接合領域35は、P+型ボディコンタクト領域25pを介して、メタルエミッタ電極8と接続されている。なお、本願に於いては、特に断らない限り、トレンチのどの部分のゲート絶縁膜22の厚さもほぼ同じとしている(しかし、必要により、ある部分の厚さを他の部分と比較して、異ならせることを排除するものではない)。このように、セル周辺接合領域35およびダミーセル領域34に於いて、エミッタコンタクトを取ることによって、ダミーセル領域34等の幅がプロセス的に変化した場合に於いても、耐圧の低下を防止することができる。
セル周辺接合領域35の外側のN−型ドリフト領域20の表面側1aの半導体領域には、P型のフローティングフィールドリング36が設けられており、この表面1a上には、フィールドプレート4が設けられ、P+型ボディコンタクト領域25rを介して、フローティングフィールドリング36に接続されている。
次に、セル形成領域10を更に説明する。ダミーセル領域34は、N+型エミッタ領域12を有さない以外は、構造およびサイズとも、基本的に線状アクティブセル領域40aと同じであり、P型ボディ領域15の表面に設けられたP+型ボディコンタクト領域25dは、メタルエミッタ電極8と接続されている。
セル形成領域10の内部領域の大部分は、基本的に、線状単位セル領域40を単位格子とする並進対象の繰り返し構造(なお、厳密な意味での対象性を要求するものではない。以下同じ)をしている。単位格子としての線状単位セル領域40は、線状インアクティブセル領域40i、その一方の側の線状アクティブセル領域40a、その他方の側の線状ホールコレクタセル領域40c、および、これらの両側の半幅の線状インアクティブセル領域40iから構成されている。しかし、具体的には、全幅の線状インアクティブセル領域40iの間に、交互に、線状アクティブセル領域40aおよび線状ホールコレクタセル領域40cが配置されていると見ることができる(図6参照)。また、第1線状単位セル領域40fと第2線状単位セル領域40sが交互に配列されていると見ることもできる。
線状アクティブセル領域40aの半導体基板の表側主面1a(第1の主面)側半導体表面領域には、P型ボディ領域15(第2導電型のボディ領域)が設けられており、その表面には、N+型エミッタ領域12(第1導電型のエミッタ領域)およびP+型ボディコンタクト領域25が設けられている。このP+型ボディコンタクト領域25は、メタルエミッタ電極8と接続されている。線状アクティブセル領域40aにおいては、このP型ボディ領域15の下部のN−型ドリフト領域20に、N型ホールバリア領域24が設けられている。なお、線状アクティブセル領域40aの両側のトレンチゲート電極14は、メタルゲート電極5に電気的に接続されている。
これに対して、線状ホールコレクタセル領域40cの構造は、この例では、N+型エミッタ領域12がない点と、両側のトレンチゲート電極14がエミッタ電極8に接続されている点が異なるのみで、その他の点は、寸法等を含めて、線状アクティブセル領域40aと同じである。
一方、線状インアクティブセル領域40iの半導体基板の表側主面1a(第1の主面)側半導体表面領域には、同様に、P型ボディ領域15が設けられており、その下部のN−型ドリフト領域20には、両側のトレンチ21の下端部をカバーし、それよりも深いP型フローティング領域16(第2導電型のフローティング領域)が設けられている。このようなP型フローティング領域16を設けることによって、耐圧の急激な低下を招くことなく、線状インアクティブセル領域の幅Wiを広くすることができる。これによって、ホール蓄積効果を有効に増強することが可能となる。なお、IE型トレンチゲートIGBTにおいては、エミッタ電極8からP型フローティング領域16へのコンタクトは形成されておらず、P型フローティング領域16からエミッタ電極8への直接的なホール排出経路を遮断することによって、線状アクティブセル領域40aの下部のN−型ドリフト領域20(Nベース領域)のホール濃度を増加させ、その結果、IGBT内のMOSFETからNベース領域へ注入される電子濃度を向上させることによって、オン抵抗を下げようとするものである。
この例では、線状アクティブセル領域40aの幅Waおよび線状ホールコレクタセル領域40cの幅Wcは、線状インアクティブセル領域40iの幅Wiよりも狭くされており、本願では、これを「狭アクティブセル型単位セル」と呼ぶ。以下では、主に、この狭アクティブセル型単位セルを有するデバイスについて、具体的に説明するが、本願の発明は、それに限定されるものではなく、「非狭アクティブセル型単位セル」を有するデバイスにも適用できることは言うまでもない。
図2の例では、線状アクティブセル領域40a(または線状ホールコレクタセル領域40c)と線状インアクティブセル領域40iを交互に配列して、線状単位セル領域40を構成しているが、この構成を、本願においては、「交互配列方式」と呼ぶ。以下では、特に断らない限り、交互配列方式を前提に説明するが、「非交互配列方式」でもよいことはいうまでもない。
図2では、本願の図6等の実施の形態のアウトライン(主要部および周辺部)を説明したが、以下の説明では、これらをセル部(断面、平面構造)、セル周辺部等の構成要素に分けて説明するが、これらは、各種の変形例に対しても、そのアウトラインを与えることは言うまでもない。
(3)アクティブセル2次元間引き構造の説明(主に図3) 図1の線状単位セル領域主要部およびその周辺切り出し領域R5の詳細平面構造の一例を図5に示す。図3に示すように、線状アクティブセル領域40aの長さ方向に、たとえば、一定間隔で一定の長さのアクティブセクション40aaが設けられており、その間が、N+型エミッタ領域12が設けられていないインアクティブセクション40aiとなっている。すなわち、線状アクティブセル領域40aの長さ方向の一部分が局所分散的にアクティブセクション40aaとなっている。なお、ここで、一定間隔で一定の長さで分布していることは、周期的であることを意味するが、実質的に周期的であることは、局所分散的分布に対応するが、局所分散的であることは、それよりも広く、必ずしも周期的又は準周期的であることを意味しない。
このように、セルの長手方向で、実際にFET動作する部分を制限することは、飽和特性を制御する上で有効である。しかし、このことは、セクション8で説明するように、必須ではない。
2.本願の一実施の形態におけるIE型トレンチゲートIGBTのデバイス構造の説明(主に図4から図8) このセクションでは、セクション1の説明を踏まえて、前記一実施の形態に関する具体的チップ上面レイアウトおよび単位セル構造(ホールコレクタセルを有するアクティブセル2次元間引き構造)の一例(セクション1の図1、図2および図3に対応)を説明する。このセクションで説明するセル構造は、交互配列方式の狭アクティブセル型単位セルである。
なお、通常、耐圧600ボルトのIGBT素子2を例にとると、チップサイズは、3から6ミリメートル角が平均的である。ここでは、説明の都合上、縦4ミリメートル、横5.2ミリメートルのチップを例にとり説明する。ここでは、デバイスの耐圧をたとえば、600ボルト程度として説明する。
図4は本願の前記一実施の形態のIE型トレンチゲートIGBTデバイスチップの全体上面図(図1にほぼ対応するが、より具体的な形状に近い)である。図5は図4のセル領域上端部切り出し領域R4の拡大平面図である。図6は図5のA−A’断面に対応するデバイス断面図である。図7は図5のB−B’断面に対応するデバイス断面図である。図8は図5のC−C’断面に対応するデバイス断面図である。これらに基づいて、本願の一実施の形態におけるIE型トレンチゲートIGBTのデバイス構造を説明する。
図4に示すように、IGBTデバイスチップ2の上面1aの外周部には、たとえば、アルミニウム系配線層等から構成された環状のガードリング3が設けられており、その内側には、環状のフローティングフィールドリング等と接続された数本(単数又は複数)の環状のフィールドプレート4(たとえば、先と同じアルミニウム系配線層等から構成されている)が設けられている。フィールドプレート4(フローティングフィールドリング36)の内側であって、チップ2の上面1aの内部領域の主要部には、セル形成領域10が設けられており、セル形成領域10上は、その外部近傍まで、たとえば、先と同じアルミニウム系配線層等から構成されたメタルエミッタ電極8に覆われている。メタルエミッタ電極8の中央部は、ボンディングワイヤ等を接続するためのメタルエミッタパッド9となっており、メタルエミッタ電極8とフィールドプレート4の間には、たとえば、先と同じアルミニウム系配線層等から構成されたメタルゲート配線7が配置されている。このメタルゲート配線7は、たとえば、先と同じアルミニウム系配線層等から構成されたメタルゲート電極5に接続されており、メタルゲート電極5の中心部は、ボンディングワイヤ等を接続するためのゲートパッド6となっている。
次に、図4のセル領域上端部切り出し領域R4の拡大平面図を図5に示す。図5に示すように、セル形成領域10には、横方向に線状単位セル領域40が周期的に配列されており、各線状単位セル領域40は、第1線状単位セル領域40fと第2線状単位セル領域40sから構成されており、この例では、第1線状単位セル領域40fの幅Wfと第2線状単位セル領域40sの幅Wsは、ほぼ同じである。
各第1線状単位セル領域40fは、中央の線状アクティブセル領域40aとこれを囲む一対の半幅の線状インアクティブセル領域40iから構成されている。線状アクティブセル領域40aと線状インアクティブセル領域40iの間には、ゲート電極に電気的に接続された第1の線状トレンチゲート電極14q(14)および第2の線状トレンチゲート電極14r(14)がある。
一方、各第2線状単位セル領域40sは、中央の線状ホールコレクタセル領域40cとこれを囲む一対の半幅の線状インアクティブセル領域40iから構成されている。線状ホールコレクタセル領域40cと線状インアクティブセル領域40iの間には、エミッタ電極に電気的に接続された第3の線状トレンチゲート電極14s(14)および第4の線状トレンチゲート電極14t(14)がある。
線状アクティブセル領域40aおよび線状ホールコレクタセル領域40cには、それぞれ、その長手方向に沿って、その中央部にコンタクト溝11が設けられており、その下部の半導体基板表面領域には、P+型ボディコンタクト領域25が設けられている。
線状アクティブセル領域40aに於いては、その長手方向に周期的に、N+型エミッタ領域12が形成された領域、すなわち、アクティブセクション40aaと、N+型不純物が導入されていない領域12i(N+型エミッタ領域12が形成されていない領域、すなわちP型ボディ領域15)すなわち、インアクティブセクション40aiが、交互に設けられている。
線状ホールコレクタセル領域40cに於いては、その長手方向に周期的に、第3の線状トレンチゲート電極14s(14)および第4の線状トレンチゲート電極14t(14)を相互に接続する連結トレンチゲート電極(エミッタ接続部)14cが設けられており、コンタクト溝11(P+型ボディコンタクト領域25)との交差部によって、相互に接続されている。すなわち、エミッタ接続部14cとコンタクト溝11は、平面的にほぼ直交している。この連結トレンチゲート電極(エミッタ接続部)14cとP+型ボディコンタクト領域25(またはメタルエミッタ電極8)との相互接続によって、第3の線状トレンチゲート電極14s(14)および第4の線状トレンチゲート電極14t(14)が、メタルエミッタ電極8に、電気的に接続されている。なお、この例では、線状ホールコレクタセル領域40cの幅と線状アクティブセル領域40aの幅は、ほぼ等しいが、このことは、後に例示するように、必須ではない。しかし、ほぼ等しくすることによって、ホール分布が均一になるメリットがある。
線状インアクティブセル領域40iにおける半導体基板の表面領域には、P型フローティング領域16が設けられている。この例では、P型フローティング領域16の深さは、両端のトレンチの下端よりも深く、同下端部をカバーする構造となっている。このような構造は必須ではないが、このようにすることによって、線状インアクティブセル領域40iの幅を線状アクティブセル領域40aの幅よりも大きくしても耐圧を維持することが容易になるメリットがある。なお、この例では、線状アクティブセル領域40aの幅を線状インアクティブセル領域40iの幅よりも狭くしているが、このことは必須ではないが、そのようにすることによって、IE効果を高めることができる。
セル形成領域10の周辺外部には、たとえば、これを取り巻くように、P型フローティング領域16が設けられている部分(たとえばセル周辺接合領域35)があり、このP型フローティング領域16は、P+型ボディコンタクト領域25p(コンタクト溝11)によって、メタルエミッタ電極8に電気的に接続されている。
このセル周辺接合領域35には、たとえば、メタルゲート配線7が配置されており、このメタルゲート配線7に向けては、セル形成領域10内から、第1の線状トレンチゲート電極14q(14)および第2の線状トレンチゲート電極14r(14)が延在しており(すなわち、ゲート引き出し部14w)、端部連結トレンチゲート電極14zの部分に於いて、メタルゲート配線−トレンチゲート電極接続部13を介して、メタルゲート配線7と接続されている。なお、線状インアクティブセル領域40iとセル形成領域10の周辺外部との間は、端部トレンチゲート電極14pによって区画されている。
次に、図5のA−A’断面を図6に示す。図6に示すように、半導体基板1sの主要部は、N−型ドリフト領域20が占めており、半導体チップ2における半導体基板1sの裏面1b側には、N−型ドリフト領域20に近い側から、N型フィールドストップ領域19、P+型コレクタ領域18およびメタルコレクタ電極17が設けられている。
一方、半導体基板1sの表面1a側の半導体表面領域には、そのほぼ全面(セル形成領域10のほぼ全面)に、P型ボディ領域15(第2導電型のボディ領域)が設けられている。
線状アクティブセル領域40aと線状インアクティブセル領域40iの境界部における半導体基板1sの表面1a側の半導体表面領域には、第1のトレンチ21q(21)および第2のトレンチ21r(21)が設けられており、それぞれの内部には、ゲート絶縁膜22を介して、第1の線状トレンチゲート電極14qおよび第2の線状トレンチゲート電極14rが設けられている。
一方、線状ホールコレクタセル領域40cと線状インアクティブセル領域40iの境界部における半導体基板1sの表面1a側の半導体表面領域には、第3のトレンチ21sおよび第4のトレンチ21tが設けられており、それぞれの内部には、ゲート絶縁膜22を介して、第3の線状トレンチゲート電極14sおよび第4の線状トレンチゲート電極14tが設けられている。
線状アクティブセル領域40aにおいて、半導体基板1sの表面1a側の半導体表面領域には、N+型エミッタ領域12が設けられており、コンタクト溝11の下端には、P+型ボディコンタクト領域25が設けられている。このP+型ボディコンタクト領域25の下部には、P+型ラッチアップ防止領域23が設けられており、P型ボディ領域15(第2導電型のボディ領域)およびP+型ラッチアップ防止領域23の下部には、N型ホールバリア領域24が設けられている。なお、線状ホールコレクタセル領域40cにおける不純物ドープ構造は、この例では、N+型エミッタ領域12が設けられていない以外、線状アクティブセル領域40aと同じである。
線状インアクティブセル領域40iにおいて、半導体基板1sの表面1a側の半導体表面領域には、P型ボディ領域15の下部に、たとえば、トレンチ21(21q、21r、21s、21t)よりも深いP型フローティング領域16が設けられている。
ここに示したように、この例では、線状ホールコレクタセル領域40cにも、線状アクティブセル領域40aと同様に、N型ホールバリア領域24、P+型ラッチアップ防止領域23等を設けているが、これらは必須ではない。しかし、これらを設けることによって、全体としてのホールの流れのバランスを保つことができる。
半導体基板1sの表面1a上のほぼ全面には、たとえば、酸化シリコン系絶縁膜等の層間絶縁膜26が形成されており、この層間絶縁膜26には、たとえばアルミニウム系メタル膜を主要な構成要素とするメタルエミッタ電極8が設けられており、コンタクト溝11(またはコンタクトホール)を介して、N+型エミッタ領域12およびP+型ボディコンタクト領域25と接続されている。
メタルエミッタ電極8上には、更に、たとえば、ポリイミド系有機絶縁膜等のファイナルパッシベーション膜39が形成されている。
次に、図5のB−B’断面を図7に示す。図7に示すように、この断面に於いては、線状アクティブセル領域40aにおいても、N+型エミッタ領域12が設けられていないので、図面上、線状アクティブセル領域40aと線状ホールコレクタセル領域40cは、同一となる。その他の部分の構造は、図6で説明したところと同じである。もちろん、図6と同様に、第1の線状トレンチゲート電極14qおよび第2の線状トレンチゲート電極14rは、メタルゲート電極5に電気的に接続されており、第3の線状トレンチゲート電極14sおよび第4の線状トレンチゲート電極14tは、メタルエミッタ電極8に電気的に接続されているという点は相違している。
次に、図5のC−C’断面を図8に示す。図8に示すように、線状ホールコレクタセル領域40c以外の構造は、図7について説明したところと同じであるが、線状ホールコレクタセル領域40cの部分については、ほぼ連結トレンチゲート電極14c(エミッタ接続部)のみが占有する構造となっている。
ここで、デバイス構造をより具体的に例示するために、デバイス各部(図4から図8参照)の主要寸法の一例を示す。すなわち、線状アクティブセル領域の幅Waは、1.3マイクロメートル程度、線状インアクティブセル領域の幅Wiは、3.3マイクロメートル程度(線状アクティブセル領域の幅Waは、線状インアクティブセル領域の幅Wiよりも狭いことが望ましく、Wi/Waの値は、たとえば2から3の範囲が特に好適である)、コンタクト幅は、0.3マイクロメートル程度、トレンチ幅は、0.7マイクロメートル程度(0.8マイクロメートル以下が特に好適である)、トレンチ深さは、3マイクロメートル程度、N+型エミッタ領域12の深さは、250nm程度、P型ボディ領域15(チャネル領域)の深さは、0.8マイクロメートル程度、P+型ラッチアップ防止領域23の深さは、1.4マイクロメートル程度、P型フローティング領域16の深さは、4.5マイクロメートル程度、N型フィールドストップ領域19の厚さは、1.5マイクロメートル程度、P+型コレクタ領域の厚さは、0.5マイクロメートル程度、半導体基板2の厚さは、70マイクロメートル程度(ここでは、耐圧600ボルト程度の例を示す)である。なお、半導体基板2の厚さは求められる耐圧に強く依存する。従って、耐圧1200ボルトでは、たとえば120マイクロメートル程度であり、耐圧400ボルトでは、たとえば40マイクロメートル程度である。
なお、以下の例、および、セクション1の例に於いても、対応する部分の寸法は、ここに示したものとほぼ同じであるので、説明は繰り返さない。
3.本願の実施の形態1のデバイス構造に対応する製造方法の説明(主に図9から図26) このセクションでは、セクション2で説明したデバイス構造に対する製造方法の一例を示す。以下では、セル形成領域10を中心に説明するが、周辺部等については、必要に応じて図1、図2、図4等を参照する。
また、以下では、線状アクティブセル領域40aとその周辺の線状インアクティブセル領域40iについて具体的に説明するが、線状ホールコレクタセル領域40cその他(変形例を含む)についてはN+型エミッタ領域12を形成しない点を除き、特に変わるところがないので、個々に関する説明を省略する。
図9は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(ホールバリア領域導入工程)におけるデバイス断面図である。図10は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(P型フローティング領域導入工程)におけるデバイス断面図である。図11は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(トレンチ加工用ハードマスク成膜工程)におけるデバイス断面図である。図12は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(トレンチハードマスク加工工程)におけるデバイス断面図である。図13は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(トレンチハードマスク加工用レジスト除去工程)におけるデバイス断面図である。図14は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(トレンチ加工工程)におけるデバイス断面図である。図15は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(トレンチ加工用ハードマスク除去工程)におけるデバイス断面図である。図16は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(引き伸ばし拡散およびゲート酸化工程)におけるデバイス断面図である。図17は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(ゲートポリシリコン成膜工程)におけるデバイス断面図である。図18は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(ゲートポリシリコンエッチバック工程)におけるデバイス断面図である。図19は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(ゲート酸化膜エッチバック工程)におけるデバイス断面図である。図20は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(P型ボディ領域およびN+型エミッタ領域導入工程)におけるデバイス断面図である。図21は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(層間絶縁膜成膜工程)におけるデバイス断面図である。図22は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(コンタクトホール形成工程)におけるデバイス断面図である。図23は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(基板エッチング工程)におけるデバイス断面図である。図24は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(P+型ボディコンタクト領域およびP+型ラッチアップ防止領域導入工程)におけるデバイス断面図である。図25は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(表面メタル成膜&ファイナルパッシベーション膜形成工程)におけるデバイス断面図である。図26は本願の実施の形態1のデバイス構造に対応する製造方法を説明するための図6の第1線状単位セル領域に対応する製造工程中(裏面研削および裏面不純物導入工程)におけるデバイス断面図である。これらに基づいて、本願の実施の形態1のデバイス構造に対応する製造方法を説明する。
まず、N−型シリコン単結晶(たとえばリン濃度2x1014/cm3程度)の200φウエハ(150φ、100φ、300φ、450φ等の各種径のウエハでもよい)を準備する。ここでは、たとえば、FZ(Floating Zone)法によるウエハが最も好適であるが、CZ(Czochralski)法によるウエハでもよい。
次に、図9に示すように、半導体ウエハ1の表面1a(第1の主面)上のほぼ全面に、N型ホールバリア領域導入用レジスト膜31を塗布等により形成し、通常のリソグラフィにより、パターニングする。パターニングされたN型ホールバリア領域導入用レジスト膜31をマスクとして、たとえば、イオン注入により、半導体ウエハ1の表面1a(第1の主面)側の半導体基板1s(N−型単結晶シリコン基板)内に、N型不純物を導入することにより、N型ホールバリア領域24を形成する。このときのイオン注入条件としては、たとえば、イオン種:リン、ドーズ量:6x1012/cm2程度、注入エネルギ:80KeV程度を好適なものとして例示することができる。その後、アッシング等により、不要になったレジスト膜31を除去する。
次に、図10に示すように、半導体ウエハ1の表面1a上のほぼ全面に、P型フローティング領域導入用レジスト膜37を塗布等により形成し、通常のリソグラフィにより、パターニングする。パターニングされたP型フローティング領域導入用レジスト膜37をマスクとして、たとえば、イオン注入により、半導体ウエハ1の表面1a(第1の主面)側の半導体基板1s内に、P型不純物を導入することにより、P型フローティング領域16を形成する。このときのイオン注入条件としては、たとえば、イオン種:ボロン、ドーズ量:3.5x1013/cm2程度、注入エネルギ:75KeV程度を好適なものとして例示することができる。その後、アッシング等により、不要になったレジスト膜37を除去する。なお、P型フローティング領域16の導入の際に、図2のセル周辺接合領域35、フローティングフィールドリング36も同時に導入する。
次に、図11に示すように、半導体ウエハ1の表面1a上のほぼ全面に、たとえば、CVD(Chemical Vapor Deposition)等により、酸化シリコン系絶縁膜等のトレンチ形成用ハードマスク膜32(例えば、厚さ450nm程度)を成膜する。
次に、図12に示すように、半導体ウエハ1の表面1a上のほぼ全面に、トレンチハードマスク膜加工用レジスト膜33を塗布等により形成し、通常のリソグラフィにより、パターニングする。パターニングされたトレンチハードマスク膜加工用レジスト膜33をマスクとして、たとえば、ドライエッチングにより、トレンチ形成用ハードマスク膜32をパターニングする。
その後、図13に示すように、アッシング等により、不要になったレジスト膜33を除去する。
次に、図14に示すように、パターニングされたトレンチ形成用ハードマスク膜32を用いて、たとえば、異方性ドライエッチングにより、トレンチ21を形成する。この異方性ドライエッチングのガス系としては、たとえば、Cl2/O2系ガスを好適なものとして例示することができる。
その後、図15に示すように、たとえば、弗酸系酸化シリコン膜エッチング液等を用いたウエットエッチングにより、不要になったトレンチ形成用ハードマスク膜32を除去する。
次に、図16に示すように、P型フローティング領域16およびN型ホールバリア領域24に対する引き延ばし拡散(たとえば、摂氏1200度、30分程度)を実行する。続いて、たとえば、熱酸化等により、半導体ウエハ1の表面1a上およびトレンチ21の内面のほぼ全面に、ゲート絶縁膜22(例えば、厚さ120nm程度)を形成する。
次に、図17に示すように、トレンチ21を埋め込むように、ゲート絶縁膜22上の半導体ウエハ1の表面1a上およびトレンチ21の内面のほぼ全面に、たとえばCVD等により、燐がドープされたドープトポリシリコン(Doped Poly−Silicon)膜27を成膜する(例えば、厚さ600nm程度)。
次に、図18に示すように、たとえば、ドライエチング等(たとえば、ガス系はSF6等)により、ポリシリコン膜27をエッチバックすることにより、トレンチ21内にトレンチゲート電極14を形成する。
次に、図19に示すように、たとえば、弗酸系酸化シリコン膜エッチング液等を用いたウエットエッチングにより、トレンチ21外のゲート絶縁膜22を除去する。
次に、図20に示すように、たとえば、熱酸化またはCVDにより、半導体ウエハ1の表面1a上のほぼ全面に、後続のイオン注入用の比較的薄い酸化シリコン膜(たとえば、ゲート絶縁膜と同程度)を形成する。続いて、半導体ウエハ1の表面1a上に通常のリソグラフィにより、P型ボディ領域導入用レジスト膜を形成する。このP型ボディ領域導入用レジスト膜をマスクとして、例えば、イオン注入により、セル形成領域10のほぼ全面およびその他必要な部分に、P型不純物を導入することにより、P型ボディ領域15を形成する。このときのイオン注入条件としては、たとえば、イオン種:ボロン、ドーズ量:3x1013/cm2程度、注入エネルギ:75KeV程度を好適なものとして例示することができる。その後、アッシング等により、不要になったP型ボディ領域導入用レジスト膜を除去する。
更に、半導体ウエハ1の表面1a上に通常のリソグラフィにより、N+型エミッタ領域導入用レジスト膜を形成する。このN+型エミッタ領域導入用レジスト膜をマスクとして、例えば、イオン注入により、線状アクティブセル領域40aのP型ボディ領域15の上部表面のほぼ全面に、N型不純物を導入することにより、N+型エミッタ領域12を形成する。このときのイオン注入条件としては、たとえば、イオン種:砒素、ドーズ量:5x1015/cm2程度、注入エネルギ:80KeV程度を好適なものとして例示することができる。その後、アッシング等により、不要になったN+型エミッタ領域導入用レジスト膜を除去する。
次に、図21に示すように、半導体ウエハ1の表面1a上のほぼ全面に、たとえば、CVD等により、層間絶縁膜26として、たとえば、PSG(Phosphsilicate Glass)膜を成膜する(厚さは、たとえば、600nm程度)。この層間絶縁膜26の材料としては、PSG膜のほか、BPSG(Borophosphsilicate Glass)膜、NSG(Non−doped Silicate Glass)膜、SOG(Spin−On−Glass)膜または、これらの複合膜等を好適なものとして例示することができる。
次に、図22に示すように、層間絶縁膜26上の半導体ウエハ1の表面1a上に、通常のリソグラフィにより、コンタクト溝形成用レジスト膜28を形成する。続いて、たとえば、異方性ドライエッチング等(ガス系は、たとえば、Ar/CHF3/CF4等)により、コンタクト溝11(またはコンタクトホール)を形成する。
その後、図23に示すように、アッシング等により、不要になったレジスト膜28を除去する。続いて、たとえば、異方性ドライエッチングにより、コンタクト溝11(またはコンタクトホール)を半導体基板内に延長する。このときのガス系としては、たとえば、Cl2/O2系ガスを好適なものとして例示することができる。
次に、図24に示すように、たとえば、コンタクト溝11を通して、P型不純物をイオン注入することにより、P+型ボディコンタクト領域25を形成する。ここで、イオン注入条件としては、たとえば、イオン種:BF2、ドーズ量:5x1015/cm2程度、打ち込みエネルギ:80KeV程度を好適なものとして例示することができる。
同様に、たとえば、コンタクト溝11を通して、P型不純物をイオン注入することにより、P+型ラッチアップ防止領域23を形成する。ここで、イオン注入条件としては、たとえば、イオン種:ボロン、ドーズ量:5x1015/cm2程度、打ち込みエネルギ:80KeV程度を好適なものとして例示することができる。
次に、図25に示すように、スパッタリング等により、たとえば、アルミニウム系電極膜8(メタルエミッタ電極8となる)を形成する。具体的には、たとえば、以下のような手順で実行する。まず、たとえばスパッタリング成膜より、半導体ウエハ1の表面1a上のほぼ全面にバリアメタル膜として、TiW膜を(たとえば、厚さ200nm程度)を形成する(TiW膜中のチタンの多くの部分は、後の熱処理によって、シリコン界面に移動してシリサイドを形成して、コンタクト特性の改善に寄与するが、これらの過程は煩雑であるので図面には表示しない)。
続いて、たとえば、窒素雰囲気、摂氏600度程度で、10分程度のシリサイドアニールを実行する。続いて、バリアメタル膜上のほぼ全面に、コンタクト溝11を埋め込むように、たとえばスパッタリング成膜より、アルミニウムを主要な成分とする(たとえば、数%シリコン添加、残りはアルミニウム)アルミニウム系メタル膜(たとえば、厚さ5マイクロメートル程度)を形成する。続いて、通常のリソグラフィによって、アルミニウム系メタル膜およびバリアメタル膜からなるメタルエミッタ電極8をパターニングする(ドライエッチングのガス系としては、たとえば、Cl2/BCl3等)。更に、ファイナルパッシベーション膜として、たとえば、ポリイミドを主要な成分とする有機膜(たとえば、厚さ2.5マイクロメートル程度)等をファイナルパッシベーション膜39として、ウエハ1のデバイス面1aのほぼ全面に塗布し、通常のリソグラフィによって、図6のエミッタパッド9、ゲートパッド6等を開口する。
次に、ウエハ1の裏面1bに対して、バックグラインディング処理(必要に応じて、裏面のダメージ除去のためのケミカルエッチング等も実施)を施すことによって、たとえば、もともとの800マイクロメータ程度(好適な範囲としては、1000から450マイクロメータ程度)のウエハ厚を必要に応じて、たとえば200から30マイクロメータ程度に薄膜化する。たとえば、耐圧が600ボルト程度とすると、最終厚さは、70マイクロメートル程度である。
次に、図26に示すように、半導体ウエハ1の裏面1bのほぼ全面に、たとえば、イオン注入により、N型不純物を導入することによって、N型フィールドストップ領域19を形成する。ここで、イオン注入条件としては、たとえば、イオン種:燐、ドーズ量:7x1012/cm2程度、打ち込みエネルギ:350KeV程度を好適なものとして例示することができる。その後、必要に応じて、不純物活性化のために、ウエハ1の裏面1bに対して、レーザアニール等を実施する。次に、半導体ウエハ1の裏面1bのほぼ全面に、たとえば、イオン注入により、N型不純物を導入することによって、P+型コレクタ領域18を形成する。ここで、イオン注入条件としては、たとえば、イオン種:ボロン、ドーズ量:1x1013/cm2程度、打ち込みエネルギ:40KeV程度を好適なものとして例示することができる。その後、必要に応じて、不純物活性化のために、ウエハ1の裏面1bに対して、レーザアニール等を実施する。
次に、たとえば、スパッタリング成膜により、半導体ウエハ1の裏面1bのほぼ全面に、メタルコレクタ電極17を形成する(具体的な詳細については、図49およびその説明を参照)。その後、ダイシング等により、半導体ウエハ1のチップ領域に分割し、必要に応じて、パッケージに封止すると、デバイスが完成する。
4.本願の前記一実施の形態におけるIE型トレンチゲートIGBTのゲート電極接続構造に関する変形例の説明(主に図27から図29) このセクションでは、セクション2で説明したデバイス構造のうち、線状ホールコレクタセル領域40c(例えば図5)の両側のトレンチゲート電極14(14s、14t)をメタルエミッタ電極8に接続する連結トレンチゲート電極14c(エミッタ接続部)に関する変形例を説明する。従って、セクション1から3で説明した部分は、基本的に同一であるので、以下では原則として異なる部分のみを説明する。
図27は本願の前記一実施の形態におけるIE型トレンチゲートIGBTのゲート電極接続構造に関する変形例を説明するための図5に対応する図4のセル領域上端部切り出し領域R4の拡大平面図である。図28は図27のA−A’断面に対応するデバイス断面図である。図29は図27のC−C’断面に対応するデバイス断面図である。これらに基づいて、本願の前記一実施の形態におけるIE型トレンチゲートIGBTのゲート電極接続構造に関する変形例を説明する。
図27に示すように、この例では、図5と異なり、連結トレンチゲート電極14cの部分で、メタルエミッタ電極8と接続するものではない。すなわち、第3の線状トレンチゲート電極14sおよび第4の線状トレンチゲート電極14tと同層のポリシリコン膜を半導体基板1sの表面1a側の半導体表面上に延長して、ゲート酸化膜22等を介して接続用ゲート引き出しパッド14x(エミッタ接続部)を設け、この接続用ゲート引き出しパッド14xとメタルエミッタ電極8とを接続している。この結果、相互接続部分のコンタクト溝11は、平面的にエミッタ接続部14xに内包されることとなる。このような構造とすることによって、接続の信頼性を更に向上させることができる。
なお、接続用ゲート引き出しパッド14xは、線状ホールコレクタセル領域40cの長手方向に、一定の間隔を置いて周期的に設けられている。
従って、図27のA−A’断面は、図28に示すとおり、図6と全く同じとなる。一方、図27のC−C’断面は、図29に示すように、図8と若干異なるものとなる。すなわち、図29に示すように、線状ホールコレクタセル領域40cに対応する部分以外は、図6とほぼ同一であるが、線状ホールコレクタセル領域40cに対応する部分は、かなり異なったものとなっている。すなわち、P+型ボディコンタクト領域25およびP+型ラッチアップ防止領域23がなく、コンタクト溝11はあるものの、接続用ゲート引き出しパッド14(エミッタ接続部)には接続しているものの、この部分では半導体基板部には、接続されていない。もちろん図6同様に、N+型エミッタ領域12もない。
5.本願の前記一実施の形態におけるIE型トレンチゲートIGBTのセル構造に関する変形例の説明(主に図30から図32) このセクションで説明する例は、セクション1、2および4における線状アクティブセル領域40aおよび線状ホールコレクタセル領域40cの構造の変形例である。従って、製法も含めて、ここまでに説明したところと基本的に異なるところがないので、以下では原則として異なる部分のみを説明する。
図30は本願の前記一実施の形態におけるIE型トレンチゲートIGBTのセル構造に関する変形例を説明するための図4のセル領域上端部切り出し領域R4の拡大平面図である。図31は図30のA−A’断面に対応するデバイス断面図である。図32は図30のC−C’断面に対応するデバイス断面図である。これらに基づいて、本願の前記一実施の形態におけるIE型トレンチゲートIGBTのセル構造に関する変形例を説明する。
図30に示すように、この例における線状単位セル領域40は、線状ハイブリッドセル領域40hと、その両側の半幅の線状インアクティブセル領域40iから構成されており、この例では、線状ハイブリッドセル領域40hの幅Whは、線状インアクティブセル領域40iの幅Wi(全幅)よりも狭い。
線状ハイブリッドセル領域40hは、相互に面対象である第1の線状ハイブリッドサブセル領域40hfと第2の線状ハイブリッドサブセル領域40hsから構成されている。第1の線状ハイブリッドサブセル領域40hfは、図27(又は図5)の線状アクティブセル領域40aの右ハーフセルと線状ホールコレクタセル領域40cの左ハーフセルを一体化したハイブリッドセルである。一方、第2の線状ハイブリッドサブセル領域40hsは、図27(又は図5)の線状アクティブセル領域40aの左ハーフセルと線状ホールコレクタセル領域40cの右ハーフセルを一体化したハイブリッドセルである。すなわち、線状ハイブリッドセル領域40hは、中央にメタルゲート電極5に電気的に接続された第3の線状トレンチゲート電極14sが来るように、第1の線状ハイブリッドサブセル領域40hfと第2の線状ハイブリッドサブセル領域40hsを組み合わせたものということができる。従って、この例では、第1の線状ハイブリッドサブセル領域40hfの幅Whfと第2の線状ハイブリッドサブセル領域40hsの幅Whsは、ほぼ同一である。
また、図27と異なり、メタルエミッタ電極8と電気的に接続されるべきトレンチゲート電極14、すなわち第1の線状トレンチゲート電極14qおよび第2の線状トレンチゲート電極14rが、線状インアクティブセル領域40iを挟んでその両側に分かれている。従って、相互接続は、端部トレンチゲート電極14pのほか、第1の線状トレンチゲート電極14qおよび第2の線状トレンチゲート電極14rと同層のポリシリコン膜を図27と同様に、半導体基板の表面1a上にゲート絶縁膜22等を介して延長した接続用ゲート引き出しパッド14x(エミッタ接続部)を設けることによって実現している。これによって、第1の線状トレンチゲート電極14qおよび第2の線状トレンチゲート電極14rをメタルエミッタ電極8と電気的に接続するコンタクト溝11(この場合は複数)は、図27と同様に、エミッタ接続部14xに平面的に内包されている。
次に、図30のA−A’断面を図31に示す。図31に示すように、半導体基板1sの主要部は、N−型ドリフト領域20が占めており、半導体チップ2における半導体基板1sの裏面1b側には、N−型ドリフト領域20に近い側から、N型フィールドストップ領域19、P+型コレクタ領域18およびメタルコレクタ電極17が設けられている。
一方、半導体基板1sの表面1a側の半導体表面領域には、そのほぼ全面(セル形成領域10のほぼ全面)に、P型ボディ領域15(第2導電型のボディ領域)が設けられている。
線状ハイブリッドセル領域40hと線状インアクティブセル領域40iの境界部における半導体基板1sの表面1a側の半導体表面領域には、第1のトレンチ21q(21)および第2のトレンチ21r(21)が設けられており、それぞれの内部には、ゲート絶縁膜22を介して、第1の線状トレンチゲート電極14qおよび第2の線状トレンチゲート電極14rが設けられている。
一方、第1の線状ハイブリッドサブセル領域40hfと第2の線状ハイブリッドサブセル領域40hsの境界部における半導体基板1sの表面1a側の半導体表面領域には、第3のトレンチ21sが設けられており、その内部には、ゲート絶縁膜22を介して、第3の線状トレンチゲート電極14sが設けられている。
第1の線状ハイブリッドサブセル領域40hfおよび第2の線状ハイブリッドサブセル領域40hsにおいて、半導体基板1sの表面1a側の半導体表面領域には、第3の線状トレンチゲート電極14s側にのみN+型エミッタ領域12が設けられており、コンタクト溝11の下端には、P+型ボディコンタクト領域25が設けられている。このP+型ボディコンタクト領域25の下部には、P+型ラッチアップ防止領域23が設けられており、P型ボディ領域15(第2導電型のボディ領域)およびP+型ラッチアップ防止領域23の下部には、N型ホールバリア領域24が設けられている。
線状インアクティブセル領域40iにおいて、半導体基板1sの表面1a側の半導体表面領域には、P型ボディ領域15の下部に、たとえば、トレンチ21(21q、21r、21s、21t)よりも深いP型フローティング領域16が設けられている。
半導体基板1sの表面1a上のほぼ全面には、たとえば、酸化シリコン系絶縁膜等の層間絶縁膜26が形成されており、この層間絶縁膜26には、たとえばアルミニウム系メタル膜を主要な構成要素とするメタルエミッタ電極8が設けられており、コンタクト溝11(またはコンタクトホール)を介して、N+型エミッタ領域12およびP+型ボディコンタクト領域25と接続されている。
メタルエミッタ電極8上には、更に、たとえば、ポリイミド系有機絶縁膜等のファイナルパッシベーション膜39が形成されている。
次に、図30のC−C’断面を図32に示す。図32に示すように、基本的に図31の線状インアクティブセル領域40iに対応する部分と同じであるが、半導体基板1sの表面1a上に、ゲート絶縁膜22等を介して、第1の線状トレンチゲート電極14qおよび第2の線状トレンチゲート電極14rと連結した接続用ゲート引き出しパッド14x(エミッタ接続部)が設けられている点が異なる。そして、接続用ゲート引き出しパッド14x(エミッタ接続部)は、図29と同様に、コンタクト溝11(またはコンタクトホール)を介して、メタルエミッタ電極8と接続されている。また、図29の線状ホールコレクタセル領域40cと同様の理由により、P型フローティング領域16の上部には、P型ボディ領域15が設けられていない。
6.本願の前記一実施の形態におけるIE型トレンチゲートIGBTのホールコレクタセル幅に関する変形例の説明(主に図33から図35) このセクションで説明する例は、セクション2で説明した例の線状アクティブセル領域40aの幅Waと線状ホールコレクタセル領域40cの幅Wcに関する変形例である。従って、その他の部分は、セクション1から4に説明したとことと変わるところがないので、以下では、原則として異なる部分のみを説明する。
図33は本願の前記一実施の形態におけるIE型トレンチゲートIGBTのホールコレクタセル幅に関する変形例を説明するための図5の部分切り出し領域2(R3)の拡大平面図である。図34は図33のA−A’断面に対応するデバイス断面図である。図35は図33のB−B’断面に対応するデバイス断面図である。これらに基づいて、本願の前記一実施の形態におけるIE型トレンチゲートIGBTのホールコレクタセル幅に関する変形例を説明する。
図5の部分切り出し領域2(R3)に対応するこの変形例の部分を図33に示す。図33に示すように、図5と異なり、線状アクティブセル領域40aの幅Waよりも、線状ホールコレクタセル領域40cの幅Wcが広くなっている。言い換えると、線状アクティブセル領域40aの幅Waは、線状ホールコレクタセル領域40cの幅Wcよりも狭い。このことによって、ホールの排出がスムースになり、スイッチング特性が向上する。
次に、図33のA−A’断面を図34に示す。図34に示すように、線状ホールコレクタセル領域40cの幅Wc(これに関連して線状インアクティブセル領域40iの幅Wi)以外は、図6と全く同じである。
次に、図33のB−B’断面を図35に示す。図35に示すように、線状ホールコレクタセル領域40cの幅Wc(これに関連して線状インアクティブセル領域40iの幅Wi)以外は、図7と全く同じである。
7.本願の前記各実施の形態におけるセル周辺構造の補足的説明(主に図36) このセクションでは、図5のセル形成領域10の周辺領域の断面構造を概説する。
図36は本願の前記各実施の形態におけるセル周辺構造の補足的説明のための図5のH−H’断面に対応するデバイス断面図である。これに基づいて、本願の前記各実施の形態におけるセル周辺構造の補足的説明を行う。
次に、図5のH−H’断面を図36に示す(図27および図33についても同じ)。図36に示すように、線状インアクティブセル領域40iおよびP型セル周辺接合領域35等における半導体基板2の表面1aには、P型ボディ領域15が設けられている。線状インアクティブセル領域40iのP型セル周辺接合領域35との境界近傍の端部トレンチ21e内には、ゲート電位に接続された端部トレンチゲート電極14pが設けられており、端部緩衝領域の一部となっている。また、線状インアクティブセル領域40i下のP型ボディ領域15の下側には、P型フローティング領域16が設けられており、その深さは他の部分と同様に、トレンチ21よりも深く、端部トレンチゲート電極14pが収納されたトレンチ21の下端部をカバーしている。
更に、P型セル周辺接合領域35の部分にも、コンタクト溝11(またはコンタクトホール)等が設けられ、周辺エミッタコンタクト部も設けられている。この周辺エミッタコンタクト部下の半導体基板2の表面領域には、P+型ボディコンタクト領域25pおよびP+型ラッチアップ防止領域23pが設けられており、その下部には、他の部分と同様に、P型領域16pが設けられている。このP型領域16pは、たとえばP型フローティング領域16と同時に作られているが、P型フローティング領域16と異なり、エミッタ電位に電気的に接続されている。すなわち、P型領域16pは、端部トレンチ21e等によってレイアウト的にP型フローティング領域16から分離されている。一方、P型領域16pは、P型フローティング領域16と同様に、その深さは、トレンチ21(端部トレンチ21eを含む)の下端より深い。また、P型領域16pは、P型フローティング領域16と同様に、P型ボディ領域15よりも深い。
ゲート配線7の下方のP型領域(P型領域16pまたはP型ボディ領域15)には、ホールが集まりやすいため、ゲート配線7とセル形成領域10(具体的には、線状インアクティブセル領域40i)の間にメタルエミッタ電極8とP型領域16p等(具体的には、P+型ボディコンタクト領域25pを介して接続)とのコンタクト部、すなわち、周辺コンタクト部41が設けられている。これによって、ホールが排出経路を求めてセル形成領域10へ移動することによるラッチアップ耐性の劣化が防止される。この場合、ゲート配線7と前記周辺コンタクト部41の間には、端部トレンチ21eと同等かまたはこれよりも深く、前記ゲート配線7下と前記周辺コンタクト部41下、並びにその間の領域を平面的にゲート配線7に近い領域と端部トレンチ21eに近い領域に分離するようなその他のトレンチを配置しないことが望ましい。これは、そのような他のトレンチは、ホールの流路であるP型領域16pの厚さを制限し、ラッチアップ耐性の劣化につながるからである。具体的には、図36(図27および図33についても同じ)に示すように、端部トレンチ21eと相対する部分で、端部連結トレンチゲート電極14zを除去している。すなわち、これを収容するトレンチを設けていない。
なお、端部トレンチ21e自体は、ホールのセル形成領域への主要な流路であるP型領域を分断または狭隘化するので、ラッチアップ耐性の確保に有効である。
8.本願の前記各実施の形態におけるセルの長さ方向の変形例の説明(主に図37) このセクションで説明するアクティブセルのレイアウトは、図3、図5、図27、図30、および図33のアクティブセル又はそれに対応する部分に対する変形例である。
図37は本願の前記各実施の形態におけるセルの長さ方向の変形例を説明するための図5の部分切り出し領域1(R2)の拡大平面図である。これに基づいて、本願の前記各実施の形態におけるセルの長さ方向の変形例を説明する。
次に、図5のセル領域内部切り出し領域1(R2)の拡大上面図を図37に示す。図37に示すように、セル形成領域10は、横方向に交互に配置された線状アクティブセル領域40aおよび線状インアクティブセル領域40iから構成されている。線状アクティブセル領域40aおよび線状インアクティブセル領域40iの間には、トレンチゲート電極14が配置されており、線状アクティブセル領域40aの中央部には、線状のコンタクト溝11(またはコンタクトホール)が配置されている。このコンタクト溝11の両側の線状アクティブセル領域40aには、線状のN+型エミッタ領域12が設けられている。一方、線状インアクティブセル領域40iには、ほぼその全面にP型ボディ領域15およびP型フローティング領域16が上下に設けられている。
9.本願の全般に関する考察並びに各実施の形態に関する補足的説明(主に図38) 図38はIE型トレンチゲートIGBTにおけるアクティブセル間引き率(各プロットの近くに表示した数値)、オン抵抗、およびスイッチング損失の関係を示したデータプロット図である。これに基づいて、本願の全般に関する考察並びに各実施の形態に関する補足的説明を行う。
(1)セクション2および4の例におけるアクティブセル間引き率等に関する補足的説明(図5等を参照): 本願に於いては、アクティブセル間引き率は、セル形成領域10の主要部におけるホール流出経路を構成する各種セル領域(ホール流出セル部)の幅で、ホール流出経路を構成しない各種セル領域(ホール非流出セル部)の幅を割ったものと定義している。従って、たとえば、図5の例では、ホール流出セル部は、線状アクティブセル領域40aと線状ホールコレクタセル領域40cであり、ホール非流出セル部は、線状インアクティブセル領域40iである。ここで、線状アクティブセル領域40aの幅Waと線状ホールコレクタセル領域40cの幅Wcは、等しいので、アクティブセル間引き率=Wi/Waで与えられる。
図38は、セクション2の例の線状ホールコレクタセル領域40cを全て線状アクティブセル領域40aとしたデバイス構造(比較例)において、アクティブセル間引き率を0から5の間で変化させたときのオン抵抗とスイッチング損失(スイッチング特性)の変化を示す。なお、比較例においては、前記各実施の形態(各変形例を含む)と相違して、全てのトレンチゲート電極は、メタルゲート電極に電気的に接続されている。図38からわかるように、アクティブセル間引き率が1.5から4(更に好ましくは、2から3)の範囲で良好な特性を得ることができる。すなわち、アクティブセル間引き率が1周辺から低い領域では、IE効果が弱いため、オン抵抗が高くなっている。一方、アクティブセル間引き率が5周辺から高い領域では、IE効果が強すぎて、オン抵抗があまり変わらないにもかかわらず、スイッチング損失が急速に増加している。
従って、アクティブセル間引き率としては、1.5から4(更に好ましくは、2から3)の範囲が好適な範囲と考えられる。以下、これを「標準好適範囲(標準最好適範囲)」という。しかし、このデバイス構造で、更にシュリンクを続行すると、ゲート容量の急激な増加を招き、スイッチング特性が劣化することとなる。
そこで、セクション2の例(セクション4の例も同じ)では、第1に、比較例における線状アクティブセル領域40aをたとえば、一つ置きに、線状ホールコレクタセル領域40c、すなわち、FET部分がFETとして動作しないように、N+型エミッタ領域12(FETのソース)を除去した擬似的な線状アクティブセル領域で置き換えた構造とした。更に、セクション2の例(セクション4の例も同じ)では、第2に、線状ホールコレクタセル領域40cの両側のトレンチゲート電極をメタルエミッタ電極に電気的に接続している。このことによって、ゲート容量の増加を回避しつつ、IE効果が十分に発揮できるようにアクティブセル間引き率を好適な範囲に維持して、デバイスを縮小することが可能となる。これは、線状ホールコレクタセル領域40cは、IGBTがオフした際のホール流出通路として作用するが、ゲート容量の増加には寄与しないからである。
図5の例で、具体的なセル主要寸法を例示するとすれば以下のごとくである。すなわち、トレンチ幅:たとえば0.7マイクロメートル程度、線状アクティブセル領域の幅Wa(線状ホールコレクタセル領域の幅Wc):たとえば1.3マイクロメートル程度、線状インアクティブセル領域の幅Wi:たとえば3.3マイクロメートル程度等である。
(2)セクション5の例におけるアクティブセル間引き率等に関する補足的説明(図30等を参照): 同様に、図30の例では、ホール流出セル部は、線状ハイブリッドセル領域40hであり、ホール非流出セル部は、線状インアクティブセル領域40iである。従って、アクティブセル間引き率=Wi/Whで与えられる。
この例(図30等)では、アクティブセル間引き率を標準好適範囲(標準最好適範囲)に維持しつつ、メタルゲート電極に電気的に接続されるトレンチゲート電極を更に減少させて、スイッチング特性の向上を図るために、図5の線状アクティブセル領域40aと線状ホールコレクタセル領域40cを組み合わせて、線状ハイブリッドセル領域40hを構成している。この線状ハイブリッドセル領域40hにおいては、3本のトレンチゲート電極のうち、中央の1本だけがゲート接続となっているため、図5の例よりも、更にゲート容量が小さくなっている。なお、他の両端の2本は、エミッタ接続である。
図30の例で、具体的なセル主要寸法を例示するとすれば以下のごとくである。すなわち、トレンチ幅:たとえば0.7マイクロメートル程度、線状ハイブリッドセル領域の幅Wh:たとえば2.6マイクロメートル程度、線状インアクティブセル領域の幅Wi:たとえば6.5マイクロメートル程度等である。
(3)セクション6の例におけるアクティブセル間引き率等に関する補足的説明(図33等を参照): 図33の例では、ホール流出セル部は、線状アクティブセル領域40aと線状ホールコレクタセル領域40cであり、ホール非流出セル部は、線状インアクティブセル領域40iである。ここで、線状アクティブセル領域40aの幅Waと線状ホールコレクタセル領域40cの幅Wcは、異なるので、アクティブセル間引き率=2Wi/(Wa+Wc)で与えられる。
図5の構造で、更にゲート容量を減少させようとして、単純にアクティブセル間引き率を標準好適範囲(標準最好適範囲)、たとえば、5とすると、図38からスイッチング損失の急速な劣化が予想される。
図33等の例では、線状ホールコレクタセル領域40cの幅Wcを線状アクティブセル領域40aの幅Waよりも広くする(ここでは、たとえば、1.5倍から2倍程度)ことによって、過剰なIE効果を抑制するものである。
図33の例で、具体的なセル主要寸法を例示するとすれば以下のごとくである。すなわち、トレンチ幅:たとえば0.7マイクロメートル程度、線状アクティブセル領域の幅Wa:たとえば1.3マイクロメートル程度、線状ホールコレクタセル領域の幅Wc:たとえば2.2マイクロメートル程度、線状インアクティブセル領域の幅Wi:たとえば8.8マイクロメートル程度等である。
10.サマリ 以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、前記各実施の形態では、ゲートポリシリコン部材として、ドープトポリシリコン(Doped Poly−silicon)等を用いた例を具体的に説明したが、本願発明はそれに限定されるものではなく、ノンドープポリシリコン(Nondoped Poly−silicon)膜を適用して、成膜後にイオン注入等により、必要な不純物を添加するようにしてもよい。
更に、前記実施の形態では、非エピタキシャルウエハを使用して、バックグラインディング後に、裏面から高濃度不純物層を形成する例を説明したが、本願の発明はそれに限定されるものではなく、エピタキシャルウエハを使用して製造するものにも適用できることは言うまでもない。