[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6583594B1 - Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method - Google Patents

Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method Download PDF

Info

Publication number
JP6583594B1
JP6583594B1 JP2019534909A JP2019534909A JP6583594B1 JP 6583594 B1 JP6583594 B1 JP 6583594B1 JP 2019534909 A JP2019534909 A JP 2019534909A JP 2019534909 A JP2019534909 A JP 2019534909A JP 6583594 B1 JP6583594 B1 JP 6583594B1
Authority
JP
Japan
Prior art keywords
amount
molten metal
carbon
oxygen
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019534909A
Other languages
Japanese (ja)
Other versions
JPWO2019181562A1 (en
Inventor
寛人 加瀬
寛人 加瀬
富山 伸司
伸司 富山
幸雄 ▲高▼橋
幸雄 ▲高▼橋
勝太 天野
勝太 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6583594B1 publication Critical patent/JP6583594B1/en
Publication of JPWO2019181562A1 publication Critical patent/JPWO2019181562A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Electric arc furnaces ; Tank furnaces
    • F27B3/10Details, accessories or equipment, e.g. dust-collectors, specially adapted for hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangement of monitoring devices; Arrangement of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0012Monitoring the composition of the atmosphere or of one of their components
    • F27D2019/0015Monitoring the composition of the exhaust gases or of one of its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangement of monitoring devices; Arrangement of safety devices
    • F27D21/0014Devices for monitoring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

本発明に係る溶湯成分推定装置は、精錬設備に投入される炭素量及び酸素量と精錬設備から排出される炭素量及び酸素量とを推定する物質収支計算部と、精錬設備内に残存する酸素量及び炭素量の少なくとも一方を推定する物理反応モデル計算部と、排ガスの流量の計測値を補正するパラメータ、排ガスの成分濃度の計測値を補正するパラメータ、スラグ中のFeO濃度の計算値を補正するパラメータ、及び溶湯中の炭素量を表すパラメータをそれぞれ第1、第2、第3、及び第4の補正パラメータとして算出し、算出された第1、第2、第3、及び第4の補正パラメータを用いて、溶湯及びスラグ中の成分濃度を推定する補正計算部と、を備える。The molten metal component estimation apparatus according to the present invention includes a material balance calculation unit that estimates the amount of carbon and oxygen input to a refining facility and the amount of carbon and oxygen discharged from the refining facility, and oxygen remaining in the refining facility. Physical reaction model calculation unit that estimates at least one of the quantity and carbon quantity, parameters that correct the measured value of the exhaust gas flow rate, parameters that correct the measured value of the exhaust gas component concentration, and the calculated value of the FeO concentration in the slag And a parameter representing the amount of carbon in the molten metal are calculated as first, second, third, and fourth correction parameters, respectively, and the calculated first, second, third, and fourth corrections are calculated. And a correction calculation unit that estimates the component concentration in the molten metal and slag using the parameters.

Description

本発明は、溶湯成分推定装置、溶湯成分推定方法、及び溶湯の製造方法に関する。   The present invention relates to a molten metal component estimation device, a molten metal component estimation method, and a molten metal manufacturing method.

製鉄所では、予備処理設備、転炉、及び二次精錬設備等の精錬設備において、高炉から出銑された溶銑の成分濃度及び温度を調整する。中でも転炉プロセスは、転炉内に酸素を吹き込むことによって溶湯中の不純物除去及び昇温を行うプロセスであり、鋼の品質管理及び精錬コスト合理化等の面で非常に重要な役割を担う。転炉における溶湯の成分濃度及び温度の制御においては、上吹き酸素の流量及び速度、上吹きランス高さ、底吹きガスの流量、石灰や鉄鉱石等の副原料の投入量及び投入タイミング等が操作量として用いられる。これらの操作量は、溶湯及びスラグの成分濃度に応じて最適化されるべきである。ところが、溶湯中の酸化反応は激しく、溶湯が高温になるため、溶湯及びスラグの成分濃度を時々刻々計測することは困難である。このため、現在まで炉内物理反応モデルや精錬設備における計測情報を用いて溶湯及びスラグの成分濃度をリアルタイムに推定する方法が提案されている。   In the steelworks, the concentration and temperature of the hot metal discharged from the blast furnace are adjusted in refining facilities such as pretreatment facilities, converters, and secondary refining facilities. Among them, the converter process is a process of removing impurities in the molten metal and raising the temperature by blowing oxygen into the converter, and plays an extremely important role in terms of quality control of steel and rationalization of refining costs. In the control of the component concentration and temperature of the molten metal in the converter, the flow rate and speed of top blowing oxygen, the top blowing lance height, the bottom blowing gas flow rate, the charging amount and charging timing of auxiliary materials such as lime and iron ore, etc. Used as a manipulated variable. These operating amounts should be optimized according to the component concentrations of the melt and slag. However, since the oxidation reaction in the molten metal is intense and the molten metal becomes high in temperature, it is difficult to measure the component concentrations of the molten metal and slag every moment. For this reason, a method for estimating the component concentrations of the molten metal and slag in real time using the in-furnace physical reaction model and the measurement information in the refining equipment has been proposed.

特許文献1には、転炉から排出される排ガスの成分濃度及び流量、並びに操業データを用いて火点反応の演算を行い、算出されたデータを用いてスラグメタル界面反応の演算を行うことにより、吹錬処理中のスラグ中FeO濃度を逐次推定する方法が提案されている。ところが、一般に、転炉において溶湯の成分濃度の推定に用いられる排ガスの計測情報の誤差は大きい。例えば、一般に、排ガスの流量値は、オリフィス(絞り)やベンチュリ管を排ガス管に設置し、その前後の圧力降下から推定されることが多いが、排ガスの圧力、温度、及び流量は頻繁に大きく変動するため、計測値の誤差が大きくなる傾向がある。このような背景から、特許文献2には、鉄鋼精錬プロセスの排ガスの流量に関して、計測値を補正する係数を過去実績に基づいて計算し、吹錬処理途中の溶湯分析結果に基づいてさらにその係数を補正し、その情報に基づいて溶湯の炭素濃度をリアルタイムで推定する方法が提案されている。   In Patent Document 1, a calculation of a fire point reaction is performed using the component concentration and flow rate of exhaust gas discharged from a converter, and operation data, and a calculation of a slag metal interface reaction is performed using the calculated data. A method for sequentially estimating the FeO concentration in the slag during the blowing process has been proposed. However, in general, there is a large error in the measurement information of the exhaust gas used for estimating the component concentration of the molten metal in the converter. For example, in general, the flow rate value of exhaust gas is often estimated from the pressure drop before and after installing an orifice (throttle) or a venturi tube in the exhaust gas tube, but the pressure, temperature, and flow rate of the exhaust gas are frequently large. Since it fluctuates, the error of the measured value tends to increase. From such a background, Patent Document 2 discloses that a coefficient for correcting the measured value is calculated based on the past results regarding the flow rate of the exhaust gas in the steel refining process, and the coefficient is further calculated based on the molten metal analysis result during the blowing process. And a method for estimating the carbon concentration of the molten metal in real time based on the information has been proposed.

特開2015−131999号公報Japanese Patent Laying-Open No. 2015-131999 特開平9−272913号公報JP-A-9-272913

しかしながら、特許文献1に記載の方法では、火点反応の演算において脱炭速度及び鉄の酸化速度を算出する際、上述のように誤差が大きい排ガスの流量及び成分濃度の計測値を用いている。さらに、転炉プロセスでは物理モデルでは表しきれない未知の外乱によってモデル計算値が真値とずれることがしばしば生じる。以上により、特許文献1に記載の方法では、火点及びメタルスラグ界面反応モデルによって計算されるスラグ中FeO濃度の推定精度がしばしば悪化すると考えられる。   However, in the method described in Patent Document 1, when calculating the decarburization rate and the iron oxidation rate in the calculation of the hot spot reaction, as described above, the measured values of the exhaust gas flow rate and component concentration with large errors are used. . Furthermore, in the converter process, the model calculation value often shifts to the true value due to unknown disturbances that cannot be represented by the physical model. From the above, in the method described in Patent Document 1, it is considered that the estimation accuracy of the FeO concentration in slag calculated by the fire point and metal slag interface reaction model often deteriorates.

一方、特許文献2には排ガスの計測情報の補正方法が記載されているが、その方法は排ガス中の炭素量と溶湯中の炭素減少量とに基づいて排ガスの流量を補正するものであり、その際に溶湯の中間サンプリングによる成分分析情報を利用している。転炉プロセスでは、溶湯成分のサンプリングは吹錬処理終盤に一回又は数回行うのが一般的であり、上記の方法では、溶湯の中間サンプリングを行うまでの溶湯成分の推定精度の悪化、またそれにより中間サンプリング実行タイミングが目標値とずれ、中間サンプリング以降の操作アクションが遅れるという問題が考えられる。   On the other hand, Patent Document 2 describes a method for correcting measurement information of exhaust gas, but the method corrects the flow rate of exhaust gas based on the amount of carbon in the exhaust gas and the amount of carbon decrease in the molten metal, At that time, the component analysis information by the intermediate sampling of the molten metal is used. In the converter process, the sampling of the molten metal component is generally performed once or several times at the end of the blowing process. In the above method, the estimated accuracy of the molten metal component is deteriorated until the intermediate sampling of the molten metal is performed. Accordingly, there is a problem that the execution timing of the intermediate sampling is deviated from the target value, and the operation action after the intermediate sampling is delayed.

本発明は、上記課題に鑑みてなされたものであって、その目的は、溶湯及びスラグ中の成分濃度を高精度、且つ、連続的に推定可能な溶湯成分推定装置及び溶湯成分推定方法を提供することにある。また、本発明の他の目的は、所望の成分濃度を有する溶湯を歩留まりよく製造可能な溶湯の製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a molten component estimation device and a molten component estimation method capable of continuously estimating the component concentration in the molten metal and slag with high accuracy. There is to do. Another object of the present invention is to provide a method for producing a molten metal capable of producing a molten metal having a desired component concentration with a high yield.

本発明に係る溶湯成分推定装置は、精錬設備における吹錬処理開始前又は吹錬処理中の溶湯の温度及び成分濃度についての第1計測結果と、前記精錬設備から排出される排ガスの流量及び成分濃度についての第2計測結果と、が入力される入力装置と、前記精錬設備における吹錬処理反応に関するモデル式及びパラメータを格納するモデルデータベースと、前記第1計測結果と、前記第2計測結果と、前記モデル式及び前記パラメータとを用いて炭素及び酸素の収支バランス計算を行うことにより、精錬設備に投入される炭素量及び酸素量と前記精錬設備から排出される炭素量及び酸素量とを推定する物質収支計算部と、前記第1計測結果と前記モデル式及び前記パラメータとを用いてスラグ中FeO量及び溶湯中脱炭量の少なくとも一方を計算することにより、精錬設備内に残存する酸素量及び炭素量の少なくとも一方を推定する物理反応モデル計算部と、前記入力装置に入力された前記第2計測結果から、前記物質収支計算部及び前記物理反応モデル計算部の推定結果を用いて、前記排ガスの流量の計測値を補正するパラメータ、前記排ガスの成分濃度の計測値を補正するパラメータ、スラグ中のFeO濃度の計算値を補正するパラメータ、及び前記溶湯中の炭素量を表すパラメータをそれぞれ第1、第2、第3、及び第4の補正パラメータとして算出し、算出された第1、第2、第3、及び第4の補正パラメータを用いて、溶湯及びスラグ中の成分濃度を推定する補正計算部と、を備えることを特徴とする。   The molten metal component estimation apparatus according to the present invention includes a first measurement result of the temperature and component concentration of the molten metal before the start of the blowing process or during the blowing process in the refining facility, and the flow rate and components of the exhaust gas discharged from the refining facility. A second measurement result for the concentration; an input device for inputting; a model database for storing model equations and parameters relating to a blowing process reaction in the refining facility; the first measurement result; and the second measurement result. , By calculating the balance of carbon and oxygen using the model formula and the parameters, the amount of carbon and oxygen input to the refining equipment and the amount of carbon and oxygen discharged from the refining equipment are estimated. Using the mass balance calculation unit, the first measurement result, the model formula, and the parameter, at least one of the amount of FeO in the slag and the amount of decarburization in the molten metal. By calculating, a physical reaction model calculation unit that estimates at least one of the oxygen amount and carbon amount remaining in the refining facility, and from the second measurement result input to the input device, the mass balance calculation unit and the Using the estimation result of the physical reaction model calculation unit, a parameter for correcting the measured value of the exhaust gas flow rate, a parameter for correcting the measured value of the component concentration of the exhaust gas, a parameter for correcting the calculated value of the FeO concentration in the slag, And a parameter representing the amount of carbon in the molten metal as first, second, third and fourth correction parameters, respectively, and the calculated first, second, third and fourth correction parameters are And a correction calculation unit that estimates the component concentration in the molten metal and slag.

本発明に係る溶湯成分推定装置は、上記発明において、前記補正計算部は、前記第1計測結果から計算される初期溶湯中炭素量と投入副原料とにより精錬設備内に供給される炭素量から前記第2計測結果から計算される精錬設備外に排出される炭素量を減算した量と前記第4の補正パラメータとの差として表される炭素収支誤差、前記精錬設備に供給された酸素量から前記第2計測結果から計算される溶湯中炭素酸化、精錬設備内一酸化炭素酸化、及び溶湯中不純物金属酸化により消費された酸素量を減算した値と前記モデル式により計算された溶湯中鉄酸化により消費された酸素量との差として表される酸素収支誤差、及び上吹き送酸量及び投入副原料により供給された酸素量から不純物金属及び鉄酸化により消費された酸素量を減算した量のうち、溶湯中炭素酸化により消費された酸素量の割合として表される一次燃焼効率と前記一次燃焼効率の標準値との差として表される一次燃焼収支誤差の項を含む評価関数が最小になるように前記第1、前記第2、前記第3、及び前記第4の補正パラメータを計算することを特徴とする。   In the molten metal component estimation apparatus according to the present invention, in the above invention, the correction calculation unit calculates the amount of carbon supplied from the initial molten metal calculated from the first measurement result and the amount of carbon supplied into the refining equipment by the input auxiliary material. From the carbon balance error expressed as the difference between the amount obtained by subtracting the amount of carbon discharged outside the refining facility calculated from the second measurement result and the fourth correction parameter, from the amount of oxygen supplied to the refining facility The value obtained by subtracting the amount of oxygen consumed by the carbon oxidation in the melt calculated from the second measurement result, the carbon monoxide oxidation in the refining facility, and the impurity metal oxidation in the melt and the iron oxidation in the melt calculated by the model equation. The oxygen balance error expressed as the difference from the amount of oxygen consumed by the above, and the amount of oxygen consumed by impurity metal and iron oxidation were subtracted from the amount of oxygen blown up and the amount of oxygen supplied by the input auxiliary material. Among them, the evaluation function including the term of the primary combustion balance error expressed as the difference between the primary combustion efficiency expressed as a ratio of the amount of oxygen consumed by carbon oxidation in the molten metal and the standard value of the primary combustion efficiency is minimized. The first, the second, the third, and the fourth correction parameters are calculated as follows.

本発明に係る溶湯成分推定装置は、上記発明において、前記補正計算部は、前記第1計測結果から計算される初期溶湯中炭素量と投入副原料とにより精錬設備内に供給される炭素量から前記第2計測結果から計算される精錬設備外に排出される炭素量を減算した量と前記第4の補正パラメータとの比として表される炭素収支誤差、前記精錬設備に供給された酸素量から前記第2計測結果から計算される溶湯中炭素酸化、精錬設備内一酸化炭素酸化、及び溶湯中不純物金属酸化により消費された酸素量を減算した値と物理反応モデルにより計算された溶湯中鉄酸化により消費された酸素量との比として表される酸素収支誤差、及び上吹き送酸量及び投入副原料により供給された酸素量から不純物金属及び鉄酸化により消費された酸素量を減算した量のうち、溶湯中炭素酸化により消費された酸素量の割合として表される一次燃焼効率と前記一次燃焼効率の標準値との比として表される一次燃焼収支誤差の項を含む評価関数が最小になるように前記第1、前記第2、前記第3、及び前記第4の補正パラメータを計算することを特徴とする。   In the molten metal component estimation apparatus according to the present invention, in the above invention, the correction calculation unit calculates the amount of carbon supplied from the initial molten metal calculated from the first measurement result and the amount of carbon supplied into the refining equipment by the input auxiliary material. From the carbon balance error expressed as the ratio of the amount obtained by subtracting the amount of carbon discharged outside the refining facility calculated from the second measurement result and the fourth correction parameter, from the amount of oxygen supplied to the refining facility Iron oxidation in molten metal calculated from the physical reaction model and the value obtained by subtracting the amount of oxygen consumed by carbon oxidation in molten metal, carbon monoxide oxidation in refining equipment, and impurity metal oxidation in molten metal calculated from the second measurement result The oxygen balance error expressed as a ratio to the amount of oxygen consumed by the above, and the amount of oxygen consumed by impurity metal and iron oxidation are subtracted from the amount of oxygen blown up and the amount of oxygen supplied by the input auxiliary material. The evaluation function including the term of the primary combustion balance error expressed as a ratio between the primary combustion efficiency expressed as a ratio of the amount of oxygen consumed by carbon oxidation in the molten metal and the standard value of the primary combustion efficiency is minimum. The first, second, third, and fourth correction parameters are calculated so that

本発明に係る溶湯成分推定装置は、上記発明において、前記評価関数が、前記炭素収支誤差の二乗値、前記酸素収支誤差の二乗値、及び前記一次燃焼収支誤差の二乗値を項として含む重み付き和であることを特徴とする。   In the molten metal component estimation apparatus according to the present invention, in the above invention, the evaluation function is weighted including, as terms, the square value of the carbon balance error, the square value of the oxygen balance error, and the square value of the primary combustion balance error. It is a sum.

本発明に係る溶湯成分推定装置は、上記発明において、前記評価関数における各項の重みを表す定数が、計算対象チャージ中の計算対象時刻以前に算出された溶湯成分推定情報及び補正された排ガス計測情報の少なくとも一方に基づいて設定された条件を満たした場合に、切り替わることを特徴とする。   In the molten metal component estimation apparatus according to the present invention, in the above invention, the constant representing the weight of each term in the evaluation function includes the molten component component estimation information calculated before the calculation target time during the calculation target charge and the corrected exhaust gas measurement. Switching is performed when a condition set based on at least one of the information is satisfied.

本発明に係る溶湯成分推定方法は、精錬設備における吹錬処理開始前又は吹錬処理中の溶湯の温度及び成分濃度についての第1計測結果と、前記精錬設備から排出される排ガスの流量及び成分濃度についての第2計測結果と、が入力される入力ステップと、前記第1計測結果と、前記第2計測結果と、前記精錬設備における吹錬処理反応に関するモデル式及びパラメータとを用いて炭素及び酸素の収支バランス計算を行うことにより、精錬設備に投入される炭素量及び酸素量と前記精錬設備から排出される炭素量及び酸素量とを推定する物質収支計算ステップと、前記第1計測結果と前記モデル式及び前記パラメータとを用いてスラグ中FeO量及び溶湯中脱炭量の少なくとも一方を計算することにより、精錬設備内に残存する酸素量及び炭素量の少なくとも一方を推定する物理反応モデル計算ステップと、前記入力ステップにおいて入力された前記第2計測結果から、前記物質収支計算ステップ及び前記物理反応モデル計算ステップにおける推定結果を用いて、前記排ガスの流量の計測値を補正するパラメータ、前記排ガスの成分濃度の計測値を補正するパラメータ、スラグ中のFeO濃度の計算値を補正するパラメータ、及び前記溶湯中の炭素量を表すパラメータをそれぞれ第1、第2、第3、及び第4の補正パラメータとして算出し、算出された第1、第2、第3、及び第4の補正パラメータを用いて、溶湯及びスラグ中の成分濃度を推定する補正計算ステップと、を含むことを特徴とする。   The molten metal component estimation method according to the present invention includes the first measurement result of the temperature and the component concentration of the molten metal before the start of the blowing process or during the blowing process in the refining equipment, and the flow rate and components of the exhaust gas discharged from the refining equipment. A second measurement result for the concentration, an input step, the first measurement result, the second measurement result, and a model formula and parameters relating to a blowing process reaction in the refining equipment, and carbon and A material balance calculation step for estimating the amount of carbon and oxygen input to the refining facility and the amount of carbon and oxygen discharged from the refining facility by performing an oxygen balance balance calculation; and the first measurement result; By calculating at least one of the amount of FeO in the slag and the amount of decarburization in the molten metal using the model formula and the parameter, the amount of oxygen remaining in the refining equipment and the carbon A physical reaction model calculation step for estimating at least one of the quantities; and from the second measurement result input in the input step, using the estimation results in the mass balance calculation step and the physical reaction model calculation step, A parameter for correcting the measured value of the flow rate, a parameter for correcting the measured value of the component concentration of the exhaust gas, a parameter for correcting the calculated value of the FeO concentration in the slag, and a parameter representing the amount of carbon in the molten metal, respectively, Correction calculation that is calculated as the second, third, and fourth correction parameters, and that uses the calculated first, second, third, and fourth correction parameters to estimate the component concentration in the molten metal and slag. And a step.

本発明に係る溶湯の製造方法は、本発明に係る溶湯成分推定方法を用いて推定された溶湯中の成分濃度に基づいて溶湯中の成分濃度を所望の範囲内に調整するステップを含むことを特徴とする。   The molten metal manufacturing method according to the present invention includes a step of adjusting the component concentration in the molten metal within a desired range based on the component concentration in the molten metal estimated using the molten metal component estimating method according to the present invention. Features.

本発明に係る溶湯成分推定装置及び溶湯成分推定方法によれば、溶湯及びスラグ中の成分濃度を高精度、且つ、連続的に推定することができる。また、本発明に係る溶湯の製造方法によれば、所望の成分濃度を有する溶湯を歩留まりよく製造することができる。   According to the molten metal component estimation apparatus and the molten metal component estimation method according to the present invention, the component concentration in the molten metal and slag can be estimated with high accuracy and continuously. Moreover, according to the manufacturing method of the molten metal which concerns on this invention, the molten metal which has a desired component density | concentration can be manufactured with a sufficient yield.

図1は、本発明の一実施形態である溶湯成分推定装置の構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a configuration of a molten metal component estimation apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態である溶湯成分推定処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of molten metal component estimation processing according to an embodiment of the present invention. 図3は、吹錬処理中の脱炭酸素効率と吹錬進行度との関係を示す図である。FIG. 3 is a diagram showing a relationship between decarbonation efficiency and blowing progress during the blowing process.

以下、図面を参照して、本発明の一実施形態である溶湯成分推定装置及びその動作について詳細に説明する。   Hereinafter, with reference to drawings, the molten metal component estimation apparatus and operation | movement which are one Embodiment of this invention are demonstrated in detail.

〔溶湯成分推定装置の構成〕
まず、図1を参照して、本発明の一実施形態である溶湯成分推定装置の構成について説明する。
[Configuration of molten metal component estimation device]
First, with reference to FIG. 1, the structure of the molten metal component estimation apparatus which is one Embodiment of this invention is demonstrated.

図1は、本発明の一実施形態である溶湯成分推定装置の構成を示す模式図である。図1に示すように、本発明の一実施形態である溶湯成分推定装置1は、鉄鋼業の精錬設備2で処理されている溶湯101及びスラグ103の成分濃度を推定する装置である。ここで、精錬設備2は、転炉100、ランス102、及びダクト104を備えている。転炉100内の溶湯101上にはランス102が配置されている。ランス102の先端から下方の溶湯101に向けて高圧酸素(上吹き酸素)が噴出される。この高圧酸素によって溶湯101内の不純物が酸化されてスラグ103内に取り込まれる(吹錬処理)。転炉100の上部には、排ガス導煙用のダクト104が設置されている。   FIG. 1 is a schematic diagram illustrating a configuration of a molten metal component estimation apparatus according to an embodiment of the present invention. As shown in FIG. 1, a molten metal component estimation apparatus 1 according to an embodiment of the present invention is an apparatus that estimates component concentrations of a molten metal 101 and a slag 103 that are processed in a steel industry refining facility 2. Here, the refining equipment 2 includes a converter 100, a lance 102, and a duct 104. A lance 102 is disposed on the molten metal 101 in the converter 100. High-pressure oxygen (up-blown oxygen) is ejected from the tip of the lance 102 toward the molten metal 101 below. Impurities in the molten metal 101 are oxidized by this high-pressure oxygen and taken into the slag 103 (blowing process). At the upper part of the converter 100, a duct 104 for introducing exhaust gas smoke is installed.

ダクト104の内部には、排ガス検出部105が配置されている。排ガス検出部105は、吹錬処理に伴い排出される排ガスの流量及び排ガス中の成分(例えば、CO,CO,O,N,HO,Ar等)を検出する。排ガス検出部105は、例えばダクト104内に設けられたベンチュリ管の前後の差圧に基づいてダクト104内の排ガスの流量を計測する。また、排ガス検出部105は、排ガス中の各成分濃度[%]を計測する。排ガスの流量及び成分濃度は、例えば数秒周期で計測される。排ガス検出部105の検出結果を示す信号は制御端末10に送られる。An exhaust gas detector 105 is disposed inside the duct 104. The exhaust gas detection unit 105 detects the flow rate of exhaust gas discharged in association with the blowing process and components (for example, CO, CO 2 , O 2 , N 2 , H 2 O, Ar, etc.) in the exhaust gas. The exhaust gas detection unit 105 measures the flow rate of the exhaust gas in the duct 104 based on, for example, the differential pressure before and after the venturi pipe provided in the duct 104. Further, the exhaust gas detection unit 105 measures each component concentration [%] in the exhaust gas. The flow rate and component concentration of the exhaust gas are measured, for example, in a cycle of several seconds. A signal indicating the detection result of the exhaust gas detection unit 105 is sent to the control terminal 10.

転炉100内の溶湯101には、転炉100の底部に形成されている通気孔106を介して撹拌ガス(底吹きガス)が吹き込まれる。撹拌ガスは、Ar等の不活性ガスである。吹き込まれた撹拌ガスは、溶湯101を撹拌し、高圧酸素と溶湯101との反応を促進する。流量計107は、転炉100に吹き込まれる撹拌ガスの流量を計測する。吹錬処理開始直前及び吹錬処理後には、溶湯101の温度及び成分濃度の分析が行われる。また、溶湯101の温度及び成分濃度は、吹錬処理途中で一度又は複数回計測され、計測された温度及び成分濃度に基づいて高圧酸素の供給量(送酸量)及び速度(送酸速度)や撹拌ガスの流量(撹拌ガス流量)等が決められる。   Stir gas (bottom blowing gas) is blown into the molten metal 101 in the converter 100 through a vent hole 106 formed in the bottom of the converter 100. The stirring gas is an inert gas such as Ar. The blown stirring gas stirs the molten metal 101 and promotes the reaction between the high-pressure oxygen and the molten metal 101. The flow meter 107 measures the flow rate of the stirring gas blown into the converter 100. Immediately before the start of the blowing process and after the blowing process, the temperature and component concentration of the molten metal 101 are analyzed. In addition, the temperature and component concentration of the molten metal 101 are measured once or a plurality of times during the blowing process, and the supply amount (acid supply amount) and rate (acid supply rate) of high-pressure oxygen based on the measured temperature and component concentration. And the flow rate of stirring gas (flow rate of stirring gas) and the like are determined.

溶湯成分推定装置1が適用される吹錬処理制御システムは、制御端末10、溶湯成分推定装置1、及び表示装置20を主な構成要素として備えている。制御端末10は、パーソナルコンピュータやワークステーション等の情報処理装置によって構成され、溶湯101の成分濃度が所望の範囲内になるように送酸量、送酸速度、及び撹拌ガス流量を制御すると共に、送酸量、送酸速度、及び撹拌ガス流量の実績値のデータを収集する。   The blowing process control system to which the molten metal component estimation device 1 is applied includes the control terminal 10, the molten metal component estimation device 1, and the display device 20 as main components. The control terminal 10 is configured by an information processing device such as a personal computer or a workstation, and controls the amount of acid supplied, the rate of acid supply, and the flow rate of the stirring gas so that the component concentration of the molten metal 101 falls within a desired range. Collect data on the actual values of the amount of acid delivered, the rate of acid delivery, and the flow rate of stirring gas.

溶湯成分推定装置1は、パーソナルコンピュータやワークステーション等の情報処理装置によって構成されている。溶湯成分推定装置1は、入力装置11、モデルデータベース(モデルDB)12、演算処理部13、及び出力装置17を備えている。   The molten metal component estimation device 1 is configured by an information processing device such as a personal computer or a workstation. The molten metal component estimation device 1 includes an input device 11, a model database (model DB) 12, an arithmetic processing unit 13, and an output device 17.

入力装置11は、精錬設備2に関する各種の計測結果及び実績情報が入力される入力用インターフェースである。入力装置11には、キーボード、マウス、ポインティングディバイス、データ受信装置、及びグラフィカルユーザインターフェース(GUI)等がある。入力装置11は、実績データやパラメータ設定値等を外部から受け取り、その情報のモデルDB12への書き込みや演算処理部13への送信を行う。入力装置11には、精錬設備2における吹錬処理開始前及び吹錬処理中の少なくとも何れか一方の溶湯101の温度と成分濃度についての計測結果が入力される。温度と成分濃度についての計測結果は、例えばオペレータによる手入力や記録媒体からの読み込み入力等によって入力装置11に入力される。また、入力装置11には、制御端末10から実績情報が入力される。実績情報は、排ガス検出部105によって計測された排ガスの流量及び成分濃度についての情報、送酸量及び送酸速度の情報、撹拌ガス流量の情報、原料(主原料、副原料)投入量の情報、溶湯101の温度情報等が含まれる。   The input device 11 is an input interface through which various measurement results and performance information related to the refining facility 2 are input. The input device 11 includes a keyboard, a mouse, a pointing device, a data receiving device, a graphical user interface (GUI), and the like. The input device 11 receives performance data, parameter setting values, and the like from the outside, and writes the information to the model DB 12 and transmits the information to the arithmetic processing unit 13. The input device 11 receives the measurement results of the temperature and component concentration of at least one of the molten metal 101 before the start of the blowing process in the refining equipment 2 and during the blowing process. The measurement results for the temperature and the component concentration are input to the input device 11 by, for example, manual input by an operator or reading input from a recording medium. The record information is input to the input device 11 from the control terminal 10. The results information includes information on the flow rate and component concentration of the exhaust gas measured by the exhaust gas detection unit 105, information on the amount of acid sent and the rate of acid delivery, information on the stirring gas flow rate, and information on the amount of raw material (main raw material, auxiliary raw material) input. The temperature information of the molten metal 101 is included.

モデルDB12は、精錬設備2における吹錬処理反応に関するモデル式の情報が保存されている記憶装置である。モデルDB12は、吹錬処理反応に関するモデル式の情報として、モデル式のパラメータを記憶している。また、モデルDB12には、入力装置11に入力された各種情報、及び演算処理部13により算出された吹錬処理実績における計算・解析結果が記憶される。   The model DB 12 is a storage device that stores information on model formulas related to the blowing process reaction in the refining facility 2. Model DB12 has memorized a parameter of a model formula as information on a model formula about blowing process reaction. Further, the model DB 12 stores various information input to the input device 11 and calculation / analysis results in the blowing process performance calculated by the arithmetic processing unit 13.

演算処理部13は、CPU等の演算処理装置であり、溶湯成分推定装置1全体の動作を制御する。演算処理部13は、物質収支計算部14、物理反応モデル計算部15、及び補正計算部16としての機能を有する。物質収支計算部14、物理反応モデル計算部15、及び補正計算部16は、例えば演算処理部13がコンピュータプログラムを実行することにより実現される。演算処理部13は、物質収支計算部14用のコンピュータプログラムを実行することにより物質収支計算部14として機能し、物理反応モデル計算部15用のコンピュータプログラムを実行することにより物理反応モデル計算部15として機能し、補正計算部16用のコンピュータプログラムを実行することにより補正計算部16として機能する。なお、演算処理部13は、物質収支計算部14、物理反応モデル計算部15、及び補正計算部16として機能する専用の演算装置や演算回路を有していてもよい。   The arithmetic processing unit 13 is an arithmetic processing device such as a CPU, and controls the entire operation of the molten metal component estimation device 1. The arithmetic processing unit 13 functions as a material balance calculation unit 14, a physical reaction model calculation unit 15, and a correction calculation unit 16. The material balance calculation unit 14, the physical reaction model calculation unit 15, and the correction calculation unit 16 are realized, for example, when the arithmetic processing unit 13 executes a computer program. The arithmetic processing unit 13 functions as the mass balance calculation unit 14 by executing a computer program for the mass balance calculation unit 14, and the physical reaction model calculation unit 15 by executing the computer program for the physical reaction model calculation unit 15. And functions as the correction calculation unit 16 by executing the computer program for the correction calculation unit 16. The arithmetic processing unit 13 may include a dedicated arithmetic device or arithmetic circuit that functions as the mass balance calculation unit 14, physical reaction model calculation unit 15, and correction calculation unit 16.

物質収支計算部14は、操業実績情報、溶湯成分分析情報、排ガス情報、及びモデルDB12に記憶されているモデル情報に基づいて、成分の物質収支バランス計算を行う。物質収支バランス計算は、転炉100内への各成分の投入量及び転炉100からの各成分の排出量を計算するものである。各成分の投入量は、転炉100への主原料及び副原料投入量、ランス102からの供給酸素、及び転炉100外からの巻き込み空気量から算出される。各成分の排出量は、排ガス流量及び排ガス成分濃度から算出される。   The material balance calculation unit 14 calculates the material balance of the components based on the operation result information, the melt component analysis information, the exhaust gas information, and the model information stored in the model DB 12. The mass balance balance calculation is to calculate the amount of each component charged into the converter 100 and the amount of each component discharged from the converter 100. The input amount of each component is calculated from the input amount of the main raw material and auxiliary raw material to the converter 100, the oxygen supplied from the lance 102, and the amount of air entrained from outside the converter 100. The discharge amount of each component is calculated from the exhaust gas flow rate and the exhaust gas component concentration.

物理反応モデル計算部15は、モデルDB12に記憶されているモデル情報と操業実績情報に基づいて、スラグ103中のFeO生成・還元反応量、及び溶湯101中の脱炭量を計算し、溶湯101中の鉄の酸化量、すなわちスラグ103中のFeOとして転炉100内に残存する酸素量、及び溶湯101中に残存する炭素量を推定する。   The physical reaction model calculation unit 15 calculates the FeO generation / reduction reaction amount in the slag 103 and the decarburization amount in the molten metal 101 based on the model information and operation result information stored in the model DB 12, and the molten metal 101 The amount of iron oxidation inside, that is, the amount of oxygen remaining in the converter 100 as FeO in the slag 103 and the amount of carbon remaining in the molten metal 101 are estimated.

補正計算部16は、物質収支計算部14と物理反応モデル計算部15における計算結果に基づいて、排ガス流量の補正パラメータ、排ガス中CO、CO濃度の補正パラメータ、物理反応モデル計算部15によるスラグ103中FeO濃度推定値の補正パラメータ、計算時点における溶湯101中炭素濃度を算出し、算出した各種補正パラメータを用いて、溶湯101中炭素濃度及びスラグ103中FeO濃度を推定する。Based on the calculation results in the mass balance calculation unit 14 and the physical reaction model calculation unit 15, the correction calculation unit 16 corrects exhaust gas flow rate correction parameters, correction parameters for CO and CO 2 concentration in exhaust gas, and slag generated by the physical reaction model calculation unit 15. The correction parameter of the estimated FeO concentration in 103 and the carbon concentration in the molten metal 101 at the time of calculation are calculated, and the carbon concentration in the molten metal 101 and the FeO concentration in the slag 103 are estimated using the calculated various correction parameters.

このような構成を有する溶湯成分推定装置1は、以下に示す溶湯成分推定処理を実行することによって、溶湯及びスラグ中の成分濃度を高精度、且つ、連続的に推定する。以下、図2に示すフローチャートを参照して、溶湯成分推定処理を実行する際の溶湯成分推定装置1の動作について説明する。   The molten metal component estimation device 1 having such a configuration estimates the component concentration in the molten metal and slag continuously with high accuracy by executing the molten metal component estimation process described below. Hereinafter, with reference to the flowchart shown in FIG. 2, operation | movement of the molten metal component estimation apparatus 1 at the time of performing a molten metal component estimation process is demonstrated.

〔溶湯成分推定処理〕
図2は、本発明の一実施形態である溶湯成分推定処理の流れを示すフローチャートである。図2に示すフローチャートは、吹錬処理が開始されたタイミングで開始となり、溶湯成分推定処理はステップS1の処理に進む。
[Melt estimation process]
FIG. 2 is a flowchart showing a flow of molten metal component estimation processing according to an embodiment of the present invention. The flowchart shown in FIG. 2 starts at the timing when the blowing process is started, and the molten metal component estimation process proceeds to the process of step S1.

ステップS1の処理では、演算処理部13が、溶湯101の計測・分析値を取得する。演算処理部13は、溶湯101のサンプルに対する温度計測及び成分分析により得られた計測・分析結果を取得する。これにより、ステップS1の処理は完了し、溶湯成分推定処理はステップS2の処理に進む。   In the process of step S <b> 1, the arithmetic processing unit 13 acquires the measurement / analysis value of the molten metal 101. The arithmetic processing unit 13 acquires measurement / analysis results obtained by temperature measurement and component analysis on the sample of the molten metal 101. Thereby, the process of step S1 is completed and the molten metal component estimation process proceeds to the process of step S2.

ステップS2の処理では、演算処理部13は、操作量情報、排ガス計測・分析情報(排ガス情報)、及び副原料投入量情報を制御端末10から取得する。通常の転炉吹錬操業では、操作量情報及び排ガス計測・分析情報は一定周期で収集されている。本実施形態では簡単のため、2sec周期で排ガス計測・分析情報が収集されているものとする。操作量情報の取得時間と排ガス計測・分析情報の取得時間との間に大きな時間遅れのある場合には、その時間遅れを考慮して(遅れ時間分だけ排ガス計測・分析情報を早めて)データを作成する。また、排ガス流量の計測値及びCO,COの分析値がノイズを多く含んでいる場合には、移動平均計算等の平滑化処理を行った値で計測値及び分析値を置き換えてもよい。これにより、ステップS2の処理は完了し、溶湯成分推定処理はステップS3の処理に進む。In the process of step S <b> 2, the arithmetic processing unit 13 acquires operation amount information, exhaust gas measurement / analysis information (exhaust gas information), and auxiliary material input amount information from the control terminal 10. In normal converter blowing operation, the manipulated variable information and the exhaust gas measurement / analysis information are collected at regular intervals. In this embodiment, for the sake of simplicity, it is assumed that exhaust gas measurement / analysis information is collected at a cycle of 2 sec. If there is a large time lag between the operation amount information acquisition time and the exhaust gas measurement / analysis information acquisition time, consider the time lag (accelerate the exhaust gas measurement / analysis information by the delay time). Create Further, when the measured value of the exhaust gas flow rate and the analysis values of CO and CO 2 contain a lot of noise, the measured value and the analyzed value may be replaced with a value obtained by performing a smoothing process such as moving average calculation. Thereby, the process of step S2 is completed and the molten metal component estimation process proceeds to the process of step S3.

ステップS3の処理では、物質収支計算部14が、ステップS1及びステップS2の処理において取得した情報及びモデルDB12の情報を用いて、炭素及び酸素の収支バランス計算(物質収支モデル計算)を行う。転炉100内に投入される炭素量及び転炉100外に排出される炭素量はそれぞれ以下に示す数式(1)及び数式(2)のように表される。なお、以降断りがない限り、%及び各種流量はmass%及び流量原単位を表す。   In the process of step S3, the material balance calculation unit 14 performs a balance balance calculation of carbon and oxygen (material balance model calculation) using the information acquired in the processes of step S1 and step S2 and the information of the model DB 12. The amount of carbon input into the converter 100 and the amount of carbon discharged out of the converter 100 are represented by the following formulas (1) and (2), respectively. Unless otherwise noted,% and various flow rates represent mass% and flow rate basic unit.

Figure 0006583594
Figure 0006583594

Figure 0006583594
Figure 0006583594

ここで、投入炭素量Cin[%]は主原料中の炭素量と投入副原料中の炭素量との和の溶湯101中濃度換算値となっており、ρpig[%]は投入溶銑中炭素濃度、ρ Cscr[%]は投入スクラップ(銘柄i)中炭素濃度、ρ Caux[%]は投入副原料(銘柄j)中炭素濃度であり、Wpig[t]は投入溶銑重量、W scr[t]は投入スクラップ(銘柄i)重量、W aux[t]は副原料(銘柄j)投入積算重量、Wcharge[t]は転炉100に投入された溶湯重量である。投入スクラップ銘柄i及び投入副原料銘柄jにおける炭素濃度ρ Cscr、ρ CauxはモデルDB12に記憶されており、物質収支計算部14は、対象チャージで利用される銘柄についての情報を取得する。Here, the input carbon amount C in [%] is the sum of the concentration of carbon in the main raw material and the amount of carbon in the input auxiliary raw material in the molten metal 101, and ρ pig [%] is in the input hot metal. The carbon concentration, ρ i Cscr [%] is the carbon concentration in the input scrap (brand i), ρ j Caux [%] is the carbon concentration in the input auxiliary material (brand j), and W pig [t] is the weight of the molten iron, W i scr [t] is the weight of the input scrap (brand i), W j aux [t] is the accumulated weight of the auxiliary material (brand j), and W charge [t] is the weight of the molten metal charged into the converter 100. The carbon concentrations ρ i Cscr and ρ j Caux in the input scrap brand i and the input auxiliary material brand j are stored in the model DB 12, and the material balance calculation unit 14 acquires information on the brand used in the target charge.

排出炭素量Cout[%]は排ガス中に含まれる炭素量の溶湯101中濃度換算値であり、VCO OG[Nm/t]、VCO2 OG[Nm/t]はそれぞれ排ガス中CO、COの計算時刻までの積算流量である。投入炭素量から排出炭素量を減算した量が転炉100内に残存する炭素量であり、これはすなわち溶湯101中の炭素濃度に相当する。なお、溶湯の入出炭素量は全投入量と比較して微少であると仮定している。The exhaust carbon amount C out [%] is a conversion value of the amount of carbon contained in the exhaust gas in the molten metal 101, and V CO OG [Nm 3 / t] and V CO 2 OG [Nm 3 / t] are CO in the exhaust gas, respectively. , The integrated flow rate until the calculation time of CO 2 . The amount obtained by subtracting the discharged carbon amount from the input carbon amount is the amount of carbon remaining in the converter 100, which corresponds to the carbon concentration in the molten metal 101. It is assumed that the amount of carbon input / output of the molten metal is very small compared to the total amount of input.

一方、転炉100内に投入される酸素量及び転炉100外に排出される酸素量はそれぞれ以下に示す数式(3)及び数式(4)のように表される。   On the other hand, the amount of oxygen input into the converter 100 and the amount of oxygen discharged out of the converter 100 are expressed as the following formulas (3) and (4), respectively.

Figure 0006583594
Figure 0006583594

Figure 0006583594
Figure 0006583594

ここで、投入酸素量O in[Nm/t]はランス102からの上吹き酸素積算量VO2 blow[Nm/t]、投入副原料中の酸素積算量、及び転炉100外から炉内に巻き込まれる空気中の酸素積算量の和となっており、ρ Oaux[(Nm/t)/t]は投入副原料(銘柄i)中酸素含有量の換算値である。投入副原料銘柄jにおける酸素含有量ρ OauxはモデルDB12に記憶されており、物質収支計算部14は、対象チャージで利用される銘柄についての情報を取得する。また、投入酸素量計算において排ガス分析N濃度及び排ガス分析Ar濃度が得られない場合、巻き込み空気中の酸素量は、排ガス中O、CO、CO以外の未分析排ガス量Vrem OG[Nm/t]から底吹きガス量Vbot[Nm/t]を減算した量が巻き込み空気中のNに相当することを仮定し、上述した数式(3)の第3項のように算出してもよい。Here, the input oxygen amount O 2 in [Nm 3 / t] is the cumulative amount of oxygen blown up from the lance 102 V O2 blow [Nm 3 / t], the integrated oxygen amount in the input auxiliary material, and from the outside of the converter 100. It is the sum of the oxygen accumulation amount in the air entrained in the furnace, and ρ j Oux [(Nm 3 / t) / t] is a converted value of the oxygen content in the input auxiliary material (brand i). The oxygen content ρ j Oaux in the input subsidiary material brand j is stored in the model DB 12, and the material balance calculation unit 14 acquires information on the brand used in the target charge. In addition, when the exhaust gas analysis N 2 concentration and the exhaust gas analysis Ar concentration cannot be obtained in the input oxygen amount calculation, the oxygen amount in the entrained air is the unanalyzed exhaust gas amount V rem OG [other than O 2 , CO, CO 2 in the exhaust gas. assuming that the amount obtained by subtracting the Nm 3 / t] from the bottom-blown gas amount V bot [Nm 3 / t] corresponds to N 2 in air entrainment, as in the third term of equation (3) described above It may be calculated.

排出酸素量O out[Nm/t]は排ガス中に含まれる酸素量から計算され、VO2 OG[Nm/t]は排ガス中Oの計算時刻までの積算流量である。投入酸素量から排出酸素量を減算した量が転炉100内に残存する酸素量であり、これは溶湯101中のSi、Mn、P等の金属不純物の酸化及び鉄の酸化に使用される。そのうち、金属不純物の酸化量については、モデルDB12に記憶されている不純物金属の酸化反応モデルにより計算され、例えば溶湯101中Si酸化に使用される酸素量VO2 Si[Nm/t]は以下に示す数式(5)のように表される。The exhausted oxygen amount O 2 out [Nm 3 / t] is calculated from the amount of oxygen contained in the exhaust gas, and V O2 OG [Nm 3 / t] is an integrated flow rate until the calculation time of O 2 in the exhaust gas. The amount obtained by subtracting the amount of discharged oxygen from the amount of input oxygen is the amount of oxygen remaining in the converter 100, and this is used for the oxidation of metal impurities such as Si, Mn, and P in the molten metal 101 and the oxidation of iron. Among them, the oxidation amount of the metal impurity is calculated by the oxidation reaction model of the impurity metal stored in the model DB 12. For example, the oxygen amount V O2 Si [Nm 3 / t] used for the Si oxidation in the molten metal 101 is as follows: It is expressed as shown in Equation (5).

Figure 0006583594
Figure 0006583594

ここで、ρpig Si[%]は投入溶銑中Si濃度、ρ Siscr[%]は投入スクラップ(銘柄i)中Si濃度、ρ Siaux[%]は投入副原料(銘柄j)中Si濃度であり、ASiはSiの酸化反応速度定数である。また、数式(5)と同様にして、Mn、P等の溶湯101中の各種金属不純物酸化に使用される酸素量も計算でき、その合計をVO2 met[Nm/t]と表す。これにより、ステップS3の処理は完了し、溶湯成分推定処理はステップS4の処理に進む。Here, ρ pig Si [%] is the Si concentration in the molten iron, ρ i Siscr [%] is the Si concentration in the input scrap (brand i), and ρ j Siaux [%] is the Si concentration in the input sub-material (brand j). A Si is the oxidation reaction rate constant of Si. Further, in the same manner as in Equation (5), the amount of oxygen used for oxidizing various metal impurities in the molten metal 101 such as Mn and P can also be calculated, and the total is expressed as V O2 met [Nm 3 / t]. Thereby, the process of step S3 is completed and the molten metal component estimation process proceeds to the process of step S4.

ステップS4の処理では、物理反応モデル計算部15が、ステップS1及びステップS2の処理において取得した情報及びモデルDB12の情報を用いて、スラグ103中のFeO生成・還元反応量、及び溶湯101中脱炭量を計算し、溶湯101中の鉄の酸化量、すなわちスラグ103中のFeOとして転炉100内に残存する酸素量、及び溶湯101中に残存する炭素量を推定する。FeO生成速度vFeO[kg/min]は、FeO生成・還元反応を表す項からなる物理反応モデル(FeO生成・還元反応モデル)により計算され、以下に示す数式(6)のように表される。In the process of step S4, the physical reaction model calculation unit 15 uses the information acquired in the processes of step S1 and step S2 and the information of the model DB 12, and the amount of FeO generation / reduction reaction in the slag 103 and the desorption in the molten metal 101. The amount of charcoal is calculated, and the amount of iron oxidized in the molten metal 101, that is, the amount of oxygen remaining in the converter 100 as FeO in the slag 103 and the amount of carbon remaining in the molten metal 101 are estimated. The FeO production rate v FeO [kg / min] is calculated by a physical reaction model (FeO production / reduction reaction model) including terms representing FeO production / reduction reaction, and is expressed as the following formula (6). .

Figure 0006583594
Figure 0006583594

ここで、C及びCはそれぞれFeO生成係数及びFeO還元係数、vO2 blow[Nm/Hr]はランス102からの送酸速度、R[Nm/s/m]及びR[Nm/s/m]は酸素負荷及び基準酸素負荷、Thsp[℃]は火点温度、H[m]は溶湯101の浴深、D[m]は溶湯101の浴系、ε[kW/t]はランス102からの送酸及び底吹きガスによる溶湯101の撹拌動力密度、Tbulk[℃]は溶湯101の温度、Bはスラグ103の塩基度(スラグ成分中のSiO/CaO比)であり、第1項がFeO生成反応速度、第2項がFeO還元反応速度である。C及びCについては、ステップS1及びステップS2の処理において取得した情報を利用、或いはモデルDB12に記憶されている過去チャージの実績情報を利用して決定してもよい。以下に示す数式(7)のように、算出したFeO生成反応速度を積分し積算することにより、FeO蓄積量FeO[kg/t]が計算され、転炉100内に残存する酸素量が算出される。Here, C 1 and C 2 are an FeO production coefficient and an FeO reduction coefficient, respectively, v O2 blow [Nm 3 / Hr] is an acid feed rate from the lance 102, R [Nm 3 / s / m 2 ] and R 0 [ Nm 3 / s / m 2 ] is the oxygen load and the reference oxygen load, T hsp [° C.] is the hot spot temperature, H [m] is the bath depth of the molten metal 101, D [m] is the bath system of the molten metal 101, and ε [ kW / t] is the stirring power density of the molten metal 101 by the acid sent from the lance 102 and the bottom blowing gas, T bulk [° C.] is the temperature of the molten metal 101, B is the basicity of the slag 103 (SiO 2 / CaO in the slag component) The first term is the FeO production reaction rate, and the second term is the FeO reduction reaction rate. The C 1 and C 2, the information obtained in steps S1 and S2 use, or performance information of the past charge stored in the model DB12 may be determined utilizing. By integrating and accumulating the calculated FeO production reaction rate as shown in Equation (7) below, the FeO accumulation amount FeO [kg / t] is calculated, and the oxygen amount remaining in the converter 100 is calculated. The

Figure 0006583594
Figure 0006583594

また、溶湯101中の脱炭量は、吹錬処理中の脱炭酸素効率を表す物理モデルを用いて計算できる。ここで、吹錬処理中の脱炭酸素効率dC/dO[10−3%/(Nm/t)]は、ランス102からの送酸量及び副原料投入によって供給された酸素量に対する溶湯101中の炭素濃度の減少効率を示す。図3は、吹錬処理中の脱炭酸素効率と吹錬進行度との関係を示す図である。図3に示すように、吹錬処理の初期では、脱炭酸素効率dC/dOは、吹錬進行度T’に対し傾きaで上昇し、最大値(dC/dOmaxに達する。その後、溶湯101中の炭素濃度が臨界濃度(0.4%程度)に達すると、脱炭酸素効率dC/dOは吹錬進行度T’に対し傾きbで低下する。ここで、脱炭酸素効率dC/dOの上昇及び低下の傾きa,b、切片c及び最大値(dC/dOmaxはステップS1及びステップS2の処理において取得した情報を利用、又は、モデルDB12に記憶されている過去チャージの実績情報を利用して決定できる。また、溶湯101中の炭素濃度が低濃度領域(<0.25%程度)にある場合には、以下の数式(8)に示す脱炭酸素効率dC/dOと溶湯101中の炭素濃度Cとの関係(脱炭モデル)を用いて算出することができる。Moreover, the decarburization amount in the molten metal 101 can be calculated using a physical model representing the decarbonation efficiency during the blowing process. Here, the decarbonation efficiency dC / dO 2 [10 −3 % / (Nm 3 / t)] during the blowing process is a molten metal with respect to the amount of oxygen fed from the lance 102 and the amount of oxygen supplied by adding the auxiliary material. The reduction efficiency of the carbon concentration in 101 is shown. FIG. 3 is a diagram showing a relationship between decarbonation efficiency and blowing progress during the blowing process. As shown in FIG. 3, at the initial stage of the blowing process, the decarbonation efficiency dC / dO 2 increases with a slope a with respect to the blowing progress T ′ and reaches the maximum value (dC / dO 2 ) max . Thereafter, when the carbon concentration in the molten metal 101 reaches a critical concentration (about 0.4%), the decarbonation efficiency dC / dO 2 decreases with an inclination b with respect to the blowing progress T ′. Here, the slopes a and b, the intercept c, and the maximum value (dC / dO 2 ) max of the increase and decrease in the decarbonation efficiency dC / dO 2 use the information acquired in the processing of Step S1 and Step S2, or This can be determined using past charge record information stored in the model DB 12. Further, when the carbon concentration in the molten metal 101 is in a low concentration region (about <0.25%), the decarbonation efficiency dC / dO 2 and the carbon concentration C in the molten metal 101 shown in the following formula (8). It can be calculated using a relationship with s (decarburization model).

Figure 0006583594
Figure 0006583594

数式(8)に示す脱炭モデルでは、脱炭酸素効率dC/dOは溶湯101中の炭素濃度C[%]に依存する。また、Wslg[kg/t]はスラグ103の重量であり、m、m、mは定数である。これにより、ステップS4の処理は完了し、溶湯成分推定処理はステップS5の処理に進む。In the decarburization model shown in Expression (8), the decarbonation efficiency dC / dO 2 depends on the carbon concentration C s [%] in the molten metal 101. W slg [kg / t] is the weight of the slag 103, and m 1 , m 2 , and m 3 are constants. Thereby, the process of step S4 is completed and the molten metal component estimation process proceeds to the process of step S5.

ステップS5の処理では、補正計算部16が、ステップS3及びステップS4の処理において算出した情報及びモデルDB12の情報を用いて、排ガス流量の補正パラメータ、排ガス中CO、CO濃度の補正パラメータ、物理反応モデル計算によるスラグ103中FeO濃度推定値の補正パラメータ、及び溶湯101中炭素濃度を算出する。In the process of step S5, the correction calculation unit 16 uses the information calculated in the processes of step S3 and step S4 and the information of the model DB 12 to correct the exhaust gas flow rate correction parameter, the exhaust gas CO, CO 2 concentration correction parameter, A correction parameter for the estimated value of the FeO concentration in the slag 103 by the reaction model calculation and the carbon concentration in the molten metal 101 are calculated.

〔補正パラメータ計算例〕
具体的には、補正計算部16は、以下の数式(9)に示す評価関数J又は以下の数式(10)に示す評価関数Jを最小にする非線形計画問題を解くことによって補正パラメータα、β、ΔFeO、[C]を計算する。なお、αは積の形式で排ガス流量を補正するパラメータ、βは積の形式で排ガス中CO、CO濃度を補正するパラメータ、ΔFeOは和の形式でステップS4の処理により算出されたスラグ103中FeO推定量を補正するパラメータ、[C]は計算時刻における溶湯101中炭素濃度を表すパラメータである。また、()tempは計算時刻近傍の一定期間における変化量を示す。補正パラメータα、βの導入により、数式(3)、数式(4)で示したO in、O outは、以下に示す数式(11)、(12)のように表される。また、数式(9)、数式(10)で用いられるO2eff[Nm/t]は以下の数式(13)に示すように、ランス102からの送酸量及び副原料投入より供給された酸素量から不純物金属燃焼及び鉄酸化により消費された酸素量を減算した量、すなわち溶湯101中炭素酸化及び発生したCOを酸化しCOを生成する反応に使用される酸素量(有効酸素量)である。
[Example of correction parameter calculation]
Specifically, the correction calculation unit 16 corrects the correction parameters α and β by solving the nonlinear programming problem that minimizes the evaluation function J shown in the following formula (9) or the evaluation function J shown in the following formula (10). , ΔFeO, [C]. Α is a parameter for correcting the exhaust gas flow rate in the product format, β is a parameter for correcting the CO and CO 2 concentration in the exhaust gas in the product format, and ΔFeO is in the slag 103 calculated by the processing in step S4 in the sum format. A parameter [C] for correcting the estimated amount of FeO is a parameter representing the carbon concentration in the molten metal 101 at the calculation time. Further, () temp indicates the amount of change in a certain period near the calculation time. With the introduction of the correction parameters α and β, O 2 in and O 2 out shown in Equations (3) and (4) are expressed as Equations (11) and (12) below. Further, O 2eff [Nm 3 / t] used in the mathematical formulas (9) and (10) is the amount of oxygen supplied from the lance 102 and the oxygen supplied from the auxiliary raw material input as shown in the following mathematical formula (13). The amount obtained by subtracting the amount of oxygen consumed by the impurity metal combustion and iron oxidation from the amount, that is, the amount of oxygen (effective oxygen amount) used in the reaction of oxidizing the carbon in the molten metal 101 and oxidizing the generated CO to generate CO 2 is there.

Figure 0006583594
Figure 0006583594

Figure 0006583594
Figure 0006583594

Figure 0006583594
Figure 0006583594

Figure 0006583594
Figure 0006583594

Figure 0006583594
Figure 0006583594

数式(9)に示す評価関数Jは、以降に記述する第6項目における誤差の指標となる項の重み付き和となっている。第1項は、投入炭素量から排出炭素量を減算した転炉100内に残留する炭素量と[C]の差の二乗値であり、この項が0になることは転炉100内で炭素質量収支バランスが保たれていることを示す。第2項は、投入酸素量から排出酸素量及び不純物金属酸化使用酸素量を減算した量と物理反応モデルに基づくFeO推定量から計算される溶湯101中鉄酸化に使用される酸素量との差の二乗値であり、この項が0になることは転炉100内で酸素質量収支バランスが保たれていることを示す。第3項は、有効酸素量のうち溶湯101中炭素の酸化(一次燃焼)に使用された酸素量の割合で表される一次燃焼効率と一次燃焼効率の標準値Rpriとの差の二乗値であり、この項が0に近づくことは、操作量及び排ガス情報に基づいて計算された一次燃焼効率が標準値に近づくことを示す。第4項はα、βとα、β標準値αave、βaveとの差の二乗値であり、この項が0に近づくことはα、βが標準値に近づくことを示す。第5項は、補正パラメータΔFeOの二乗値であり、算出されるスラグ中FeO濃度が物理反応モデルから乖離することを防ぐ項である。第6項は、計算時点近傍における排ガス情報及び投入酸素情報から計算された脱炭酸素効率と、物理反応モデルに基づく脱炭酸素効率との差の二乗値であり、この項が0になることは実測された脱炭量が物理モデルに即していることを示す。The evaluation function J shown in Equation (9) is a weighted sum of terms that serve as an error index in the sixth item described below. The first term is the square value of the difference between [C] and the amount of carbon remaining in the converter 100 obtained by subtracting the amount of discharged carbon from the amount of input carbon. Indicates that the mass balance is maintained. The second term is the difference between the amount obtained by subtracting the amount of discharged oxygen and the amount of oxygen used for impurity metal oxidation from the amount of input oxygen and the amount of oxygen used for iron oxidation in the molten metal 101 calculated from the estimated amount of FeO based on the physical reaction model. The term “0” indicates that the oxygen mass balance is maintained in the converter 100. The third term is the square value of the difference between the primary combustion efficiency and the standard value R pri of the primary combustion efficiency expressed by the ratio of the amount of oxygen used for the oxidation (primary combustion) of carbon in the molten metal 101 in the effective oxygen amount. The fact that this term approaches 0 indicates that the primary combustion efficiency calculated based on the manipulated variable and the exhaust gas information approaches the standard value. The fourth term is the square value of the difference between α, β and α, β standard values α ave , β ave, and the fact that this term approaches 0 indicates that α and β approach the standard value. The fifth term is a square value of the correction parameter ΔFeO and is a term for preventing the calculated FeO concentration in the slag from deviating from the physical reaction model. The sixth term is the square value of the difference between the decarbonation efficiency calculated from the exhaust gas information and the input oxygen information in the vicinity of the calculation time point and the decarbonation efficiency based on the physical reaction model, and this term becomes zero. Indicates that the actual amount of decarburization is in line with the physical model.

また、数式(10)に示す評価関数Jも同様に、以降に記述する第6項目における誤差の指標となる項の重み付き和となっている。第1項は、投入炭素量から排出炭素量を減算した転炉100内に残留する炭素量と[C]の比から1を減算した値の二乗値であり、この項が0になることは転炉100内で炭素質量収支バランスが保たれていることを示す。第2項は、投入酸素量から排出酸素量及び不純物金属酸化使用酸素量を減算した量と物理反応モデルに基づくFeO推定量から計算される溶湯101中鉄酸化に使用される酸素量との比から1を減算した値の二乗値であり、この項が0になることは転炉100内で酸素質量収支バランスが保たれていることを示す。第3項は、有効酸素量のうち溶湯101中炭素の酸化(一次燃焼)に使用された酸素量の割合で表される一次燃焼効率と一次燃焼効率の標準値Rpriとの比から1を減算した値の二乗値であり、この項が0に近づくことは、操作量及び排ガス情報に基づいて計算された一次燃焼効率が標準値に近づくことを示す。第4項はα、βとα、β標準値αave、βaveとの比から1を減算した値の二乗値であり、この項が0に近づくことはα、βが標準値に近づくことを示す。第5項は、補正パラメータΔFeOの二乗値であり、算出されるスラグ中FeO濃度が物理反応モデルから乖離することを防ぐ項である。第6項は、計算時点近傍における排ガス情報及び投入酸素情報から計算された脱炭酸素効率と、物理反応モデルに基づく脱炭酸素効率との比から1を減算した値の二乗値であり、この項が0になることは実測された脱炭量が物理モデルに即していることを示す。Similarly, the evaluation function J shown in Equation (10) is also a weighted sum of terms that serve as an error index in the sixth item described below. The first term is a square value of a value obtained by subtracting 1 from the ratio of [C] to the amount of carbon remaining in the converter 100 obtained by subtracting the exhausted carbon amount from the input carbon amount. It shows that the balance of carbon mass balance is maintained in the converter 100. The second term is the ratio of the amount obtained by subtracting the amount of oxygen discharged and the amount of oxygen used for impurity metal oxidation from the amount of input oxygen and the amount of oxygen used for iron oxidation in the molten metal 101 calculated from the estimated amount of FeO based on the physical reaction model. Is the square value of the value obtained by subtracting 1 from 1 and the fact that this term becomes 0 indicates that the oxygen mass balance is maintained in the converter 100. The third term is 1 from the ratio of the primary combustion efficiency represented by the ratio of the amount of oxygen used for the oxidation (primary combustion) of carbon in the molten metal 101 in the effective oxygen amount and the standard value R pri of the primary combustion efficiency. It is a square value of the subtracted value, and when this term approaches 0, it indicates that the primary combustion efficiency calculated based on the manipulated variable and the exhaust gas information approaches the standard value. The fourth term is the square value of the value obtained by subtracting 1 from the ratio of α, β and α, β standard values α ave , β ave . When this term approaches 0, α and β approach the standard value. Indicates. The fifth term is a square value of the correction parameter ΔFeO and is a term for preventing the calculated FeO concentration in the slag from deviating from the physical reaction model. The sixth term is a square value of a value obtained by subtracting 1 from the ratio between the decarbonation efficiency calculated from the exhaust gas information and the input oxygen information near the calculation time point and the decarbonation efficiency based on the physical reaction model. A term of 0 indicates that the measured decarburization amount is in accordance with the physical model.

なお、数式(9)、(10)においてRpri、αave、βaveは、モデルDB12に記憶されている過去チャージにおける吹錬処理実績のうち推定対象チャージと同様の吹錬処理形態の実績から決定される。また、Rpriが操作量や吹錬処理条件等により記述できる場合はそれを用いてもよい。In formulas (9) and (10), R pri , α ave , and β ave are the results of the blowing process form similar to the estimation target charge among the blowing processes results in the past charge stored in the model DB 12. It is determined. Moreover, when R pri can be described by an operation amount, blowing process conditions, or the like, it may be used.

上記の例において、評価関数Jの各項の分母にある重み付け因子(σ〜σ)はユーザーが設定するパラメータである。重み付け因子は上記各項目それぞれについての誤差の大きさの評価関数Jへの影響度を決定する。従って、吹錬処理において反応のフェーズに応じて各項の重み付け因子を変更することにより推定精度を向上させることができる。例えば、溶湯中炭素濃度が低濃度領域又は脱炭酸素効率が低下する領域では、数式(9)について第6項目の重み付け因子σを小さな値に変更して第6項目の誤差の評価関数Jへの影響を大きくすることにより、溶湯中炭素濃度が低濃度でも精度よく推定することができる。以上のように、計算対象時刻以前に算出された溶湯成分推定情報及び補正された排ガス計測情報の少なくとも一方に基づいて設定された条件を満たした場合に評価関数Jの各項の重み付け因子を吹錬処理中に切り替えることで推定精度は向上する。In the above example, the weighting factors (σ 1 to σ 6 ) in the denominator of each term of the evaluation function J are parameters set by the user. The weighting factor determines the degree of influence on the evaluation function J of the magnitude of error for each of the above items. Therefore, estimation accuracy can be improved by changing the weighting factor of each term according to the phase of reaction in the blowing process. For example, in the region where the carbon concentration in the molten metal is low or the decarbonation efficiency is low, the weighting factor σ 6 of the sixth item is changed to a small value in Equation (9), and the error evaluation function J of the sixth item is changed. By increasing the effect on the temperature, it is possible to accurately estimate even when the carbon concentration in the molten metal is low. As described above, when the condition set based on at least one of the melt component estimation information and the corrected exhaust gas measurement information calculated before the calculation target time is satisfied, the weighting factor of each term of the evaluation function J is blown. The estimation accuracy is improved by switching during the smelting process.

評価関数Jを制約条件のもとで最小化する非線形計画問題には多種のアルゴリズムが提案されており(例えば非特許文献1(今野浩、山下浩著:非線形計画法、日科技連)参照)、それらを利用すれば容易に補正パラメータα、β、ΔFeO、[C]を計算することができる。これにより、ステップS5の処理は完了し、溶湯成分推定処理はステップS6の処理に進む。   Various algorithms have been proposed for nonlinear programming problems that minimize the evaluation function J under constraint conditions (see, for example, Non-Patent Document 1 (by Hiroshi Imano, Hiroshi Yamashita: Nonlinear Programming, Nikkagiren)). If these are used, the correction parameters α, β, ΔFeO, and [C] can be easily calculated. Thereby, the process of step S5 is completed and the molten metal component estimation process proceeds to the process of step S6.

ステップS6の処理では、補正計算部16が、ステップS5の処理で算出した各種補正パラメータを用いて溶湯101中炭素濃度及びスラグ103中FeO濃度を推定する。以後、演算処理部13は、補正計算部16による溶湯101中炭素濃度及びスラグ103中FeO濃度の推定結果を出力装置17に送る。出力装置17は、演算処理部13から送られた溶湯101中炭素濃度の推定結果を制御端末10及び表示装置20に出力する。制御端末10は、溶湯101中炭素濃度の推定結果に基づいて精錬設備2の操作量(例えば送酸量や副原料の投入量及び投入タイミング等)を調節する。表示装置20は、溶湯101中炭素濃度及びスラグ103中FeO濃度の推定結果を表示する。これにより、ステップS6の処理は完了し、溶湯成分推定処理はステップS7の処理に進む。   In the process of step S6, the correction calculation unit 16 estimates the carbon concentration in the molten metal 101 and the FeO concentration in the slag 103 using the various correction parameters calculated in the process of step S5. Thereafter, the arithmetic processing unit 13 sends the estimation results of the carbon concentration in the molten metal 101 and the FeO concentration in the slag 103 by the correction calculation unit 16 to the output device 17. The output device 17 outputs the estimation result of the carbon concentration in the molten metal 101 sent from the arithmetic processing unit 13 to the control terminal 10 and the display device 20. The control terminal 10 adjusts the amount of operation of the refining equipment 2 (for example, the amount of acid sent, the amount of input of auxiliary materials, the input timing, etc.) based on the estimation result of the carbon concentration in the molten metal 101. The display device 20 displays the estimation results of the carbon concentration in the molten metal 101 and the FeO concentration in the slag 103. Thereby, the process of step S6 is completed and the molten metal component estimation process proceeds to the process of step S7.

ステップS7の処理では、演算処理部13が、吹錬処理が終了したか否かを判別する。判別の結果、吹錬処理が終了した場合、演算処理部13は、一連の溶湯成分推定処理を終了し、演算処理部13はステップS8の処理に進む。一方、吹錬処理が終了していない場合には、演算処理部13はステップS2の処理に戻る。   In the process of step S7, the arithmetic processing unit 13 determines whether or not the blowing process has been completed. As a result of the determination, when the blowing process is completed, the arithmetic processing unit 13 ends the series of molten metal component estimation processing, and the arithmetic processing unit 13 proceeds to the process of step S8. On the other hand, when the blowing process has not ended, the arithmetic processing unit 13 returns to the process of step S2.

ステップS8の処理では、演算処理部13が、対象チャージの実績データ及び演算処理部13における計算結果をモデルDB12に保存する。なお、対象吹錬処理終了時の溶湯101中炭素濃度やスラグ103中FeO濃度の計測値が得られている場合は、これらを用いて最適な各種補正パラメータ及び初期パラメータ条件を算出する。また、本実施形態では補正項目として取り扱っていない要素、例えば投入溶銑中炭素濃度分析値ρpigや副原料投入積算重量W aux等、について誤差要因がある場合、ステップS8の処理において、吹錬処理終了時の溶湯101成分、スラグ103成分を満たすような補正パラメータを算出しモデルDB12に保存することで、以後のチャージにおける初期補正パラメータとして活用できる。これにより、ステップS8の処理は完了し、一連の溶湯成分推定処理は終了する。In the process of step S8, the arithmetic processing unit 13 stores the result data of the target charge and the calculation result in the arithmetic processing unit 13 in the model DB 12. When measured values of the carbon concentration in the molten metal 101 and the FeO concentration in the slag 103 at the end of the target blowing process are obtained, optimal various correction parameters and initial parameter conditions are calculated using these values. In the present embodiment, if there is an error factor with respect to an element that is not handled as a correction item, for example, an analysis value ρ pig of the molten iron in the molten iron, an auxiliary raw material charged integrated weight W j aux, etc., By calculating correction parameters satisfying the molten metal 101 component and the slag 103 component at the end of the process and storing them in the model DB 12, they can be used as initial correction parameters in subsequent charges. Thereby, the process of step S8 is completed and a series of molten metal component estimation processes are complete | finished.

以上の説明から明らかなように、本発明の一実施形態である溶湯成分推定処理では、溶湯成分推定装置1が、物理反応モデル式、溶湯の成分濃度の計測結果、及び精錬設備から排出された排ガスの流量及び成分濃度の計測結果に基づいて、吹錬処理中の炭素収支バランス及び酸素収支バランスが連続的に保たれるように、排ガスの流量及び成分濃度の計測値、物理反応モデル計算値を補正する補正パラメータを逐次算出するので、吹錬処理中に連続的に高精度な溶湯及びスラグ中の成分濃度の推定値を得ることができる。   As is clear from the above description, in the molten metal component estimation process according to an embodiment of the present invention, the molten metal component estimation device 1 is discharged from the physical reaction model equation, the measurement result of the molten metal component concentration, and the refining equipment. Based on the measurement results of the flow rate and component concentration of the exhaust gas, the measured values of the exhaust gas flow rate and component concentration and the calculated values of the physical reaction model so that the carbon balance balance and oxygen balance balance during the blowing process are continuously maintained. Since the correction parameter for correcting is sequentially calculated, it is possible to obtain the estimated values of the component concentrations in the molten metal and slag with high accuracy continuously during the blowing process.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、本実施形態では連続的に取得可能な転炉計測情報として排ガス情報を用いたが、例えば溶湯温度に関わる計測情報が得られる場合、炉内酸化反応によって発生する熱量に基づく熱収支モデルと組み合わせた関係式を最適化計算に組み込むことで、連続的に溶湯温度推定が可能となり、さらに溶湯及びスラグの成分濃度の推定精度の向上も見込まれる。このように、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. For example, in the present embodiment, exhaust gas information is used as converter measurement information that can be continuously acquired.For example, when measurement information related to the molten metal temperature is obtained, a heat balance model based on the amount of heat generated by the oxidation reaction in the furnace and By incorporating the combined relational expression into the optimization calculation, the molten metal temperature can be estimated continuously, and the estimation accuracy of the molten metal and slag component concentrations is expected to be improved. As described above, other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

本発明によれば、溶湯及びスラグ中の成分濃度を高精度、且つ、連続的に推定可能な溶湯成分推定装置及び溶湯成分推定方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the molten metal component estimation apparatus and molten metal component estimation method which can estimate the component density | concentration in a molten metal and slag with high precision continuously can be provided.

1 溶湯成分推定装置
2 精錬設備
10 制御端末
11 入力装置
12 モデルデータベース(モデルDB)
13 演算処理部
14 物質収支計算部
15 物理反応モデル計算部
16 補正計算部
17 出力装置
20 表示装置
100 転炉
101 溶湯
102 ランス
103 スラグ
104 ダクト
105 排ガス検出部
106 通気孔
107 流量計
DESCRIPTION OF SYMBOLS 1 Molten component estimation apparatus 2 Refining equipment 10 Control terminal 11 Input device 12 Model database (model DB)
DESCRIPTION OF SYMBOLS 13 Computation processing part 14 Material balance calculation part 15 Physical reaction model calculation part 16 Correction calculation part 17 Output device 20 Display apparatus 100 Converter 101 Molten metal 102 Lance 103 Slag 104 Duct 105 Exhaust gas detection part 106 Ventilation hole 107 Flowmeter

Claims (7)

精錬設備における吹錬処理開始前又は吹錬処理中の溶湯の温度及び成分濃度についての第1計測結果と、前記精錬設備から排出される排ガスの流量及び成分濃度についての第2計測結果と、が入力される入力装置と、
前記精錬設備における吹錬処理反応に関するモデル式及びパラメータを格納するモデルデータベースと、
前記第1計測結果と、前記第2計測結果と、前記モデル式及び前記パラメータとを用いて炭素及び酸素の収支バランス計算を行うことにより、精錬設備に投入される炭素量及び酸素量と前記精錬設備から排出される炭素量及び酸素量とを推定する物質収支計算部と、
前記第1計測結果と前記モデル式及び前記パラメータとを用いてスラグ中FeO量及び溶湯中脱炭量の少なくとも一方を計算することにより、精錬設備内に残存する酸素量及び炭素量の少なくとも一方を推定する物理反応モデル計算部と、
前記入力装置に入力された前記第2計測結果から、前記物質収支計算部及び前記物理反応モデル計算部の推定結果を用いて、前記排ガスの流量の計測値を補正するパラメータ、前記排ガスの成分濃度の計測値を補正するパラメータ、スラグ中のFeO濃度の計算値を補正するパラメータ、及び前記溶湯中の炭素量を表すパラメータをそれぞれ第1、第2、第3、及び第4の補正パラメータとして算出し、算出された第1、第2、第3、及び第4の補正パラメータを用いて、溶湯及びスラグ中の成分濃度を推定する補正計算部と、
を備えることを特徴とする溶湯成分推定装置。
The first measurement result about the temperature and the component concentration of the molten metal before the start of the blowing process in the refining equipment or during the blowing process, and the second measurement result about the flow rate and the component concentration of the exhaust gas discharged from the refining equipment. An input device to be input;
A model database for storing model formulas and parameters related to the blowing treatment reaction in the refining equipment;
By performing a balance balance calculation of carbon and oxygen using the first measurement result, the second measurement result, the model formula and the parameter, the amount of carbon and oxygen input to the refining equipment and the refining A material balance calculator for estimating the amount of carbon and oxygen emitted from the facility;
By calculating at least one of the amount of FeO in the slag and the amount of decarburization in the molten metal using the first measurement result, the model formula, and the parameter, at least one of the amount of oxygen and the amount of carbon remaining in the refining equipment is calculated. A physical reaction model calculation unit to be estimated;
A parameter for correcting the measured value of the flow rate of the exhaust gas using the estimation results of the mass balance calculation unit and the physical reaction model calculation unit from the second measurement result input to the input device, the exhaust gas component concentration A parameter for correcting the measured value, a parameter for correcting the calculated value of the FeO concentration in the slag, and a parameter representing the amount of carbon in the molten metal are calculated as the first, second, third, and fourth correction parameters, respectively. And using the calculated first, second, third, and fourth correction parameters, a correction calculation unit that estimates the component concentration in the molten metal and slag,
A molten metal component estimation apparatus comprising:
前記補正計算部は、
前記第1計測結果から計算される初期溶湯中炭素量と投入副原料とにより精錬設備内に供給される炭素量から前記第2計測結果から計算される精錬設備外に排出される炭素量を減算した量と前記第4の補正パラメータとの差として表される炭素収支誤差、
前記精錬設備に供給された酸素量から前記第2計測結果から計算される溶湯中炭素酸化、精錬設備内一酸化炭素酸化、及び溶湯中不純物金属酸化により消費された酸素量を減算した値と前記モデル式により計算された溶湯中鉄酸化により消費された酸素量との差として表される酸素収支誤差、及び
上吹き送酸量及び投入副原料により供給された酸素量から不純物金属及び鉄酸化により消費された酸素量を減算した量のうち、溶湯中炭素酸化により消費された酸素量の割合として表される一次燃焼効率と前記一次燃焼効率の標準値との差として表される一次燃焼収支誤差
の項を含む評価関数が最小になるように前記第1、前記第2、前記第3、及び前記第4の補正パラメータを計算することを特徴とする請求項1に記載の溶湯成分推定装置。
The correction calculation unit
The amount of carbon discharged outside the refining equipment calculated from the second measurement result is subtracted from the amount of carbon supplied into the refining equipment by the initial molten metal calculated from the first measurement result and the input auxiliary material. The carbon balance error expressed as the difference between the measured amount and the fourth correction parameter,
A value obtained by subtracting the amount of oxygen consumed by carbon oxidation in molten metal calculated from the second measurement result, carbon monoxide oxidation in the refining facility, and impurity metal oxidation in the molten metal from the amount of oxygen supplied to the refining facility, and Oxygen balance error expressed as the difference from the amount of oxygen consumed by iron oxidation in the molten metal calculated by the model formula, and the amount of oxygen supplied from the top blowing acid amount and the input secondary material, Primary combustion balance error expressed as the difference between the primary combustion efficiency expressed as a ratio of the amount of oxygen consumed by carbon oxidation in the molten metal and the standard value of the primary combustion efficiency out of the amount obtained by subtracting the consumed oxygen amount The molten metal component estimation apparatus according to claim 1, wherein the first, second, third, and fourth correction parameters are calculated so that an evaluation function including the term is minimized.
前記補正計算部は、
前記第1計測結果から計算される初期溶湯中炭素量と投入副原料とにより精錬設備内に供給される炭素量から前記第2計測結果から計算される精錬設備外に排出される炭素量を減算した量と前記第4の補正パラメータとの比として表される炭素収支誤差、
前記精錬設備に供給された酸素量から前記第2計測結果から計算される溶湯中炭素酸化、精錬設備内一酸化炭素酸化、及び溶湯中不純物金属酸化により消費された酸素量を減算した値と物理反応モデルにより計算された溶湯中鉄酸化により消費された酸素量との比として表される酸素収支誤差、及び
上吹き送酸量及び投入副原料により供給された酸素量から不純物金属及び鉄酸化により消費された酸素量を減算した量のうち、溶湯中炭素酸化により消費された酸素量の割合として表される一次燃焼効率と前記一次燃焼効率の標準値との比として表される一次燃焼収支誤差
の項を含む評価関数が最小になるように前記第1、前記第2、前記第3、及び前記第4の補正パラメータを計算することを特徴とする請求項1に記載の溶湯成分推定装置。
The correction calculation unit
The amount of carbon discharged outside the refining equipment calculated from the second measurement result is subtracted from the amount of carbon supplied into the refining equipment by the initial molten metal calculated from the first measurement result and the input auxiliary material. The carbon balance error expressed as the ratio of the measured amount to the fourth correction parameter,
A value obtained by subtracting the amount of oxygen consumed by the carbon oxidation in the molten metal, the carbon monoxide oxidation in the refining facility, and the impurity metal oxidation in the molten metal calculated from the second measurement result from the amount of oxygen supplied to the refining facility. Oxygen balance error expressed as a ratio to the amount of oxygen consumed by iron oxidation in the molten metal calculated by the reaction model, and the amount of oxygen supplied from the top blown acid amount and the amount of oxygen supplied by the input secondary material Primary combustion balance error expressed as a ratio of the primary combustion efficiency expressed as a ratio of the amount of oxygen consumed by carbon oxidation in molten metal and the standard value of the primary combustion efficiency out of the amount obtained by subtracting the amount of oxygen consumed The melt component estimation apparatus according to claim 1, wherein the first, second, third, and fourth correction parameters are calculated so that an evaluation function including the term
前記評価関数が、前記炭素収支誤差の二乗値、前記酸素収支誤差の二乗値、及び前記一次燃焼収支誤差の二乗値を項として含む重み付き和であることを特徴とする請求項2又は3に記載の溶湯成分推定装置。   The said evaluation function is a weighted sum including the square value of the carbon balance error, the square value of the oxygen balance error, and the square value of the primary combustion balance error as terms. The molten metal component estimation apparatus of description. 前記評価関数における各項の重みを表す定数が、計算対象チャージ中の計算対象時刻以前に算出された溶湯成分推定情報及び補正された排ガス計測情報の少なくとも一方に基づいて設定された条件を満たした場合に、切り替わることを特徴とする請求項4に記載の溶湯成分推定装置。   A constant representing the weight of each term in the evaluation function satisfies a condition set based on at least one of the melt component estimation information and the corrected exhaust gas measurement information calculated before the calculation target time during the calculation target charge. The molten metal component estimation apparatus according to claim 4, wherein the molten metal component is switched in some cases. 精錬設備における吹錬処理開始前又は吹錬処理中の溶湯の温度及び成分濃度についての第1計測結果と、前記精錬設備から排出される排ガスの流量及び成分濃度についての第2計測結果と、が入力される入力ステップと、
前記第1計測結果と、前記第2計測結果と、前記精錬設備における吹錬処理反応に関するモデル式及びパラメータとを用いて炭素及び酸素の収支バランス計算を行うことにより、精錬設備に投入される炭素量及び酸素量と前記精錬設備から排出される炭素量及び酸素量とを推定する物質収支計算ステップと、
前記第1計測結果と前記モデル式及び前記パラメータとを用いてスラグ中FeO量及び溶湯中脱炭量の少なくとも一方を計算することにより、精錬設備内に残存する酸素量及び炭素量の少なくとも一方を推定する物理反応モデル計算ステップと、
前記入力ステップにおいて入力された前記第2計測結果から、前記物質収支計算ステップ及び前記物理反応モデル計算ステップにおける推定結果を用いて、前記排ガスの流量の計測値を補正するパラメータ、前記排ガスの成分濃度の計測値を補正するパラメータ、スラグ中のFeO濃度の計算値を補正するパラメータ、及び前記溶湯中の炭素量を表すパラメータをそれぞれ第1、第2、第3、及び第4の補正パラメータとして算出し、算出された第1、第2、第3、及び第4の補正パラメータを用いて、溶湯及びスラグ中の成分濃度を推定する補正計算ステップと、
を含むことを特徴とする溶湯成分推定方法。
The first measurement result about the temperature and the component concentration of the molten metal before the start of the blowing process in the refining equipment or during the blowing process, and the second measurement result about the flow rate and the component concentration of the exhaust gas discharged from the refining equipment. Input steps to be entered,
Carbon that is input to the refining facility is calculated by performing a balance balance calculation of carbon and oxygen using the first measurement result, the second measurement result, and the model formula and parameters relating to the blowing treatment reaction in the refining facility. A material balance calculation step for estimating the amount of oxygen and the amount of oxygen and the amount of carbon and oxygen discharged from the refining equipment;
By calculating at least one of the amount of FeO in the slag and the amount of decarburization in the molten metal using the first measurement result, the model formula, and the parameter, at least one of the amount of oxygen and the amount of carbon remaining in the refining equipment is calculated. A physical reaction model calculation step to be estimated;
A parameter for correcting the measured value of the flow rate of the exhaust gas, using the estimation results in the mass balance calculation step and the physical reaction model calculation step, from the second measurement result input in the input step, the exhaust gas component concentration A parameter for correcting the measured value, a parameter for correcting the calculated value of the FeO concentration in the slag, and a parameter representing the amount of carbon in the molten metal are calculated as the first, second, third, and fourth correction parameters, respectively. Then, using the calculated first, second, third, and fourth correction parameters, a correction calculation step for estimating the component concentration in the molten metal and slag;
The molten metal component estimation method characterized by including.
請求項6に記載の溶湯成分推定方法を用いて推定された溶湯中の成分濃度に基づいて溶湯中の成分濃度を所望の範囲内に調整するステップを含むことを特徴とする溶湯の製造方法。   A method for producing a molten metal comprising the step of adjusting a component concentration in the molten metal within a desired range based on a component concentration in the molten metal estimated using the molten metal component estimating method according to claim 6.
JP2019534909A 2018-03-19 2019-03-08 Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method Active JP6583594B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018050330 2018-03-19
JP2018050330 2018-03-19
PCT/JP2019/009329 WO2019181562A1 (en) 2018-03-19 2019-03-08 Molten metal component estimation device, molten metal component estimation method, and molten metal production method

Publications (2)

Publication Number Publication Date
JP6583594B1 true JP6583594B1 (en) 2019-10-02
JPWO2019181562A1 JPWO2019181562A1 (en) 2020-04-30

Family

ID=67986157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019534909A Active JP6583594B1 (en) 2018-03-19 2019-03-08 Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method

Country Status (6)

Country Link
EP (1) EP3770279B1 (en)
JP (1) JP6583594B1 (en)
KR (1) KR102348892B1 (en)
CN (1) CN111868268B (en)
TW (1) TWI681059B (en)
WO (1) WO2019181562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218915A1 (en) 2022-05-09 2023-11-16 Jfeスチール株式会社 State estimation method for vacuum degasification process, operation method, molten steel manufacturing method, and state estimation device for vacuum degasification process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7314823B2 (en) * 2020-02-06 2023-07-26 Jfeスチール株式会社 Information processing system, information processing method, refining apparatus and refining method
KR102487540B1 (en) * 2021-09-03 2023-01-11 (주)테크다스 Matte grade optimization control system in cupper smelting process
KR20240090437A (en) * 2021-11-29 2024-06-21 제이에프이 스틸 가부시키가이샤 Furnace state estimation device, in-furnace state estimation method, and molten steel manufacturing method
CN117906376B (en) * 2024-03-18 2024-05-24 泰安中联水泥有限公司 Method and system for monitoring carbon emission of rotary kiln

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045766A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Control device and control method for converter furnace blowing equipment
JP2017008349A (en) * 2015-06-18 2017-01-12 Jfeスチール株式会社 Device for and method of estimating molten metal condition
JP2017089001A (en) * 2015-11-02 2017-05-25 Jfeスチール株式会社 Molten metal condition estimation device, molten metal condition estimation method, and manufacturing method of molten metal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272913A (en) 1996-04-05 1997-10-21 Nippon Steel Corp Method for estimating carbon concentration in molten steel
TW200613566A (en) * 2004-10-29 2006-05-01 Kobe Steel Ltd Process for producing molten iron and apparatus therefor
CN1316044C (en) * 2005-11-17 2007-05-16 钢铁研究总院 Rotary furnace steelmaking process and end point control system
CN101308154B (en) * 2008-07-16 2012-03-07 河北钢铁股份有限公司 Converter steel-smelting molten steel continuous carbon determination method
CN101993970B (en) * 2009-08-25 2012-09-26 鞍钢股份有限公司 Converter slag state detection control device and method
CN103160640B (en) * 2013-02-26 2014-10-15 河北钢铁股份有限公司邯郸分公司 Method of dynamically detecting contents of manganese, phosphorus and sulphur of slag in converter steelmaking process
CN105074016A (en) * 2013-04-10 2015-11-18 杰富意钢铁株式会社 Correction device, correction method and steel refining method
JP6314484B2 (en) 2014-01-14 2018-04-25 新日鐵住金株式会社 Hot metal dephosphorization method
CN104630410B (en) * 2015-02-10 2016-07-06 东北大学 A kind of pneumatic steelmaking quality real-time dynamic forecast method based on data parsing
CN106872371A (en) * 2017-03-03 2017-06-20 余杨 A kind of molten steel composition continuous detecting system and method
CN107164597A (en) * 2017-04-12 2017-09-15 宣化钢铁集团有限责任公司 It is a kind of to detect the one-touch automatic method for making steel of converter without furnace gas without sublance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045766A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Control device and control method for converter furnace blowing equipment
JP2017008349A (en) * 2015-06-18 2017-01-12 Jfeスチール株式会社 Device for and method of estimating molten metal condition
JP2017089001A (en) * 2015-11-02 2017-05-25 Jfeスチール株式会社 Molten metal condition estimation device, molten metal condition estimation method, and manufacturing method of molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218915A1 (en) 2022-05-09 2023-11-16 Jfeスチール株式会社 State estimation method for vacuum degasification process, operation method, molten steel manufacturing method, and state estimation device for vacuum degasification process

Also Published As

Publication number Publication date
KR20200118200A (en) 2020-10-14
EP3770279B1 (en) 2022-08-10
EP3770279A4 (en) 2021-04-07
BR112020019000A2 (en) 2020-12-29
EP3770279A1 (en) 2021-01-27
CN111868268A (en) 2020-10-30
WO2019181562A1 (en) 2019-09-26
TWI681059B (en) 2020-01-01
CN111868268B (en) 2022-03-29
JPWO2019181562A1 (en) 2020-04-30
KR102348892B1 (en) 2022-01-07
TW201940704A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6583594B1 (en) Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP5822053B2 (en) Control device and control method for converter blowing equipment
JP6579136B2 (en) Refining process state estimation device, refining process state estimation method, and molten metal manufacturing method
JP6687080B2 (en) Molten metal temperature correction device, molten metal temperature correction method, and molten metal manufacturing method
JP2017008349A (en) Device for and method of estimating molten metal condition
JP6897261B2 (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program and recording medium
JP6376200B2 (en) Molten state estimation device, molten state estimation method, and molten metal manufacturing method
JP5854171B2 (en) Correction device, correction method, and steel refining method
JP6414045B2 (en) Molten component estimation device and molten component estimation method
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP2018178199A (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP6658804B2 (en) Initial component concentration correction device, initial component concentration correction method, refining process state estimation method, and converter operation method
JP2007238982A (en) Method for controlling blowing end-point in converter
WO2023095647A1 (en) Intra-furnace state inference device, intra-furnace state inference method, and molten steel manufacturing method
JP7043949B2 (en) T. Fe estimation method, T.I. Fe control method, converter blow control device, and program
JP2012149341A (en) Estimation method of molten metal component and estimation apparatus of molten metal component
TWI732490B (en) Conversion control method and conversion control device of converter type dephosphorization refining furnace
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
JPH01230709A (en) Method for controlling blowing in converter
JP2000355710A (en) METHOD FOR ESTIMATING Mn AT BLOWING STOP IN CONVERTER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190625

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190625

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6583594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250