[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6564624B2 - Grinding wheel - Google Patents

Grinding wheel Download PDF

Info

Publication number
JP6564624B2
JP6564624B2 JP2015117821A JP2015117821A JP6564624B2 JP 6564624 B2 JP6564624 B2 JP 6564624B2 JP 2015117821 A JP2015117821 A JP 2015117821A JP 2015117821 A JP2015117821 A JP 2015117821A JP 6564624 B2 JP6564624 B2 JP 6564624B2
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
wafer
average particle
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015117821A
Other languages
Japanese (ja)
Other versions
JP2017001136A (en
Inventor
龍司 大島
龍司 大島
良吾 馬路
良吾 馬路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2015117821A priority Critical patent/JP6564624B2/en
Priority to TW105113739A priority patent/TWI707027B/en
Priority to DE102016210001.7A priority patent/DE102016210001A1/en
Priority to CN201610403056.0A priority patent/CN106239389A/en
Priority to US15/178,104 priority patent/US20160361793A1/en
Priority to KR1020160071503A priority patent/KR102549249B1/en
Priority to FR1655344A priority patent/FR3037268B1/en
Publication of JP2017001136A publication Critical patent/JP2017001136A/en
Application granted granted Critical
Publication of JP6564624B2 publication Critical patent/JP6564624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10254Diamond [C]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

本発明は、研削砥石に関する。   The present invention relates to a grinding wheel.

半導体製造に用いられる基板を研削するために、ホウ素化合物を添加した研削砥石が用いられている(例えば、特許文献1参照)。ホウ素化合物は、固体潤滑性を有するので、研削加工による加工点での発熱や砥石の消耗を抑える効果がある。   In order to grind a substrate used for semiconductor manufacture, a grinding wheel to which a boron compound is added is used (for example, see Patent Document 1). Since the boron compound has solid lubricity, it has an effect of suppressing heat generation at a processing point by grinding and consumption of the grindstone.

特開2012−056013号公報JP 2012-056013 A

しかしながら、特許文献1に示された研削砥石は、硬質基板(例えば、SiC基板)を研削する場合、砥石にかかる加工負荷が大きくなるため砥石の消耗量も大きくなり交換頻度が高くなる。また、特許文献1に示された研削砥石は、ガラスなどの熱伝導の悪い材料を研削する場合には、加工して発生した熱の蓄積を抑えるため加工速度を上げることができない。そこで、研削砥石は、加工物の加工特性を良好に保ちつつ、さらに生産性を向上することが求められている。   However, when grinding a hard substrate (for example, a SiC substrate), the grinding wheel disclosed in Patent Document 1 increases the processing load on the grindstone, so that the amount of wear of the grindstone increases and the replacement frequency increases. Further, the grinding wheel disclosed in Patent Document 1 cannot increase the processing speed in order to suppress the accumulation of heat generated by processing when grinding a material having poor thermal conductivity such as glass. Therefore, the grinding wheel is required to further improve productivity while maintaining good processing characteristics of the workpiece.

本発明は、上記に鑑みてなされたものであって、その目的は、加工負荷の低減と、長寿命化とのすくなくとも一方を達成可能な研削砥石を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide a grinding wheel that can achieve at least one of a reduction in processing load and a longer life.

上述した課題を解決し、目的を達成するために、本発明の研削砥石は、ダイヤモンド砥粒とホウ素化合物とを含む研削砥石であって、該ダイヤモンド砥粒の平均粒径Xは、3μm≦X≦10μmであり、該ホウ素化合物の前記ダイヤモンド砥粒に対する平均粒径比Zは、1.2≦Z≦3.0であることを特徴とする。 In order to solve the above-described problems and achieve the object, the grinding wheel of the present invention is a grinding wheel containing diamond abrasive grains and a boron compound, and the average grain diameter X of the diamond abrasive grains is 3 μm ≦ X. ≦ 10 μm, and the average particle size ratio Z of the boron compound to the diamond abrasive grains is 1.2 ≦ Z ≦ 3.0.

また、前記研削砥石では、被加工物はSiCウエーハであり、前記平均粒径比Zは、1.2≦Z≦2.0であるものとすることができる。   In the grinding wheel, the workpiece may be a SiC wafer, and the average particle size ratio Z may be 1.2 ≦ Z ≦ 2.0.

本願発明の研削砥石は、ダイヤモンド砥粒の粒径に対するホウ素化合物の粒径(粒径比)を制御することにより加工品質を高めつつ、研削砥石の加工負荷の低減、放熱性の向上、長寿命化(消耗量を低減)を達成することができる。   The grinding wheel of the present invention controls the particle size (particle size ratio) of the boron compound with respect to the particle size of the diamond abrasive grains to improve the processing quality, while reducing the processing load of the grinding wheel, improving the heat dissipation, and extending the life. (Reducing consumption) can be achieved.

図1は、実施形態に係る研削砥石が装着された研削装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a grinding apparatus on which a grinding wheel according to an embodiment is mounted. 図2は、粗研削用の研削砥石のホウ素化合物の平均粒径に対する消耗率(%)を示す図である。FIG. 2 is a graph showing the consumption rate (%) with respect to the average particle diameter of the boron compound of the grinding wheel for rough grinding. 図3は、粗研削用の研削砥石のホウ素化合物の平均粒径に対する最大研削荷重(N)を示す図である。FIG. 3 is a diagram showing the maximum grinding load (N) with respect to the average particle diameter of the boron compound of the grinding wheel for rough grinding.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。   DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the structures described below can be combined as appropriate. Various omissions, substitutions, or changes in the configuration can be made without departing from the scope of the present invention.

〔実施形態〕
図1は、実施形態に係る研削砥石が装着された研削装置の構成例を示す図である。なお、同図におけるX軸方向は、研削装置10の幅方向であり、Y軸方向は研削装置10の奥行き方向であり、Z軸方向は鉛直方向である。
Embodiment
FIG. 1 is a diagram illustrating a configuration example of a grinding apparatus on which a grinding wheel according to an embodiment is mounted. The X-axis direction in the figure is the width direction of the grinding device 10, the Y-axis direction is the depth direction of the grinding device 10, and the Z-axis direction is the vertical direction.

研削装置10は、図1に示すように、被加工物であるウエーハWを複数枚収容した第一のカセット11および第二のカセット12と、第一のカセット11からウエーハWを搬出する搬出手段と第二のカセット12に研削済みのウエーハWを搬入する搬入手段とを兼用する共通の搬出入手段13と、ウエーハWの中心位置合わせを行う位置合わせ手段14と、ウエーハWを搬送する搬送手段15,16と、ウエーハWを吸引保持する3つのチャックテーブル17〜19と、これらのチャックテーブル17〜19をそれぞれ回転可能に支持して回転するターンテーブル20と、各チャックテーブル17〜19に保持されたウエーハWに加工としての研削処理を施す加工手段である研削手段30,40と、研削後のウエーハWを洗浄する洗浄手段51と、研削後のチャックテーブル17〜19を洗浄する洗浄手段52とを備えている。   As shown in FIG. 1, the grinding apparatus 10 includes a first cassette 11 and a second cassette 12 that store a plurality of wafers W that are workpieces, and an unloading unit that unloads the wafers W from the first cassette 11. And a common loading / unloading means 13 that also serves as a loading means for loading the ground wafer W into the second cassette 12, a positioning means 14 for aligning the center of the wafer W, and a conveying means for conveying the wafer W 15, 16, three chuck tables 17 to 19 for sucking and holding the wafer W, a turntable 20 that rotatably supports these chuck tables 17 to 19, and a chuck table 17 to 19. Grinding means 30 and 40 which are processing means for subjecting the wafer W to a grinding process, and a cleaning means 5 for cleaning the ground wafer W When, and a cleaning means 52 for cleaning the chuck table 17 to 19 after grinding.

上記研削装置10においては、第一のカセット11に収容されたウエーハWが搬出入手段13の搬出動作によって位置合わせ手段14に搬送され、ここで中心位置合わせがされた後、搬送手段15によってチャックテーブル17〜19、同図ではチャックテーブル17上に搬送され載置される。本実施形態における3つのチャックテーブル17〜19は、ターンテーブル20に対して周方向に等間隔に配置され、それぞれが回転可能であるとともにターンテーブル20の回転に伴ってXY平面上を移動する構成である。チャックテーブル17〜19は、ウエーハWを吸引保持した状態において、所定角度、例えば反時計方向に120度回転することにより研削手段30の直下に位置づけられる。   In the grinding apparatus 10, the wafer W accommodated in the first cassette 11 is conveyed to the alignment means 14 by the carry-out operation of the carry-in / out means 13, and after the center alignment is performed here, the wafer W is chucked by the conveyance means 15. Tables 17 to 19 are transported and placed on the chuck table 17 in FIG. The three chuck tables 17 to 19 in the present embodiment are arranged at equal intervals in the circumferential direction with respect to the turntable 20, and each of them can rotate and move on the XY plane as the turntable 20 rotates. It is. The chuck tables 17 to 19 are positioned directly below the grinding means 30 by rotating 120 degrees in a predetermined angle, for example, counterclockwise in a state where the wafer W is sucked and held.

研削手段30は、チャックテーブル17〜19に保持されたウエーハWを粗研削するものであり、基台21のY軸方向における端部に立設された壁部22に設けられている。研削手段30は、壁部22においてZ軸方向に配設された一対のガイドレール31にガイドされ、かつモータ32の駆動により上下動する支持部33に支持され、支持部33の上下動に伴ってZ軸方向に上下動するように構成されている。研削手段30は、回転可能に支持されたスピンドル34aを回転させるモータ34と、スピンドル34aの先端にホイールマウント35を介して装着されてウエーハWの裏面を研削する研削ホイール36とを備えている。研削ホイール36は、その下面に円環状に固着された粗研削用の研削砥石37を備えている。なお、粗研削とは、ウエーハWを所望の厚みまで薄化する研削である。   The grinding means 30 is for roughly grinding the wafer W held on the chuck tables 17 to 19, and is provided on the wall portion 22 erected at the end of the base 21 in the Y-axis direction. The grinding means 30 is guided by a pair of guide rails 31 arranged in the Z-axis direction on the wall portion 22 and supported by a support portion 33 that moves up and down by driving a motor 32. Thus, it is configured to move up and down in the Z-axis direction. The grinding means 30 includes a motor 34 that rotates a spindle 34a that is rotatably supported, and a grinding wheel 36 that is attached to the tip of the spindle 34a via a wheel mount 35 and grinds the back surface of the wafer W. The grinding wheel 36 includes a grinding wheel 37 for rough grinding that is fixed to the lower surface of the grinding wheel 36 in an annular shape. The rough grinding is grinding for thinning the wafer W to a desired thickness.

粗研削は、研削ホイール36がモータ34によりスピンドル34aが回転することで回転し、かつZ軸方向の下方に研削送りされることで、回転する研削砥石37がウエーハWの裏面に接触することにより、チャックテーブル17に保持され研削手段30の直下に位置づけられたウエーハWの裏面を研削することで行われる。ここで、チャックテーブル17に保持されウエーハWの粗研削が終了すると、ターンテーブル20が反時計方向に所定角度だけ回転することにより、粗研削されたウエーハWが研削手段40の直下に位置づけられる。   In the rough grinding, the grinding wheel 36 rotates when the spindle 34a is rotated by the motor 34, and is fed by grinding downward in the Z-axis direction, so that the rotating grinding wheel 37 contacts the back surface of the wafer W. This is performed by grinding the back surface of the wafer W held by the chuck table 17 and positioned directly below the grinding means 30. Here, when the rough grinding of the wafer W held by the chuck table 17 is finished, the turntable 20 is rotated counterclockwise by a predetermined angle, whereby the roughly ground wafer W is positioned immediately below the grinding means 40.

研削手段40は、チャックテーブル17〜19に保持されたウエーハWを仕上げ研削するものであり、壁部22においてZ軸方向に配設された一対のガイドレール41にガイドされ、かつモータ42の駆動により上下動する支持部43に支持され、支持部43の上下動に伴ってZ軸方向に上下動するように構成されている。研削手段40は、回転可能に支持されたスピンドル44aを回転させるモータ44と、スピンドル44aの先端にホイールマウント45を介して装着されてウエーハWの裏面を研削する研削ホイール46とを備えている。研削ホイール46は、その下面に円環状に固着された仕上げ研削用の研削砥石47を備えている。つまり、研削手段40は、研削手段30と基本構成は同一であり、研削砥石37,47の種類のみが異なる構成とされている。なお、仕上げ研削とは、ウエーハWを所望の厚みまで薄化するとともに、粗研削によりウエーハWの裏面に生じた研削条痕を除去する研削である。   The grinding means 40 finish-grinds the wafer W held on the chuck tables 17 to 19, is guided by a pair of guide rails 41 arranged in the Z-axis direction on the wall portion 22, and drives the motor 42. Is supported by the support portion 43 that moves up and down, and is configured to move up and down in the Z-axis direction as the support portion 43 moves up and down. The grinding means 40 includes a motor 44 that rotates a spindle 44a that is rotatably supported, and a grinding wheel 46 that is attached to the tip of the spindle 44a via a wheel mount 45 and grinds the back surface of the wafer W. The grinding wheel 46 is provided with a grinding wheel 47 for finish grinding fixed in an annular shape on the lower surface thereof. In other words, the grinding means 40 has the same basic configuration as the grinding means 30 and is different in the type of the grinding wheels 37 and 47 only. The finish grinding is grinding for thinning the wafer W to a desired thickness and removing grinding marks generated on the back surface of the wafer W by rough grinding.

仕上げ研削は、研削ホイール46がモータ44によりスピンドル44aが回転することで回転し、かつZ軸方向の下方に研削送りされることで、回転する研削砥石47がウエーハWの裏面に接触することにより、チャックテーブル17に保持され研削手段40の直下に位置づけられたウエーハWの裏面を研削することで行われる。ここで、チャックテーブル17に保持されウエーハWの仕上げ研削が終了すると、ターンテーブル20が反時計方向に所定角度だけ回転することにより、図1に示す初期位置に戻される。この位置で、裏面が仕上げ研削されたウエーハWは、搬送手段16によって洗浄手段51に搬送され、洗浄により研削屑が除去された後に、第二のカセット12に搬出入手段13の搬入動作によって搬入される。なお、洗浄手段52は、仕上げ研削されたウエーハWが搬送手段16によって取り上げられて空き状態となったチャックテーブル17の洗浄を行う。なお、他のチャックテーブル18,19に保持されたウエーハWに対する粗研削、仕上げ研削、他のチャックテーブル18,19に対するウエーハWの搬出入等もターンテーブル20の回転位置に応じて同様に行われる。   In the finish grinding, the grinding wheel 46 rotates when the spindle 44a is rotated by the motor 44 and is ground and fed downward in the Z-axis direction, so that the rotating grinding wheel 47 contacts the back surface of the wafer W. This is performed by grinding the back surface of the wafer W held on the chuck table 17 and positioned directly below the grinding means 40. Here, when the finish grinding of the wafer W held by the chuck table 17 is completed, the turntable 20 is returned to the initial position shown in FIG. 1 by rotating by a predetermined angle counterclockwise. At this position, the wafer W whose back surface has been finish-ground is transported to the cleaning means 51 by the transport means 16, and after the grinding debris is removed by cleaning, the wafer W is transported to the second cassette 12 by the transporting operation of the transporting means 13. Is done. The cleaning unit 52 cleans the chuck table 17 in which the finish-ground wafer W is picked up by the transport unit 16 and becomes empty. In addition, rough grinding and finish grinding for the wafers W held on the other chuck tables 18 and 19, loading / unloading of the wafers W with respect to the other chuck tables 18 and 19, and the like are similarly performed according to the rotational position of the turntable 20. .

本実施形態における被加工物であるウエーハWを、SiC(シリコンカーバイド)を含むSiCウエーハとする。SiCウエーハは、シリコンで構成されたウエーハよりも硬質なものである。   The wafer W that is a workpiece in the present embodiment is an SiC wafer containing SiC (silicon carbide). The SiC wafer is harder than a wafer made of silicon.

ここで、SiCウエーハであるウエーハWに粗研削又は仕上げ研削を行うための研削砥石37,47は、ダイヤモンド砥粒とホウ素化合物とをボンドで結合されて構成される。ダイヤモンド砥粒とは、天然ダイヤモンド、合成ダイヤモンド、金属被覆合成ダイヤモンドの少なくともいずれか1以上である。また、ホウ素化合物とは、B4C(炭化ホウ素)、CBN(立方晶窒化ホウ素)およびHBN(六方晶窒化ホウ素)の少なくともいずれか1以上である。研削砥石37,47は、ダイヤモンド砥粒とホウ素化合物とをボンドであるビトリファインドボンド、レジンボンドおよびメタルボンドのいずれかで混練して焼結、またはニッケルメッキにより固定して構成されている。ダイヤモンド砥粒とホウ素化合物との体積比は、1:1〜1:3である。   Here, the grinding wheels 37 and 47 for performing rough grinding or finish grinding on the wafer W which is a SiC wafer are configured by bonding diamond abrasive grains and a boron compound with a bond. The diamond abrasive grains are at least one of natural diamond, synthetic diamond, and metal-coated synthetic diamond. Further, the boron compound is at least one of B4C (boron carbide), CBN (cubic boron nitride) and HBN (hexagonal boron nitride). The grinding wheels 37 and 47 are constituted by kneading diamond abrasive grains and a boron compound with any one of vitrified bonds, resin bonds, and metal bonds, which are bonds, and sintering or fixing them by nickel plating. The volume ratio of diamond abrasive grains to boron compound is 1: 1 to 1: 3.

ホウ素化合物の平均粒径をY〔μm〕、ダイヤモンド砥粒の平均粒径をX〔μm〕とした場合に、研削砥石37におけるホウ素化合物のダイヤモンド砥粒に対する平均粒径比Z(=Y/X)は、0.8≦Z≦3.0である。ここで、平均粒径比Zを0.8以上とするのは、0.8未満であると、ホウ素化合物が研削砥石37を脆くする構造材(フィラー)としての機能や役割が大きくなるためである。一方、平均粒径比Zを3.0以下とするのは、3.0を超えると、主砥粒であるダイヤモンド砥粒が砥粒としての機能よりも構造材としての機能・役割が大きくなり、研削加工に寄与しにくくなるためである。また、ダイヤモンド砥粒の平均粒径Xは、3μm≦X≦10μmである。ここで、ダイヤモンド砥粒の平均粒径Xを10μm以下とするのは、電子デバイスが形成されたシリコンウエーハよりも硬質なSiCウエーハであるウエーハWの研削加工用途としては、平均粒径Xが10μm以下のダイヤモンド砥粒を用いるのが適当であるためである。   When the average particle diameter of the boron compound is Y [μm] and the average particle diameter of the diamond abrasive grains is X [μm], the average particle diameter ratio Z (= Y / X) of the boron compound to the diamond abrasive grains in the grinding wheel 37 ) Is 0.8 ≦ Z ≦ 3.0. Here, the reason why the average particle size ratio Z is 0.8 or more is that if it is less than 0.8, the function and role as a structural material (filler) that makes the grinding wheel 37 brittle by the boron compound increases. is there. On the other hand, when the average particle size ratio Z is 3.0 or less, when the average particle size ratio exceeds 3.0, the diamond abrasive grains, which are the main abrasive grains, have more functions and roles as structural materials than the functions as abrasive grains. This is because it becomes difficult to contribute to the grinding process. The average particle diameter X of the diamond abrasive grains is 3 μm ≦ X ≦ 10 μm. Here, the average particle diameter X of the diamond abrasive grains is set to 10 μm or less for the purpose of grinding the wafer W, which is a SiC wafer harder than the silicon wafer on which the electronic device is formed, and the average particle diameter X is 10 μm. This is because it is appropriate to use the following diamond abrasive grains.

本実施形態では、SiCウエーハであるウエーハWを粗研削するための研削砥石37におけるダイヤモンド砥粒の平均粒径Xは、3μm≦X≦10μmであることが好ましい。粗研削用の研削砥石37では、平均粒径Xが3μmを下回るダイヤモンド砥粒を用いると、粗研削にかかる所要時間が長時間化するとともに、研削砥石37が脆くなるからである。SiCウエーハであるウエーハWを仕上げ研削するための研削砥石47におけるダイヤモンド砥粒の平均粒径Xは、仕上げ研削用の研削砥石として粗研削用の研削砥石よりも平均粒径が小さくなるように、0.5μm≦X≦1μmであってよい。   In the present embodiment, the average particle diameter X of the diamond abrasive grains in the grinding wheel 37 for roughly grinding the wafer W which is a SiC wafer is preferably 3 μm ≦ X ≦ 10 μm. This is because, in the grinding wheel 37 for rough grinding, if diamond abrasive grains having an average particle diameter X of less than 3 μm are used, the time required for rough grinding becomes longer and the grinding wheel 37 becomes brittle. The average particle diameter X of the diamond abrasive grains in the grinding wheel 47 for finish grinding the wafer W which is a SiC wafer is such that the average particle diameter is smaller than the grinding wheel for rough grinding as a grinding wheel for finish grinding. It may be 0.5 μm ≦ X ≦ 1 μm.

以上のように、ホウ素化合物のダイヤモンド砥粒に対する平均粒径比Zを0.8≦Z≦3.0とし、ダイヤモンド砥粒の平均粒径Xを3μm≦X≦10μmとすることで、ウエーハWを研削する際に、ホウ素化合物の固体潤滑性の特性が効果的に作用し、研削砥石37の加工負荷を低減することができる。従って、研削砥石37の加工負荷を低減することで、研削砥石37により1枚のウエーハWを研削する際の研削砥石37の消耗量を低減することができることとなり、結果として長寿命化を図ることができる。また、研削砥石37による被加工物の研削加工時に加工点での発熱を抑えることができ、研削速度を速めることができ、生産性を向上することができる。以上より、研削装置10における研削砥石37の消耗度合いも低く抑えられ、砥石の交換頻度を低減することができ、研削装置10における研削加工全体としての生産性を向上することができる。よって、研削砥石37は、平均粒径比Zが0.8≦Z≦3.0であるので、加工負荷の低減と、長寿命化の少なくとも一方を達成することができる。   As described above, the average particle size ratio Z of the boron compound to the diamond abrasive grains is set to 0.8 ≦ Z ≦ 3.0, and the average particle size X of the diamond abrasive grains is set to 3 μm ≦ X ≦ 10 μm. When grinding, the solid lubricity property of the boron compound acts effectively, and the processing load of the grinding wheel 37 can be reduced. Therefore, by reducing the processing load of the grinding wheel 37, the amount of wear of the grinding wheel 37 when grinding one wafer W by the grinding wheel 37 can be reduced, and as a result, the life can be extended. Can do. Further, heat generation at the processing point can be suppressed during grinding of the workpiece by the grinding wheel 37, the grinding speed can be increased, and the productivity can be improved. As described above, the degree of wear of the grinding wheel 37 in the grinding device 10 can be suppressed to a low level, the replacement frequency of the grinding wheel can be reduced, and the productivity of the entire grinding process in the grinding device 10 can be improved. Therefore, since the average particle size ratio Z is 0.8 ≦ Z ≦ 3.0, the grinding wheel 37 can achieve at least one of a reduction in processing load and a longer life.

また、本実施形態では、SiCウエーハであるウエーハWに粗研削を行うための研削砥石37は、平均粒径比Zが1.2≦Z≦3.0であることが好ましい。この場合、研削砥石37は、研削中の消耗を抑制することができ、長寿命化を達成することができる。   In the present embodiment, the grinding wheel 37 for performing rough grinding on the wafer W, which is a SiC wafer, preferably has an average particle size ratio Z of 1.2 ≦ Z ≦ 3.0. In this case, the grinding wheel 37 can suppress wear during grinding and achieve a long life.

また、本実施形態では、SiCウエーハであるウエーハWに粗研削を行うための研削砥石37は、平均粒径比Zが0.8≦Z≦2.0であることが好ましい。この場合、研削砥石37は、加工負荷の低減を達成することができる。   In the present embodiment, the grinding wheel 37 for performing rough grinding on the wafer W which is a SiC wafer preferably has an average particle size ratio Z of 0.8 ≦ Z ≦ 2.0. In this case, the grinding wheel 37 can achieve a reduction in processing load.

さらに、本実施形態では、SiCウエーハであるウエーハWに粗研削を行うための研削砥石37は、平均粒径比Zが1.2≦Z≦2.0であることが好ましい。この場合、研削砥石37は、加工負荷の低減と、長寿命化との双方を達成することができる。   Furthermore, in the present embodiment, the grinding wheel 37 for performing rough grinding on the wafer W which is a SiC wafer preferably has an average particle size ratio Z of 1.2 ≦ Z ≦ 2.0. In this case, the grinding wheel 37 can achieve both a reduction in processing load and a longer life.

次に、本発明の発明者らは、本発明の効果を確認するために、ホウ素化合物の平均粒径の異なる粗研削用の研削砥石37を製造して、SiCウエーハであるウエーハWに粗研削した際の研削砥石37の消耗率と、最大研削荷重を測定した。結果を、図2及び図3に示す。図2は、粗研削用の研削砥石のホウ素化合物の平均粒径に対する消耗率(%)を示す図であり、図3は、粗研削用の研削砥石のホウ素化合物の平均粒径に対する最大研削荷重(N)を示す図である。   Next, in order to confirm the effect of the present invention, the inventors of the present invention manufactured a grinding wheel 37 for rough grinding having a different average particle diameter of the boron compound, and coarsely ground the wafer W, which is a SiC wafer. The wear rate of the grinding wheel 37 and the maximum grinding load were measured. The results are shown in FIGS. FIG. 2 is a graph showing the consumption rate (%) with respect to the average particle size of the boron compound of the grinding wheel for rough grinding, and FIG. 3 is the maximum grinding load with respect to the average particle size of the boron compound of the grinding wheel for rough grinding. It is a figure which shows (N).

図2及び図3で用いられた粗研削用の研削砥石37は、ホウ素化合物としてCBNを用い、SiOを主成分とするボンドによりダイヤモンド砥粒と混練して焼結したものである。図2及び図3で用いられた粗研削用の研削砥石37は、ダイヤモンド砥粒の平均粒径Xが4μm、ホウ素化合物とダイヤモンド砥粒との体積比が1:1であり、ホウ素化合物の平均粒径Yを3μmから20μmの間で変化させた。 The grinding wheel 37 for rough grinding used in FIGS. 2 and 3 uses CBN as a boron compound and is kneaded and sintered with diamond abrasive grains using a bond containing SiO 2 as a main component. The grinding wheel 37 for rough grinding used in FIGS. 2 and 3 has an average particle diameter X of diamond abrasive grains of 4 μm, a volume ratio of boron compound to diamond abrasive grains of 1: 1, and an average of boron compounds. The particle size Y was varied between 3 μm and 20 μm.

図2及び図3中の横軸は、ホウ素化合物の平均粒径Y及び平均粒径比Zを示す。図2中の縦軸は、研削砥石37の消耗率である。この消耗率とは、実際の研削量に対する研削砥石37の消耗量(%)である。図3中の縦軸は、粗研削加工中にかかった荷重の最大値(N)である。また、図2及び図3では、同一平均粒径Yのホウ素化合物の平均粒径Yを含んだ粗研削用の研削砥石37を複数製造し、各研削砥石37を用いて被加工物としてのSiCウエーハを粗研削した際の消耗率と最大研削荷重を測定した。なお、図2及び図3には、消耗率と最大研削荷重の平均値を点線で示す。   2 and 3 indicate the average particle diameter Y and the average particle diameter ratio Z of the boron compound. The vertical axis in FIG. 2 is the wear rate of the grinding wheel 37. This consumption rate is the consumption amount (%) of the grinding wheel 37 with respect to the actual grinding amount. The vertical axis in FIG. 3 is the maximum value (N) of the load applied during rough grinding. 2 and 3, a plurality of grinding wheels 37 for rough grinding including the average particle diameter Y of the boron compound having the same average particle diameter Y are manufactured, and each grinding wheel 37 is used as a workpiece as SiC. The wear rate and the maximum grinding load when the wafer was roughly ground were measured. In FIGS. 2 and 3, the average value of the wear rate and the maximum grinding load is indicated by a dotted line.

図2によると、平均粒径比Zを1.2以上でかつ3.0以下とすることで、平均粒径比Zを1.2未満又は3.0を超える値とする場合よりも、研削砥石37の消耗率を10%程度以下に抑制できることが明らかとなった。また、図3によると、平均粒径比Zを0.8以上でかつ2.0以下とすることで、平均粒径比Zを2.0を超える値とする場合よりも、最大研削荷重を抑制(即ち、加工負荷の低減)されることが明らかとなった。さらに、図2によると、平均粒径比Zを0.8未満とすると、研削砥石37の消耗率が大きくなることが明らかとなった。   According to FIG. 2, by setting the average particle size ratio Z to 1.2 or more and 3.0 or less, the average particle size ratio Z is less than 1.2 or more than 3.0. It became clear that the wear rate of the grindstone 37 can be suppressed to about 10% or less. Further, according to FIG. 3, by setting the average particle size ratio Z to 0.8 or more and 2.0 or less, the maximum grinding load can be set more than when the average particle size ratio Z is set to a value exceeding 2.0. It became clear that it was suppressed (that is, the processing load was reduced). Further, according to FIG. 2, it is clear that when the average particle size ratio Z is less than 0.8, the wear rate of the grinding wheel 37 is increased.

このように、図2及び図3によると、研削砥石37は、平均粒径比Zを0.8以上でかつ3.0以下とすることで、長寿命化と加工負荷の低減の少なくとも一方を達成することができ、平均粒径比Zを1.2以上でかつ2.0以下とすることで、長寿命化と加工負荷の低減との双方を達成することができることが明らかとなった。   As described above, according to FIGS. 2 and 3, the grinding wheel 37 has at least one of extending the life and reducing the processing load by setting the average particle size ratio Z to 0.8 or more and 3.0 or less. It has been clarified that both the life extension and the reduction of the processing load can be achieved by setting the average particle size ratio Z to 1.2 or more and 2.0 or less.

なお、前述した実施形態及び実施例では、主に研削砥石37について記載しているが、本発明は、仕上げ研削用の研削砥石47に用いても良い。   In the above-described embodiments and examples, the grinding wheel 37 is mainly described. However, the present invention may be used for the grinding wheel 47 for finish grinding.

10 研削装置
11 第一のカセット
12 第二のカセット
13 搬出入手段
15,16 搬送手段
17〜19 チャックテーブル
20 ターンテーブル
30,40 研削手段
37 粗研削用の研削砥石
47 仕上げ研削用の研削砥石
W ウエーハ(被加工物)
DESCRIPTION OF SYMBOLS 10 Grinding apparatus 11 1st cassette 12 2nd cassette 13 Carry-in / out means 15,16 Conveyance means 17-19 Chuck table 20 Turntable 30,40 Grinding means 37 Grinding wheel for rough grinding 47 Grinding wheel for finish grinding W Wafer (workpiece)

Claims (2)

ダイヤモンド砥粒とホウ素化合物とを含む研削砥石であって、
該ダイヤモンド砥粒の平均粒径Xは、3μm≦X≦10μmであり、
該ホウ素化合物の前記ダイヤモンド砥粒に対する平均粒径比Zは、1.2≦Z≦3.0である、
ことを特徴とする研削砥石。
A grinding wheel containing diamond abrasive grains and a boron compound,
The average particle diameter X of the diamond abrasive grains is 3 μm ≦ X ≦ 10 μm,
The average particle size ratio Z of the boron compound to the diamond abrasive grains is 1.2 ≦ Z ≦ 3.0.
A grinding wheel characterized by that.
請求項1記載の研削砥石において、被加工物はSiCウエーハであり、
前記平均粒径比Zは、1.2≦Z≦2.0である、
ことを特徴とする研削砥石。
The grinding wheel according to claim 1, wherein the workpiece is a SiC wafer,
The average particle size ratio Z is 1.2 ≦ Z ≦ 2.0.
A grinding wheel characterized by that.
JP2015117821A 2015-06-10 2015-06-10 Grinding wheel Active JP6564624B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015117821A JP6564624B2 (en) 2015-06-10 2015-06-10 Grinding wheel
TW105113739A TWI707027B (en) 2015-06-10 2016-05-03 Grinding grindstone
DE102016210001.7A DE102016210001A1 (en) 2015-06-10 2016-06-07 grindstone
CN201610403056.0A CN106239389A (en) 2015-06-10 2016-06-08 Grinding grinding tool
US15/178,104 US20160361793A1 (en) 2015-06-10 2016-06-09 Abrasive grindstone
KR1020160071503A KR102549249B1 (en) 2015-06-10 2016-06-09 Grinding wheel
FR1655344A FR3037268B1 (en) 2015-06-10 2016-06-10 ABRASIVE WHEEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117821A JP6564624B2 (en) 2015-06-10 2015-06-10 Grinding wheel

Publications (2)

Publication Number Publication Date
JP2017001136A JP2017001136A (en) 2017-01-05
JP6564624B2 true JP6564624B2 (en) 2019-08-21

Family

ID=57395693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117821A Active JP6564624B2 (en) 2015-06-10 2015-06-10 Grinding wheel

Country Status (7)

Country Link
US (1) US20160361793A1 (en)
JP (1) JP6564624B2 (en)
KR (1) KR102549249B1 (en)
CN (1) CN106239389A (en)
DE (1) DE102016210001A1 (en)
FR (1) FR3037268B1 (en)
TW (1) TWI707027B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3666937B1 (en) * 2018-10-16 2023-07-05 Sicc Co., Ltd. High-flatness, low-damage and large-diameter monocrystalline silicon carbide substrate, and manufacturing method therefor
JP7216613B2 (en) * 2019-05-16 2023-02-01 株式会社ディスコ processing equipment
CN111300288B (en) * 2020-04-21 2021-11-09 郑州磨料磨具磨削研究所有限公司 Grinding wheel for grinding electronic packaging substrate material and preparation method thereof
JP7262864B1 (en) 2022-09-28 2023-04-24 株式会社東京ダイヤモンド工具製作所 Synthetic whetstone, synthetic whetstone assembly, and synthetic whetstone manufacturing method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961787A (en) * 1972-10-12 1974-06-14
US4923490A (en) * 1988-12-16 1990-05-08 General Electric Company Novel grinding wheels utilizing polycrystalline diamond or cubic boron nitride grit
CN1112141A (en) * 1994-05-19 1995-11-22 戴延平 Method for mfg diamond-resin grinding wheel
JP3086667B2 (en) * 1997-04-30 2000-09-11 大阪ダイヤモンド工業株式会社 Super abrasive whetstone
JP3542520B2 (en) * 1999-06-01 2004-07-14 株式会社ノリタケカンパニーリミテド Vitrified whetstone
JP2001009732A (en) * 1999-06-24 2001-01-16 Noritake Co Ltd Vitrified bond grinding wheel and manufacture therefor
US6705926B2 (en) * 2001-10-24 2004-03-16 Cabot Microelectronics Corporation Boron-containing polishing system and method
US7097549B2 (en) * 2001-12-20 2006-08-29 Ppg Industries Ohio, Inc. Polishing pad
JP4116333B2 (en) * 2002-06-05 2008-07-09 ミネベア株式会社 Super finishing whetstone
US20050210755A1 (en) * 2003-09-05 2005-09-29 Cho Hyun S Doubled-sided and multi-layered PCBN and PCD abrasive articles
CN100376715C (en) * 2004-12-08 2008-03-26 上海江信超硬材料有限公司 Composite structure of diamond surface coated with glass, cubic boron nitride and titanium layers and its manufacturing method
JP2007015054A (en) * 2005-07-07 2007-01-25 Mitsui Kensaku Toishi Kk Resin bonded super-grinding tool and grinding wheel using the same
US7494404B2 (en) * 2006-02-17 2009-02-24 Chien-Min Sung Tools for polishing and associated methods
US8398462B2 (en) * 2008-02-21 2013-03-19 Chien-Min Sung CMP pads and method of creating voids in-situ therein
CN101434827B (en) * 2008-12-17 2012-06-13 厦门致力金刚石科技股份有限公司 Grinding medium containing ceramic particle, preparation and use thereof
JP2012056012A (en) * 2010-09-08 2012-03-22 Disco Corp Cutting grinding wheel
JP2012056013A (en) * 2010-09-08 2012-03-22 Disco Corp Grinding wheel
MX340925B (en) * 2010-10-06 2016-08-01 Saint Gobain Abrasifs Sa Nonwoven composite abrasive comprising diamond abrasive particles.
JP2012086291A (en) * 2010-10-18 2012-05-10 Disco Corp Cutting grinding wheel
JP2012200847A (en) * 2011-03-28 2012-10-22 Noritake Co Ltd Vitrified superabrasive grain grinding wheel
JP5636144B2 (en) * 2012-01-18 2014-12-03 株式会社ノリタケカンパニーリミテド Vitrified super abrasive wheel
JP5373171B1 (en) * 2012-10-20 2013-12-18 株式会社ナノテム Grinding wheel and grinding / polishing apparatus using the same
WO2015008572A1 (en) * 2013-07-19 2015-01-22 国立大学法人名古屋工業大学 Metallic polishing pad and production method therefor
CN103922747B (en) * 2014-04-30 2015-10-21 郑州磨料磨具磨削研究所有限公司 Ceramic bond super-hard material grinding tool is injected into moulding mixture and injection moulding method
JP2016147359A (en) * 2015-02-13 2016-08-18 株式会社ディスコ Grinding whetstone

Also Published As

Publication number Publication date
TW201700709A (en) 2017-01-01
FR3037268A1 (en) 2016-12-16
TWI707027B (en) 2020-10-11
JP2017001136A (en) 2017-01-05
DE102016210001A1 (en) 2016-12-15
KR102549249B1 (en) 2023-06-28
US20160361793A1 (en) 2016-12-15
FR3037268B1 (en) 2019-09-06
KR20160145500A (en) 2016-12-20
CN106239389A (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP5149020B2 (en) Wafer grinding method
JP6564624B2 (en) Grinding wheel
TWI732012B (en) Processing device
TW202205418A (en) Method of grinding workpiece
JP2006224201A (en) Grinding wheel
JP2010194680A (en) Method and apparatus for machining workpiece
JP2016182669A (en) Processing device for tabular article
JP2014027000A (en) Grinding device
JP2016147359A (en) Grinding whetstone
KR20220047507A (en) Method for manufacturing wafer
KR20180001446A (en) Cutting grindstone
JP2006015423A (en) Setting method for vitrified bond grinding wheel and setting board
TWI834798B (en) Processing method of the workpiece
JP2022168720A (en) Processing method
JP5231107B2 (en) Wafer grinding method
JP2018056500A (en) Method for processing plate-like object
JP2023071254A (en) METHOD OF MANUFACTURING SiC BASEBOARD
JP2006198737A (en) Vitrified bond grinding wheel
JP2018183828A (en) Method for dressing grinding wheel
TW202319181A (en) Grinding method and grinding apparatus for workpiece capable of suppressing occurrence of machining defects
KR20230174167A (en) Method for grinding a workpiece
JP2023128351A (en) Processing method
JP2024074423A (en) Grinding method of workpiece
JP2023036121A (en) Grinding method for workpiece
JP2022136373A (en) Grinding method of workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6564624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250