JP6574341B2 - Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method - Google Patents
Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method Download PDFInfo
- Publication number
- JP6574341B2 JP6574341B2 JP2015119244A JP2015119244A JP6574341B2 JP 6574341 B2 JP6574341 B2 JP 6574341B2 JP 2015119244 A JP2015119244 A JP 2015119244A JP 2015119244 A JP2015119244 A JP 2015119244A JP 6574341 B2 JP6574341 B2 JP 6574341B2
- Authority
- JP
- Japan
- Prior art keywords
- tip
- pile
- resistance force
- resistance
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
Description
本発明は、杭の圧入中に計測される圧入力により先端抵抗を推定する先端抵抗力度推定システム、圧入施工システム、及び先端抵抗力度推定方法に関する。 The present invention relates to a tip resistance force estimation system, a press-fitting construction system, and a tip resistance force degree estimation method for estimating tip resistance by pressure input measured during press-fitting of a pile.
従来、圧入力により杭を静的に地中に貫入させる圧入工法は、低振動低騒音、仮設不要等の利点から、主に都市部で利用されている。このような圧入工法による施工では、事前の地盤調査の結果に基づいて施工方法等が計画されているのが一般的である。この地盤調査に基づく計画の場合、実施工時に調査結果と異なる地盤条件に遭遇して計画通りに施工が進まない場合が多々ある。
一方で、杭の圧入中において、圧入力を計測することができる。圧入力の情報には先端抵抗、周面抵抗、継手間抵抗が含まれており、これらの情報を何らかの方法により分離することができれば、施工の効率化や地盤情報の推定等につながると考えられる。とくに、前記情報のうち先端抵抗を分離することが効果的と考えられている。
Conventionally, a press-in method for statically penetrating a pile into the ground by press input has been mainly used in urban areas because of its advantages such as low vibration, low noise, and temporary installation unnecessary. In construction by such a press-fitting method, construction methods are generally planned based on the results of prior ground investigation. In the case of a plan based on this ground survey, there are many cases where the construction does not proceed as planned due to encountering ground conditions different from the survey results at the time of construction.
On the other hand, the pressure input can be measured during the press-fitting of the pile. The pressure input information includes tip resistance, peripheral surface resistance, and joint resistance. If this information can be separated by some method, it is thought that it will lead to more efficient construction and estimation of ground information. . In particular, it is considered effective to separate the tip resistance from the information.
圧入力から先端抵抗を取り出す方法として、コーン貫入試験(CPT)のように、杭の先端部に荷重計等の計測器を取り付ける方法が、例えば非特許文献1に記載されている。
また、特許文献1には、圧入施工中の「打抜」という動作を利用することにより、計測器を杭に取り付けることなく先端抵抗を推定する地質推定方法および地質推定システムについて記載されている。
また、特許文献2には、回転圧入中の圧入力とトルクの情報から先端抵抗を推定する回転杭の先端抵抗推定方法及び推定システムについて開示されている。
As a method for extracting the tip resistance from the pressure input, for example, Non-Patent
Further,
Further,
しかしながら、従来のような圧入中の杭の先端抵抗の推定方法では、以下のような問題があった。
すなわち、非特許文献1のように杭の先端部にロードセル等の計測器を備えることは、計測器そのものの費用や、計測器を備えるための杭先端構造を杭に付加する費用などの付加的なコストが発生する。
また、このような杭を施工現場で用いることは、計測器を備えた杭を圧入した後で引抜く必要があり、さらに計測装置を現場に持参して計測器と計測装置を接続するといった手間と時間のかかる作業が生じることから、その点で改善の余地があった。
However, the conventional methods for estimating the tip resistance of piles during press fitting have the following problems.
That is, providing a measuring instrument such as a load cell at the tip of the pile as in Non-Patent
In addition, using such a pile at the construction site requires that the pile equipped with the measuring instrument be pressed in and then pulled out, and that the measuring instrument and the measuring apparatus are connected by bringing the measuring instrument to the site. There is room for improvement in that point.
また、圧入施工中の「打抜」という動作を利用する特許文献1に示す推定方法においては、コストのかかる計測器を導入する必要はないが、推定値が深度方向に離散的になることから、薄層の検知や、圧入完了時の支持力の確認には適していないという問題があった。
Moreover, in the estimation method shown in
さらに、特許文献2に示すような、回転圧入中の圧入力とトルクを用いる方法は、深度方向に連続的な情報を取り出すことができるが、入力条件として圧入力だけでなくトルクを必要としているため、回転させない圧入の場合に適用することができいという課題があった。
Furthermore, the method using pressure input and torque during rotational press-fit as shown in
本発明は、上述する問題点に鑑みてなされたもので、付加的な工費や作業時間を発生させることなく、圧入中の先端抵抗を深度方向に連続的にかつ精度よく推定することができる先端抵抗力度推定システム、圧入施工システム、及び先端抵抗力度推定方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and the tip that can estimate the tip resistance during press-fitting continuously and accurately in the depth direction without causing additional construction cost and work time. It is an object of the present invention to provide a resistance force estimation system, a press-fitting construction system, and a tip resistance force estimation method.
上記目的を達成するため、本発明に係る先端抵抗力度推定システムは、各深さにおいて予め求められた先端抵抗力度から、当該先端抵抗力度が求められた各深さにおける周面抵抗力度を演算する周面抵抗力度演算部と、前記周面抵抗力度演算部で求められた前記周面抵抗力度を積算して周面抵抗を求める積算部と、得られた杭の圧入力から、前記積算部で求めた前記周面抵抗を控除して先端抵抗を算出し、該先端抵抗に基づいて先端抵抗力度を求める先端抵抗力度演算部と、を備えていることを特徴としている。 In order to achieve the above object, the tip resistance force estimation system according to the present invention calculates the peripheral resistance force degree at each depth at which the tip resistance force degree is obtained from the tip resistance force degree obtained in advance at each depth. From the circumferential surface resistance force calculation unit, the integration unit that calculates the circumferential resistance by integrating the circumferential resistance force level obtained by the circumferential surface resistance force calculation unit, and the obtained pile pressure input, A tip resistance force degree calculating unit that calculates a tip resistance by subtracting the obtained peripheral resistance and obtains a tip resistance force degree based on the tip resistance.
また、本発明に係る圧入施工システムは、上述した先端抵抗力度推定システムを用いて圧入装置によって杭を圧入する圧入施工システムであって、前記圧入装置には、杭先端の深度を逐次計測可能な深度計測手段と、杭の圧入力を逐次計測可能な圧入力計測手段と、杭の管内土長を逐次計測可能な管内土長計測手段と、が設けられ、前記各手段より計測された前記深度、圧入力、及び管内土長に基づいて、前記周面抵抗力度演算部、前記積算部、及び前記先端抵抗力度演算部によって前記先端抵抗力度が求められることを特徴としている。 Moreover, the press-fitting construction system according to the present invention is a press-fitting construction system in which a pile is press-fitted by a press-fitting device using the above-described tip resistance force estimation system, and the depth of the tip of the pile can be sequentially measured in the press-fitting device. Depth measuring means, pressure input measuring means capable of sequentially measuring the pressure input of the pile, and pipe soil length measuring means capable of sequentially measuring the pipe soil length of the pile are provided, and the depth measured by each means The tip resistance force degree is obtained by the peripheral resistance force degree calculation unit, the integrating unit, and the tip resistance force degree calculation unit based on the pressure input and the soil length in the pipe.
また、本発明に係る先端抵抗力度推定方法は、各深さにおいて予め求められた先端抵抗力度から、当該先端抵抗力度が求められた各深さにおける周面抵抗力度を演算する工程と、前記周面抵抗力度を積算して周面抵抗を求める工程と、得られた杭の圧入力から、求めた前記周面抵抗を控除して先端抵抗を算出し、該先端抵抗に基づいて先端抵抗力度を求める工程と、を有していることを特徴としている。 Further, the tip resistance force degree estimation method according to the present invention includes a step of calculating a peripheral surface resistance force degree at each depth at which the tip resistance force degree is obtained from a tip resistance force degree obtained in advance at each depth; A step of calculating the peripheral resistance by adding the surface resistance force, and calculating the tip resistance by subtracting the obtained peripheral resistance from the pressure input of the obtained pile, and calculating the tip resistance force based on the tip resistance. It has the process to obtain | require. It is characterized by having.
本発明では、各深さにおいて予め求められた先端抵抗力度から、当該先端抵抗力度が求められた各深さにおける周面抵抗力度を周面抵抗力度演算部で演算し、その周面抵抗力度を積算部で積算して周面抵抗を求め、さらに先端抵抗力度演算部で圧入施工中に得られた杭の圧入力の情報に基づいて、求めた前記周面抵抗を控除して算出した先端抵抗に基づいて先端抵抗力度を取得することができる。つまり、圧入施工中に測定される深度、圧入力、管内土長等の測定を連続して実行することで、それら測定データを周面抵抗力度演算部、積算部、及び先端抵抗力度演算部に取り込み上記手順により演算処理を行うことで、圧入中の先端抵抗を深度方向に連続的に推定することができる。
そして、この場合には、従来技術で用いるロードセルなどの計測器が不要であるので、通常の圧入施工で採用される杭の形状や施工手順を変えることなく、計測器を使用することで生じる工費や工期の増大を伴わずに、先端抵抗を深度方向に連続的に容易に知ることができる。
In the present invention, the peripheral resistance force degree at each depth at which the tip resistance force degree is obtained is calculated by the peripheral resistance force degree calculation unit from the tip resistance force degree obtained in advance at each depth, and the peripheral resistance force degree is calculated. The tip resistance calculated by subtracting the calculated peripheral surface resistance based on the information on the pressure input of the pile obtained during the press-fitting construction by the tip resistance force degree calculation unit by calculating the peripheral resistance by the integration unit Based on the above, it is possible to obtain the tip resistance force degree. That is, by continuously executing measurements such as depth, pressure input, pipe length, etc. measured during press-fitting work, these measurement data are transferred to the peripheral resistance force calculation unit, integration unit, and tip resistance force calculation unit. By performing arithmetic processing according to the above procedure, the tip resistance during press-fitting can be continuously estimated in the depth direction.
In this case, a measuring instrument such as a load cell used in the prior art is unnecessary, and therefore the construction cost generated by using the measuring instrument without changing the shape and construction procedure of the pile used in normal press-fitting construction. In addition, the tip resistance can be easily and continuously known in the depth direction without increasing the construction period.
これにより、例えば先端抵抗力度と土質分類やN値など地盤情報とを予め関連付けてデータベース化しておくことで、通常の圧入施工で得られる圧入力の情報から上述した推定方法の演算処理によって求められた先端抵抗力度に基づいて、データベースからN値や土質分類を容易に推定することができるようになる。
また、本発明では、圧入開始時から圧入完了までの深さ方向に連続した先端抵抗力度を求めることができ、またその処理データを蓄積しておくことができる。そして、このような先端抵抗力度のデータに基づいて、圧入完了後の杭の支持力を推定することができる。
Thus, for example, by creating a database in advance by associating the tip resistance force level with the ground information such as soil classification and N value, it is obtained by the calculation process of the estimation method described above from the pressure input information obtained by the normal press-fitting construction. The N value and the soil classification can be easily estimated from the database based on the tip resistance strength.
Further, in the present invention, it is possible to obtain the tip resistance force continuous in the depth direction from the start of press-fitting to the completion of press-fitting, and the processing data can be accumulated. And the supporting force of the pile after press-fit completion can be estimated based on such data of the tip resistance force.
また、本発明に係る先端抵抗力度推定システムは、前記周面抵抗力度演算部は、杭先端からの距離に応じた変化に基づいて、前記各深さにおいて予め求められた前記先端抵抗力度を補正して前記周面抵抗力度を演算するようにしてもよい。 Further, in the tip resistance force degree estimation system according to the present invention, the peripheral surface resistance force degree calculation unit corrects the tip resistance force degree obtained in advance at each depth based on a change according to a distance from a pile tip. Then, the circumferential resistance force degree may be calculated.
この場合には、周面抵抗力度演算部において、例えば一般的な支持力式に準じて、各深さにおいて予め求められた先端抵抗力度に対して杭先端からの距離に応じた変化を加味した補正を行って周面抵抗力度を演算することができる。 In this case, in the peripheral resistance force degree calculation unit, for example, according to a general support force equation, a change corresponding to the distance from the pile tip is added to the tip resistance force degree obtained in advance at each depth. Correction can be performed to calculate the peripheral resistance force.
また、本発明に係る先端抵抗力度推定システムは、前記周面抵抗力度演算部は、予め求められた杭先端の閉塞状態を示す情報に基づいて、前記各深さにおいて予め求められた前記先端抵抗力度を補正して前記周面抵抗力度を演算するようにしてもよい。 Further, in the tip resistance force degree estimation system according to the present invention, the peripheral surface resistance force degree calculation unit is configured to obtain the tip resistance obtained in advance at each depth based on information indicating a closed state of a pile tip obtained in advance. The peripheral resistance force degree may be calculated by correcting the force degree.
本発明では、周面抵抗力度演算部において、例えば一般的な支持力式に準じて、各深さにおいて予め求められた先端抵抗力度に対して杭先端の閉塞状態を示す情報を加味した補正を行って周面抵抗力度を演算することができる。 In the present invention, in the peripheral surface resistance force calculation unit, for example, according to a general support force equation, correction is performed in consideration of information indicating the closed state of the pile tip with respect to the tip resistance force obtained in advance at each depth. It is possible to calculate the degree of circumferential resistance.
本発明の先端抵抗力度推定システム、圧入施工システム、及び先端抵抗力度推定方法によれば、付加的な工費や作業時間を発生させることなく、圧入中の先端抵抗を深度方向に連続的にかつ精度よく推定することができる。そのため、推定した先端抵抗は、地質情報や支持力の推定に利用することができる。 According to the tip resistance force estimation system, the press-fitting construction system, and the tip resistance force estimation method of the present invention, the tip resistance during press-fitting is continuously and accurately performed in the depth direction without generating additional construction cost and work time. Can be estimated well. Therefore, the estimated tip resistance can be used for estimating geological information and bearing capacity.
以下、本発明の実施の形態による先端抵抗力度推定システム、圧入施工システム、及び先端抵抗力度推定方法について、図面に基づいて説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, a tip resistance force estimation system, a press-fitting construction system, and a tip resistance force estimation method according to embodiments of the present invention will be described with reference to the drawings.
図1に示すように、本実施の形態による先端抵抗力度推定システム1は、杭4を把持したチャックを昇降させることを繰り返して杭4を地盤に圧入する周知の圧入装置2を利用したものであり、圧入装置2に対してコンピュータ3を無線又は有線により通信可能に接続し、圧入装置2からの情報を取得したコンピュータ3により先端抵抗力度を算出するシステムである。そして、先端抵抗力度推定システム1によって算定される先端抵抗力度に基づいて杭4の圧入施工箇所の地盤情報を推定するものである。
つまり、本実施の形態では、先端抵抗力度推定システム1を用いて圧入装置2によって杭4を圧入する圧入施工システムを構成している。
As shown in FIG. 1, the tip resistance
That is, in this Embodiment, the press-fit construction system which press-fits the pile 4 with the press-
圧入装置2は、図2に示すように、杭4に圧入力Fを付与しながら地盤に圧入する。杭4の圧入時に圧入装置2からコンピュータ3に入力される情報としては、杭4の先端の深度z、圧入力F、及び管内土長hであり、それぞれ深度計測手段21、圧入力計測手段22、及び管内土長計測手段23によって計測される。
As shown in FIG. 2, the press-
図3に示すように、杭4の先端の深度zを計測する深度計測手段21としては、圧入装置2による圧入ストロークを検出するストロークセンサーを圧入装置2に設けることにより構成されている。
圧入力Fを計測する圧入力計測手段22としては、圧入装置2の油圧駆動部の油圧を検出する油圧センサーを利用し、杭4を地盤に圧入する圧入力値として計測する構成とされる。
管内土長hを計測する管内土長計測手段23としては、例えば一般的に使用されるワイヤ式のストロークセンサーや、杭4内に錘を下げ管内土に到達したときのワイヤ繰り出し量をエンコーダーで計測する装置等を圧入装置2に設けることにより構成されている。
そして、圧入装置2において深度z、圧入力F、及び管内土長hを計測し、これらの計測値z、F、hが圧入装置2からコンピュータ3に入力されるように構成されている。
As shown in FIG. 3, the depth measuring means 21 that measures the depth z of the tip of the pile 4 is configured by providing the press-
The pressure input measuring means 22 for measuring the pressure input F is configured to measure a pressure input value for press-fitting the pile 4 into the ground by using a hydraulic sensor that detects the hydraulic pressure of the hydraulic drive unit of the press-fitting
As the pipe length measuring means 23 for measuring the pipe length h, for example, a commonly used wire-type stroke sensor, or an encoder is used to measure the wire feed amount when the weight is lowered in the pile 4 and reaches the pipe soil. It is configured by providing a measuring device or the like in the press-fitting
Then, the depth z, the pressure input F, and the pipe soil length h are measured in the press-fitting
コンピュータ3は、後述する各種の演算処理等を実行するCPUと、このCPUにより実行される各種制御プログラム及びデータ等が格納される記憶部等を備えて構成されている。
コンピュータ3に入力される上述した計測値(深度z、圧入力F、及び管内土長h)は、杭4の圧入進行過程において連続的に計測される時系列データであり、相互に対応がとれたものとなっている。そして、コンピュータ3において、付属する記憶装置に深度z、圧入力F、及び管内土長hの時系列データが記憶される。
The computer 3 includes a CPU that executes various arithmetic processes described later, a storage unit that stores various control programs executed by the CPU, data, and the like.
The above-mentioned measured values (depth z, pressure input F, and pipe length h) input to the computer 3 are time series data continuously measured during the press-fitting process of the pile 4 and can be correlated with each other. It has become. In the computer 3, time series data of the depth z, the pressure input F, and the pipe soil length h is stored in the attached storage device.
図3に示すように、先端抵抗力度推定システム1は、当該深度よりも浅い各深さ(後述する各中間深度)において予め求められた先端抵抗力度から、当該深度よりも浅い各深さにおける周面抵抗力度を演算する周面抵抗力度演算部11と、周面抵抗力度演算部11で求められた周面抵抗力度を積算して周面抵抗を求める積算部12と、当該深度において得られた圧入力Fから、積算部12で求めた周面抵抗を控除して当該深度における先端抵抗を算出し、これを当該深度における杭先端の閉塞状態を考慮した先端断面積で除すことによって当該深度における先端抵抗力度を求める先端抵抗力度演算部13と、を備えている。
ここで、周面抵抗力度演算部11は、後述するような一般的な支持力式に準じて、杭先端からの距離に応じた変化に基づいて周面抵抗力度を演算するものである。
As shown in FIG. 3, the tip resistance
Here, the peripheral surface resistance
そして、コンピュータ3のCPUは、上述した周面抵抗力度演算部11、積算部12、及び先端抵抗力度演算部13を備え、深度z、圧入力F、及び管内土長hの時系列データに基づき、先端抵抗力度を演算する演算手段として機能する。
The CPU of the computer 3 includes the above-described peripheral surface resistance
次に、先端抵抗力度推定システム1を用いて先端抵抗を推定する先端抵抗力度推定方法、すなわちコンピュータ3のCPUにおける演算手順について具体的に説明する。
先ず、周面抵抗力度演算部11において、当該深度より微小深度だけ浅い深度(当該直前深度)にある杭先端が当該深度に到達した際に、直前深度までの各深度(各中間深度)において算出された先端抵抗力度から、当該深度と前記各中間深度との深度差に基づいて各中間深度における周面抵抗力度を算出する(周面抵抗力度演算工程)。なお、「各中間深度」は、前述の「各深さ」に相当している。
このとき、杭先端深度がゼロ(地表面)の際の先端抵抗と周面抵抗は既知量(通常はともにゼロ)とする。
Next, a tip resistance force degree estimation method for estimating tip resistance using the tip resistance force
First, in the peripheral surface resistance
At this time, the tip resistance and circumferential resistance when the pile tip depth is zero (ground surface) are known amounts (usually both are zero).
次いで、当該直前深度までの各中間深度において上述した周面抵抗力度演算工程により算出された各中間深度における周面抵抗力度を積算部12で積算することにより、当該直前深度における周面抵抗を算出する(積算工程)。具体的に積算工程では、当該深度より微小深度だけ浅い全深度において推定された先端抵抗力度から、後述する支持力式等に基づいて、当該深度より微小深度だけ浅い深度における周面抵抗力度を推定する。
ここで、微小深度区間における周面抵抗が近似的にゼロであることから、当該直前深度における周面抵抗は当該深度における周面抵抗と等しいとして当該深度における周面抵抗を算出する。
Next, the circumferential resistance at the immediately preceding depth is calculated by integrating the circumferential resistance strength at each intermediate depth calculated by the above-described circumferential resistance force calculating step at each intermediate depth up to the immediately preceding depth by the integrating
Here, since the circumferential resistance in the minute depth section is approximately zero, the circumferential resistance at the depth is calculated assuming that the circumferential resistance at the immediately preceding depth is equal to the circumferential resistance at the depth.
次いで、先端抵抗力度演算部13において、圧入施工中に計測された杭4の圧入力Fの情報に基づいて、積算工程で算出された当該深度における周面抵抗を差し引くことにより当該深度における先端抵抗を算出する。さらに、算出された当該深度における先端抵抗を閉塞状態を加味した当該深度における先端断面積で除すことにより、当該深度における先端抵抗力度を算出して取得する(先端抵抗力度演算工程)。つまり、微小深度区間における周面抵抗は無視できることから、積算部12で推定された周面抵抗を当該深度における周面抵抗とみなし、これを当該深度における圧入力から差し引くことにより、当該深度における先端抵抗力度を推定する。
Next, the tip resistance
そして、上述した演算処理過程では、圧入装置2において、杭4の圧入進行に伴い深度zを逐次計測し、深度zの増加に伴い圧入力Fを逐次計測する。
杭4の圧入の進行中にコンピュータ3に蓄積される深度z、圧入力F、及び管内土長hの時系列データが更新される度に、杭4の新たに到達した先端位置における先端抵抗抵抗力度を算出し、圧入中に深度zの変化に応じた先端抵抗値のデータ列の大部分を算出してもよい。そして、圧入中は、少なくとも深度z、圧入力F、及び管内土長hの時系列データの記録を行って、杭4の圧入中又は圧入の施工が終了した後の任意の時に、コンピュータ3により先端抵抗力度の演算を実行する。
In the calculation process described above, the press-fitting
When the time series data of the depth z, the pressure input F, and the pipe soil length h accumulated in the computer 3 is updated during the press-fitting of the pile 4, the tip resistance resistance at the tip position where the pile 4 arrives newly is updated. The degree of force may be calculated, and most of the data string of the tip resistance value corresponding to the change in the depth z during press-fitting may be calculated. During the press-fitting, at least the depth z, the press input F, and the time series data of the pipe soil length h are recorded, and at any time during the press-fitting of the pile 4 or after the press-fitting work is finished, the computer 3 The tip resistance force is calculated.
コンピュータ3は、付属する記憶装置に先端抵抗力度の演算結果が記憶される。この先端抵抗力度の演算結果は、例えば図4のようにグラフ化される深度zの変化に応じた先端抵抗値のデータ列の態様をなし、杭4の最終深度における先端抵抗値が含まれる。なお、図4は、先端抵抗の推定結果と先端抵抗の実測値を比較することにより本実施の形態の推定方法の妥当性を検証したデータである。
また、コンピュータ3は、表示装置31(図1参照)に演算結果を表示する。
The computer 3 stores the calculation result of the tip resistance force degree in the attached storage device. The calculation result of the tip resistance force degree is in the form of a data string of tip resistance values corresponding to changes in the depth z plotted as shown in FIG. 4, for example, and includes the tip resistance value at the final depth of the pile 4. FIG. 4 shows data obtained by verifying the validity of the estimation method of the present embodiment by comparing the estimation result of the tip resistance and the measured value of the tip resistance.
In addition, the computer 3 displays the calculation result on the display device 31 (see FIG. 1).
次に、先端抵抗力度qb(z)を算出する関数(支持力式)の一例について説明する。
(1)式は、圧入力Fから先端抵抗(先端抵抗力度qb(z))を推定する方法を定式化したものである。
つまり、(1)式を上述したコンピュータ3のCPUにより実行される演算手順により数値的に解くことにより、深度zにおける先端抵抗を推定する。
以下、先端抵抗力度qb(z)を推定するための(1)式について、具体的に説明する。
Next, an example of a function (supporting force equation) for calculating the tip resistance force q b (z) will be described.
Formula (1) formulates a method for estimating the tip resistance (tip resistance force qb (z)) from the pressure input F.
That is, the tip resistance at the depth z is estimated by numerically solving the equation (1) by the calculation procedure executed by the CPU of the computer 3 described above.
Hereinafter, the expression (1) for estimating the tip resistance force qb (z) will be specifically described.
圧入中の圧入力F(z)は、図2に示すように、先端成分(下付きbで表す)と周面成分(下付きSで表す)から成ると考えられる。杭先端が深度zにある場合の各抵抗をQb(z)、Qs(z)と表記され、圧入力F(z)は、(2)式〜(7)式によって表される。 The press input F (z) during press-fitting is considered to be composed of a tip component (represented by subscript b) and a peripheral surface component (represented by subscript S), as shown in FIG. Each resistance when the pile tip is at a depth z is expressed as Qb (z) and Qs (z), and the pressure input F (z) is expressed by Equations (2) to (7).
ここで、(2)式〜(7)式において、F(z)、Qb(z)、Qs(z)、qb(z)、h(z)はそれぞれ深度zにおける圧入力、先端抵抗、周面抵抗、先端抵抗力度、管内土長であり、aは杭先端まわりの土の応力の低減を表す係数、bは閉塞の効果を表す係数、cは摩擦疲労 (周面抵抗の低減)を表す係数、lは杭先端からの距離、Lpは杭の周長、Doは杭の外径、Dinは杭の内径である。なお、(4)式において、max(l/Do,2)cは、杭の相対的な距離が変わることにより抵抗が変化する程度を表している。
また、Ab,effは閉塞状態を考慮した杭の先端断面積であって(5)式で表されるもの、Ar,effは閉塞状態を考慮した杭の面積率であって(6)式で表されるものである。つまり、Ar,eff、Ab,effは、杭内の土中長さと貫入長さとにより決定される。IFRは閉塞状態を表す指標で、IFR=0は完全閉塞状態、IFR=1は完全非閉塞状態を表している。
Here, in the equations (2) to (7), F (z), Qb (z), Qs (z), qb (z), and h (z) are the pressure input, the tip resistance, and the circumference at the depth z, respectively. The surface resistance, the tip resistance force, and the length of soil in the pipe, a is a coefficient representing the reduction of soil stress around the pile tip, b is a coefficient representing the effect of blockage, and c is a friction fatigue (reduction in circumferential resistance). The coefficient, l is the distance from the tip of the pile, Lp is the circumference of the pile, Do is the outer diameter of the pile, and Din is the inner diameter of the pile. In Expression (4), max (l / Do, 2) c represents the degree to which the resistance changes as the relative distance of the piles changes.
Ab and eff are the cross-sectional area of the tip of the pile considering the closed state and expressed by the equation (5), and Ar and eff are the area ratio of the pile considering the closed state and expressed by the equation (6) It is expressed. That is, Ar, eff, Ab, and eff are determined by the length of soil in the pile and the penetration length. IFR is an index representing a closed state, where IFR = 0 represents a completely closed state and IFR = 1 represents a completely unblocked state.
また、先端抵抗力度qb(z)とは、先端抵抗Qb(z)の単位面積当たりの値である。先端面上の微小面積dAに生じる垂直抗力は、qb・dAと表され、杭を回転させたときに杭の先端面上の微小面積dAに生じる摩擦力は、qb・dAに摩擦係数を乗じたものである。この摩擦係数をtanδとしたとき、すなわち、上記摩擦力を、qb・dA・tanδとしたときのδが壁面摩擦角である。 Further, the tip resistance force qb (z) is a value per unit area of the tip resistance Qb (z). The normal force generated in the minute area dA on the tip surface is expressed as qb · dA, and the friction force generated in the minute area dA on the tip surface of the pile when the pile is rotated is multiplied by the friction coefficient to qb · dA. It is a thing. When this friction coefficient is tan δ, that is, when the friction force is qb · dA · tan δ, δ is the wall surface friction angle.
そして、先端抵抗力度qb(z)は、上述した(2)式と(3)式の関係式から(8)式が導かれる。
さらに、微小深度増分δzに対し、周面抵抗Qsの増分はゼロであるとみなせることから(9)式が得られる。
The tip resistance force degree qb (z) is derived from equation (8) from the relational expression of equations (2) and (3) described above.
Further, since the increment of the peripheral surface resistance Qs can be regarded as zero with respect to the minute depth increment δz, the equation (9) is obtained.
そして、上記の(4)式と(9)式の関係式から上述した(1)式が導かれ、この(1)式を先端抵抗力度の関数として適用する。つまり、境界条件qb(0)=0を考慮して(1)式を数値的に解くことにより、先端抵抗力度qb(z)を得ることができる。
このとき、壁面摩擦角δは現場ごとに適切な定数を設定して、定数として実施しても十分な結果を得ることができる。
Then, the above equation (1) is derived from the relational expression of the above equations (4) and (9), and this equation (1) is applied as a function of the tip resistance force. That is, the tip resistance force qb (z) can be obtained by numerically solving the equation (1) in consideration of the boundary condition qb (0) = 0.
At this time, a sufficient result can be obtained even if the wall friction angle δ is set as an appropriate constant for each site and implemented as a constant.
上述のように本実施の形態による先端抵抗力度推定システム、圧入施工システム、及び先端抵抗力度推定方法では、図3に示すように、圧入施工中に測定される深度z、圧入力F、管内土長h等の測定を連続して実行することで、それら測定データを周面抵抗力度演算部11、積算部12、及び先端抵抗力度演算部13に取り込み上記手順により演算処理を行うことで、圧入中の先端抵抗を深度方向に連続的に推定することができる。
そして、この場合には、従来技術で用いるロードセルなどの計測器が不要であるので、通常の圧入施工で採用される杭の形状や施工手順を変えることなく、計測器を使用することで生じる工費や工期の増大を伴わずに、先端抵抗を深度方向に連続的に容易に知ることができる。
As described above, in the tip resistance force estimation system, the press-fitting construction system, and the tip resistance force estimation method according to the present embodiment, as shown in FIG. 3, the depth z, the pressure input F, and the pipe soil measured during the press-fitting construction. By continuously measuring the length h, etc., the measurement data is taken into the peripheral surface resistance
In this case, a measuring instrument such as a load cell used in the prior art is unnecessary, and therefore the construction cost generated by using the measuring instrument without changing the shape and construction procedure of the pile used in normal press-fitting construction. In addition, the tip resistance can be easily and continuously known in the depth direction without increasing the construction period.
これにより、例えば先端抵抗力度と土質分類やN値など地盤情報とを予め関連付けてデータベース化しておくことで、通常の圧入施工で得られる圧入力Fの情報から上述した推定方法の演算処理によって求められた先端抵抗力度に基づいて、前記データベースからN値や土質分類を容易に推定することができるようになる。 As a result, for example, the tip resistance force degree and the ground information such as soil classification and N value are preliminarily associated with each other to create a database, and the information is obtained by the calculation process of the estimation method described above from the information of the pressure input F obtained by the normal press-fitting construction. Based on the obtained tip resistance force level, the N value and soil classification can be easily estimated from the database.
また、本実施の形態では、圧入開始時から圧入完了までの深さ方向に連続した先端抵抗力度を求めることができ、またその処理データを蓄積しておくことができる。そして、このような先端抵抗力度のデータに基づいて、圧入完了後の杭4の支持力を推定することができる。 Further, in the present embodiment, it is possible to obtain the tip resistance force degree that is continuous in the depth direction from the start of press-fitting to the completion of press-fitting, and the processing data can be accumulated. And the supporting force of the pile 4 after press-fit completion can be estimated based on such data of the tip resistance force.
このように、本実施の形態の先端抵抗力度推定システム、圧入施工システム、及び先端抵抗力度推定方法では、付加的な工費や作業時間を発生させることなく、圧入中の先端抵抗を深度方向に連続的にかつ精度よく推定することができる。そのため、推定した先端抵抗は、地質情報や支持力の推定に利用することができる。 As described above, in the tip resistance force estimation system, the press-fitting construction system, and the tip resistance force estimation method according to the present embodiment, the tip resistance during press-fitting is continuously performed in the depth direction without generating additional work cost and work time. Can be estimated efficiently and accurately. Therefore, the estimated tip resistance can be used for estimating geological information and bearing capacity.
以上、本発明による先端抵抗力度推定システム、圧入施工システム、及び先端抵抗力度推定方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As described above, the embodiments of the tip resistance force estimation system, the press-fitting construction system, and the tip resistance force estimation method according to the present invention have been described, but the present invention is not limited to the above-described embodiments, and departs from the spirit thereof. It is possible to change appropriately within the range not to be.
例えば、本実施の形態では、圧入施工のみを施工対象としているが、回転圧入を施工対象とすることも可能である。回転圧入の場合には、圧入装置の回転によるトルクも入力情報として演算対象となるので、より精度の高い先端抵抗力度を推定することができる。 For example, in the present embodiment, only the press-fitting work is set as a construction target, but it is also possible to set the rotary press-fitting as a construction target. In the case of rotary press-fitting, torque due to the rotation of the press-fitting device is also subject to calculation as input information, so that it is possible to estimate the tip resistance force with higher accuracy.
また、上述した実施の形態では、周面抵抗力度演算工程において、周面抵抗力度演算部11で周面抵抗力度の算出に用いる先端抵抗力度として、当該深度より微小深度だけ浅い深度(当該直前深度)にある杭先端が当該深度に到達した際に、直前深度までの各深度(各中間深度)において算出された先端抵抗力度を採用している。そして、本実施の形態の周面抵抗力度演算部11では、各深さにおいて予め求められた先端抵抗力度に対して予め求められた杭先端の閉塞状態を示す情報を加味した補正を行って周面抵抗力度を演算するとともに、周面抵抗力度演算部において、先端抵抗力度に対して杭先端からの距離に応じた変化を加味した補正を行って周面抵抗力度を演算するシステムとなっているが、これらの補正に限定されることはない。
すなわち、周面抵抗力度演算部において、閉塞状態を示す情報に基づく補正と、杭先端からの距離に応じた変化に基づく補正との両方の補正を行わない推定システムであってもよいし、いずれか一方の補正を行うシステムでもかまわない。あるいは、他の補正方法を用いて先端抵抗力度を補正して周面抵抗力度を演算するシステムとすることも可能である。
つまり、上述した実施の形態で示した先端抵抗力度qb(z)を算出する関数(支持力式)は一例であって、他の支持力式を用いる推定方法とすることも可能である。
In the above-described embodiment, in the peripheral surface resistance force calculation step, the front surface resistance force degree used for calculation of the peripheral surface resistance force degree by the peripheral surface resistance force
That is, in the peripheral surface resistance force calculation unit, an estimation system that does not perform both correction based on information indicating the closed state and correction based on a change according to the distance from the pile tip may be used. A system that performs either correction may be used. Or it is also possible to set it as the system which correct | amends tip resistance force degree using another correction method, and calculates circumferential surface resistance force degree.
That is, the function (supporting force formula) for calculating the tip resistance force q b (z) shown in the above-described embodiment is an example, and an estimation method using another supporting force formula can be used.
また、圧入装置としては、既設の杭から反力を取って杭を地中に圧入する圧入装置を用いたものに限定されるものではない。例えば、ウェイトや既設構造物から圧入装置の反力を取るようにしてもよい。 Further, the press-fitting device is not limited to one using a press-fitting device that takes a reaction force from an existing pile and press-fits the pile into the ground. For example, the reaction force of the press-fitting device may be taken from a weight or an existing structure.
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.
1 先端抵抗力度推定システム
2 圧入装置
3 コンピュータ
4 杭
11 周面抵抗力度演算部
12 積算部
13 先端抵抗力度演算部
21 深度計測手段
22 圧入力計測手段
23 管内土長計測手段
DESCRIPTION OF
Claims (6)
前記杭先端の深さよりも浅い各深さにおいて予め求められた先端抵抗力度から、当該先端抵抗力度が求められた前記各深さにおける前記杭の周面と前記地盤との間に作用する周面抵抗の単位面積当たりの値である周面抵抗力度を演算する周面抵抗力度演算部と、
前記周面抵抗力度演算部で求められた前記周面抵抗力度を積算して前記周面抵抗を求める積算部と、
杭の圧入力を逐次計測可能な圧入力計測手段を用いて得られた前記杭先端の深さにおける杭の圧入力から、前記積算部で求めた前記周面抵抗を控除して前記杭先端の深さにおける先端抵抗を算出し、該先端抵抗に基づいて前記杭先端の深さにおける先端抵抗力度を求める先端抵抗力度演算部と、
を備えていることを特徴とする先端抵抗力度推定システム。 A tip resistance force estimation system that estimates the tip resistance force level, which is a value per unit area of tip resistance acting on the tip of the pile when the pile is press-fitted into the ground, for each depth of the pile tip,
From previously obtained tip resistance of the depth shallower the depth than the pile tip circumferential surface acting between the peripheral surface of the pile definitive in each depth to which the tip resistance degree is determined to be said ground A peripheral resistance force calculator that calculates a peripheral resistance force that is a value per unit area of resistance;
An integrating unit for obtaining the peripheral surface resistance by integrating the peripheral surface resistance of obtained by the peripheral surface resistance calculation unit,
Through a compression force sequentially measurable press-fitting force measuring means fitting force of pile definitive in depth of the pile tip obtained using the pile, the pile tip of the net of the circumferential surface resistance obtained by the integration unit calculating a tip resistance definitive depth, and the tip resistive force calculation unit for obtaining the tip resistance degree definitive in depth of the pile tip based on the tip resistor,
A tip resistance force estimation system comprising:
前記圧入装置には、前記杭先端の深さを逐次計測可能な深度計測手段と、前記圧入力計測手段と、杭の管内土長を逐次計測可能な管内土長計測手段と、が設けられ、
前記各手段より計測された前記杭先端の深さ、圧入力、及び管内土長に基づいて、前記周面抵抗力度演算部、前記積算部、及び前記先端抵抗力度演算部によって前記先端抵抗力度が求められることを特徴とする圧入施工システム。 A press-fitting construction system for press-fitting a pile with a press-fitting device using the tip resistance force degree estimation system according to any one of claims 1 to 4 ,
Wherein the press-fit device includes a sequential measurable depth measuring means the depth of the pile tip, and the force-insertion force measuring means, and sequentially measurable tract soil length measuring means tube soil length of pile, is provided,
Based on the depth of the pile tip measured by the means, the pressure input, and the soil length in the pipe, the tip resistance force degree is calculated by the peripheral resistance force degree calculation unit, the integration unit, and the tip resistance force degree calculation unit. A press-fit construction system characterized by what is required.
前記杭先端の深さよりも浅い各深さにおいて予め求められた先端抵抗力度から、当該先端抵抗力度が求められた前記各深さにおける前記杭の周面と前記地盤との間に作用する周面抵抗の単位面積当たりの値である周面抵抗力度を演算する工程と、
前記周面抵抗力度を積算して前記周面抵抗を求める工程と、
杭の圧入力を逐次計測可能な圧入力計測手段を用いて得られた杭の圧入力から、求めた前記周面抵抗を控除して先端抵抗を算出し、該先端抵抗に基づいて前記杭先端の深さにおける先端抵抗力度を求める工程と、
を有していることを特徴とする先端抵抗力度推定方法。 A tip resistance force estimation method for estimating the tip resistance force level, which is a value per unit area of tip resistance acting on the pile tip when pressing the pile into the ground, for each depth of the pile tip,
From previously obtained tip resistance of the depth shallower the depth than the pile tip circumferential surface acting between the peripheral surface of the pile definitive in each depth to which the tip resistance degree is determined to be said ground A step of calculating a peripheral surface resistance force which is a value per unit area of resistance ;
A step of determining the circumferential surface resistance by integrating the peripheral surface resistance of,
Through a compression force of pile obtained with the sequential measurable press-fitting force measuring means fitting force of pile, after deducting the circumferential surface resistance was determined to calculate the tip resistance, the pile tip based on tip resistance A step of obtaining a tip resistance force degree at a depth of
A tip resistance force estimation method characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015119244A JP6574341B2 (en) | 2015-06-12 | 2015-06-12 | Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015119244A JP6574341B2 (en) | 2015-06-12 | 2015-06-12 | Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017002623A JP2017002623A (en) | 2017-01-05 |
JP6574341B2 true JP6574341B2 (en) | 2019-09-11 |
Family
ID=57752474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015119244A Active JP6574341B2 (en) | 2015-06-12 | 2015-06-12 | Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6574341B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6591813B2 (en) * | 2015-07-22 | 2019-10-16 | 株式会社技研製作所 | Press-in system, height measurement method, and occlusion state evaluation method |
JP6929676B2 (en) * | 2017-03-24 | 2021-09-01 | 株式会社技研製作所 | Tip resistance estimation system, fluid injection combined press-fitting construction system, and tip resistance estimation method |
WO2019186660A1 (en) * | 2018-03-26 | 2019-10-03 | 日本製鉄株式会社 | Method for estimating end bearing capacity of rotary press-in pile, end bearing capacity management system, construction management method, and program |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0629844B2 (en) * | 1986-08-29 | 1994-04-20 | 英明 岸田 | Vertical loading test method for piles |
JP5602904B2 (en) * | 2013-03-15 | 2014-10-08 | 株式会社技研製作所 | Geological estimation method and geological estimation system |
JP6138729B2 (en) * | 2013-06-14 | 2017-05-31 | 株式会社技研製作所 | Resistance estimation method and estimation system for rotary press-fit piles |
-
2015
- 2015-06-12 JP JP2015119244A patent/JP6574341B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017002623A (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Interaction between laterally loaded pile and surrounding soil | |
US9963852B2 (en) | Test method for friction resistance at inner and outer sidewalls of pipe pile | |
JP6574341B2 (en) | Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method | |
JP7099246B2 (en) | Deformation prediction method and deformation prediction system for tunnels | |
JP6138729B2 (en) | Resistance estimation method and estimation system for rotary press-fit piles | |
CN101979783A (en) | Multifunctional cone penetration test (CPTU)-based pile foundation bearing capacity pre-measuring method | |
CN110174503B (en) | Method for determining weakening development range of surrounding rock based on tunnel deformation | |
CN109763474B (en) | Shear wave velocity estimation method based on standard penetration test | |
JP5610986B2 (en) | Geological estimation system and geological estimation method | |
JP6929676B2 (en) | Tip resistance estimation system, fluid injection combined press-fitting construction system, and tip resistance estimation method | |
JP6385895B2 (en) | Ground strength determination method and tunnel excavation method | |
Bungenstab et al. | Continous Flight Auger (CFA) Piles–A Review of the Execution Process and Integrity Evaluation by Low Strain Test | |
NO344737B1 (en) | System and method for locating, monitoring and quantifying friction between a drill string and a wellbore | |
EP3390774B1 (en) | Methods and apparatus to calibrate rod pump controllers | |
JP6438745B2 (en) | Estimation method for inter-building displacement | |
Lesny et al. | Evaluation of the uncertainties related to the geotechnical design method and its consideration in reliability based design | |
JP6656724B2 (en) | Liquefaction determination method | |
JP6512448B2 (en) | Building response estimation method | |
JP5616244B2 (en) | Foundation judgment method by underground drilling data analysis | |
JPH1113047A (en) | Settlement estimation method for buried pile | |
Reiffsteck | Assessment of pile bearing capacity and load-settlement behavior, based on cone loading test (CLT) results | |
Lehane et al. | Discussion of “Determination of Bearing Capacity of Open-Ended Piles in Sand” by Kyuho Paik and Rodrigo Salgado | |
JP2010196352A (en) | Method and device for measuring coefficient of earth pressure at rest of ground | |
JP2009020075A (en) | Method and system for estimating remaining life, and computer program and recording medium | |
Fellenius et al. | Analysis of strain-gage records from a static loading test on a CFA pile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180502 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190816 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6574341 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |