JP6562101B2 - Vibration element, vibrator, electronic device, electronic device, and moving object - Google Patents
Vibration element, vibrator, electronic device, electronic device, and moving object Download PDFInfo
- Publication number
- JP6562101B2 JP6562101B2 JP2018037271A JP2018037271A JP6562101B2 JP 6562101 B2 JP6562101 B2 JP 6562101B2 JP 2018037271 A JP2018037271 A JP 2018037271A JP 2018037271 A JP2018037271 A JP 2018037271A JP 6562101 B2 JP6562101 B2 JP 6562101B2
- Authority
- JP
- Japan
- Prior art keywords
- outer edge
- vibration
- excitation electrode
- vibration element
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Description
本発明は、厚み滑り振動を励振する振動素子、振動子、電子デバイス、電子機器、及び移動体に関する。 The present invention relates to a vibration element, a vibrator, an electronic device, an electronic apparatus, and a moving body that excite thickness shear vibration.
主振動である厚み滑り振動を励振するATカット水晶振動子は、小型化、高周波数化に適し、且つ周波数温度特性が優れた三次曲線を呈するので、発振器、電子機器等の多方面で使用されている。特に、近年では伝送通信機器やOA機器の処理速度の高速化、あるいは通信データや処理量の大容量化が進むのに伴い、それに用いられる基準周波数信号源としてのATカット水晶振動子に対し高周波化の要求が強まっている。厚み滑り振動で励振するATカット水晶振動子の高周波化には、振動部分の厚みを薄くすることにより高周波化を図るのが一般的である。 The AT-cut quartz resonator that excites the thickness-shear vibration, which is the main vibration, has a cubic curve that is suitable for miniaturization and higher frequency, and has excellent frequency temperature characteristics, so it is used in various fields such as oscillators and electronic devices. ing. In particular, in recent years, as the processing speed of transmission communication equipment and OA equipment has been increased or the capacity of communication data and processing volume has been increased, the AT cut crystal resonator as a reference frequency signal source used therefor has a higher frequency. There is an increasing demand for conversion. In order to increase the frequency of an AT-cut crystal resonator excited by thickness shear vibration, it is common to increase the frequency by reducing the thickness of the vibrating portion.
しかし、高周波化に伴い、振動部分の厚みが薄くなると、周波数の調整感度が高まるため周波数追い込み精度が悪くなり、振動子の製造歩留りが低下するという問題があった。これに対し、特許文献1には、温度補償型発振器の振動素子において、長方形状の励振電極の四隅を略均等に切り欠き、その面積を切り欠く前との面積比で95%〜98%とすることで、振動子の容量比γ(=C0/C1、ここで、C0は等価並列容量、C1は等価直列容量)を小さくすることができ、周波数可変感度が大きくなるため、発振周波数の合わせ込みの余裕度を大きくすることができるということが開示されている。
However, when the thickness of the vibration portion is reduced as the frequency is increased, the frequency adjustment sensitivity is increased, so that the frequency tracking accuracy is deteriorated and the manufacturing yield of the vibrator is lowered. On the other hand, in
しかしながら、特許文献1に記載の振動子は、容量比γを小さくでき、大きな周波数可変感度が得られ電圧制御型発振器の振動子として有利であるが、主振動が振動部分の厚みの平面平行度のばらつき等により発生するスプリアス振動とカップリングを起こす可能性が高くなり、周波数のジャンプ現象が生じて、発振が不安定になるという問題があった。
However, the vibrator described in
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。 SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
[適用例1]本適用例に係る振動素子は、厚み滑り振動で振動し、表裏の関係にある第1の主面及び第2の主面を含む基板と、前記第1の主面に設けられ、仮想の四角形に内接する辺又は円周を含み、前記仮想の四角形の少なくとも三隅を切り欠いた形状の第1の励振電極と、前記第2の主面に設けられている第2の励振電極と、を含み、前記仮想の四角形の面積をS1、前記第1の励振電極の面積をS2としたとき、69.2%≦(S2/S1)≦80.1%の関係を満たすことを特徴とする。 Application Example 1 A vibration element according to this application example is provided on the first main surface, the substrate including the first main surface and the second main surface that are vibrated by thickness shear vibration and have a front and back relationship. A first excitation electrode including a side or a circumference inscribed in the virtual quadrangle and having at least three corners cut out of the virtual quadrangle, and a second excitation provided on the second main surface And satisfying the relationship of 69.2% ≦ (S2 / S1) ≦ 80.1%, where S1 is the area of the virtual rectangle and S2 is the area of the first excitation electrode. Features.
本適用例によれば、主振動の振動領域は励振電極の中央部に集中しているため、励振電極の四隅を切り欠いた電極形状としても周波数変化への影響が小さく、主振動の周波数はほとんど変わらない。しかし、振動部分の厚みの平面平行度のばらつき等により発生するスプリアス振動の振動領域は、励振電極の四隅や周辺部に集中しているため、励振電極の四隅を切り欠いた電極形状とすると、スプリアス振動の振動領域上の励振電極の面積が小さくなり、励振電極の膜厚を薄くしたものと同等となるので、スプリアス振動の周波数は高くなる。そのため、主振動とスプリアス振動との周波数差を大きくし、スプリアス振動とのカップリングによる周波数のジャンプ現象を低減した振動素子が得られるという効果がある。
また、実際に主振動の振動に寄与しない励振電極の四隅の少なくとも三隅を切り欠いているので、主振動の振動エネルギーを効率的に閉じ込め、等価直列容量C1を大きくすることができ、且つ、励振電極の面積で決まる等価並列容量C0を小さくできるため、容量比γの小さい振動素子を得ることができるという効果がある。
According to this application example, since the vibration region of the main vibration is concentrated in the central portion of the excitation electrode, the shape of the electrode with the four corners of the excitation electrode cut off has little influence on the frequency change, and the frequency of the main vibration is Almost unchanged. However, since the vibration area of spurious vibration generated due to variations in the plane parallelism of the thickness of the vibration part is concentrated at the four corners and the peripheral part of the excitation electrode, if the electrode shape is cut out at the four corners of the excitation electrode, Since the area of the excitation electrode on the vibration region of the spurious vibration is reduced and is equivalent to that obtained by reducing the thickness of the excitation electrode, the frequency of the spurious vibration is increased. Therefore, there is an effect that a vibration element in which the frequency difference between the main vibration and the spurious vibration is increased and the frequency jump phenomenon due to the coupling with the spurious vibration is reduced can be obtained.
In addition, since at least three corners of the excitation electrode that do not actually contribute to the vibration of the main vibration are notched, the vibration energy of the main vibration can be efficiently confined, the equivalent series capacitance C1 can be increased, and the excitation can be increased. Since the equivalent parallel capacitance C0 determined by the area of the electrode can be reduced, there is an effect that a vibration element having a small capacitance ratio γ can be obtained.
[適用例2]上記適用例に記載の振動素子において、前記第1の励振電極は、前記仮想の四角形の四隅を切り欠いた形状であることを特徴とする。 Application Example 2 In the resonator element according to the application example, the first excitation electrode has a shape in which four corners of the virtual square are cut out.
本適用例によれば、実際に主振動の振動に寄与しない励振電極の四隅を切り欠いた形状とすることで、主振動の周波数をほとんど変化させずに、スプリアス振動の振動領域が集中する領域の電極面積を小さくすることができるため、スプリアス振動の周波数を高くすることができる。そのため、スプリアス振動とのカップリングによる周波数のジャンプ現象を低減した振動素子が得られるという効果がある。また、励振電極を小さくできるので、容量比γの小さい振動素子を得ることができるという効果がある。 According to this application example, a region in which the vibration region of the spurious vibration is concentrated without changing the frequency of the main vibration almost by changing the shape of the four corners of the excitation electrode that does not actually contribute to the vibration of the main vibration. Therefore, the frequency of spurious vibrations can be increased. Therefore, there is an effect that a vibration element in which a frequency jump phenomenon due to coupling with spurious vibration is reduced can be obtained. In addition, since the excitation electrode can be made small, there is an effect that a vibration element having a small capacitance ratio γ can be obtained.
[適用例3]上記適用例に記載の振動素子において、前記第1の励振電極は、平面視で、前記第2の励振電極の外縁内に収まっていることを特徴とする。 Application Example 3 In the resonator element according to the application example described above, the first excitation electrode is within an outer edge of the second excitation electrode in a plan view.
本適用例によれば、厚み滑り振動は平面視で第1の励振電極と第2の励振電極とが重なる領域でのみ振動するので、第1の励振電極25aが第2の励振電極25bの外縁内に収まっていると、主振動の振動エネルギーを効率的に閉じ込めることを、第1の励振電極25aの面積と厚みとで決定することができる。そのため、第1の励振電極と第2の励振電極との面積が同一の場合に比べ、電極の厚みを厚くできるので、電極膜のオーミックロスを低減し、主振動のCI値の劣化を低減できるという効果がある。
また、第1の励振電極と第2の励振電極とを金属マスク法で形成する場合、マスクの多少の位置ずれがあった場合でも、平面視で第1の励振電極と第2の励振電極とが重なる面積が変化し難いため、等価直列容量C1と等価並列容量C0のばらつきが生じないので、容量比γのばらつきが小さい振動素子が得られるという効果がある。
According to this application example, the thickness-shear vibration vibrates only in a region where the first excitation electrode and the second excitation electrode overlap in a plan view, and therefore the
In addition, when the first excitation electrode and the second excitation electrode are formed by the metal mask method, the first excitation electrode and the second excitation electrode can be seen in plan view even when there is a slight displacement of the mask. Since the overlapping area is difficult to change, the variation between the equivalent series capacitance C1 and the equivalent parallel capacitance C0 does not occur, so that there is an effect that a vibration element with a small variation in the capacitance ratio γ can be obtained.
[適用例4]上記適用例に記載の振動素子において、前記第1の励振電極の外縁のうち前記切り欠いた領域外の外縁から延在して設けられているリード電極を含むことを特徴とする。 Application Example 4 In the resonator element according to the application example described above, it includes a lead electrode that extends from an outer edge outside the notched region of the outer edge of the first excitation electrode. To do.
本適用例によれば、リード電極を切り欠いた領域を除く第1の励振電極の外縁から延在することにより、第1の励振電極の周辺部に集中するスプリアス振動の振動領域における第1の励振電極の面積を確実に小さくすることができるため、スプリアス振動の周波数を高くし主振動とのカップリングを低減することができる振動素子が得られるという効果がある。 According to this application example, by extending from the outer edge of the first excitation electrode excluding the region where the lead electrode is notched, the first in the vibration region of the spurious vibration concentrated on the peripheral portion of the first excitation electrode. Since the area of the excitation electrode can be reliably reduced, there is an effect that a vibration element that can increase the frequency of spurious vibrations and reduce coupling with main vibrations can be obtained.
[適用例5]上記適用例に記載の振動素子において、前記第1の励振電極の厚み滑り振動方向に沿った長さをhx、前記厚み滑り振動方向と直交する方向に沿った長さをhzとしたとき、1.25≦hx/hz≦1.31の関係を満たすことを特徴とする。 Application Example 5 In the resonator element according to the application example described above, the length along the thickness-shear vibration direction of the first excitation electrode is hx, and the length along the direction orthogonal to the thickness-shear vibration direction is hz. In this case, the relationship of 1.25 ≦ hx / hz ≦ 1.31 is satisfied.
本適用例によれば、結晶の異方性により定まる変位方向の変位分布と、それと直交する方向の変位分布が異なる基板を用いた場合、主振動のエネルギー閉じ込めの効率を高めることができるので、等価直列容量C1が大きくなり、振動素子の容量比γをより小さくできる。 According to this application example, when using a substrate in which the displacement distribution in the displacement direction determined by the anisotropy of the crystal and the displacement distribution in the direction orthogonal thereto are different, the energy confinement efficiency of the main vibration can be increased. The equivalent series capacitance C1 is increased, and the capacitance ratio γ of the vibration element can be further reduced.
[適用例6]上記適用例に記載の振動素子において、前記基板は水晶基板であることを特徴とする。
本適用例によれば、水晶基板はQ値が高く、温度特性に優れているので、安定な振動特性を有する振動素子が得られるという効果がある。
Application Example 6 In the resonator element according to the application example, the substrate is a quartz substrate.
According to this application example, since the quartz substrate has a high Q value and excellent temperature characteristics, there is an effect that a vibration element having stable vibration characteristics can be obtained.
[適用例7]上記適用例に記載の振動素子において、前記水晶基板がATカット水晶基板であることを特徴とする。
本適用例によれば、基板に温度特性に優れた切断角度を有しているATカット水晶基板を用いることにより、フォトリソグラフィー技術及びエッチング技術に関する実績や経験が活用でき、温度特性に優れ、周波数再現性、周波数温度特性、CI温度特性、及び周波数エージング特性等の特性ばらつきの小さい振動素子の量産が可能になるという効果がある。
Application Example 7 In the resonator element according to the application example described above, the crystal substrate is an AT-cut crystal substrate.
According to this application example, by using an AT-cut quartz crystal substrate having a cutting angle with excellent temperature characteristics as a substrate, it is possible to utilize the experience and experience related to photolithography technology and etching technology, excellent temperature characteristics, frequency There is an effect that it is possible to mass-produce vibration elements with small variations in characteristics such as reproducibility, frequency temperature characteristics, CI temperature characteristics, and frequency aging characteristics.
[適用例8]本適用例に係る振動子は、上記適用例に記載の振動素子と、前記振動素子を収容するパッケージと、を備えていることを特徴とする。
本適用例によれば、振動素子をパッケージに収容することで、信頼性品質の高い振動子が得られる。例えば、温度変化や湿度変化等の外乱の影響や汚染による影響を防ぐことができるため、周波数再現性、周波数温度特性、CI温度特性、及び周波数エージング特性に優れた振動子が得られるという効果がある。
Application Example 8 A vibrator according to this application example includes the vibration element according to the application example described above and a package that accommodates the vibration element.
According to this application example, it is possible to obtain a vibrator with high reliability quality by housing the vibration element in the package. For example, since it is possible to prevent the influence of disturbance such as temperature change and humidity change and the influence of contamination, it is possible to obtain a vibrator having excellent frequency reproducibility, frequency temperature characteristics, CI temperature characteristics, and frequency aging characteristics. is there.
[適用例9]本適用例に係る電子デバイスは、上記適用例に記載の振動素子と、前記振動素子を駆動する発振回路と、を備えていることを特徴とする。
本適用例によれば、振動素子の主振動とスプリアス振動の周波数差が広いので、スプリアス振動とのカップリングによる周波数のジャンプ現象を低減した安定な発振特性を有し、且つ、振動素子の容量比γが小さいので、広い周波数可変幅を有する電圧制御型発振器が得られるという効果がある。
また、電子デバイスとして発振器、温度補償型発振器等を構成することが可能であり、周波数再現性、エージング特性、周波数温度特性に優れた発振器を構成できるという効果がある。
Application Example 9 An electronic device according to this application example includes the vibration element according to the application example described above and an oscillation circuit that drives the vibration element.
According to this application example, since the frequency difference between the main vibration and the spurious vibration of the vibration element is wide, it has a stable oscillation characteristic in which a frequency jump phenomenon due to coupling with the spurious vibration is reduced, and the capacitance of the vibration element. Since the ratio γ is small, there is an effect that a voltage controlled oscillator having a wide frequency variable width can be obtained.
In addition, an oscillator, a temperature compensated oscillator, and the like can be configured as an electronic device, and an oscillator excellent in frequency reproducibility, aging characteristics, and frequency temperature characteristics can be configured.
[適用例10]本適用例に係る電子機器は、上記適用例に記載の振動素子を備えていることを特徴とする。
本適用例によれば、スプリアス振動とのカップリングを抑制した振動素子を電子機器に用いることにより、周波数安定度に優れた基準周波数源を備えた電子機器が構成できるという効果がある。
Application Example 10 An electronic apparatus according to this application example includes the vibration element described in the application example.
According to this application example, an electronic device including a reference frequency source with excellent frequency stability can be configured by using, in an electronic device, a vibration element that suppresses coupling with spurious vibration.
[適用例11]本適用例に係る移動体は、上記適用例に記載の振動素子を備えていることを特徴とする。
本適用例によれば、スプリアス振動の影響を抑制した発振特性の安定な振動素子を備えているため、より高性能の移動体を得ることができる。
Application Example 11 A moving object according to this application example includes the vibration element described in the application example.
According to this application example, since the vibration element having a stable oscillation characteristic in which the influence of the spurious vibration is suppressed is provided, a higher-performance moving body can be obtained.
以下、本発明の振動素子、振動子、電子デバイス、電子機器及び移動体を図面に示す好適な実施形態に基づいて詳細に説明する。
<振動素子>
先ず、本発明の振動素子について説明する。
図1は、本発明の一実施形態に係る振動素子の構成を示す概略図であり、図1(a)は振動素子の平面図、図1(b)は図1(a)のP−P線断面図、図1(c)は図1(a)のQ−Q線断面図である。
振動素子1は、振動部12及び振動部12に連設され、振動部12の厚みよりも厚い厚肉部13を有する基板10と、振動部12の両主面(±Y’方向の表裏面)に夫々対向するようにして形成された第1の励振電極25a、第2の励振電極25bと、第1の励振電極25a、第2の励振電極25bから厚肉部に設けられたパッド電極29a,29bに向けて、夫々延出されて形成されたリード電極27a,27bと、を備えている。
Hereinafter, a resonator element, a vibrator, an electronic device, an electronic apparatus, and a moving body of the present invention will be described in detail based on preferred embodiments shown in the drawings.
<Vibration element>
First, the vibration element of the present invention will be described.
FIG. 1 is a schematic diagram illustrating a configuration of a vibration element according to an embodiment of the present invention. FIG. 1 (a) is a plan view of the vibration element, and FIG. 1 (b) is a PP line of FIG. 1 (a). FIG. 1C is a sectional view taken along the line Q-Q in FIG.
The
基板10は、矩形状をなし、且つ肉薄でY’軸に直交し厚みが一定である平板状の振動部12と、振動部12の一辺を除いた三辺に沿って一体化された第1の厚肉部14、第2の厚肉部15、及び第3の厚肉部16(第1、第2及び第3の厚肉部14,15,16とも称する)からなる厚肉部13と、支持固定した際に生じるマウント応力を振動部12に伝わるのを防止するためのスリット17と、を備えている。
なお、第1の厚肉本体14a、第2の厚肉本体15a、及び第3の厚肉本体16a(第1、第2及び第3の厚肉本体14a,15a,16aとも称する)とは、Y’軸に平行な厚みが一定である領域をいう。
The
The first
また、第1の傾斜部14b、第2の傾斜部15b、及び第3の傾斜部16b(第1、第2及び第3の傾斜部14b,15b,16bとも称する)とは、第1、第2及び第3の厚肉本体14a,15a,16aと、振動部12と、の間に生じる傾斜面をいう。
振動部12の一方の主面と、第1、第2及び第3の厚肉部14,15,16の夫々の一方の面とは、同一平面上、即ち図1に示す座標軸のX−Z’平面上にあり、この面(図1(b)の−Y’方向にある下面側)をフラット面(平坦面)といい、凹陥部11を有する反対側の面(図1(b)の+Y’方向にある上面側)を凹陥面という。
The first
One main surface of the
図1に示す実施形態例において、第1の励振電極25aは、四角形、好ましくは矩形の四隅を切り欠いた形状、つまり、X軸方向に沿った長さhxとZ’軸方向に沿った長さhzとからなる仮想の四角形25fに辺が内接し、前記仮想の四角形25fの四隅を切り欠いた形状に形成されている。また、第2の励振電極25bについても、第1の励振電極25aと同様に、四角形、好ましくは矩形の四隅を切り欠いた形状に形成されている。更に、第1の励振電極25aと第2の励振電極25bは、振動部12のほぼ中央部の両主面(表面及び裏面)に平面視で重なるように夫々形成されている。なお、第2の励振電極25bの形状は四角形、矩形状、円形、楕円形であっても構わない。
In the embodiment shown in FIG. 1, the
第1の励振電極25aと、第2の励振電極25bとは大きさが異なり、第2の励振電極25bの方が第1の励振電極25aよりも大きい。振動部12において実際に励振する領域は、第1の励振電極25aと第2の励振電極25bとにより挟まれている領域である。つまり、第2の励振電極25bにおいて、実際に振動部12を励振させることに寄与する領域は、平面視で第1の励振電極25aと重なる部分である。すなわち、第2の励振電極25bは、励振に寄与する電極と、当該励振に寄与する電極の外縁に一体化されている励振に寄与しない電極とから構成されている。
なお、第1の励振電極25aや第2の励振電極25bは、リード電極27a,27bと接続している部分について、励振電極形状の外縁(外辺)に沿った延長線(仮想線)を境界として形状や面積として説明する。
The
Note that the
切り欠いた第1の励振電極25aは、第1の励振電極25aの中心点に対して対称であること。または、仮想の四角形25fに対して、四隅の切り欠き面積が同一であることが好ましい。なお、第1の励振電極25aにおいて、仮想の四角形25fの四隅を切り欠いた4つの面積は夫々同一(略均等)であるのが望ましいが、製造ばらつきを考慮すると約10%の差が生じたとしても、実際の振動に影響を及ぼさないことが確認されており、本実施形態例により得られる効果に影響を与えるような問題はない。
The cut-out
リード電極27aは、凹陥面に形成した第1の励振電極25aから延出し、振動部12上から第3の傾斜部16bと、第3の厚肉本体16aとを経由して、第2の厚肉本体15aの凹陥面に形成されたパッド電極29aに導通接続されている。また、リード電極27bは、フラット面に形成された第2の励振電極25bから延出し、基板10のフラット面の端縁部を経由して、第2の厚肉本体15aのフラット面に形成されたパッド電極29bと導通接続されている。
The
図1(a)に示した実施形態例は、リード電極27a,27bの引出し構造の一例であり、リード電極27aは他の厚肉部を経由してもよい。ただ、リード電極27a,27bの長さは最短であることが望ましく、リード電極27a,27b同士が基板10を挟んで交差しないように配慮することにより静電容量の増加を抑えることが望ましい。
The embodiment shown in FIG. 1A is an example of a lead-out structure of the
また、第1の励振電極25a、第2の励振電極25b、リード電極27a,27b、パッド電極29a,29bは、蒸着装置、あるいはスパッタ装置等を用いて、例えば、下地層としてニッケル(Ni)を成膜し、その上に上地層として金(Au)を重ねて成膜後、フォトリソグラフィーによりパターニングされ形成されている。なお、電極材料として、下地層のニッケル(Ni)の代わりにクロム(Cr)、また、上地層の金(Au)の代わりに銀(Ag)、白金(Pt)を用いても構わない。
The
次に、本実施形態例に係る振動素子1の基板10について説明する。
図2は、ATカット水晶基板と結晶軸との関係を説明する図である。
水晶等の圧電材料は三方晶系に属し、図2に示すように互いに直交する結晶軸X、Y、Zを有する。X軸、Y軸、Z軸は、夫々電気軸、機械軸、光学軸と呼称される。そして水晶基板は、XZ面をX軸の回りに所定の角度θだけ回転させた平面に沿って、水晶から切り出された「回転Yカット水晶基板」が基板10として用いられる。例えば、ATカット水晶基板の場合は、角度θは略35°15’である。なお、Y軸及びZ軸もX軸の周りにθ回転させて、夫々Y’軸及びZ’軸とする。従って、ATカット水晶基板は、直交する結晶軸X,Y’,Z’を有する。ATカット水晶基板は、厚み方向がY’軸であって、Y’軸に直交するXZ’面(X軸及びZ’軸を含む面)が主面であり、厚み滑り振動が主振動として励振される。
Next, the
FIG. 2 is a diagram for explaining the relationship between the AT-cut quartz crystal substrate and the crystal axis.
A piezoelectric material such as quartz belongs to the trigonal system and has crystal axes X, Y, and Z orthogonal to each other as shown in FIG. The X axis, the Y axis, and the Z axis are referred to as an electric axis, a mechanical axis, and an optical axis, respectively. As the quartz substrate, a “rotated Y-cut quartz substrate” cut out from the quartz along a plane obtained by rotating the XZ plane around the X axis by a predetermined angle θ is used as the
即ち、基板10は、図2に示すようにX軸(電気軸)、Y軸(機械軸)、Z軸(光学軸)からなる直交座標系のX軸を回転軸として、前記Z軸を前記Y軸の−Y方向へ+Z側が回転するように傾けた軸をZ’軸、前記Y軸を前記Z軸の+Z方向へ+Y側が回転するように傾けた軸をY’軸とし、前記X軸及び前記Z’軸を含む面を主面とし、前記Y’軸に沿った方向を厚みとする「回転Yカット水晶基板」である。
なお、本実施形態例に係る基板10は、角度θが略35°15’のATカットに限定されるものではなく、厚み滑り振動を励振するBTカット等の基板にも広く適用できる。
更に、振動部12の外縁に沿って厚肉部を設けた例を用いて説明したが、これに限らず、振動部12の外縁全周に沿って厚肉部を設けた基板や厚肉部が設けられていない平板状の基板にも広く適用できる。
That is, as shown in FIG. 2, the
The
Furthermore, although it demonstrated using the example which provided the thick part along the outer edge of the
ここで、本実施形態例に係る振動素子1は、基板10に温度特性に優れた切断角度を有しているATカット水晶基板を用いることにより、Q値が高く、温度特性に優れた振動素子を得ることができるという効果がある。また、フォトリソグラフィー技術及びエッチング技術に関する実績や経験が活用できるので、特性のばらつきの小さい振動素子1の量産が可能になる。
Here, the
次に、本実施形態例に係る振動素子1が搭載される電圧制御型発振器について説明する。
一般的に、電圧制御型発振器は振動素子1、発振回路部及び可変容量ダイオードを含む制御電圧端子等により構成され、重要な仕様として制御電圧により振動素子1の発振周波数を可変する周波数可変範囲がある。この周波数可変範囲は、伝送通信機器等で必要なAPR(絶対周波数可変範囲)と、周波数許容偏差(周波数常温偏差、周波数温度特性、電源電圧による周波数変動、負荷による周波数変動、リフローによる周波数変動、経時変化による周波数変動)と、の和であるため、電圧制御型発振器は発振器の外部環境や発振回路条件の変化による周波数変化量を発振器自身が補っている。そのため、周波数可変範囲を広く取れることは、製造や設計に起因する周波数許容偏差を緩和できるため、振動素子1の製造歩留りを向上する上で非常に重要である。
Next, a voltage controlled oscillator on which the
In general, a voltage-controlled oscillator is composed of a
ここで、電圧制御型発振器の周波数可変感度Sは、下記式(1)で表される。
S=−△CL/2×γ×C0×(1+CL/C0)2・・・(1)
ここで、△CLは負荷容量変化、γは容量比(C0/C1)、C0は等価並列容量、CLは負荷容量である。
式(1)より、周波数可変感度Sは、発振回路で構成される負荷容量CLが一定であれば、振動素子1の等価並列容量C0と容量比γにより決定され、特に、容量比γによる影響が大きい。従って、容量比γを小さくすれば、電圧制御型発振器の周波数可変感度Sを大きくすることができ、振動素子1の製造歩留りを向上させることができる。
Here, the frequency variable sensitivity S of the voltage controlled oscillator is expressed by the following formula (1).
S = −ΔCL / 2 × γ × C0 × (1 + CL / C0) 2 (1)
Here, ΔCL is a change in load capacity, γ is a capacity ratio (C0 / C1), C0 is an equivalent parallel capacity, and CL is a load capacity.
From the equation (1), the frequency variable sensitivity S is determined by the equivalent parallel capacitance C0 of the
次に、振動素子1aの振動変位について説明する。
図3は、励振電極が設けられた振動素子における振動変位分布を示す説明図であり、図3(a)は平面図、図3(b)は図3(a)の縦断面図である。
図3では基板10上に矩形状の励振電極23が設けられた振動素子1aの基本波の厚み滑り振動モードの振動変位分布を有限要素法で計算した結果を示している。この図より、振動変位は励振電極23の四隅部で非常に小さく、この部分が実際の振動に寄与していないことが解る。ここで、振動素子1aの等価並列容量C0は表裏励振電極間の静電容量であるので対向面積に依存するが、等価直列容量C1は実際の振動領域における容量成分であるため励振電極23の面積が十分大きければ対向面積に依存しない。そのため、実際の振動に寄与しない励振電極23の一部を除去することで、等価直列容量C1に影響を及ぼさずに、等価並列容量C0のみを小さくでき、容量比γの小さい振動素子1aを得ることができる。
Next, the vibration displacement of the
3A and 3B are explanatory views showing vibration displacement distributions in the vibration element provided with the excitation electrode. FIG. 3A is a plan view and FIG. 3B is a longitudinal sectional view of FIG.
FIG. 3 shows the result of calculating the vibration displacement distribution in the thickness-shear vibration mode of the fundamental wave of the
次に、主振動に影響を及ぼすスプリアス振動について説明する。
一般的に、主振動である厚み滑り振動に影響を及ぼすスプリアス振動は、厚み滑り振動のインハーモニックオーバートーンモードといわれ、図3における基板10の長辺方向に振動変位分布する2次モードの(1,2,1)モードや3次モードの(1,3,1)モードである。
Next, the spurious vibration that affects the main vibration will be described.
In general, the spurious vibration that affects the thickness shear vibration, which is the main vibration, is called an inharmonic overtone mode of the thickness shear vibration, and is a secondary mode ((2) of vibration displacement distribution in the long side direction of the
2次モードの(1,2,1)モードは、基板10の長辺方向に沿って、励振電極23の中心部を境に2つの振動変位分布を有している。2つの振動変位分布で生じる電荷の極性が相反しているため、互いに相殺されて通常はスプリアス振動として振動しない。しかし、振動部分の厚みの平面平行度にばらつきがある場合には、2つの振動変位分布で生じる極性の異なる電荷の量が異なり、相殺されないのでスプリアス振動として振動する。また、その周波数は主振動の周波数より高く、主振動の周波数に一番近接している。
The (1, 2, 1) mode of the secondary mode has two vibration displacement distributions along the long side direction of the
3次モードの(1,3,1)モードは、基板10の長辺方向に3つの振動変位分布を有している。励振電極23の中央部の1つの振動変位分布と励振電極23の端部側の2つの振動変位分布とで生じる電荷の極性が相反しており、極性の異なる電荷の量が異なっているため、常にスプリアス振動として振動する。また、その周波数は主振動の周波数より高く、(1,2,1)モードが振動しない場合には主振動の周波数に一番近接している。
The (1, 3, 1) mode of the tertiary mode has three vibration displacement distributions in the long side direction of the
上述した厚み滑り振動のインハーモニックオーバートーンモードのスプリアス振動は、励振電極の周辺部を切り欠いた電極形状とすると、スプリアス振動の振動変位分布上の励振電極の面積が小さくなり、励振電極の膜厚が薄くしたものと同等となるので、その周波数は高くなる。また、主振動は、励振電極の周辺部を切り欠いた形状としても、切り欠いた部分が実際に振動に寄与していないので、周波数はほとんど変化しない。そのため、励振電極の周辺部を切り欠いた電極形状とすることで、主振動とスプリアス振動との周波数差を大きくし、スプリアス振動とのカップリングによる周波数のジャンプ現象を低減した振動素子1を得ることができる。
If the spurious vibration in the in-harmonic overtone mode of the thickness shear vibration described above has an electrode shape in which the periphery of the excitation electrode is notched, the area of the excitation electrode on the vibration displacement distribution of the spurious vibration is reduced, and the film of the excitation electrode is reduced. The frequency is higher because it is equivalent to the thinner one. In addition, even if the main vibration has a shape in which the peripheral portion of the excitation electrode is cut out, the frequency is hardly changed because the cut-out portion does not actually contribute to the vibration. Therefore, by making the electrode shape with the peripheral portion of the excitation electrode cut away, the frequency difference between the main vibration and the spurious vibration is increased, and the
図4は、図1の実施形態例で試作した114MHz帯の共振周波数を有するATカット水晶振動素子の試作条件と測定結果を示している。また、図5は、図4に示したATカット水晶振動素子の励振電極の面積比(S2/S1)に対するC1値及び主振動とスプリアス振動との周波数差△f値をグラフ上にプロットした図である。 FIG. 4 shows test conditions and measurement results of an AT-cut quartz crystal resonator element having a resonance frequency of 114 MHz manufactured as a prototype in the embodiment of FIG. FIG. 5 is a graph in which the C1 value and the frequency difference Δf value between the main vibration and the spurious vibration are plotted on the graph with respect to the area ratio (S2 / S1) of the excitation electrode of the AT-cut quartz crystal vibration element shown in FIG. It is.
試作した114MHz帯の共振周波数を有するATカット水晶振動素子(振動素子1)の試作条件は、図1に示すX軸方向に沿った長さhxとZ’軸方向に沿った長さhzとからなる仮想の四角形25fの面積S1を0.564mm2〜0.705mm2まで変化させ、仮想の四角形25fに辺が内接した第1の励振電極25aの面積S2を0.470mm2一定としている。また、測定結果は、各試作条件におけるATカット水晶振動素子(振動素子1)の等価直列容量C1と、主振動と主振動の周波数と一番近接したスプリアス振動との周波数差△fである。尚、周波数差△fは主振動の周波数で基準化して示し、等価並列容量C0は第1の励振電極25aの面積S2が0.470mm2と一定のため、2.76pFである。
Prototype conditions of the AT-cut quartz crystal resonator element (resonator element 1) having a resonance frequency in the 114 MHz band as a prototype are as follows from the length hx along the X-axis direction and the length hz along the Z′-axis direction shown in FIG. The area S1 of the virtual square 25f is changed from 0.564 mm 2 to 0.705 mm 2, and the area S2 of the
図5では、面積比(S2/S1)が大きくなるのに伴い、等価直列容量C1は小さくなる傾向を示し、周波数差△fは大きくなる傾向を示している。ここで、電圧制御型発振器で振動素子1に要求される容量比γの仕様を300以下(等価並列容量C0が2.76pFであるので、等価直列容量C1が9.2fF以上)、スプリアス振動との周波数差△fとの仕様を1,300ppm以上とすると、これを満足する面積比(S2/S1)は、図5のグラフより、69.2%≦(S2/S1)≦80.1%の範囲である。従って、第1の励振電極25aを周辺部が切り欠いた形状とし、面積比(S2/S1)が69.2%≦(S2/S1)≦80.1%の関係を満足させることにより、容量比γが300以下で、スプリアス振動との周波数差△fが1,300ppm以上となるATカット水晶振動素子(振動素子1)を得ることができる。
In FIG. 5, as the area ratio (S2 / S1) increases, the equivalent series capacitance C1 tends to decrease, and the frequency difference Δf tends to increase. Here, the specification of the capacitance ratio γ required for the
また、製造ばらつき等を考慮し、容量比γの仕様を297以下(C1が9.3fF以上)、周波数差△fの仕様を1,350ppm以上とすると、面積比(S2/S1)は、71.5%≦(S2/S1)≦77.8%の範囲であることが好ましい。更に、容量比γの仕様を294以下(C1が9.4fF以上)、周波数差△fの仕様を1,400ppm以上とすると、面積比(S2/S1)は、73.8%≦(S2/S1)≦75.4%の範囲であることがより好ましい。 In consideration of manufacturing variation and the like, when the specification of the capacity ratio γ is 297 or less (C1 is 9.3 fF or more) and the specification of the frequency difference Δf is 1,350 ppm or more, the area ratio (S2 / S1) is 71 It is preferable that the range is 0.5% ≦ (S2 / S1) ≦ 77.8%. Further, when the specification of the capacity ratio γ is 294 or less (C1 is 9.4 fF or more) and the specification of the frequency difference Δf is 1,400 ppm or more, the area ratio (S2 / S1) is 73.8% ≦ (S2 / More preferably, S1) is in the range of 75.4%.
次に、図1に戻り、図1(a)に示した実施形態例では、凹陥面側(図1(b)の表面側)の第1の励振電極25aの面積の大きさは、フラット面側(図1(b)の裏面側)の励振電極25bの外形形状の外縁内に収まる大きさに設定してある。つまり、第1の励振電極25aは第2の励振電極25bより小さな形状に形成されている。
Next, returning to FIG. 1, in the embodiment shown in FIG. 1A, the size of the area of the
厚み滑り振動は、平面視で第1の励振電極25aと第2の励振電極25bとが重なる領域でのみ振動するので、第1の励振電極25aが第2の励振電極25bの外縁内に収まっていると、主振動の振動エネルギーを効率的に閉じ込めることを、第1の励振電極25aの面積と厚みとで決定することができる。そのため、第1の励振電極25aと第2の励振電極25bとの面積が同一の場合に比べ、電極の厚みを厚くできるので、電極膜のオーミックロスを低減し、主振動のCI値の劣化を低減することができる。
Since the thickness shear vibration vibrates only in a region where the
また、第1の励振電極25aと第2の励振電極25bとを金属マスク法で形成する場合でも、電極形成時に多少の位置ずれがあったとしても、振動部12を挟んだ第1の励振電極25aと第2の励振電極25bとの対向面積が変化し難いため、等価直列容量C1や等価並列容量C0のばらつきが生じ難く、容量比γのばらつきの小さい振動素子1を得ることができる。
Further, even when the
更に、第1の励振電極25aの厚み滑り振動方向に沿った長さをhx、前記厚み滑り振動方向と直交する方向に沿った長さをhzとしたとき、ATカット水晶基板の場合、励振電極の寸法比hx/hzを1.28とすることで主振動の振動エネルギーを励振電極の領域内に効率的に閉じ込めることができる。そのため、製造ばらつきを考慮し励振電極の寸法比hx/hzを1.25≦hx/hz≦1.31の関係とすることで、主振動の振動エネルギーを効率よく閉じ込めることができるので、等価直列容量C1をより大きくすることができ、容量比γのより小さい振動素子1を得ることができる。
Furthermore, when the length along the thickness-shear vibration direction of the
以上、図1に示めした一実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、図6に示す各変形例においても主振動周波数とスプリアス振動周波数との間隔を広げることができ、また、C1値を大きく(容量比γを小さく)することが確認されている。 As described above, the description has been made based on the embodiment shown in FIG. 1, but the present invention is not limited to this, and the interval between the main vibration frequency and the spurious vibration frequency also in each modification shown in FIG. 6. In addition, it has been confirmed that the C1 value is increased (capacity ratio γ is decreased).
次に、本発明の一実施形態に係る振動素子1の変形例について説明する。
図6は、本発明の変形例に係る振動素子の構造を示した概略図であり、図6(a)は第一の変形例を示す平面図、図6(b)は第二の変形例を示す平面図、図6(c)は第三の変形例を示す平面図である。
図6(a)に示す第一の変形例において、第1の励振電極25cは仮想の四角形25fの三隅に切り欠き部26aを有する形状に形成されており、残りの一隅はリード電極27aが接続されているため切り欠き部26aは形成されていない。
図6(b)に示す第二の変形例において、第1の励振電極25dは仮想の四角形25fの四隅が曲線状、例えば円弧状の切り欠き部26bを有する形状に形成されている。また、リード電極27aは、切り欠き部26bを除く第1の励振電極25dの外縁から延在して形成されている。そのため、第1の励振電極25dの周辺部に集中するスプリアス振動の振動領域における第1の励振電極25dの面積を確実に小さくすることができ、スプリアス振動の周波数を高くし、主振動とのカップリングを低減することができる。
図6(c)に示す第三の変形例において、第1の励振電極25eは仮想の四角形25fに円周が内接する楕円形状に形成されている。第1の励振電極25eを楕円形状とすることで主振動の振動エネルギーを効率的に閉じ込めることができ、容量比γをより小さくできるという効果がある。
Next, a modification of the
6A and 6B are schematic views showing the structure of a vibration element according to a modification of the present invention. FIG. 6A is a plan view showing the first modification, and FIG. 6B is a second modification. FIG. 6C is a plan view showing a third modification.
In the first modification shown in FIG. 6A, the
In the second modified example shown in FIG. 6B, the
In the third modified example shown in FIG. 6C, the
これらの変形例において、面積比(S2/S1)が69.2≦(S2/S1)≦80.1%の関係を満たしていれば、主振動周波数とスプリアス振動周波数との間隔を広げることができ、且つ、C1値を大きく(容量比γを小さく)することができるので、スプリアス振動とのカップリングによる周波数のジャンプ現象を低減し、容量比γの小さい振動素子1を得ることができる。
In these modifications, if the area ratio (S2 / S1) satisfies the relationship of 69.2 ≦ (S2 / S1) ≦ 80.1%, the interval between the main vibration frequency and the spurious vibration frequency can be increased. In addition, since the C1 value can be increased (capacitance ratio γ can be decreased), the frequency jump phenomenon due to coupling with spurious vibrations can be reduced, and the
<振動子>
次に、前述した振動素子1を適用した振動子2(本発明の振動子)について説明する。
図7は、本発明の一実施形態に係る振動子の構成を示す図であり、図7(a)は蓋部材を省略した平面図であり、図7(b)は図7(a)の縦断面図である。振動子2は、振動素子1と、振動素子1を収容するために矩形の箱状に形成されているパッケージ本体40と、金属、セラミック、ガラス等からなる蓋部材49と、で構成されている。
<Oscillator>
Next, a vibrator 2 (the vibrator of the present invention) to which the above-described
FIG. 7 is a diagram illustrating a configuration of a vibrator according to an embodiment of the present invention. FIG. 7A is a plan view in which a lid member is omitted, and FIG. 7B is a plan view of FIG. It is a longitudinal cross-sectional view. The
パッケージ本体40は、図7に示すように、第1の基板41と、第2の基板42と、第3の基板43と、シールリング44と、実装端子45と、を積層して形成されている。実装端子45は、第1の基板41の外部底面に複数形成されている。第3の基板43は中央部が除去された環状体であり、第3の基板43の上部周縁に例えばコバール等のシールリング44が形成されている。
As shown in FIG. 7, the
第3の基板43と第2の基板42とにより、振動素子1を収容する凹部(キャビティ)が形成される。第2の基板42の上面の所定の位置には、導体46により実装端子45と電気的に導通する複数の素子搭載パッド47が設けられている。素子搭載パッド47は、振動素子1を載置した際に第2の厚肉本体15aに形成したパッド電極29aに対応するように配置されている。
The third substrate 43 and the
振動素子1を固定する際には、先ず、振動素子1を反転(裏返し)してパッド電極29aを導電性接着剤30が塗布された素子搭載パッド47に載置して荷重をかける。導電性接着剤30は経年変化を考慮して脱ガスの少ないポリイミド系接着剤を用いている。
When fixing the
次に、パッケージ本体40に搭載された振動素子1の熱硬化性の導電性接着剤30を硬化させるために、所定の温度の高温炉に所定の時間入れる。導電性接着剤30を硬化させた後、反転して上面側になったパッド電極29bと、パッケージ本体40の電極端子48とをボンディングワイヤーBWで導通接続する。図7(b)に示すように、振動素子1をパッケージ本体40に支持・固定する部分は、一カ所(一点)であるため、支持固定により生じる応力の大きさを小さくすることが可能となる。
Next, in order to cure the thermosetting
アニール処理を施した後、第2の励振電極25bに質量を付加するか、又は第2の励振電極25bの質量を減じて周波数調整を行う。その後、パッケージ本体40の上面に形成したシールリング44上に、蓋部材49を載置し、減圧雰囲気中、又は窒素ガスの雰囲気中で蓋部材49をシーム溶接して密封し、振動子2が完成する。又は、パッケージ本体40の第3の基板43の上面に塗布した低融点ガラスに蓋部材49を載置し、溶融して密着する方法もある。この場合もパッケージのキャビティ内は減圧雰囲気にするか、又は窒素ガス等の不活性ガスで充填して、振動子2が完成する。
After the annealing treatment, the frequency is adjusted by adding mass to the
パッド電極29a,29bの間隔をZ’軸方向に離して形成した振動素子1を構成してもよい。この場合も図9で説明した振動子2と同様に振動子を構成することができる。また、パッド電極29a,29bを同一面上に間隔を離して形成した振動素子1を構成してもよい。この場合、振動素子1は、二カ所(二点)に導電性接着剤30を塗布して、導通と支持・固定を図るようにした構造である。低背化に適した構造であるが、導電性接着剤30に起因するマウント応力が少し大きくなる虞がある。
以上の振動子2の実施形態例では、パッケージ本体40に積層板を用いた例を説明したが、パッケージ本体40に単層セラミック板を用い、蓋体に絞り加工を施したキャップを用いて振動子を構成してもよい。
The
In the above-described embodiment of the
図7に示すように、振動素子1を支持する部位が一点であり、且つ厚肉部13と振動部12の間にスリット17を設けることにより、導電性接着剤30に起因して生じる応力を小さくすることができるため、周波数再現性、周波数温度特性、CI温度特性、及び周波数エージング特性に優れた振動子2が得られるという効果がある。
As shown in FIG. 7, the portion that supports the
<電子デバイス>
次に、前述した振動素子1を適用した発振器(本発明の電子デバイス)について説明する。
図8は、本発明の一実施形態に係る電子デバイスの構成を示す図であって、図8(a)は蓋部材を省略した平面図であり、図8(b)は図8(a)の縦断面図である。電子デバイス3は、パッケージ本体50と、蓋部材49と、振動素子1と、振動素子1を励振する発振回路を搭載したIC部品51と、電圧により容量が変化する可変容量素子、温度より抵抗が変化するサーミスター、インダクター等の電子部品52の少なくとも1つと、を備えている。
<Electronic device>
Next, an oscillator (electronic device of the present invention) to which the above-described
FIG. 8 is a diagram showing a configuration of an electronic device according to an embodiment of the present invention. FIG. 8A is a plan view in which a lid member is omitted, and FIG. 8B is FIG. FIG. The
パッケージ本体50は、図8に示すように、第1の基板61と、第2の基板62と、第3の基板63と、を積層して形成されている。実装端子45は、第1の基板61の外部底面に複数形成されている。第2の基板62と第3の基板63とは中央部が除去された環状体で形成されている。
As shown in FIG. 8, the package
第1の基板61と、第2の基板62と、第3の基板63と、により、振動素子1、IC部品51、及び電子部品52などを収容する凹部(キャビティ)が形成される。第2の基板62の上面の所定の位置には、導体46により実装端子45と電気的に導通する複数の素子搭載パッド47が設けられている。素子搭載パッド47は、振動素子1を載置した際に第2の厚肉本体15aに形成したパッド電極29aに対応するように配置されている。
The
反転した振動素子1のパッド電極29aを、導電性接着剤(ポリイミド系)30を塗布したパッケージ本体50の素子搭載パッド47に載置し、パッド電極29aと素子搭載パッド47との導通を図る。反転して上面側になったパッド電極29bと、パッケージ本体50の電極端子48とをボンディングワイヤーBWにて接続し、パッケージ本体50の基板間に形成された導体(図示せず)を通じて、IC部品51の1つの電極端子55との導通を図る。IC部品51をパッケージ本体50の所定の位置に固定し、IC部品51の端子と、パッケージ本体50の電極端子55とをボンディングワイヤーBWにて接続する。また、電子部品52は、パッケージ本体50の所定の位置に載置し、金属バンプ等を用いて導体46に接続する。パッケージ本体50を減圧雰囲気、あるいは窒素等の不活性気体で満たし、パッケージ本体50を蓋部材49で密封して電子デバイス3を完成する。
The
パッド電極29bとパッケージ本体50の電極端子48とをボンディングワイヤーBWで接続する工法は、振動素子1を支持する部位が一カ所(一点)になり、導電性接着剤30に起因して生じるマウント応力を小さくする。また、パッケージ本体50に収容するに当たり、振動素子1を反転して、より大きな第2の励振電極25bを上面にしたので、電子デバイス3の周波数調整が容易となる。
In the method of connecting the
図8に示すように、電子デバイス3を構成することにより、基本波で励振する高周波の振動素子1を用いているので、容量比が小さく、周波数可変幅が広がる。更に、S/N比の良好な電圧制御型発振器が得られるという効果がある。
また、電子デバイス3として発振器、温度補償型発振器等を構成することが可能であり、周波数再現性、エージング特性、周波数温度特性に優れた発振器を構成できるという効果がある。
As shown in FIG. 8, by configuring the
In addition, an oscillator, a temperature compensated oscillator, and the like can be configured as the
<電子機器>
次いで、本発明の一実施形態に係る振動素子1を適用した電子機器(本発明の電子機器)について、図9〜図11に基づき、詳細に説明する。
図9は、本発明の一実施形態に係る振動素子を備える電子機器としてのモバイル型(又はノート型)のパーソナルコンピューターの構成を示す斜視図である。この図において、パーソナルコンピューター1100は、キーボード1102を備えた本体部1104と、表示部100を備えた表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。このようなパーソナルコンピューター1100には、フィルター、共振器、基準クロック等として機能する振動素子1が内蔵されている。
<Electronic equipment>
Next, an electronic device (electronic device of the present invention) to which the
FIG. 9 is a perspective view illustrating a configuration of a mobile (or notebook) personal computer as an electronic apparatus including the resonator element according to the embodiment of the invention. In this figure, a
図10は、本発明の一実施形態に係る振動素子を備える電子機器としての携帯電話機(PHSも含む)の構成を示す斜視図である。この図において、携帯電話機1200は、複数の操作ボタン1202、受話口1204及び送話口1206を備え、操作ボタン1202と受話口1204との間には、表示部100が配置されている。このような携帯電話機1200には、フィルター、共振器等として機能する振動素子1が内蔵されている。
FIG. 10 is a perspective view illustrating a configuration of a mobile phone (including PHS) as an electronic apparatus including the resonator element according to the embodiment of the invention. In this figure, a cellular phone 1200 includes a plurality of operation buttons 1202, an earpiece 1204, and a mouthpiece 1206, and the
図11は、本発明の一実施形態に係る振動素子を備える電子機器としてのデジタルスチールカメラの構成を示す斜視図である。なお、この図には、外部機器との接続についても簡易的に示されている。ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し、デジタルスチールカメラ1300は、被写体の光像をCCD(Charge Coupled Device)等の撮像素子により光電変換して撮像信号(画像信号)を生成する。
デジタルスチールカメラ1300におけるケース(ボディー)1302の背面には、表示部100が設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、表示部100は、被写体を電子画像として表示するファインダーとして機能する。また、ケース1302の正面側(図中裏面側)には、光学レンズ(撮像光学系)やCCD等を含む受光ユニット1304が設けられている。
FIG. 11 is a perspective view illustrating a configuration of a digital still camera as an electronic apparatus including the vibration element according to the embodiment of the invention. In this figure, connection with an external device is also simply shown. Here, an ordinary camera sensitizes a silver halide photographic film with a light image of a subject, whereas a
A
撮影者が表示部100に表示された被写体像を確認し、シャッターボタン1306を押下すると、その時点におけるCCDの撮像信号が、メモリー1308に転送・格納される。また、このデジタルスチールカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示されるように、ビデオ信号出力端子1312にはテレビモニター1330が、データ通信用の入出力端子1314にはパーソナルコンピューター1340が、夫々必要に応じて接続される。更に、所定の操作により、メモリー1308に格納された撮像信号が、テレビモニター1330や、パーソナルコンピューター1340に出力される構成になっている。このようなデジタルスチールカメラ1300には、フィルター、共振器等として機能する振動素子1が内蔵されている。
When the photographer confirms the subject image displayed on the
なお、本発明の一実施形態に係る振動素子1は、図9のパーソナルコンピューター1100(モバイル型パーソナルコンピューター)、図10の携帯電話機1200、図11のデジタルスチールカメラ1300の他にも、例えば、インクジェット式吐出装置(例えばインクジェットプリンター)、ラップトップ型パーソナルコンピューター、テレビ、ビデオカメラ、ビデオテープレコーダー、カーナビゲーション装置、ページャ、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、医療機器(例えば電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、電子内視鏡)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシミュレーター等に適用することができる。
The
<移動体>
次に、本発明の一実施形態に係る振動素子1を有する振動子2を適用した移動体(本発明の移動体)について、図12に基づき説明する。
図12は、振動子2を備える移動体としての自動車1400を概略的に示す斜視図である。自動車1400には本発明の一実施形態係る振動子2を含んで構成されたジャイロセンサーが搭載されている。例えば、同図に示すように、移動体としての自動車1400には、タイヤ1401を制御する該ジャイロセンサーを内蔵した電子制御ユニット1402が搭載されている。また、他の例として、振動子2は、キーレスエントリー、イモビライザー、カーナビゲーションシステム、カーエアコン、アンチロックブレーキシステム(ABS)、エアバック、タイヤ・プレッシャー・モニタリング・システム(TPMS:Tire Pressure Monitoring System)、エンジンコントロール、ハイブリッド自動車や電気自動車の電池モニター、車体姿勢制御システム、等の電子制御ユニット(ECU:electronic control unit)に広く適用できる。
<Moving object>
Next, a moving body (moving body of the present invention) to which the
FIG. 12 is a perspective view schematically showing an
上述したように、移動体として、スプリアス振動の影響を抑制した振動特性の良好な振動素子1を有する振動子2を備えていることにより、より高性能の移動体を提供することができる。
As described above, a moving body with higher performance can be provided by including the
以上、本発明の振動素子1、振動子2、電子デバイス3、電子機器及び移動体について、図示の実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物が付加されていてもよい。また、前述した各実施形態を適宜組み合わせてもよい。
The
1,1a…振動素子、2…振動子、3…電子デバイス、10…基板、11…凹陥部、12…振動部、13…厚肉部、14…第1の厚肉部、14a…第1の厚肉本体、14b…第1の傾斜部、15…第2の厚肉部、15a…第2の厚肉本体、15b…第2の傾斜部、16…第3の厚肉部、16a…第3の厚肉本体、16b…第3の傾斜部、17…スリット、23…励振電極、25a,25c,25d,25e…第1の励振電極、25b…第2の励振電極、25f…仮想の四角形、26a,26b…切り欠き部、27a,27b…リード電極、29a,29b…パッド電極、30…導電性接着剤、40…パッケージ本体、41…第1の基板、42…第2の基板、43…第3の基板、44…シールリング、45…実装端子、46…導体、47…素子搭載パッド、48…電極端子、49…蓋部材、50…パッケージ本体、51…IC部品、52…電子部品、55…電極端子、61…第1の基板、62…第2の基板、63…第3の基板、100…表示部、1100…パーソナルコンピューター、1102…キーボード、1104…本体部、1106…表示ユニット、1200…携帯電話機、1202…操作ボタン、1204…受話口、1206…送話口、1300…デジタルスチールカメラ、1302…ケース、1304…受光ユニット、1306…シャッターボタン、1308…メモリー、1312…ビデオ信号出力端子、1314…入出力端子、1330…テレビモニター、1340…パーソナルコンピューター、1400…自動車、1401…タイヤ、1402…電子制御ユニット。
DESCRIPTION OF
Claims (9)
前記第1の主面に設けられている第1の励振電極と、
前記第2の主面に設けられ、平面視で前記第1の励振電極と重なっている第2の励振電極と、
を含み、
第1方向に沿った第1の辺および第2の辺と、前記第1方向に直交する第2方向に沿った第3の辺および第4の辺と、を有する四角形を想定すると、前記第1の励振電極の外縁は、平面視で、
前記第1の辺に接している直線状の部分を含む第1外縁部、前記第2の辺に接している直線状の部分を含む第2外縁部、前記第3の辺に接している直線状の部分を含む第3外縁部、および前記第4の辺に接している直線状の部分を含む第4外縁部と、
前記第1外縁部と前記第3外縁部との間を繋ぐ第5外縁部、前記第1外縁部と前記第4外縁部との間を繋ぐ第6外縁部、前記第2外縁部と前記第3外縁部との間を繋ぐ第7外縁部、および前記第2外縁部と前記第4外縁部との間を繋ぐ第8外縁部と、を含み、
前記第5外縁部、前記第6外縁部、前記第7外縁部および前記第8外縁部は、前記四角形の隅部よりも内側にあり、且つ、円弧状であり、
前記第1の励振電極の前記第1方向に沿った長さは、前記第2方向に沿った長さよりも長く、
前記四角形の面積をS1、
前記第1の励振電極の面積をS2としたとき、
69.2%≦(S2/S1)≦80.1%
を満たしていることを特徴とする振動素子。 An AT-cut quartz substrate that includes a first main surface and a second main surface that are in a front-back relationship with each other and that undergoes thickness-shear vibration;
A first excitation electrode provided on the first main surface;
A second excitation electrode provided on the second main surface and overlapping the first excitation electrode in plan view;
Including
Assuming a quadrangle having a first side and a second side along a first direction, and a third side and a fourth side along a second direction orthogonal to the first direction, the first side The outer edge of the excitation electrode 1 is a plan view,
A first outer edge portion including a linear portion in contact with the first side, a second outer edge portion including a linear portion in contact with the second side, and a straight line in contact with the third side A third outer edge portion including a shape-shaped portion, and a fourth outer edge portion including a linear portion in contact with the fourth side;
A fifth outer edge connecting between the first outer edge and the third outer edge; a sixth outer edge connecting between the first outer edge and the fourth outer edge; the second outer edge; A seventh outer edge connecting between the three outer edges and an eighth outer edge connecting between the second outer edge and the fourth outer edge;
The fifth outer edge portion, the sixth outer edge portion, the seventh outer edge portion, and the eighth outer edge portion are on the inner side of the corners of the quadrangle and are arcuate,
The length along the first direction of the first excitation electrode is longer than the length along the second direction,
The area of the rectangle is S1,
When the area of the first excitation electrode is S2,
69.2% ≦ (S2 / S1) ≦ 80.1%
A vibration element characterized by satisfying
前記第1の励振電極の前記第1方向に沿った長さをhx、
前記第1の励振電極の前記第2方向に沿った長さをhzとしたとき、
1.25≦hx/hz≦1.31
を満たしていることを特徴とする振動素子。 In claim 1,
The length of the first excitation electrode along the first direction is hx,
When the length along the second direction of the first excitation electrode is hz,
1.25 ≦ hx / hz ≦ 1.31
A vibration element characterized by satisfying
前記第1の励振電極は、平面視で、前記第2の励振電極の外縁内に収まっていることを特徴とする振動素子。 In claim 1 or 2,
The vibration element, wherein the first excitation electrode is within an outer edge of the second excitation electrode in plan view.
前記第1の励振電極の外縁のうち、前記第1外縁部から延在しているリード電極を含むことを特徴とする振動素子。 In any one of Claims 1 thru | or 3,
A vibrating element comprising a lead electrode extending from the first outer edge portion of the outer edge of the first excitation electrode.
前記ATカット水晶基板は、
前記第1の励振電極および前記第2の励振電極が設けられている振動部と、
前記第1の主面及び前記第2の主面に直交する厚さが前記振動部よりも大きい厚肉部と、
を備え、
前記振動部は、前記第1方向に沿った第1振動部外縁および第2振動部外縁と、前記第2方向に沿った第3振動部外縁および第4振動部外縁と、を含み、
前記厚肉部は、前記第1振動部外縁、前記第3振動部外縁、および前記第4振動部外縁に沿って配置されていることを特徴とする振動素子。 In any one of Claims 1 thru | or 4 ,
The AT-cut quartz substrate is
A vibrating portion provided with the first excitation electrode and the second excitation electrode;
A thick portion having a thickness perpendicular to the first main surface and the second main surface larger than that of the vibrating portion;
With
The vibrating portion includes a first vibrating portion outer edge and a second vibrating portion outer edge along the first direction, and a third vibrating portion outer edge and a fourth vibrating portion outer edge along the second direction,
The thick element is disposed along the outer edge of the first vibrating part, the outer edge of the third vibrating part, and the outer edge of the fourth vibrating part.
前記振動素子が収容されているパッケージと、
を備えていることを特徴とする振動子。 The vibration element according to any one of claims 1 to 5 ,
A package containing the vibration element;
A vibrator characterized by comprising:
前記振動素子を駆動する発振回路と、
を備えていることを特徴とする電子デバイス。 The vibration element according to any one of claims 1 to 5 ,
An oscillation circuit for driving the vibration element;
An electronic device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018037271A JP6562101B2 (en) | 2018-03-02 | 2018-03-02 | Vibration element, vibrator, electronic device, electronic device, and moving object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018037271A JP6562101B2 (en) | 2018-03-02 | 2018-03-02 | Vibration element, vibrator, electronic device, electronic device, and moving object |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013206162A Division JP6303372B2 (en) | 2013-10-01 | 2013-10-01 | Vibration element, vibrator, electronic device, electronic device, and moving object |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018110447A JP2018110447A (en) | 2018-07-12 |
JP6562101B2 true JP6562101B2 (en) | 2019-08-21 |
Family
ID=62844613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018037271A Active JP6562101B2 (en) | 2018-03-02 | 2018-03-02 | Vibration element, vibrator, electronic device, electronic device, and moving object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6562101B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7559352B2 (en) * | 2020-05-19 | 2024-10-02 | セイコーエプソン株式会社 | Vibration element, oscillator, electronic device, and moving body |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3881503B2 (en) * | 2000-09-29 | 2007-02-14 | 京セラ株式会社 | Piezoelectric vibrator and piezoelectric device equipped with the same |
CN101772889B (en) * | 2007-08-03 | 2013-01-09 | 株式会社大真空 | Piezoelectric vibrator |
JP5378917B2 (en) * | 2009-09-09 | 2013-12-25 | 日本電波工業株式会社 | Quartz vibrating piece and quartz vibrating device |
-
2018
- 2018-03-02 JP JP2018037271A patent/JP6562101B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018110447A (en) | 2018-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8791766B2 (en) | Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element | |
TWI578585B (en) | Vibrator element, vibrator, electronic device, electronic apparatus, and mobile object | |
CN110011630B (en) | Vibrating element, vibrator, electronic device, electronic apparatus, and moving object | |
US9013242B2 (en) | Resonator element, resonator, electronic device, electronic apparatus, and mobile object | |
JP6083144B2 (en) | Vibrating piece, vibrating element, vibrator, electronic device, electronic apparatus, moving body, and method of manufacturing vibrating piece | |
JP2016029762A (en) | Vibration element, vibrator, oscillator, electronic apparatus and mobile body | |
JP6119138B2 (en) | Vibrating piece, vibrating element, vibrator, electronic device, electronic apparatus, moving body, and method of manufacturing vibrating piece | |
JP6079280B2 (en) | Vibration element, vibrator, electronic device, electronic device, and moving object | |
JP6191152B2 (en) | Vibration element, vibrator, electronic device, electronic device, and moving object | |
US9748920B2 (en) | Resonator element, resonator, electronic device, electronic apparatus, and moving object | |
JP2013255051A (en) | Vibration element, vibrator, electronic device, electronic apparatus and manufacturing method of vibration element | |
JP2014007693A (en) | Vibration element, vibrator, electronic device, electronic apparatus, and mobile body | |
JP6064350B2 (en) | Vibration element, vibrator, electronic device, and electronic apparatus | |
JP6787467B2 (en) | Manufacturing methods for vibrating elements, oscillators, electronic devices, electronic devices, mobile objects and vibrating elements | |
JP6303372B2 (en) | Vibration element, vibrator, electronic device, electronic device, and moving object | |
JP6562101B2 (en) | Vibration element, vibrator, electronic device, electronic device, and moving object | |
JP6035808B2 (en) | Vibration element, vibrator, electronic device, and electronic apparatus | |
JP2013207536A (en) | Vibration element, oscillator, electronic device and electronic apparatus | |
JP2013258452A (en) | Vibration element, vibrator, electronic device, electronic apparatus, mobile body, and manufacturing method of vibration element | |
JP6627902B2 (en) | Vibrating element, vibrator, electronic device, electronic apparatus, moving body, and method of manufacturing vibrating element | |
JP2017099025A (en) | Vibration piece, vibration element, vibrator, electronic device, electronic apparatus, movable body and manufacturing method for vibration piece | |
JP2013207336A (en) | Vibration element, vibrator, electronic device, and electronic apparatus | |
JP2017220945A (en) | Vibration element, vibrator, electronic device, electronic apparatus, and method of manufacturing vibration element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20180904 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6562101 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |