[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6565941B2 - Method for producing soft magnetic iron powder - Google Patents

Method for producing soft magnetic iron powder Download PDF

Info

Publication number
JP6565941B2
JP6565941B2 JP2017006498A JP2017006498A JP6565941B2 JP 6565941 B2 JP6565941 B2 JP 6565941B2 JP 2017006498 A JP2017006498 A JP 2017006498A JP 2017006498 A JP2017006498 A JP 2017006498A JP 6565941 B2 JP6565941 B2 JP 6565941B2
Authority
JP
Japan
Prior art keywords
soft magnetic
molten metal
iron powder
magnetic iron
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017006498A
Other languages
Japanese (ja)
Other versions
JP2018115363A (en
Inventor
村木 峰男
峰男 村木
誠 中世古
誠 中世古
拓也 高下
拓也 高下
中村 尚道
尚道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017006498A priority Critical patent/JP6565941B2/en
Publication of JP2018115363A publication Critical patent/JP2018115363A/en
Application granted granted Critical
Publication of JP6565941B2 publication Critical patent/JP6565941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、水アトマイズ装置を用いた軟磁性鉄粉の製造方法に係る。とくにFe系元素(Fe、NiおよびCo)を主成分とする非晶質軟磁性鉄粉を水アトマイズで製造する際の冷却速度を向上させる方法に関する。   The present invention relates to a method for producing soft magnetic iron powder using a water atomizer. In particular, the present invention relates to a method for improving the cooling rate when an amorphous soft magnetic iron powder mainly composed of Fe-based elements (Fe, Ni and Co) is produced by water atomization.

金属粉末を製造する方法として、アトマイズ法がある。このアトマイズ法には、溶融金属の流れに高圧の水ジェットを噴射して溶融金属流を分断(アトマイズ)して金属粉末を得る水アトマイズ法、水ジェットに代えて不活性ガスを噴射するガスアトマイズ法などがある。   There is an atomizing method as a method for producing metal powder. This atomizing method includes a water atomizing method in which a metal powder is obtained by dividing (atomizing) a molten metal flow by injecting a high-pressure water jet into the molten metal flow, and a gas atomizing method in which an inert gas is injected instead of the water jet. and so on.

近年、非晶質系の軟磁性材料が開発された。これらは非晶質構造を得るために、溶融状態の金属粉末を急冷凝固させることが必要である。この目的で、溶融金属を水あるいは不活性ガスで分断したのちに水冷する技術などが提案されている。しかしながらいずれも構造が複雑となり、工業的な大量生産には適していない。また、溶融金属流を水で分断するとともに冷却をする水アトマイズ技術は古くから用いられているが、従来の単純な水アトマイズでは所要の急冷凝固が得られなかった。   In recent years, amorphous soft magnetic materials have been developed. In order to obtain an amorphous structure, it is necessary to rapidly solidify the molten metal powder. For this purpose, a technique has been proposed in which a molten metal is divided by water or an inert gas and then cooled by water. However, both of them are complicated in structure and are not suitable for industrial mass production. In addition, a water atomization technique for dividing and cooling a molten metal flow with water has been used for a long time, but the required rapid solidification cannot be obtained with the conventional simple water atomization.

一方で非晶質系軟磁性材料として、例えば、非特許文献1には、優れた磁気特性を有するナノ結晶軟磁性合金が開発されている。このナノ結晶軟磁性合金は、急冷して作製された非晶質合金に熱処理を施して、10nm程度までに微細化した鉄結晶を析出させることにより、優れた磁気特性を実現するものである。代表的なFe基ナノ結晶軟磁性合金としては(Fe,Ni,Co)−Si−P−B−Cu系のものなどが挙げられる。この材料は従来の非晶質系軟磁性材料にない高い飽和磁束密度を示すものであり、その傾向はFeもしくはFe、NiおよびCoの合計量の増加に伴い顕著である。しかしながら、微細鉄結晶の析出のためにCuを添加すること、ならびにFe系金属量の増加に伴い、また、非晶質を得るのに必要な冷却速度も増大することから、その製造には精密な制御が必要となる。   On the other hand, as an amorphous soft magnetic material, for example, Non-Patent Document 1 has developed a nanocrystalline soft magnetic alloy having excellent magnetic properties. This nanocrystalline soft magnetic alloy realizes excellent magnetic properties by subjecting an amorphous alloy produced by rapid cooling to heat treatment to precipitate iron crystals refined to about 10 nm. Typical Fe-based nanocrystalline soft magnetic alloys include those based on (Fe, Ni, Co) -Si-P-B-Cu. This material exhibits a high saturation magnetic flux density that is not found in conventional amorphous soft magnetic materials, and the tendency is remarkable as the total amount of Fe or Fe, Ni, and Co increases. However, the addition of Cu for the precipitation of fine iron crystals and the increase in the amount of Fe-based metal, and the cooling rate required to obtain an amorphous material, increase the precision. Control is required.

従来、急冷により金属粉末を製造する方法としては数多くの提案がなされている。たとえば特許文献1には、溶鋼を飛散させつつ冷却・固化させ金属粉末を得る際に、固化するまでの冷却速度が10K/s以上とする金属粉末の製造方法が記載されている。特許文献1に記載された技術では、飛散させた溶鋼を、筒状体の内壁面に沿って冷却液を旋回させることにより生じた冷却液流に接触させることにより、上記した冷却速度が得られるとしている。 Conventionally, many proposals have been made as methods for producing metal powder by rapid cooling. For example, Patent Document 1 describes a method for producing a metal powder in which the cooling rate until solidification is 10 5 K / s or more when the metal powder is obtained by cooling and solidifying while scattering molten steel. In the technique described in Patent Document 1, the above-described cooling rate is obtained by bringing the molten steel that has been scattered into contact with the coolant flow generated by swirling the coolant along the inner wall surface of the cylindrical body. It is said.

特開2010−150587号公報JP 2010-150587 A

まてりあ,vol.14,No.6,P.392(牧野彰宏、吉沢克仁)Materia, vol. 14, no. 6, P. 392 (Akihiro Makino, Katsuhito Yoshizawa)

特許文献1に記載された技術を含め従来技術は、いずれも単純な水アトマイズ技術に比べれば、構造が複雑で、工業量産性に劣る。   All of the conventional techniques including the technique described in Patent Document 1 have a complicated structure and inferior industrial mass productivity as compared with a simple water atomizing technique.

さらに、上記従来技術は、厳密な制御を必要とする(Fe、Ni、Co)−Si−P−B−Cu系のナノ結晶軟磁性材料などの軟磁性鉄粉の製造に適さない。   Furthermore, the above prior art is not suitable for producing soft magnetic iron powders such as (Fe, Ni, Co) -Si-P-B-Cu-based nanocrystalline soft magnetic materials that require strict control.

また、上記従来技術は、比較的大きな粒径においても高い非晶質化率を得ることが困難である。   Moreover, it is difficult for the prior art to obtain a high amorphization rate even with a relatively large particle size.

本発明は、工業生産性に優れた水アトマイズ方法で、非晶質化率を高めることが困難であった、高Fe濃度のアモルファス、とりわけナノ結晶軟磁性合金に好ましく適用でき、比較的大きな粒径の軟磁性鉄粉を製造する場合にも好ましく適用できる軟磁性鉄粉の製造方法を提供することにある。   INDUSTRIAL APPLICABILITY The present invention is a water atomization method with excellent industrial productivity, and it is difficult to increase the amorphization rate, and is preferably applicable to high Fe concentration amorphous, especially nanocrystalline soft magnetic alloys. An object of the present invention is to provide a method for producing a soft magnetic iron powder that can be preferably applied to the production of a soft magnetic iron powder having a diameter.

従来の水アトマイズで軟磁性鉄粉を製造する方法においては、溶融金属流の分断に用いた水が同時に金属粉末の冷却を行う作用に関して、アトマイズ点における冷却作用にのみ注目し、膜沸騰の破壊等を行う。   In the conventional method of producing soft magnetic iron powder by water atomization, with regard to the action of water used for dividing the molten metal stream to cool the metal powder at the same time, attention is paid only to the cooling action at the atomization point, and the film boiling is destroyed. Etc.

発明者らが鋭意検討した結果、従来は冷却速度にのみ重点が置かれて開発がなされていたが、工業規模へのスケールアップを行う際に、冷却の継続という観点が重要であることを知見し、本発明を完成するに至った。すなわち、アトマイズにおける冷却を過度に一点に集中させると、瞬間的には大きな冷却速度が得られるものの、その後の継続的な冷却が困難となり、結果として安定して高い非晶質化率が得られないことを知見し本発明に至ったものである。具体的には、50m/s以上の比較的大きな噴射速度で噴射された高圧水で分断される溶鋼金属流は、25mm以上の長さにわたって高圧水による直接冷却処理を行えば上記課題を解決できる。本発明は以下のものを提供する。   As a result of intensive studies by the inventors, in the past, development was made with an emphasis only on the cooling rate, but it was found that the viewpoint of continuation of cooling is important when scaling up to an industrial scale. Thus, the present invention has been completed. That is, if the cooling in atomization is excessively concentrated at one point, although a large cooling rate can be obtained instantaneously, subsequent cooling becomes difficult, resulting in a stable high amorphization rate. It has been found that there is no such thing, and has led to the present invention. Specifically, the above-mentioned problem can be solved if a molten steel metal flow divided by high-pressure water injected at a relatively high injection speed of 50 m / s or more is subjected to direct cooling treatment with high-pressure water over a length of 25 mm or more. . The present invention provides the following.

[1]チャンバー内において溶融金属注入ノズルから鉛直方向に落下する溶融金属流の鉛直方向長さLdの領域と衝突する高圧水を噴射し、該溶融金属流を分断して金属粉末とし、かつその金属粉末を冷却し、非晶質化率90%以上の軟磁性鉄粉を製造する軟磁性鉄粉の製造方法であって、前記溶融金属流と前記高圧水とが前記衝突時に接触する長さであるLd(接触長)が25mm以上、250mm以下であり、前記高圧水の噴射速度が50m/s以上350m/s以下である軟磁性鉄粉の製造方法。   [1] In the chamber, high-pressure water that collides with a region having a length Ld in the vertical direction of the molten metal flow falling vertically from the molten metal injection nozzle is injected to divide the molten metal flow into a metal powder, and A method for producing a soft magnetic iron powder by cooling a metal powder and producing a soft magnetic iron powder having an amorphization ratio of 90% or more, wherein the molten metal stream and the high-pressure water are in contact with each other at the time of the collision. A method for producing soft magnetic iron powder, wherein Ld (contact length) is 25 mm or more and 250 mm or less, and the injection speed of the high-pressure water is 50 m / s or more and 350 m / s or less.

[2]前記溶融金属注入ノズルの設置箇所を含む前記チャンバー内の少なくとも一部の雰囲気を0.03MPa以上、0.09MPa以下の負圧にする[1]に記載の軟磁性鉄粉の製造方法。   [2] The method for producing a soft magnetic iron powder according to [1], wherein an atmosphere of at least a part of the chamber including an installation location of the molten metal injection nozzle is set to a negative pressure of 0.03 MPa or more and 0.09 MPa or less. .

[3]前記チャンバーは、前記溶融金属注入ノズルの下方に、冷却中の前記金属粉末が内部を通る筒状のくびれ部を有し、前記くびれ部における、軸方向に直交する断面積が最小になる位置での水量流量密度を0.1m/m・s以上、2.0m/m・s以下の範囲で調整して、前記負圧を調整する[2]に記載の軟磁性鉄粉の製造方法。 [3] The chamber has a cylindrical constricted portion through which the metal powder being cooled passes below the molten metal injection nozzle, and a cross-sectional area perpendicular to the axial direction in the constricted portion is minimized. The soft magnetism according to [2], wherein the negative pressure is adjusted by adjusting a water flow rate density at a position of 0.1 m 3 / m 2 · s to 2.0 m 3 / m 2 · s. Manufacturing method of iron powder.

[4]前記溶融金属流の落下方向に直交する断面が円形であり、該円の円直径が4mm以下である[1]〜[3]のいずれかに記載の軟磁性鉄粉の製造方法
[5]前記溶融金属流の落下方向に直交する断面が楕円形であり、該楕円の短径が4mm以下である[1]〜[3]のいずれかに記載の軟磁性鉄粉の製造方法。
[4] The method for producing a soft magnetic iron powder according to any one of [1] to [3], wherein a cross section perpendicular to the falling direction of the molten metal flow is circular, and a circle diameter of the circle is 4 mm or less. 5] The method for producing a soft magnetic iron powder according to any one of [1] to [3], wherein a cross section perpendicular to a falling direction of the molten metal flow is an ellipse, and a minor axis of the ellipse is 4 mm or less.

[6]前記溶融金属流の落下方向に直交する断面が矩形であり、該矩形の短辺の長さが4mm以下である[1]〜[3]のいずれかに記載の軟磁性鉄粉の製造方法。   [6] The soft magnetic iron powder according to any one of [1] to [3], wherein a cross section perpendicular to a falling direction of the molten metal flow is a rectangle, and a length of a short side of the rectangle is 4 mm or less. Production method.

[7]前記軟磁性鉄粉は、Fe、NiおよびCoの原子分率が合計で76.0at%超えであり、Cuの原子分率が0.1at%以上、2.0at%以下である[1]〜[6]のいずれかに記載の軟磁性鉄粉の製造方法。   [7] In the soft magnetic iron powder, the total atomic fraction of Fe, Ni, and Co exceeds 76.0 at%, and the atomic fraction of Cu is 0.1 at% or more and 2.0 at% or less [ 1]-[6] The manufacturing method of the soft-magnetic iron powder in any one of.

[8]前記軟磁性鉄粉は、Fe、NiおよびCoの原子分率が合計で82.5at%超え、86.0at%未満である(Fe,Ni,Co)SiPBCu系ナノ結晶軟磁性材料であり、平均粒径が5μm以上である[1]〜[6]のいずれかに記載の軟磁性鉄粉の製造方法。   [8] The soft magnetic iron powder is a (Fe, Ni, Co) SiPBCu-based nanocrystalline soft magnetic material having a total atomic fraction of Fe, Ni and Co of more than 82.5 at% and less than 86.0 at%. Yes, The manufacturing method of the soft magnetic iron powder in any one of [1]-[6] whose average particle diameter is 5 micrometers or more.

本発明の軟磁性鉄粉の製造方法は、簡易な方法であるため、軟磁性鉄粉の生産性(工業量産性)の高い製造方法である。   Since the manufacturing method of the soft magnetic iron powder of the present invention is a simple method, it is a manufacturing method with high productivity (industrial mass productivity) of the soft magnetic iron powder.

また、本発明の軟磁性鉄粉の製造方法は、高Fe濃度のアモルファス、とりわけナノ結晶軟磁性合金の好ましく適用できる。   In addition, the method for producing soft magnetic iron powder of the present invention can be preferably applied to high Fe concentration amorphous, especially nanocrystalline soft magnetic alloys.

また、本発明の軟磁性鉄粉の製造方法は、比較的大きな粒径の軟磁性鉄粉を製造する場合にも好ましく適用できる軟磁性鉄粉の製造方法を提供することにある。   Moreover, the manufacturing method of the soft magnetic iron powder of this invention is providing the manufacturing method of the soft magnetic iron powder which can be applied preferably also when manufacturing the soft magnetic iron powder of a comparatively big particle size.

本発明の製造方法は、従来知られる任意の非晶質利用軟磁性材料の水アトマイズ製造に用いることができる。加えて近年では、上記非特許文献1に加えて Journal of Applied Physics 105, 013922(2009)、特許4288687号公報、特許4310480号公報、特許4815014号公報、WO−2010−084900号、特開2008−231534号公報、特開2008−231533号公報、特許2710938号公報などに示されるように磁束密度の大きなヘテロアモルファス材料や、ナノ結晶材料が開発されてきている。これらの高Fe系成分濃度の軟磁性鉄粉の水アトマイズによる製造に際して、本発明はきわめて有利に適合する。特に、ナノ結晶材料において原子%(at%)でFe系成分の含有量が82.5%を超えると、さらには83.5%を超えると5μm以上の粒径において非晶質化率90%を超えることは難しいことから、非晶質化率を90%以上にすることも可能な本発明の効果は顕著である。また、上記範囲外の組成範囲のものに適用して、従来より容易に大径の粉末に対しても安定して非晶質粉末が得られる効果も有する。   The production method of the present invention can be used for water atomization production of any conventionally known amorphous soft magnetic material. In addition, in recent years, in addition to the non-patent document 1, Journal of Applied Physics 105, 013922 (2009), Japanese Patent No. 4288687, Japanese Patent No. 4310480, Japanese Patent No. 4815014, WO-2010-084900, JP-A 2008- As disclosed in Japanese Patent No. 231534, Japanese Patent Application Laid-Open No. 2008-231533, Japanese Patent No. 2710938, etc., heteroamorphous materials and nanocrystalline materials having a high magnetic flux density have been developed. The present invention is very advantageously adapted to the production of soft magnetic iron powder having a high Fe-based component concentration by water atomization. In particular, when the content of Fe-based components exceeds 82.5% in atomic% (at%) in the nanocrystalline material, and further exceeds 83.5%, the amorphization rate is 90% at a particle size of 5 μm or more. Therefore, the effect of the present invention that makes it possible to increase the amorphization rate to 90% or more is remarkable. In addition, when applied to a composition range outside the above range, there is an effect that an amorphous powder can be obtained more easily and stably than a large-diameter powder.

軟磁性鉄粉製造装置の一例を模式的に示す図である。It is a figure which shows typically an example of a soft-magnetic iron powder manufacturing apparatus. 高圧水の噴射速度とスプレーノズルからの距離の関係を示すグラフである。It is a graph which shows the relationship between the injection speed of high pressure water, and the distance from a spray nozzle. 接触長と高圧水の噴射速度と非晶質化率との関係を表すグラフである。It is a graph showing the relationship between contact length, the injection speed of high-pressure water, and an amorphization rate. 筒状空間による負圧作用を利用する装置を示す模式図である。It is a schematic diagram which shows the apparatus using the negative pressure effect | action by cylindrical space. 図4の変形例である、筒状空間による負圧作用を利用する装置を示す模式図である。It is a schematic diagram which shows the apparatus using the negative pressure effect | action by cylindrical space which is a modification of FIG.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

図1は、本発明の軟磁性鉄粉の製造方法を実施するために用いることができる軟磁性鉄粉製造装置の一例を模式的に示す図である。   FIG. 1 is a diagram schematically showing an example of a soft magnetic iron powder production apparatus that can be used for carrying out the soft magnetic iron powder production method of the present invention.

図1に示す装置は、溶解炉1、溶解炉1で溶かした溶鋼である溶融金属3を注ぐタンディッシュ2、タンディッシュ2に注がれた溶融金属3を溶融金属流11として落下させる溶融金属注入ノズル4、高圧水7を噴射する為のノズルヘッダー5、高圧水7を噴射するスプレーノズル6、装置全体を覆っているチャンバー13を有する。なお、本発明の説明に必要のない構成は省略されている。なお、ここで言う高圧水とは噴射圧が10MPa以上である場合を指す。また、本発明は、Fe、NiおよびCoの原子分率が合計で76.0at%超えであり、Cuの原子分率が0.1at%以上、2.0at%以下である軟磁性鉄粉の製造方法、Fe、NiおよびCoの原子分率が合計で82.5at%超え、86at%未満である(Fe,Ni,Co)SiPBCu系ナノ結晶軟磁性材料である軟磁性鉄粉の製造方法として好ましい。これらの軟磁性鉄粉を製造するためには上記溶融金属の組成を所望の組成に調整する必要がある。   The apparatus shown in FIG. 1 includes a melting furnace 1, a tundish 2 that pours molten metal 3 that is molten steel melted in the melting furnace 1, and a molten metal that drops the molten metal 3 poured into the tundish 2 as a molten metal stream 11. It has an injection nozzle 4, a nozzle header 5 for injecting high-pressure water 7, a spray nozzle 6 for injecting high-pressure water 7, and a chamber 13 covering the entire apparatus. In addition, the structure which is not necessary for description of this invention is abbreviate | omitted. In addition, the high pressure water said here points out the case where an injection pressure is 10 Mpa or more. Further, the present invention provides a soft magnetic iron powder in which the atomic fraction of Fe, Ni and Co exceeds 76.0 at% in total, and the atomic fraction of Cu is 0.1 at% or more and 2.0 at% or less. As a manufacturing method, a method of manufacturing a soft magnetic iron powder which is a (Fe, Ni, Co) SiPBCu-based nanocrystalline soft magnetic material having a total atomic fraction of Fe, Ni and Co of more than 82.5 at% and less than 86 at% preferable. In order to produce these soft magnetic iron powders, it is necessary to adjust the composition of the molten metal to a desired composition.

溶融金属注入ノズル4から落下する溶融金属流11は、スプレーノズル6から噴射された高圧水7との衝突で金属粉末12となる。この金属粉末12は周囲の水により落下しながら冷却する。冷却により固化した金属粉末が軟磁性鉄粉である。なお、図1において、スプレーノズル6は2本しか示していないが、円周上に等間隔に4ないし16本を配置することが好ましい。図1の例では8本を配置している。なお、スプレーノズルの本数は特に限定されない。   The molten metal stream 11 falling from the molten metal injection nozzle 4 becomes a metal powder 12 by collision with the high-pressure water 7 sprayed from the spray nozzle 6. The metal powder 12 is cooled while being dropped by the surrounding water. The metal powder solidified by cooling is soft magnetic iron powder. Although only two spray nozzles 6 are shown in FIG. 1, it is preferable that 4 to 16 spray nozzles are arranged at equal intervals on the circumference. In the example of FIG. 1, eight are arranged. The number of spray nozzles is not particularly limited.

本発明においては、溶融金属流11と高圧水7とが衝突時に接触する長さであるLd(接触長8)が25mm以上、250mm以下である。好ましくは40mm以上、150mm以下である。高圧水7が溶融金属流11と衝突し始める位置をアトマイズ開始点9、高圧水と溶融金属流11との衝突が終了する位置をアトマイズ終了点10とする。アトマイズ開始点9からアトマイズ終了点10までの長さが接触長8となる。溶融金属流11は最初にアトマイズ開始点9において高圧水7と接触し、冷却が開始する。高圧水7を局所的に直射せずに一定の拡がりを持たせることで、接触長8を設定することができる。具体的には、接触長8は、溶融金属流11の進行方向に向かって拡がりのあるノズルを採用すること、スプレーノズル6の溶融金属流11に対する角度、距離等を調整すること、噴射領域の重複する複数のスプレーノズル6を用いること等で制御することができる。ただし、接触長8に向けて高圧水を噴射する複数のノズルを用いることは、速度の変動を引き起こしやすいことから、噴射領域が重複するスプレーノズル6を用いずに接触長を拡大することが推奨される。噴射領域が重複するスプレーノズル6を用いずに接触長を拡大する方法として、予備ガイドを用いる方法がある。この方法では、スプレーノズルから予備ガイドの表面に高圧水を噴射して衝突させることで、高圧水の進行方向を変えつつ、高圧水の溶融金属流落下方向の噴射幅を拡げて、溶融金属流に高圧水を衝突させる方法である。この方法の場合、予備ガイドへの高圧水の衝突により、高圧水の速度は変化するので、溶融金属流と衝突する際の高圧水の噴射速度を調整する必要がある。また、本発明条件で水アトマイズを行えば、溶融金属流11は分断されながらも元の外形状を大きく変化させることなく進行するので、オフラインであらかじめ求めた高圧水7の噴射範囲と、水によって分断されない仮想的な溶融金属流11表面との接触長をもって接触長の適否を判断して差支えない。   In the present invention, Ld (contact length 8), which is the length of contact between the molten metal stream 11 and the high-pressure water 7 at the time of collision, is 25 mm or more and 250 mm or less. Preferably they are 40 mm or more and 150 mm or less. A position at which the high-pressure water 7 starts to collide with the molten metal flow 11 is defined as an atomization start point 9, and a position at which the collision between the high-pressure water and the molten metal flow 11 is terminated is defined as an atomization end point 10. The length from the atomization start point 9 to the atomization end point 10 is the contact length 8. The molten metal stream 11 first contacts the high pressure water 7 at the atomization start point 9 and cooling starts. The contact length 8 can be set by giving a certain spread without directly irradiating the high-pressure water 7 locally. Specifically, the contact length 8 employs a nozzle that expands in the direction of travel of the molten metal flow 11, adjusts the angle, distance, etc. of the spray nozzle 6 with respect to the molten metal flow 11, It can be controlled by using a plurality of overlapping spray nozzles 6. However, using a plurality of nozzles that inject high-pressure water toward the contact length 8 is likely to cause fluctuations in speed, so it is recommended to increase the contact length without using the spray nozzle 6 with overlapping injection areas. Is done. As a method for expanding the contact length without using the spray nozzle 6 in which the spray regions overlap, there is a method using a preliminary guide. In this method, high pressure water is sprayed from the spray nozzle onto the surface of the preliminary guide and collided, thereby changing the traveling direction of the high pressure water and expanding the injection width in the molten metal flow falling direction. This is a method of causing high-pressure water to collide with water. In the case of this method, since the speed of the high-pressure water changes due to the collision of the high-pressure water with the preliminary guide, it is necessary to adjust the injection speed of the high-pressure water when colliding with the molten metal flow. Further, if water atomization is performed under the conditions of the present invention, the molten metal flow 11 proceeds without being greatly changed in its original outer shape while being divided, so the injection range of the high-pressure water 7 determined in advance offline and the water The suitability of the contact length can be determined based on the contact length with the surface of the virtual molten metal flow 11 that is not divided.

本発明においては、溶融金属流11に噴射される高圧水7の噴射速度を50m/s以上、350m/s以下とする。高圧水7の噴射速度は、溶鋼金属流11の表面に高圧水7が到達する際の速度であることに注意する。一例として図2に示すように、高圧水の噴射速度はスプレーノズルからの距離に応じて減衰するので、水ノズルの選択や水圧の制御だけではなく、減衰に応じた調整が必要である。なお、高圧水の速度計測はレーザードップラー計で行うことができるが、この速度領域では高速度カメラにより行うことが望ましい。高圧水の性状は連続水流でも液滴状でも構わないが、空気とのせん断作用による速度の変化が小さいことから連続水流が推奨される。   In the present invention, the injection speed of the high-pressure water 7 injected into the molten metal stream 11 is set to 50 m / s or more and 350 m / s or less. Note that the injection speed of the high-pressure water 7 is the speed at which the high-pressure water 7 reaches the surface of the molten steel metal stream 11. As an example, as shown in FIG. 2, the injection speed of the high-pressure water is attenuated according to the distance from the spray nozzle. Therefore, not only the selection of the water nozzle and the control of the water pressure but also the adjustment according to the attenuation is necessary. In addition, although the speed measurement of high-pressure water can be performed with a laser Doppler meter, it is desirable to perform with a high-speed camera in this speed region. The nature of the high-pressure water may be a continuous water stream or a droplet, but a continuous water stream is recommended because the change in velocity due to the shearing action with air is small.

以下に本発明の効果を説明する。本発明の効果を得る上で重要な構成は、接触長8が25mm以上、250mm以下であること、溶融金属流11に噴射される高圧水7の噴射速度を50m/s以上、350m/s以下とすることである。図3には、接触長と高圧水の噴射速度と非晶質化率との関係を表すグラフを示す。図3のグラフの取得は次のようにして行った。原子比率でFe83SiCuとなる合金を配合し、溶解炉1にて約1600℃で完全に溶解して溶融金属3とし、これを溶解炉1中で所定温度まで徐冷したのち、タンディッシュ2に注入した。溶融金属をタンディッシュ2に注入する前に、あらかじめスプレーノズル6から高圧水7が噴射された状態とした。次いで溶融金属注入ノズル4から溶融金属流11を落下させ、これに高圧水7を衝突させることでアトマイズを開始した。この際の溶融金属注入ノズル4の出側形状は直径3mmの円形とした。一連の実験を実施するに際して、溶融金属の注入速度(流束)は概ね300kg/時、水量は11m/時の一定になるように調整した。この条件において、種々の水ノズルヘッダー広がり角および構成と配置を変更することにより高圧水の噴射速度を50m/sから800m/sの範囲で、接触長を最大800mmまでの範囲で変化させた際の、得られた軟磁性鉄粉の非晶質化率の変化を確認した。図3のグラフに示す通り、接触長8が25mm以上、250mm以下であること、溶融金属流11に噴射される高圧水7の噴射速度を50m/s以上、350m/s以下とすることを満たすことで、非晶質化率を十分に高めることができる。具体的には、接触長8が25mm未満になると、継続的な冷却を行えなくなり、非晶質化率を十分に高めることが難しくなると考えられる。接触長8が250mmを超えると、スプレーノズル6の位置調整が難しくなり、さらに、非晶質化の効果は向上しないもしくは低下するという問題がある。また、接触長8が上記範囲にあっても、上記噴射速度が50m/s未満であると局所的にも十分な冷却速度が得られず適当でない。一方、上記噴射速度が350m/sを超えると、溶融金属流11の飛散が顕著になり、引き続く冷却が安定して行われない。そこで、図1に示すように、分断されながらも概ね元の円柱形状の延長上に溶鋼金属流11が高圧水7との有効な接触長8にわたって進行するために上限を定める。なお、上記の接触長8において、高圧水7が50m/s以上350m/s以下の噴射速度で溶融金属流11に衝突することが重要であり、接触長8の前後に、噴射速度が50m/s未満である領域が存在しても本発明の効果を減じるものではないが、無用の水となるので経済的には好ましくない。 The effects of the present invention will be described below. An important configuration for obtaining the effect of the present invention is that the contact length 8 is 25 mm or more and 250 mm or less, and the injection speed of the high-pressure water 7 injected into the molten metal stream 11 is 50 m / s or more and 350 m / s or less. It is to do. In FIG. 3, the graph showing the relationship between contact length, the injection speed of high-pressure water, and an amorphization rate is shown. Acquisition of the graph of FIG. 3 was performed as follows. An alloy having an atomic ratio of Fe 83 Si 3 B 8 P 5 Cu 1 is blended and melted completely at a melting furnace 1 at about 1600 ° C. to form a molten metal 3, which is gradually heated to a predetermined temperature in the melting furnace 1. After cooling, it was poured into tundish 2. Before pouring the molten metal into the tundish 2, the high-pressure water 7 was jetted from the spray nozzle 6 in advance. Then, the molten metal flow 11 was dropped from the molten metal injection nozzle 4 and the atomization was started by colliding the high pressure water 7 with this. The exit side shape of the molten metal injection nozzle 4 at this time was a circle having a diameter of 3 mm. In carrying out a series of experiments, the molten metal injection rate (flux) was adjusted to be approximately 300 kg / hour and the water amount was constant at 11 m 3 / hour. Under these conditions, by changing various water nozzle header divergence angles and configurations and arrangements, the injection speed of the high-pressure water is changed from 50 m / s to 800 m / s, and the contact length is changed to a maximum of 800 mm. The change of the amorphization rate of the obtained soft magnetic iron powder was confirmed. As shown in the graph of FIG. 3, the contact length 8 is 25 mm or more and 250 mm or less, and the injection speed of the high-pressure water 7 injected into the molten metal flow 11 is 50 m / s or more and 350 m / s or less. Thus, the amorphization rate can be sufficiently increased. Specifically, when the contact length 8 is less than 25 mm, it is considered that continuous cooling cannot be performed and it is difficult to sufficiently increase the amorphization rate. If the contact length 8 exceeds 250 mm, it is difficult to adjust the position of the spray nozzle 6, and further, there is a problem that the effect of amorphization is not improved or lowered. Even if the contact length 8 is in the above range, if the spray speed is less than 50 m / s, a sufficient cooling speed cannot be obtained locally, which is not appropriate. On the other hand, when the injection speed exceeds 350 m / s, scattering of the molten metal flow 11 becomes significant, and subsequent cooling is not stably performed. Therefore, as shown in FIG. 1, an upper limit is set in order that the molten steel metal flow 11 travels over an effective contact length 8 with the high-pressure water 7 on an extension of the original cylindrical shape while being divided. In the contact length 8 described above, it is important that the high-pressure water 7 collides with the molten metal flow 11 at an injection speed of 50 m / s or more and 350 m / s or less, and before and after the contact length 8, the injection speed is 50 m / s. Even if there is a region that is less than s, the effect of the present invention is not diminished, but since it becomes useless water, it is not economically preferable.

また、接触長8と噴射速度の調整により、高Fe濃度のアモルファス、とりわけナノ結晶軟磁性合金の軟磁性鉄粉であっても、十分に非晶質化率を高めることができる。   Further, by adjusting the contact length 8 and the injection speed, the amorphous ratio can be sufficiently increased even for amorphous Fe having a high Fe concentration, particularly soft magnetic iron powder of a nanocrystalline soft magnetic alloy.

また、接触長8と噴射速度の調整により、比較的大きな粒径の軟磁性鉄粉を製造する場合にも、非晶質化率を十分に高めた軟磁性鉄粉を製造できる。なお、ここで言う比較的大きい粒径とは、目安として平均粒径が10μm以上、200μm以下程度である。   In addition, by adjusting the contact length 8 and the jetting speed, a soft magnetic iron powder having a sufficiently high amorphization rate can be manufactured even when a soft magnetic iron powder having a relatively large particle size is manufactured. In addition, the comparatively large particle diameter said here is an average particle diameter of 10 micrometers or more and about 200 micrometers or less as a standard.

また、上記の通り、接触長8と噴射速度の調整には複雑な構造等を必要としないため、非晶質化率の高い軟磁性鉄粉を容易に製造できるので、本発明の製造方法は生産性に優れる。なお、生産性を高めるために、溶融金属流11は霧状噴霧ではなく連続流体として提供される。これはひとえに工業生産規模を前提にするものであるからである。霧状噴霧ではなく溶融金属流11とすれば、50kg〜2000kg/h程度の商業生産規模とすることができる。   In addition, as described above, the adjustment of the contact length 8 and the injection speed does not require a complicated structure, so that soft magnetic iron powder having a high amorphization rate can be easily manufactured. Excellent productivity. In addition, in order to improve productivity, the molten metal stream 11 is provided as a continuous fluid instead of a mist spray. This is because it is premised on the scale of industrial production. If the molten metal flow 11 is used instead of the atomized spray, a commercial production scale of about 50 kg to 2000 kg / h can be achieved.

以下、好ましい条件の中で重要なものについて説明する。   Hereinafter, important ones among preferable conditions will be described.

上記の例では、溶融金属注入ノズル4の出側形状は直径3mmの円形であり、溶融金属流11の落下方向に直交する断面は円形である。本発明では、溶融金属流11の落下方向に直交する断面の形状は特に限定されない。円形、楕円形、矩形等いずれであっても本発明の効果は得られる。なお、安定した分断と冷却を得るために、円形の場合は円直径が4mm以下、楕円形の場合は短径が4mm以下、矩形の場合は短辺が4mm以下が好ましい。工業生産規模で溶融金属流の上記断面における上記長さを小さくすることは生産量の観点から困難が伴うが、後述の負圧作用や、溶融金属流を非円筒形状(溶融金属流11の落下方向に直交する断面の形状を楕円や矩形という円形以外の形状)とすることで実質的な溶融金属流量を高めることができる。溶融金属流11の落下方向に直交する断面の形状は本発明の実施範囲において、溶融金属注入ノズル4の出側形状によって定まるとみなせる。   In the above example, the exit side shape of the molten metal injection nozzle 4 is a circle having a diameter of 3 mm, and the cross section perpendicular to the falling direction of the molten metal flow 11 is a circle. In the present invention, the shape of the cross section perpendicular to the falling direction of the molten metal flow 11 is not particularly limited. The effect of the present invention can be obtained regardless of whether it is circular, elliptical, rectangular or the like. In order to obtain stable division and cooling, the circle diameter is preferably 4 mm or less, the ellipse is preferably 4 mm or less, and the rectangle is preferably 4 mm or less. Although it is difficult to reduce the length of the cross section of the molten metal flow on an industrial production scale from the viewpoint of production volume, the negative pressure action described later and the molten metal flow are non-cylindrical (dropping of the molten metal flow 11). By setting the cross-sectional shape orthogonal to the direction to a shape other than a circle such as an ellipse or a rectangle, the substantial molten metal flow rate can be increased. It can be considered that the shape of the cross section orthogonal to the falling direction of the molten metal flow 11 is determined by the outlet shape of the molten metal injection nozzle 4 in the scope of the present invention.

次に、連続流体である溶融金属流が噴射により形成される際に、その噴射の駆動力としては溶融金属静水圧に加えて大気圧との差による0.03MPa以上、0.09MPa以下の吸引負圧を併用することが、安定した非晶質化ならびに得られた粉末の圧密化のために好ましい。安定した非晶質化が得られる理由は必ずしも明らかではないが、静水圧のみを溶融金属噴射の駆動力としてアトマイズを行う場合には、噴射の駆動力が小さいことから溶融金属面の変動や流通抵抗の作用が大きく影響して溶融金属流が不安定化し、ひいては安定した溶融金属流の接触長域にわたる維持を困難にするものと推定される。また、不活性ガスの背圧により噴射の駆動力を増す手法も検討した。しかし、高圧を高温容器に対して印加する手法は、本発明のように50kg〜2000kg/h程度の好ましい生産規模には推奨されないうえ、接触長における安定した分断効果が得られないことから推奨しない。一方で負圧作用を併用して溶融金属流を落下させた場合には、安定して高位な非晶質化が得られる。   Next, when a molten metal flow that is a continuous fluid is formed by injection, the driving force of the injection is suction of 0.03 MPa or more and 0.09 MPa or less depending on the difference from the atmospheric pressure in addition to the molten metal hydrostatic pressure. The combined use of negative pressure is preferable for stable amorphization and consolidation of the obtained powder. The reason why a stable amorphization can be obtained is not necessarily clear, but when atomization is performed using only the hydrostatic pressure as the driving force for molten metal injection, the fluctuation of the molten metal surface and the distribution are low because the injection driving force is small. It is presumed that the action of the resistance greatly affects the molten metal flow and thus makes it difficult to maintain a stable molten metal flow over the contact length range. In addition, a method for increasing the driving force of the injection by the back pressure of the inert gas was also examined. However, the method of applying a high pressure to a high-temperature container is not recommended for a preferable production scale of about 50 kg to 2000 kg / h as in the present invention, and is not recommended because a stable dividing effect in contact length cannot be obtained. . On the other hand, when the molten metal flow is dropped by using a negative pressure action in combination, a stable and high amorphous state can be obtained.

特に筒状空間による負圧作用を併用した際に得られた軟磁性鉄粉は圧密性にも優れており、圧粉磁心等へ用いる際に好適である。この効果は、溶融金属と雰囲気ガスとのせん断力が加速的に作用することで得られる粒形状等を通じて圧密性に反映されたものと考えられる。図4には、筒状空間による負圧作用を利用する装置を示す。この装置のくびれ部14が円筒空間に相当する。この装置は、予備ガイド15も有する。   In particular, the soft magnetic iron powder obtained when the negative pressure action due to the cylindrical space is used together is excellent in compactness and is suitable for use in a dust core or the like. This effect is considered to be reflected in the compactness through the grain shape and the like obtained by the shearing force between the molten metal and the atmospheric gas acting at an accelerated speed. FIG. 4 shows an apparatus that utilizes a negative pressure action caused by a cylindrical space. The constricted portion 14 of this device corresponds to a cylindrical space. The device also has a spare guide 15.

くびれ部14は、溶融金属注入ノズルの下方に設けられ、冷却中の金属粉末が内部を通る筒状の部分である。図4に示すくびれ部14の軸方向は、溶融金属流の落下方向と同じである。また、図4のくびれ部14は円筒形状であるため、くびれ部14の溶融金属流の落下方向に直交する断面の形状は上記落下方向の位置によらず一定の大きさの円形である。負圧作用を生じさせられるのであれば、くびれ部14の軸方向は、溶融金属流の落下方向と同じでなくてもよいし、くびれ部14の溶融金属流の落下方向に直交する断面の形状は上記落下方向の位置によらず一定でなくてもよい。   The constricted portion 14 is a cylindrical portion that is provided below the molten metal injection nozzle and through which the metal powder being cooled passes. The axial direction of the constricted portion 14 shown in FIG. 4 is the same as the falling direction of the molten metal flow. Moreover, since the constriction part 14 of FIG. 4 is cylindrical shape, the shape of the cross section orthogonal to the falling direction of the molten metal flow of the constriction part 14 is a circle of a fixed magnitude | size irrespective of the position of the said dropping direction. As long as a negative pressure action can be generated, the axial direction of the constricted portion 14 may not be the same as the falling direction of the molten metal flow, and the shape of the cross section orthogonal to the falling direction of the molten metal flow of the constricted portion 14. May not be constant regardless of the position in the dropping direction.

負圧作用は、くびれ部14の溶融金属流の落下方向に直交する断面の面積が最小になる位置での水量流量密度により調整することが好ましい。具体的には、水量流量密度が0.1m/m・s以上、2.0m/m・s以下の範囲で調整することが望ましい。以上の圧力作用(負圧作用)に関して大事なことは、静水圧の変動に対して十分に大きな負圧を印加することであって、最低でも0.03MPa(約3000mmHO)の圧力作用があることが好ましい。これ以下では安定した非晶質性等が得にくい。一方、0.09MPaを超える負圧では溶融金属流の流れが不安定となるため効果が小さい。高圧水の噴射速度や接触長が特定された本発明において、0.03MPa以上、0.09MPa以下とするためには、水量流量密度が0.1m/m・s以上、2.0m/m・s以下の範囲で調整すればよい。0.1m/m・s未満になると負圧が不足するとともに良好な圧密作用が得られず、2.0m/m・sを超えると水量に対する断面積が小さすぎて水の流れが悪くなり極端な場合には吹き上がりと呼ぶ水詰まりが生じるので推奨されない。 The negative pressure action is preferably adjusted by the water flow rate density at the position where the area of the cross section perpendicular to the falling direction of the molten metal flow in the constricted portion 14 is minimized. Specifically, it is desirable to adjust the water flow rate density in the range of 0.1 m 3 / m 2 · s to 2.0 m 3 / m 2 · s. What is important about the above pressure action (negative pressure action) is to apply a sufficiently large negative pressure with respect to fluctuations in the hydrostatic pressure, and at least a pressure action of 0.03 MPa (about 3000 mmH 2 O). Preferably there is. Below this, it is difficult to obtain a stable amorphous property. On the other hand, if the negative pressure exceeds 0.09 MPa, the flow of the molten metal flow becomes unstable, so the effect is small. In the present invention in which the injection speed and contact length of the high-pressure water are specified, the water flow rate density is 0.1 m 3 / m 2 · s or more and 2.0 m 3 in order to obtain 0.03 MPa or more and 0.09 MPa or less. / M 2 · s or less may be adjusted. If the pressure is less than 0.1 m 3 / m 2 · s, the negative pressure is insufficient and a good compacting action cannot be obtained. If the value exceeds 2.0 m 3 / m 2 · s, the cross-sectional area with respect to the amount of water is too small and the flow of water In extreme cases, this is not recommended because it may cause water clogging called blowing up.

なお、負圧は溶鋼金属流ノズル出口部または入口部において、溶融金属を流すことなくノズル部分を閉じきった状態でマノメータ等を用いて測定することができ、この測定結果に基づき調整することができる。   The negative pressure can be measured using a manometer or the like with the nozzle portion closed without flowing molten metal at the molten metal flow nozzle outlet or inlet, and can be adjusted based on this measurement result. it can.

図4の予備ガイド15は、板状であり、スプレーノズル6の下方に設けられる。また、予備ガイド15は、板面が水平から傾き、かつ板面がスプレーノズル6から噴射された高圧水と衝突するように設置されている。予備ガイド15に求められる機能は、高圧水の方向を変化させることと、高圧水の溶融金属流落下方向の幅を広げることである。この機能を有するのであれば、板状でなくてもよく、設置箇所も限定されない。   The preliminary guide 15 in FIG. 4 has a plate shape and is provided below the spray nozzle 6. The preliminary guide 15 is installed such that the plate surface is inclined from the horizontal and the plate surface collides with high-pressure water ejected from the spray nozzle 6. The functions required of the preliminary guide 15 are to change the direction of the high-pressure water and to widen the width of the molten metal flow-down direction of the high-pressure water. If it has this function, it may not be plate-shaped and the installation location is not limited.

図4に示す装置の場合、くびれ部14があるため、接触長8を所定以上の長さにすることが難しい場合がある。この場合に、予備ガイド15を用いると、高圧水の上記落下方向の幅が広がり、接触長8を長くしやすい。   In the case of the apparatus shown in FIG. 4, since there is the constricted portion 14, it may be difficult to make the contact length 8 longer than a predetermined length. In this case, if the preliminary guide 15 is used, the width of the high-pressure water in the dropping direction is widened, and the contact length 8 is easily increased.

図5は、溶融金属流11の落下方向に直交する断面を矩形(短辺3mm、長辺12mm)とし、軸方向に直交する断面が50mm×50mmの正方形であるくびれ部14を有する装置を示した。スプレーノズル6を噴射方向を溶融金属流11に向けた2本のノズルとしたうえで、2次元的なスプレーを行うことにより接触長を確保した。筒状の形状が変わっても図4の場合と同様の効果が得られる。   FIG. 5 shows an apparatus having a constricted portion 14 in which the cross section perpendicular to the falling direction of the molten metal flow 11 is rectangular (short side: 3 mm, long side: 12 mm), and the cross section perpendicular to the axial direction is a square of 50 mm × 50 mm. It was. The contact length was ensured by carrying out the two-dimensional spray after making the spray nozzle 6 into two nozzles in which the injection direction is directed toward the molten metal flow 11. Even if the cylindrical shape changes, the same effect as in the case of FIG. 4 can be obtained.

図1に示す装置を用い、アトマイズの時点で溶融金属温度が融点以上になるように溶融金属の温度を監視しながら、表1に示す条件で軟磁性鉄粉を製造した。   Using the apparatus shown in FIG. 1, soft magnetic iron powder was produced under the conditions shown in Table 1 while monitoring the temperature of the molten metal so that the molten metal temperature was equal to or higher than the melting point at the time of atomization.

本実施例と比較例で、得られた各Fe系粉末(軟磁性鉄粉)について、軟磁性鉄粉以外のゴミを除去したのち、レーザー回折/散乱式粒度分布測定装置で粒子径の測定平均粒径を測定するとともにX線回折法により非晶質化率を算出した。表1にその結果を示す。なお、表中で見掛密度はJIS−Z2504により測定される密度値であり、圧密化の指標である。   For each Fe-based powder (soft magnetic iron powder) obtained in this example and the comparative example, after removing dust other than the soft magnetic iron powder, the average particle diameter was measured with a laser diffraction / scattering type particle size distribution analyzer. The particle size was measured and the amorphization rate was calculated by the X-ray diffraction method. Table 1 shows the results. In the table, the apparent density is a density value measured according to JIS-Z2504 and is an index of consolidation.

見掛密度はさほど大きくないものの、本発明の条件で実施したものは、いずれも90%を超える大きな非晶質化率を示している。Fe系元素(Fe、Ni、Co)の総量が原子分率で82.5at%を超える、Fe85.3SiCu0.7ならびにFe83.110Cu0.7Cr0.2においては接触長が32mmの場合には非晶質化率は95から97%程度にとどまるものの、より好ましい接触長130mmの場合には、100%の値が得られている。 Although the apparent density is not so large, all of the samples carried out under the conditions of the present invention show a large amorphization ratio exceeding 90%. Fe 85.3 Si 3 B 8 P 3 Cu 0.7 and Fe 83.1 B 10 P 6 Cu 0. The total amount of Fe-based elements (Fe, Ni, Co) exceeds 82.5 at% in atomic fraction . although the contact length at 7 Cr 0.2 is only about 97% of an amorphous ratio is 95 in the case of 32 mm, in the case of more preferred contact length 130mm are obtained a value of 100%.

図4に示す装置を用い、表2に示す条件で軟磁性鉄粉を製造した。非晶質化率や平均粒径等は実施例1と同様の方法で評価した。   Soft magnetic iron powder was manufactured under the conditions shown in Table 2 using the apparatus shown in FIG. The amorphous ratio and average particle size were evaluated by the same method as in Example 1.

本発明の条件で実施したものは、いずれも90%を超える大きな非晶質化率を示している。(Fe、Ni、Co)が原子分率で82.5at%を超える、Fe85.3SiCu0.7ならびにFe83.110Cu0.7Cr0.2においては接触長が38mmの条件では非晶質化率は95から97%程度にとどまるものの、より好ましい接触長80mmの場合には、100%の値が得られている。また、本発明の必須構成要件を満たし、かつ吸引負圧が0.03MPa以上0.09MPa以下であり、この際の水量流量密度が0.1m/m・s以上、2.0m/m・s以下の条件を満たす場合には4.0g/cm以上の大きな見掛け密度が得られていることがわかる。 Those implemented under the conditions of the present invention all show a large amorphization rate exceeding 90%. Fe 85.3 Si 3 B 8 P 3 Cu 0.7 and Fe 83.1 B 10 P 6 Cu 0.7 Cr 0.2 in which (Fe, Ni, Co) exceeds 82.5 at% in atomic fraction. However, in the case where the contact length is 38 mm, the amorphization ratio is about 95 to 97%, but in the case of a more preferable contact length of 80 mm, a value of 100% is obtained. Further, the essential constituent requirements of the present invention are satisfied, and the suction negative pressure is 0.03 MPa or more and 0.09 MPa or less, and the water flow rate density at this time is 0.1 m 3 / m 2 · s or more and 2.0 m 3 / It can be seen that when the condition of m 2 · s or less is satisfied, a large apparent density of 4.0 g / cm 3 or more is obtained.

図5に示す装置を用い、表3に示す条件で軟磁性鉄粉を製造した。非晶質化率や平均粒径等は実施例1と同様の方法で評価した。   Soft magnetic iron powder was manufactured under the conditions shown in Table 3 using the apparatus shown in FIG. The amorphous ratio and average particle size were evaluated by the same method as in Example 1.

本発明の条件で実施したものは、いずれも90%を超える大きな非晶質化率を示している。Fe系元素(Fe、Ni、Co)が原子分率で82.5at%を超える、Fe85.3SiCu0.7ならびにFe83.110Cu0.7Cr0.2においては接触長が35mmの条件では非晶質化率は92から92%程度にとどまるものの、より好ましい接触長55mmの場合には、100%の値が得られている。また、本発明の必須構成要件を満たし、かつ吸引負圧が0.03MPa以上0.09MPa以下であり、この際の水量流量密度が0.1m/m・s以上、2.0m/m・s以下の条件を満たす場合には4.0g/cm以上の大きな見掛け密度が得られていることがわかる。 Those implemented under the conditions of the present invention all show a large amorphization rate exceeding 90%. Fe 85.3 Si 3 B 8 P 3 Cu 0.7 and Fe 83.1 B 10 P 6 Cu 0.7 Cr with Fe-based elements (Fe, Ni, Co) exceeding 82.5 at% in atomic fraction At 0.2 , the amorphization rate remains at about 92 to 92% when the contact length is 35 mm. However, when the contact length is 55 mm, a value of 100% is obtained. Further, the essential constituent requirements of the present invention are satisfied, and the suction negative pressure is 0.03 MPa or more and 0.09 MPa or less, and the water flow rate density at this time is 0.1 m 3 / m 2 · s or more and 2.0 m 3 / It can be seen that when the condition of m 2 · s or less is satisfied, a large apparent density of 4.0 g / cm 3 or more is obtained.

1 溶解炉
2 タンディッシュ
3 溶融金属
4 溶融金属注入ノズル
5 ノズルヘッダー
6 スプレーノズル
7 高圧水
8 接触長
9 アトマイズ開始点
10 アトマイズ終了点
11 溶融金属流
12 金属粉末
13 チャンバー
14 くびれ部
15 予備ガイド
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Tundish 3 Molten metal 4 Molten metal injection nozzle 5 Nozzle header 6 Spray nozzle 7 High pressure water 8 Contact length 9 Atomization start point 10 Atomization end point 11 Molten metal flow 12 Metal powder 13 Chamber 14 Neck part 15 Preliminary guide

Claims (8)

チャンバー内において溶融金属注入ノズルから鉛直方向に落下する溶融金属流の鉛直方向長さLdの領域と衝突する高圧水を噴射し、該溶融金属流を分断して金属粉末とし、かつその金属粉末を冷却し、非晶質化率90%以上の軟磁性鉄粉を製造する軟磁性鉄粉の製造方法であって、
前記溶融金属流と前記高圧水とが前記衝突時に接触する長さであるLd(接触長)が25mm以上250mm以下であり、
前記高圧水の噴射速度が50m/s以上、350m/s以下である軟磁性鉄粉の製造方法。
In the chamber, high-pressure water that collides with the region of the vertical length Ld of the molten metal flow falling vertically from the molten metal injection nozzle is injected, the molten metal flow is divided into metal powder, and the metal powder is A method for producing soft magnetic iron powder that cools and produces soft magnetic iron powder having an amorphization ratio of 90% or more,
Ld (contact length), which is the length of contact between the molten metal stream and the high-pressure water at the time of the collision, is 25 mm or more and 250 mm or less,
A method for producing soft magnetic iron powder, wherein the jet speed of the high-pressure water is 50 m / s or more and 350 m / s or less.
前記溶融金属注入ノズルの設置箇所を含む前記チャンバー内の少なくとも一部の雰囲気を0.03MPa以上、0.09MPa以下の負圧にする請求項1に記載の軟磁性鉄粉の製造方法。   The method for producing soft magnetic iron powder according to claim 1, wherein at least a part of the atmosphere in the chamber including the place where the molten metal injection nozzle is installed is set to a negative pressure of 0.03 MPa or more and 0.09 MPa or less. 前記チャンバーは、前記溶融金属注入ノズルの下方に、冷却中の前記金属粉末が内部を通る筒状のくびれ部を有し、
前記くびれ部における、軸方向に直交する断面積が最小になる位置での水量流量密度を0.1m/m・s以上2.0m/m・s以下の範囲で調整して、前記負圧を調整する請求項2に記載の軟磁性鉄粉の製造方法。
The chamber has a cylindrical constriction under the molten metal injection nozzle through which the metal powder being cooled passes,
The water flow rate density at the position where the cross-sectional area perpendicular to the axial direction is minimized in the constricted portion is adjusted in the range of 0.1 m 3 / m 2 · s to 2.0 m 3 / m 2 · s, The method for producing soft magnetic iron powder according to claim 2, wherein the negative pressure is adjusted.
前記溶融金属流の落下方向に直交する断面が円形であり、該円の円直径が4mm以下である請求項1〜3のいずれかに記載の軟磁性鉄粉の製造方法。   The method for producing a soft magnetic iron powder according to any one of claims 1 to 3, wherein a cross section perpendicular to the falling direction of the molten metal flow is circular, and a circle diameter of the circle is 4 mm or less. 前記溶融金属流の落下方向に直交する断面が楕円形であり、該楕円の短径が4mm以下である請求項1〜3のいずれかに記載の軟磁性鉄粉の製造方法。   The method for producing a soft magnetic iron powder according to any one of claims 1 to 3, wherein a cross section perpendicular to the falling direction of the molten metal flow is an ellipse, and the minor axis of the ellipse is 4 mm or less. 前記溶融金属流の落下方向に直交する断面が矩形であり、該矩形の短辺の長さが4mm以下である請求項1〜3のいずれかに記載の軟磁性鉄粉の製造方法。   The method for producing soft magnetic iron powder according to any one of claims 1 to 3, wherein a cross section perpendicular to the falling direction of the molten metal flow is a rectangle, and a length of a short side of the rectangle is 4 mm or less. 前記軟磁性鉄粉は、Fe、NiおよびCoの原子分率が合計で76.0at%超えであり、Cuの原子分率が0.1at%以上、2.0at%以下である請求項1〜6のいずれかに記載の軟磁性鉄粉の製造方法。   The soft magnetic iron powder has a total atomic fraction of Fe, Ni and Co of more than 76.0 at%, and an atomic fraction of Cu of 0.1 at% or more and 2.0 at% or less. The method for producing a soft magnetic iron powder according to any one of claims 6 to 10. 前記軟磁性鉄粉は、Fe、NiおよびCoの原子分率が合計で82.5at%超え86.0at%未満である(Fe,Ni,Co)SiPBCu系ナノ結晶軟磁性材料であり、平均粒径が5μm以上である請求項1〜6のいずれかに記載の軟磁性鉄粉の製造方法。   The soft magnetic iron powder is a (Fe, Ni, Co) SiPBCu-based nanocrystalline soft magnetic material having a total atomic fraction of Fe, Ni and Co of more than 82.5 at% and less than 86.0 at%, and has an average grain size The method for producing soft magnetic iron powder according to claim 1, wherein the diameter is 5 μm or more.
JP2017006498A 2017-01-18 2017-01-18 Method for producing soft magnetic iron powder Active JP6565941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006498A JP6565941B2 (en) 2017-01-18 2017-01-18 Method for producing soft magnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006498A JP6565941B2 (en) 2017-01-18 2017-01-18 Method for producing soft magnetic iron powder

Publications (2)

Publication Number Publication Date
JP2018115363A JP2018115363A (en) 2018-07-26
JP6565941B2 true JP6565941B2 (en) 2019-08-28

Family

ID=62983929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006498A Active JP6565941B2 (en) 2017-01-18 2017-01-18 Method for producing soft magnetic iron powder

Country Status (1)

Country Link
JP (1) JP6565941B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823070B (en) * 2018-10-11 2023-04-11 杰富意钢铁株式会社 Method for producing water atomized metal powder
JP6721138B1 (en) 2018-10-11 2020-07-08 Jfeスチール株式会社 Method for producing water atomized metal powder
US20240001441A1 (en) * 2020-11-18 2024-01-04 Jfe Steel Corporation Method for producing water-atomized metal powder
WO2024122412A1 (en) * 2022-12-09 2024-06-13 株式会社東北マグネットインスティテュート Alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114901A (en) * 1983-11-25 1985-06-21 Canon Inc Protecting device
JPS6455308A (en) * 1987-08-26 1989-03-02 Hitachi Metals Ltd Production of amorphous alloy powder
SE461848B (en) * 1987-12-09 1990-04-02 Hg Tech Ab PROCEDURE FOR ATOMIZATION OF SCIENCES AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE

Also Published As

Publication number Publication date
JP2018115363A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6565941B2 (en) Method for producing soft magnetic iron powder
JP6372440B2 (en) Method for producing water atomized metal powder
Pengjun et al. Influence of atomizing gas and cooling rate on solidification characterization of nickel-based superalloy powders
JP6721138B1 (en) Method for producing water atomized metal powder
JP2017031463A (en) Production method of water atomization metal powder
JP6533352B1 (en) High-speed fluid injection device
JP6178575B2 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JP2020105593A (en) Method for producing atomized metal powder
JP6372442B2 (en) Method for producing water atomized metal powder
US4971133A (en) Method to reduce porosity in a spray cast deposit
Soong et al. Atomization of metal and alloy powders: Processes, parameters, and properties
JP2018104787A (en) Production method and production apparatus for atomized metal powder
KR20160048262A (en) Method for producing a metal powder by using a rotating disk and gas atomization
JP6721137B1 (en) Method for producing water atomized metal powder
JP2017031461A (en) Production method of water atomization metal powder
Ouyang et al. Influence of melt superheat on breakup process of close-coupled gas atomization
JP6330958B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
KR20200078630A (en) Method for manufacturing atomized metal powder
JP6372443B2 (en) Method for producing water atomized metal powder
KR102193651B1 (en) Manufacturing Apparatus for Metal Powder
CN110225804B (en) Method for producing soft magnetic iron powder
JPH0649512A (en) Device for producing gas-atomized metal powder
JPH07102307A (en) Production of flaky powder material
JP6330959B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JPS6082604A (en) Manufacture of amorphous metallic granular powder

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R150 Certificate of patent or registration of utility model

Ref document number: 6565941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250