[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6561979B2 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
JP6561979B2
JP6561979B2 JP2016250289A JP2016250289A JP6561979B2 JP 6561979 B2 JP6561979 B2 JP 6561979B2 JP 2016250289 A JP2016250289 A JP 2016250289A JP 2016250289 A JP2016250289 A JP 2016250289A JP 6561979 B2 JP6561979 B2 JP 6561979B2
Authority
JP
Japan
Prior art keywords
speed
input shaft
transmission path
rotational speed
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016250289A
Other languages
English (en)
Other versions
JP2018105369A (ja
Inventor
太一 鷲尾
太一 鷲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016250289A priority Critical patent/JP6561979B2/ja
Priority to US15/843,500 priority patent/US10443713B2/en
Priority to CN201711394109.8A priority patent/CN108240464B/zh
Publication of JP2018105369A publication Critical patent/JP2018105369A/ja
Application granted granted Critical
Publication of JP6561979B2 publication Critical patent/JP6561979B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H37/022Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing the toothed gearing having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6609Control of clutches or brakes in torque split transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/0846CVT using endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Description

本発明は、入力軸と出力軸との間に、無段変速機構と、少なくとも1つのギヤ比を有するギヤ伝動機構と、前記無段変速機構を介して前記入力軸に伝達されたトルクを前記出力軸に伝達する第1伝達経路と前記ギヤ伝動機構を介して前記入力軸に伝達されたトルクを前記出力軸に伝達する第2伝達経路とを択一的に切り替えるクラッチ機構と、を備える車両用駆動装置に関して、前記第1伝達経路と前記第2伝達経路との切替時において、その切替開始時点の前記入力軸の実際の回転数とその切替完了時点の前記入力軸の実際の回転数との段差を好適に抑制させる技術に関するものである。
例えば、駆動力源から出力されたトルクが伝達される入力軸と、駆動輪に対してトルクを出力する出力軸との間に、無段変速機構と、少なくとも1つのギヤ比を有するギヤ伝動機構と、前記無段変速機構を介して前記入力軸に伝達されたトルクを前記出力軸に伝達する第1伝達経路と前記ギヤ伝動機構を介して前記入力軸に伝達されたトルクを前記出力軸に伝達する第2伝達経路とを択一的に切り替えるクラッチ機構と、を備える車両用駆動装置に関して、車両の走行状態に応じて前記第1伝達経路と前記第2伝達経路とを択一的に切り替える車両用駆動装置の制御装置が知られている。特許文献1に記載された車両用駆動装置の制御装置がそれである。
特開2016−003673号公報
ところで、上記のような車両用駆動装置の制御装置では、前記第1伝達経路と前記第2伝達経路とを切り替える切替用目標入力軸回転数と、前記無段変速機構の変速比制御用の無段変速用目標プライマリ回転数とを、例えば車速およびアクセル開度等によりそれぞれ独立して算出することが考えられる。しかしながら、例えば前記ギヤ伝動機構におけるハード保護要求により前記第2伝達経路が選択されている場合において前記入力軸の回転数に上限を設定する上限ガード値と、前記無段変速機構におけるハード保護要求により前記第1伝達経路が選択されている場合において前記入力軸の回転数に下限を設定する下限ガード値とがそれぞれ設定されている場合に、前記切替用目標入力軸回転数と前記無段変速用目標プライマリ回転数とがそれぞれ独立して算出されると、例えばアクセル開度が同じ場合であっても前記切替用目標入力軸回転数と前記無段変速用目標プライマリ回転数との差が比較的大きくなり、前記第1伝達経路と前記第2伝達経路との切替時において、その切替開始時点の前記入力軸の実際の回転数とその切替完了時点の前記入力軸の実際の回転数との段差が大きくなるという問題があった。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、第1伝達経路と第2伝達経路との切替時において、その切替開始時点の入力軸の実際の回転数とその切替完了時点の入力軸の実際の回転数との段差を好適に抑制させることができる車両用駆動装置の制御装置を提供することにある。
第1発明の要旨とするところは、(a)駆動力源から出力されたトルクが伝達される入力軸と、駆動輪に対してトルクを出力する出力軸との間に、無段変速機構と、少なくとも1つのギヤ比を有するギヤ伝動機構と、前記無段変速機構を介して前記入力軸に伝達されたトルクを前記出力軸に伝達する第1伝達経路と前記ギヤ伝動機構を介して前記入力軸に伝達されたトルクを前記出力軸に伝達する第2伝達経路とを択一的に切り替えるクラッチ機構と、を備える車両用駆動装置に関して、車両の走行状態に応じて前記第1伝達経路と前記第2伝達経路とを択一的に切り替える車両用駆動装置の制御装置において、(b)前記第2伝達経路が選択されている場合において前記ギヤ伝動機構内のピニオンの過回転からの保護要求により前記入力軸の回転数に上限を設定する上限ガード値と、前記第1伝達経路が選択されている場合において前記無段変速機構の保護要求により前記入力軸の回転数に下限を設定する下限ガード値との間に制限された目標入力軸回転数を算出し、(c)前記目標入力軸回転数は、前記第1伝達経路と前記第2伝達経路とを切り替える切替用目標入力軸回転数であり、(d)前記目標入力軸回転数は、前記無段変速機構の変速比制御用の無段変速用目標プライマリ回転数であることにある。
また、第2発明の要旨とするところは、(a)予め記憶された関係から車速およびアクセル開度に基づいて、基本目標入力軸回転数が算出され、(b)前記基本目標入力軸回転数が前記下限ガード値より低い場合には、前記下限ガード値が前記目標入力軸回転数に設定され、(c)前記基本目標入力軸回転数が前記上限ガード値より高い場合には、前記上限ガード値が前記目標入力軸回転数に設定され、(d)前記基本目標入力軸回転数が前記下限ガード値以上であり且つ前記上限ガード値以下である場合には、前記基本目標入力軸回転数が前記目標入力軸回転数に設定されることにある。
また、第発明の要旨とするところは、(a)前記切替用目標入力軸回転数は、前記第2伝達経路から前記第1伝達経路へトルク伝達経路を切り替えるアップ変速用目標入力軸回転数であり、(b)前記入力軸の実際の回転数が、前記アップ変速用目標入力軸回転数を超えるとアップ変速が行われることにある。
また、第発明の要旨とするところは、(a)前記切替用目標入力軸回転数は、前記第1伝達経路から前記第2伝達経路へトルク伝達経路を切り替えるダウン変速用目標入力軸回転数であり、(b)予め記憶されたダウン変速用入力軸回転数算出線から前記出力軸の実際の回転数により求められるダウン変速用入力軸回転数が、前記ダウン変速用目標入力軸回転数以下となるとダウン変速が行われ、(c)前記基本目標入力軸回転数が前記上限ガード値より高くなるようにアクセルが踏み込まれ、且つ前記ダウン変速用目標入力軸回転数が前記ダウン変速用入力軸回転数より小さい場合には、前記第1伝達経路から前記第2伝達経路へのトルク伝達経路の切り替えが禁止されることにある。
第1発明によれば、前記第2伝達経路が選択されている場合において前記ギヤ伝動機構内のピニオンの過回転からの保護要求により前記入力軸の回転数に上限を設定する上限ガード値と、前記第1伝達経路が選択されている場合において前記無段変速機構の保護要求により前記入力軸の回転数に下限を設定する下限ガード値との間に制限された目標入力軸回転数を算出し、前記目標入力軸回転数は、前記第1伝達経路と前記第2伝達経路とを切り替える切替用目標入力軸回転数であり、前記目標入力軸回転数は、前記無段変速機構の変速比制御用の無段変速用目標プライマリ回転数である。このため、前記上限ガード値と前記下限ガード値との間に制限された目標入力軸回転数が、前記切替用目標入力軸回転数と前記無段変速用目標プライマリ回転数とになるので、前記切替用目標入力軸回転数と前記無段変速用目標プライマリ回転数との差が好適に小さくなり、前記第1伝達経路と前記第2伝達経路との切替時において、その切替開始時点の前記入力軸の実際の回転数とその切替完了時点の前記入力軸の実際の回転数との段差が抑制される。
第2発明によれば、予め記憶された関係から車速およびアクセル開度に基づいて、基本目標入力軸回転数が算出され、前記基本目標入力軸回転数が前記下限ガード値より低い場合には、前記下限ガード値が前記目標入力軸回転数に設定され、前記基本目標入力軸回転数が前記上限ガード値より高い場合には、前記上限ガード値が前記目標入力軸回転数に設定され、前記基本目標入力軸回転数が前記下限ガード値以上であり且つ前記上限ガード値以下である場合には、前記基本目標入力軸回転数が前記目標入力軸回転数に設定されるので、前記目標入力軸回転数が前記上限ガード値と前記下限ガード値との間に制限される。
発明によれば、前記切替用目標入力軸回転数は、前記第2伝達経路から前記第1伝達経路へトルク伝達経路を切り替えるアップ変速用目標入力軸回転数であり、前記入力軸の実際の入力軸回転数が、前記アップ変速用目標入力軸回転数を超えるとアップ変速が行われる。このため、前記第2伝達経路から前記第1伝達経路へトルク伝達経路を切り替える切替時において、その切替開始時点の前記入力軸の実際の回転数とその切替完了時点の前記入力軸の実際の回転数との段差が抑制される。
発明によれば、前記切替用目標入力軸回転数は、前記第1伝達経路から前記第2伝達経路へトルク伝達経路を切り替えるダウン変速用目標入力軸回転数であり、予め記憶されたダウン変速用入力軸回転数算出線から前記出力軸の実際の回転数により求められるダウン変速用入力軸回転数が、前記ダウン変速用目標入力軸回転数以下となるとダウン変速が行われ、前記基本目標入力軸回転数が前記上限ガード値より高くなるようにアクセルが踏み込まれ、且つ前記ダウン変速用目標入力軸回転数が前記ダウン変速用入力軸回転数より小さい場合には、前記第1伝達経路から前記第2伝達経路へのトルク伝達経路の切り替えが禁止される。このため、前記基本目標入力軸回転数が前記上限ガード値より高くなるようにアクセルが踏み込まれた際に、アクセル開度に相当する前記基本目標入力軸回転数を算出するが、前記上限ガード値により前記ダウン変速用目標入力軸回転数が制限されるので、前記ダウン変速用目標入力軸回転数が前記ダウン変速用入力軸回転数より小さくなる。これによって、前記基本目標入力軸回転数が前記上限ガード値より高くなるようにアクセルが踏み込まれた際においても前記第1伝達経路から前記第2伝達経路へトルク伝達経路が切り替わらないので、前記入力軸の回転数の挙動変化を好適に抑制することができる。
本発明の一実施例である車両用駆動装置の概略構成を説明する骨子図である。 図1の車両用駆動装置の各走行パターン毎の係合要素の係合表である。 図1の車両用駆動装置に設けられた電子制御装置による制御機能の要部を説明する機能ブロック線図である。 車両走行中に上限ガード値および下限ガード値が設定されていない場合における第1伝達経路と第2伝達経路とを切り替えるアップ変速用目標タービン回転数およびダウン変速用目標タービン回転数と、無段変速機構の変速比制御用の目標プライマリ回転数とを示す図である。 車両走行中に上限ガード値および下限ガード値が設定されている場合における第1伝達経路と第2伝達経路とを切り替えるアップ変速用目標タービン回転数およびダウン変速用目標タービン回転数と、無段変速機構の変速比制御用の目標プライマリ回転数とを示す図である。 図3の電子制御装置において、車両走行中に第1伝達経路と第2伝達経路とを択一的に切り替えられる切替制御すなわちギヤ走行からベルト走行へまたはベルト走行からギヤ走行へ切り替えられる切替制御と、無段変速機構での変速比制御との制御作動の一例を説明するフローチャートである。 本発明の他の実施例の車両用駆動装置の電子制御装置を説明する図である。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例である車両用駆動装置12(以下、駆動装置12という)の概略構成を説明するための骨子図である。駆動装置12は、例えば走行用の駆動力源として用いられるエンジン(駆動力源)14と、流体式伝動装置としてのトルクコンバータ16と、前後進切替装置18と、ベルト式の無段変速機構20と、ギヤ伝動機構22と、駆動輪24L、24Rに動力伝達可能に接続された出力ギヤ26が一体的に形成された出力軸28と、デフギヤ30とを備えている。なお、出力軸28は、駆動輪24L、24Rに対して出力軸28に伝達されたトルクを動力伝達可能(出力可能)に接続されている。駆動装置12においては、タービン軸(入力軸)32と出力軸28との間に、無段変速機構20とギヤ伝動機構22とが並列に備えられている。これによって、駆動装置12では、エンジン14から出力されるトルクがトルクコンバータ16を経由してタービン軸32に伝達され、このタービン軸32に伝達されたトルクがタービン軸32から無段変速機構20を介して出力軸28に伝達される第1伝達経路と、このタービン軸32に伝達されたトルクがタービン軸32からギヤ伝動機構22を介して出力軸28に伝達される第2伝達経路とが形成され、車両の走行状態に応じて後述する電子制御装置(制御装置)34(図3参照)によって、前記第1伝達経路と前記第2伝達経路との間でタービン軸32に伝達されたトルクを出力軸28に伝達するトルク伝達経路が択一的に切り替えられるようになっている。
トルクコンバータ16は、エンジン14のクランク軸に連結されたポンプ翼車16pと、トルクコンバータ16の出力側部材に相当するタービン軸32を介して前後進切替装置18に連結されたタービン翼車16tとを備えており、流体を介して動力伝達を行うようになっている。
前後進切替装置18は、前進用クラッチCaおよび後進用ブレーキBとダブルピニオン型の遊星歯車装置36とを備えており、キャリヤ36cがトルクコンバータ16のタービン軸32および無段変速機構20のプライマリシャフト38に一体的に連結され、リングギヤ36rが後進用ブレーキBを介して非回転部材としてのハウジング40に選択的に連結され、サンギヤ36sが小径ギヤ42に接続されている。また、サンギヤ36sとキャリヤ36cとが、前進用クラッチCaを介して選択的に連結される。前進用クラッチCaおよび後進用ブレーキBは断接装置に相当するもので、何れも油圧アクチュエータによって摩擦係合させられる油圧式摩擦係合装置である。
また、遊星歯車装置36のサンギヤ36sは、ギヤ伝動機構22を構成する小径ギヤ42に連結されている。ギヤ伝動機構22は、上述した小径ギヤ42と、第1カウンタ軸44に相対回転不能に設けられた大径ギヤ46とを含んで1つのギヤ比すなわちELギヤ比γELを有している。第1カウンタ軸44と同じ回転軸心まわりには、アイドラギヤ48が第1カウンタ軸44に対して相対回転可能に設けられている。また、第1カウンタ軸44とアイドラギヤ48との間には、これらを選択的に断接する噛合クラッチDが設けられている。噛合クラッチDは、第1カウンタ軸44に形成された第1ギヤ50と、アイドラギヤ48に形成された第2ギヤ52と、これら第1ギヤ50および第2ギヤ52と嵌合可能(係合可能、噛合可能)なスプライン歯が形成されたハブスリーブ54とを含んでおり、ハブスリーブ54がこれら第1ギヤ50および第2ギヤ52と嵌合することで、第1カウンタ軸44とアイドラギヤ48とが動力伝達可能に接続される。また、噛合クラッチDは、第1ギヤ50と第2ギヤ52とを嵌合する際に回転を同期させる同期機構としてのシンクロメッシュ機構Sをさらに備えている。
アイドラギヤ48は、そのアイドラギヤ48よりも大径の入力ギヤ56と噛み合わされている。入力ギヤ56は、無段変速機構20のセカンダリプーリ58の回転軸心と共通の回転軸心に配置されている出力軸28に対して相対回転不能に設けられている。出力軸28は、セカンダリプーリ58の回転軸心まわりに回転可能に配置されており、入力ギヤ56および出力ギヤ26が相対回転不能に設けられている。また、エンジン14のトルクがタービン軸32からギヤ伝動機構22を経由して出力軸28に伝達される第2伝達経路上には、前進用クラッチCa、後進用ブレーキB、および噛合クラッチDが介挿されている。
無段変速機構20は、入力軸として機能するタービン軸32と出力軸28との間のトルク伝達経路上に設けられ、プライマリシャフト38を介してタービン軸32に連結された入力側部材である有効径が可変のプライマリプーリ(プーリ)60と、後述するベルト走行用クラッチCbを介して出力軸28に連結された出力側部材である有効径が可変のセカンダリプーリ(プーリ)58と、それら一対のプーリ58、60の間に巻き掛けられた伝動ベルト62とを備えており、一対のプーリ58、60と伝動ベルト62との間の摩擦力を介して動力伝達が行われる。
図1に示すように、プライマリプーリ60は、プライマリシャフト38に固定された入力側固定回転体としての固定シーブ60aと、プライマリシャフト38に対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた入力側可動回転体としての可動シーブ60bと、それら固定シーブ60aと可動シーブ60bとの間のV溝幅を変更する為に可動シーブ60bを移動させるための推力を発生させるプライマリ側油圧アクチュエータ60cとを備えている。また、セカンダリプーリ58は、出力側固定回転体としての固定シーブ58aと、固定シーブ58aに対して軸まわりの相対回転不能かつ軸方向の移動可能に設けられた出力側可動回転体としての可動シーブ58bと、それら固定シーブ58aと可動シーブ58bとの間のV溝幅を変更する為に可動シーブ58bを移動させるための推力を発生させるセカンダリ側油圧アクチュエータ58cとを備えている。
プライマリプーリ60およびセカンダリプーリ58のV溝幅が変化して伝動ベルト62の掛かり径(有効径)が変更されることで、実変速比(ギヤ比)γ(=プライマリ回転数nin(rpm)/セカンダリ回転数nss(rpm))が連続的に変更させられる。例えば、プライマリプーリ60のV溝幅が狭くさせられると、変速比γが小さくなる。すなわち、無段変速機構20がアップシフトする。また、プライマリプーリ60のV溝幅が広くさせられると、変速比γが大きくなる。すなわち、無段変速機構20がダウンシフトする。
図1に示すように、無段変速機構20と出力軸28との間には、これらの間を選択的に断接するベルト走行用クラッチCbが介挿されており、ベルト走行用クラッチCbが係合されることで、エンジン14のトルクがタービン軸32および無段変速機構20を経由して出力軸28に伝達される第1伝達経路が形成される。また、ベルト走行用クラッチCbが解放されると、前記第1伝達経路が遮断され、無段変速機構20を介して出力軸28にトルクが伝達されない。
出力ギヤ26は、図1に示すように、第2カウンタ軸64に固定されている大径ギヤ66と噛み合わされている。第2カウンタ軸64には、差動機構から構成されるデフギヤ30のデフリングギヤ68と噛み合う小径ギヤ70が設けられている。
次に、上述のように構成される駆動装置12の作動について、図2に示す各走行パターン毎の係合要素の係合表を用いて説明する。図2において、「Ca」が前進用クラッチCaの作動状態に対応し、「Cb」がベルト走行用クラッチCbの作動状態に対応し、「B」が後進用ブレーキBの作動状態に対応し、「D」が噛合クラッチDの作動状態に対応し、「○」が係合(接続)を示し、「×」が解放(遮断)を示している。なお、噛合クラッチDは、シンクロメッシュ機構Sを備えており、噛合クラッチDが係合する際には、実質的にシンクロメッシュ機構Sが作動することとなる。
先ず、無段変速機構20を介して(経由して)エンジン14のトルクが出力軸28に伝達される走行パターンについて説明する。この走行パターンが図2のベルト走行(高車速)に対応し、図2のベルト走行に示すように、ベルト走行用クラッチCbが接続される一方、前進用クラッチCa、後進用ブレーキB、および噛合クラッチDが遮断される。ベルト走行用クラッチCbが接続されることで、セカンダリプーリ58と出力軸28とが動力伝達可能に接続されるので、セカンダリプーリ58と出力軸28および出力ギヤ26とが一体回転させられる。従って、ベルト走行用クラッチCbが接続されると、前記第1伝達経路が形成され、エンジン14のトルクが、トルクコンバータ16、タービン軸32、プライマリシャフト38、および無段変速機構20を経由して出力軸28および出力ギヤ26に伝達される。
次いで、ギヤ伝動機構22を経由してエンジン14のトルクが出力軸28に伝達される走行パターン、すなわち第2伝達経路を通ってトルクが伝達される走行パターンについて説明する。この走行パターンが図2のギヤ走行に対応し、図2に示すように、前進用クラッチCaおよび噛合クラッチDが係合(接続)される一方、ベルト走行用クラッチCbおよび後進用ブレーキBが解放(遮断)される。
前進用クラッチCaが係合させられることで、前後進切替装置18を構成する遊星歯車装置36が一体回転させられるので、小径ギヤ42がタービン軸32と同回転速度で回転させられる。また、噛合クラッチDが係合させられることで、第1カウンタ軸44とアイドラギヤ48とが動力伝達可能に接続されて一体的に回転させられる。従って、前進用クラッチCaおよび噛合クラッチDが係合されることで、第2伝達経路が形成され、エンジン14の動力が、トルクコンバータ16、タービン軸32、前後進切替装置18、ギヤ伝動機構22、アイドラギヤ48、および入力ギヤ56を経由して出力軸28および出力ギヤ26に伝達される。
前記ギヤ走行は、低車速領域において選択される。この第2伝達経路に基づくELギヤ比γEL(タービン軸32のタービン回転数(回転数)nt(rpm)/出力軸28の出力軸回転数(回転数)no(rpm))は、無段変速機構20の最大変速比γmaxよりも大きな値に設定(図4および図5参照)されている。例えば車速V(km/h)が上昇するなどして、ベルト走行を実行する予め規定されているベルト走行領域に入ると、前記ベルト走行に切り替えられる。ここで、ギヤ走行からベルト走行(高車速)へ、ないしはベルト走行(高車速)からギヤ走行へ切り替える際には、図2のベルト走行(中車速)を過渡的に経由して切り替えられる。
例えばギヤ走行からベルト走行(高車速)に切り替えられる場合には、ギヤ走行に対応する前進用クラッチCaおよび噛合クラッチDが係合された状態から、ベルト走行(中車速)に対応するベルト走行用クラッチCbおよび噛合クラッチDが係合された状態に過渡的に切り替えられる。すなわち、前進用クラッチCaを解放するとともに、ベルト走行用クラッチCbを係合する掛け替え(クラッチツゥクラッチ変速)が開始される。このとき、トルク伝達経路が第2伝達経路から第1伝達経路に切り替えられ、駆動装置12においては実質的にアップシフトさせられる。そして、トルク伝達経路が切り替えられた後、不要な引き摺りやギヤ伝動機構22等の高回転化を防止するために噛合クラッチDが解放(遮断)される。
また、ベルト走行(高車速)からギヤ走行に切り替えられる場合には、ベルト走行用クラッチCbが係合された状態から、ギヤ走行への切替準備として噛合クラッチDが係合される状態に過渡的に切り替えられる(図2に示す「ダウンシフト準備」)。このとき、ギヤ伝動機構22を経由して遊星歯車装置36のサンギヤ36sにも回転が伝達された状態となり、この状態から前進用クラッチCaを係合するとともに、ベルト走行用クラッチCbを解放する掛け替え(クラッチツゥクラッチ変速)が実行されることで、トルク伝達経路が第1伝達経路から第2伝達経路に切り替えられる。このとき、駆動装置12にあっては実質的にダウンシフトさせられる。なお、上述したように、前進用クラッチCaを解放するとともにベルト走行用クラッチCbを係合する掛け替え(クラッチツゥクラッチ変速)によって、トルク伝達経路が第2伝達経路から第1伝達経路に切り替えられ、前進用クラッチCaを係合するとともにベルト走行用クラッチCbを解放する掛け替え(クラッチツゥクラッチ変速)によって、トルク伝達経路が第1伝達経路から第2伝達経路に切り替えられる。このため、前進用クラッチCaおよびベルト走行用クラッチCbは、トルク伝達経路を第1伝達経路と第2伝達経路との間で択一的に切り替えるクラッチ機構として機能する。
図3は、例えば、無段変速機構20、前進用クラッチCaおよびベルト走行用クラッチCbを備えるクラッチ機構などを制御する為に設けられた電子制御装置34の入出力系統を説明するとともに、電子制御装置34による制御機能の要部を説明する機能ブロック線図である。電子制御装置34は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより駆動装置12の各種制御を実行する。例えば、電子制御装置34は、駆動装置12のトルク伝達経路を第1伝達経路および第2伝達経路の何れかに適宜切り替える制御すなわちギヤ走行およびベルト走行の何れかに適宜切り替える制御や無段変速機構20の変速比制御等を実行するようになっている。
電子制御装置34には、車速センサ72により検出される車速V(km/h)を表す信号と、アクセル開度センサ74により検出された運転者の加速要求量としてのアクセルペダルの操作量であるアクセル開度Acc(%)を表す信号と、タービン回転速度センサ76により検出されたタービン軸32のタービン回転数(回転数)nt(rpm)を表す信号と、出力軸回転速度センサ78により検出された出力軸28の出力軸回転数(回転数)no(rpm)を表す信号と、セカンダリ回転速度センサ80により検出されたセカンダリプーリ58のセカンダリ回転数nss(rpm)を表す信号等と、がそれぞれ供給されている。
また、電子制御装置34からは、駆動装置12のトルク伝達経路の切替に関連する前進用クラッチCa、後進用ブレーキB、ベルト走行用クラッチCb、噛合クラッチDに供給される油圧を制御する各リニアソレノイド弁を駆動する為の油圧制御指令信号Spと、無段変速機構20の変速比γを制御するプライマリ側油圧アクチュエータ60c、セカンダリ側油圧アクチュエータ58cに供給される油圧を制御する各リニアソレノイド弁を駆動するための油圧制御指令信号Scvtなどが油圧制御回路82へ出力されている。
図3に示す電子制御装置34は、制御機能の要部として、システム状態取得部84と、走行モード判定部86と、目標タービン回転数算出部88と、切替用目標タービン回転数算出部90と、切替用タービン回転数算出部92と、変速切替判断部94と、クラッチ切替制御部96と、クラッチ切替完了判定部98と、走行状態判定部100と、目標プライマリ回転数算出部102と、CVT変速比制御部104等とを備えている。
図3に示すシステム状態取得部84は、電子制御装置34の図示しない記憶部に記憶されたシステム状態例えば走行中の走行モード、上限ガード値Gmax(図5参照)、下限ガード値Gmin(図5参照)等を取得する(読み込む)。なお、車両走行開始時には、上記走行モードは図2に示したギヤ走行を実行するギヤ走行モードに設定されている。また、上限ガード値Gmax(rpm)は、ハード例えばギヤ伝動機構22内のピニオンの過回転等からの保護要求により、図2に示したギヤ走行においてすなわち第2伝達経路が選択されている場合において例えばギヤ伝動機構22のギヤ(小径ギヤ42、大径ギヤ46)の回転数が高回転となるすなわち遊星歯車装置36のピニオンが高回転となることを防止するために設けられたタービン回転数nt(rpm)の上限値である。また、下限ガード値Gmin(rpm)は、ハード例えば無段変速機構20等の保護要求により、図2に示したベルト走行においてすなわち第1伝達経路が選択されている場合において例えばプライマリプーリ60、セカンダリプーリ58と伝動ベルト62との間で滑りが発生しないように設けられたタービン回転数nt(rpm)の下限値である。なお、上限ガード値Gmax、下限ガード値Gminは、車両走行状態例えばエンジン14から出力される出力トルク等により変化するものである。
図3の走行モード判定部86は、システム状態取得部84でシステム状態すなわち現在の走行モードを取得すると、システム状態取得部84で取得した走行モードにより、車両走行中において電子制御装置34で選択されている走行モードが、図2に示したギヤ走行を実行するギヤ走行モードであるか、それとも図2に示したベルト走行を実行するベルト走行モードであるのかを判定する。
図3の目標タービン回転数算出部88は、システム状態取得部84でシステム状態すなわち上限ガード値Gmax(rpm)および下限ガード値Gmin(rpm)を取得すると、例えばアクセル開度Accをパラメータとして車速Vすなわち出力軸回転数noと無段変速機構20の変速比制御用の目標タービン回転数(目標入力軸回転数)nt*を算出するための基本目標タービン回転数(基本目標入力軸回転数)ntb*との予め定められて記憶されている関係マップ(図4参照)から、実際の出力軸回転数noおよび実際のアクセル開度Accに基づいて基本目標タービン回転数ntb*(rpm)を算出し、その算出された基本目標タービン回転数ntb*を上限ガード値Gmaxと下限ガード値Gminとの間に制限する目標タービン回転数(目標入力軸回転数)nt*(rpm)を算出する。
例えば、目標タービン回転数算出部88では、図5に示すように、アクセル開度Accが例えば30%より低く図4の関係マップから実際の出力軸回転数noおよびアクセル開度Accにより算出された基本目標タービン回転数ntb*(rpm)が下限ガード値Gmin(rpm)より低くなる場合には、すなわち基本目標タービン回転数ntb*(rpm)が下限ガード値Gmin(rpm)より低い場合には、下限ガード値Gminが目標タービン回転数nt*に設定される。また、目標タービン回転数算出部88では、図5に示すように、アクセル開度Accが例えば80%より高く図4の関係マップから実際の出力軸回転数noおよびアクセル開度Accにより算出された基本目標タービン回転数ntb*(rpm)が上限ガード値Gmax(rpm)より高くなる場合には、すなわち基本目標タービン回転数ntb*(rpm)が上限値Gmax(rpm)より高い場合には、上限ガード値Gmaxが目標タービン回転数nt*に設定される。また、目標タービン回転数算出部88では、図5に示すように、アクセル開度Accが例えば30%から80%の間であり図4の関係マップから実際の出力軸回転数noおよびアクセル開度Accにより算出された基本目標タービン回転数ntb*(rpm)が下限ガード値Gmin(rpm)以上であり上限ガード値Gmax(rpm)以下となる場合には、すなわち基本目標タービン回転数ntb*(rpm)が下限ガード値Gmin(rpm)以上であり上限ガード値Gmax(rpm)以下である場合には、基本目標タービン回転数ntb*が目標タービン回転数nt*に設定される。なお、システム状態取得部84でシステム状態すなわち上限ガード値Gmaxおよび下限ガード値Gminが取得されない場合には、目標タービン回転数算出部88では、算出された基本目標タービン回転数ntb*が目標タービン回転数nt*に設定される。
図3の切替用目標タービン回転数算出部90は、走行モード判定部86で走行モードを判定し、且つ目標タービン回転数算出部88で目標タービン回転数nt*を算出すると、目標タービン回転数算出部88で算出された目標タービン回転数nt*に基づいて、第1伝達経路と第2伝達経路とを切り替える切替用目標タービン回転数(切替用目標入力軸回転数)すなわち後述するアップ変速用目標タービン回転数(アップ変速用目標入力軸回転数)nt*up(rpm)またはダウン変速用目標タービン回転数(ダウン変速用目標入力軸回転数)nt*dw(rpm)を算出する。例えば、切替用目標タービン回転数算出部90では、走行モード判定部86で走行モードがギヤ走行モードであると判定されると、第2伝達経路から第1伝達経路へトルク伝達経路を切り替えるアップ変速用のアップ変速用目標タービン回転数nt*upを目標タービン回転数nt*に基づいて算出、すなわち目標タービン回転数算出部88で算出された目標タービン回転数nt*をアップ変速用目標タービン回転数nt*upに設定(nt*=nt*up)する。また、切替用目標タービン回転数算出部90では、走行モード判定部86で走行モードがベルトモードであると判定されると、第1伝達経路から第2伝達経路へトルク伝達経路を切り替えるダウン変速用のダウン変速用目標タービン回転数nt*dwを目標タービン回転数nt*に基づいて算出、すなわち目標タービン回転数算出部88で算出された目標タービン回転数nt*をダウン変速用目標タービン回転数nt*dwに設定(nt*=nt*dw)する。
図3の切替用タービン回転数算出部92は、走行モード判定部86で判定された走行モードがギヤ走行モードである場合には、アップ変速の判定に用いるためのアップ変速用タービン回転数(アップ変速用入力軸回転数)ntup(rpm)を算出し、その走行モード判定部86で判定された走行モードがベルト走行モードである場合には、ダウン変速の判定に用いるためのダウン変速用タービン回転数(ダウン変速用入力軸回転数)ntdw(rpm)を算出する。例えば、切替用タービン回転数算出部92では、走行モード判定部86でギヤ走行モードであると判定すると、出力軸28の実際の出力軸回転数noをギヤ伝動機構22のELギヤ比γELに乗算することによってアップ変速用タービン回転数ntup(rpm)を算出(ntup=no×γEL)する。また、切替用タービン回転数算出部92では、走行モード判定部86でベルト走行モードであると判定すると、例えば縦軸をタービン回転数nt(rpm)とし横軸を出力軸回転数no(rpm)とする図に予め記憶されたパワーオンダウン変速用タービン回転数算出線(ダウン変速用入力軸回転数算出線)L1(図4および図5参照)から、出力軸28の実際の出力軸回転数no(rpm)によりダウン変速用タービン回転数ntdw(rpm)を算出する。
図3の変速切替判断部94は、走行モード判定部86で走行モードを判定し、且つ切替用目標タービン回転数算出部90でアップ変速用目標タービン回転数nt*upまたはダウン変速用目標タービン回転数nt*dwを算出し、且つ切替用タービン回転数算出部92でアップ変速用タービン回転数ntupまたはダウン変速用タービン回転数ntdwを算出すると、第1伝達経路と第2伝達経路とを切り替えるか否かを判断する。
例えば、変速切替判断部94では、走行モード判定部86で走行モードがギヤ走行モードであると判定され、且つ切替用目標タービン回転数算出部90でアップ変速用目標タービン回転数nt*up(rpm)が算出され、且つ切替用タービン回転数算出部92でアップ変速用タービン回転数ntup(rpm)が算出されると、算出されたアップ変速用目標タービン回転数nt*up(rpm)とアップ変速用タービン回転数ntup(rpm)とを用いて、第2伝達経路から第1伝達経路へトルク伝達経路を切り替えるアップ変速を行うか否かを判断する。なお、変速切替判断部94では、前記アップ変速は、切替用タービン回転数算出部92で算出されたアップ変速用タービン回転数ntup(rpm)が、切替用目標タービン回転数算出部90で算出されたアップ変速用目標タービン回転数nt*up(rpm)を超えること(nt*up<ntup)により行われる。また、変速切替判断部94では、前記アップ変速が行われると、システム状態取得部84で取得されるシステム状態すなわち走行モードをベルト走行モードに変更(走行モード=ベルト走行モード)する。
また、例えば、変速切替判断部94では、走行モード判定部86で走行モードがベルト走行モードであると判定され、且つ切替用目標タービン回転数算出部90でダウン変速用目標タービン回転数nt*dw(rpm)が算出され、且つ切替用タービン回転数算出部92でダウン変速用タービン回転数ntdw(rpm)が算出され、且つ例えばアクセルペダルが踏み込まれているパワーオン走行である場合には、算出されたダウン変速用目標タービン回転数nt*dw(rpm)とダウン変速用タービン回転数ntdw(rpm)とを用いて、第1伝達経路から第2伝達経路へトルク伝達経路を切り替えるパワーオンダウン変速を行うか否かを判断する。なお、変速切替判断部94では、前記パワーオンダウン変速は、切替用タービン回転数算出部92で算出されたダウン変速用タービン回転数ntdw(rpm)が、切替用目標タービン回転数算出部90で算出されたダウン変速用目標タービン回転数nt*dw(rpm)以下となること(nt*dw≧ntdw)により行われる。また、変速切替判断部94では、前記パワーオンダウン変速が行われると、システム状態取得部84で取得されるシステム状態すなわち走行モードをギヤ走行モードに変更(走行モード=ギヤ走行モード)する。
また、例えば、変速切替判断部94では、走行モード判定部86で走行モードがベルト走行モードであると判定され、且つ例えばアクセルペダルが踏み込まれていないコースト走行である場合には、出力軸28の実際の出力軸回転数no(rpm)が、予め定められたコーストダウン回転数no1(rpm)(図4および図5参照)以下(no1≧no)となると、第1伝達経路から第2伝達経路へトルク伝達経路を切り替えるコーストダウン変速が行われる。また、変速切替判断部94では、前記コーストダウン変速が行われると、システム状態取得部84で取得されるシステム状態すなわち走行モードをギヤ走行モードに変更(走行モード=ギヤ走行モード)する。
図3のクラッチ切替制御部96は、変速切替判断部94でアップ変速が行われると、前進用クラッチCaを解放すると共にベルト走行用クラッチCbを係合するクラッチツゥクラッチ変速を実行した後、噛合クラッチDを解放する。また、クラッチ切替制御部96は、変速切替判断部94でダウン変速すなわちパワーオンダウン変速またはコーストダウン変速が行われると、先ず噛合クラッチDを係合した後、前進用クラッチCaを係合すると共にベルト走行用クラッチCbを解放するクラッチツゥクラッチ変速を実行する。
図3のクラッチ切替完了判定部98は、変速切替判断部94でアップ変速が行われたと判断し、且つクラッチ切替制御部96でクラッチツゥクラッチ変速が実行されると、クラッチ切替制御部96で実行されたクラッチツゥクラッチ変速が完了したか否かすなわちベルト走行用クラッチCbが解放状態から係合状態へ切替が完了したか否かを判定する。例えば、クラッチ切替完了判定部98では、セカンダリ回転数nss(rpm)と出力軸回転数no(rpm)との差が予め設定された同期判定値以内となると、クラッチ切替制御部96で実行されていたクラッチツゥクラッチ変速が完了したと判定する。
また、クラッチ切替完了判定部98は、変速切替判断部94でパワーオンダウン変速またはコーストダウン変速が行われたと判断し、且つクラッチ切替制御部96でクラッチツゥクラッチ変速が実行されると、クラッチ切替制御部96で実行されたクラッチツゥクラッチ変速が完了したか否かすなわち前進用クラッチCaが解放状態から係合状態へ切替が完了したか否かを判定する。例えば、クラッチ切替完了判定部98では、タービン回転数nt(rpm)とギヤ伝動機構22の小径ギヤ42の回転数(rpm)との差が所定値以内となると、クラッチ切替制御部96で実行されていたクラッチツゥクラッチ変速が完了したと判定する。なお、ギヤ伝動機構22の小径ギヤ42の回転数(rpm)は、入力ギヤ56とアイドラギヤ48とのギヤ比γ、および大径ギヤ46と小径ギヤ42とのギヤ比γを用いて出力軸回転数no(rpm)から算出される。
図3の走行状態判定部100は、クラッチ切替完了判定部98でクラッチツゥクラッチ変速が完了したと判定すると、クラッチ例えばベルト走行用クラッチCbの実際の係合状態から実際の車両の走行状態がギヤ走行であるかそれともベルト走行であるかを判定する。例えば、走行状態判定部100では、ベルト走行用クラッチCbに供給される油圧を制御するリニアソレノイド弁を駆動する為の油圧制御指令信号Spが供給されている場合には、車両の走行状態がベルト走行であると判定し、上記油圧制御指令信号Spが供給されていない場合には、車両の走行状態がギヤ走行であると判定する。
図3の目標プライマリ回転数算出部102は、走行状態判定部100で車両の走行状態を判定すると、無段変速機構20の変速比制御用の目標プライマリ回転数(無段変速用目標プライマリ回転数)nin*(rpm)を算出する。例えば、目標プライマリ回転数算出部102では、走行状態判定部100で走行状態がベルト走行であると判定すると、目標タービン回転数算出部88で算出された目標タービン回転数nt*(rpm)を目標プライマリ回転数nin*(rpm)に設定(nin*=nt*)する。また、目標プライマリ回転数算出部102では、走行状態判定部100で走行状態がギヤ走行であると判定すると、例えば無段変速機構20の変速比γが最大変速比γmaxとなるように予め設定されたγmax回転数nγmax(rpm)を目標プライマリ回転数nin*(rpm)に設定(nin*=nγmax)する。
図3のCVT変速比制御部104は、目標プライマリ回転数算出部102で目標プライマリ回転数nin*(rpm)が算出されると、その目標プライマリ回転数算出部102で算出された目標プライマリ回転数nin*(rpm)に基づいて後述する目標変速比γ*を算出し、その算出された目標変速比γ*となるように無段変速機構20の変速比γを制御する油圧制御指令信号Scvtを油圧制御回路82へ出力する。なお、CVT変速比制御部104では、目標プライマリ回転数算出部102で目標プライマリ回転数nin*(rpm)が算出されると、その算出された目標プライマリ回転数nin*(rpm)とセカンダリ回転速度センサ80から検出されたセカンダリ回転数nss(rpm)との比により目標変速比γ*が算出される。
図6は、電子制御装置34において、車両走行中に第1伝達経路と第2伝達経路とを択一的に切り替えられる切替制御すなわちギヤ走行からベルト走行へまたはベルト走行からギヤ走行へ切り替えられる切替制御と、無段変速機構20での変速比制御との制御作動の一例を説明するフローチャートである。
先ず、システム状態取得部84の機能に対応するステップ(以下、ステップを省略する)S1において、電子制御装置34の図示しない記憶部に記憶されたシステム状態例えば走行中の走行モード、上限ガード値Gmax、下限ガード値Gmin等を取得する。次に、目標タービン回転数算出部88の機能に対応するS2が実行される。S2では、図4に示す関係マップから実際の出力軸回転数no(rpm)およびアクセル開度Acc(%)に基づいて基本目標タービン回転数ntb*(rpm)が算出され、その算出された基本目標タービン回転数ntb*から上記S1で取得した上限ガード値Gmaxと下限ガード値Gminとの間に制限された目標タービン回転数nt*(rpm)が算出される。
次に、走行モード判定部86の機能に対応するS3が実行される。S3では、車両走行中において電子制御装置34で選択されている走行モードがギヤ走行モードであるか否かが判定される。S3の判定が肯定される場合すなわち走行モードがギヤ走行モードである場合には、切替用目標タービン回転数算出部90および切替用タービン回転数算出部92の機能に対応するS4が実行させられるが、S3の判定が否定される場合すなわち走行モードがベルト走行モードである場合には、切替用目標タービン回転数算出部90および切替用タービン回転数算出部92の機能に対応するS5が実行させられる。S4では、出力軸28の実際の出力軸回転数noをギヤ伝動機構22のELギヤ比γELに乗算することによってアップ変速用タービン回転数ntupが算出され、第2伝達経路から第1伝達経路へトルク伝達経路を切り替えるアップ変速用のアップ変速用目標タービン回転数nt*up(nt*=nt*up)が算出される。また、S5では、図4および図5に示すパワーオンダウン変速用タービン回転数算出線L1から、出力軸28の実際の出力軸回転数noによりダウン変速用タービン回転数ntdwが算出され、第1伝達経路から第2伝達経路へトルク伝達経路を切り替えるダウン変速用のダウン変速用目標タービン回転数nt*dw(nt*=nt*dw)が算出される。
次に、変速切替判断部94の機能に対応するS6が実行させられる。S6では、上記S4で算出されたアップ変速用目標タービン回転数nt*upとアップ変速用タービン回転数ntupとを用いて、第2伝達経路から第1伝達経路へトルク伝達経路を切り替えるアップ変速を行うか否かが判断される。S6の判定が否定される場合すなわちアップ変速用タービン回転数ntupがアップ変速用目標タービン回転数nt*up以下である場合には、再度S1が実行されるが、S6の判定が肯定される場合すなわちアップ変速用タービン回転数ntupがアップ変速用目標タービン回転数nt*upを超える場合には、変速切替判断部94の機能に対応するS7が実行される。S7では、上記S1で取得されるシステム状態すなわち走行モードがベルト走行モードへ変更(走行モード=ベルト走行モード)させられる。また、次に、クラッチ切替制御部96の機能に対応するS8が実行させられる。S8では、前進用クラッチCaを解放すると共にベルト走行用クラッチCbを係合するクラッチツゥクラッチ変速が実行された後、噛合クラッチDが解放される。
次に、変速切替判断部94の機能に対応するS9が実行させられる。S9では、上記S5で算出されたダウン変速用目標タービン回転数nt*dwとダウン変速用タービン回転数ntdwとを用いて、第1伝達経路から第2伝達経路へトルク伝達経路を切り替えるパワーオンダウン変速を行うか否かが判断される。S9の判定が否定される場合すなわちダウン変速用タービン回転数ntdwがダウン変速用目標タービン回転数nt*dwを超える場合には、再度S1が実行されるが、S9の判定が肯定される場合すなわちダウン変速用タービン回転数ntdwがダウン変速用目標タービン回転数nt*dw以下となる場合には、変速切替判断部94の機能に対応するS10が実行させられる。S10では、上記S1で取得されるシステム状態すなわち走行モードがギヤ走行モードへ変更(走行モード=ギヤ走行モード)させられる。また、次に、クラッチ切替制御部96の機能に対応するS11が実行させられる。S11では、先ず噛合クラッチDを係合させた後、前進用クラッチCaを係合させると共にベルト走行用クラッチCbを解放させるクラッチツゥクラッチ変速が実行される。
次に、クラッチ切替完了判定部98の機能に対応するS12が実行させられる。S12では、上記S8または上記S11で実行されたクラッチツゥクラッチ変速が完了したか否かが判定される。S12の判定が否定される場合には、再度S12が実行させられるが、S12の判定が肯定される場合には、走行状態判定部100の機能に対応するS13が実行される。S13では、ベルト走行用クラッチCbの実際の係合状態から実際の車両の走行状態がベルト走行であるか否かが判定される。S13の判定が肯定される場合すなわち車両の走行状態がベルト走行である場合には、目標プライマリ回転数算出部102の機能に対応するS14が実行させられるが、S13の判定が否定される場合すなわち車両の走行状態がギヤ走行である場合には、目標プライマリ回転数算出部102の機能に対応するS15が実行させられる。S14では、上記S2で算出された目標タービン回転数nt*が目標プライマリ回転数nin*として設定(nin*=nt*)される。S15では、無段変速機構20の変速比γが最大変速比γmaxとなるように予め設定されたγmax回転数nγmaxが目標プライマリ回転数nin*として設定(nin*=nγmax)される。
次に、CVT変速比制御部104の機能に対応するS16が実行させられる。S16では、上記S14または上記S15で算出された目標プライマリ回転数nin*に基づいて目標変速比γ*を算出し、その算出された目標変速比γ*となるように無段変速機構20の変速比γが制御される。
図5は、車両走行中に上限ガード値Gmax(rpm)および下限ガード値Gmin(rpm)が設定されて、図6に示すフローチャートに基づいて例えばギヤ走行からベルト走行へまたはベルト走行からギヤ走行へ切り替えられる切替制御が実行された状態を示す図である。図5において、ギヤ走行からベルト走行へ切り替える切替制御を実行する時にはアクセル開度Accを例えば20%とし、ベルト走行からギヤ走行へ切り替えられる切替制御を実行する時にはアクセル開度Accを例えば100%とする。なお、図4は、車両走行中に上限ガード値Gmax(rpm)および下限ガード値Gmin(rpm)が設定されていない場合を示す図5との比較図である。
ギヤ走行からベルト走行へ切り替える場合すなわち第2伝達経路から第1伝達経路へトルク伝達経路を切り替えるアップ変速の場合には、図6のフローチャートのS2において、アクセル開度Accが20%であることから基本目標タービン回転数ntb*が図4に示す関係マップから基本目標タービン回転数ntb*20として算出され、その算出された基本目標タービン回転数ntb*20が図5に示すように下限ガード値Gminより低いため下限ガード値Gminが目標タービン回転数nt*1として設定される。また、図6のフローチャートのS4において、S2で設定された目標タービン回転数nt*1がアップ変速用のアップ変速用目標タービン回転数nt*up1(図5参照)として設定される。そして、図6のフローチャートのS6からS8、S12を経てギヤ走行からベルト走行へ切り替えられるすなわち第2伝達経路から第1伝達経路へトルク伝達経路が切り替えられると、図6のフローチャートのS14において、S2で設定された目標タービン回転数nt*1が目標プライマリ回転数nin*1(図5参照)として設定される。これによって、第2伝達経路から第1伝達経路へトルク伝達経路を切り替えられると、アップ変速用目標タービン回転数nt*up1(rpm)と目標プライマリ回転数nin*1(rpm)との差が好適に小さくなる。
なお、図5には、アップ変速用目標タービン回転数nt*upと、目標プライマリ回転数nin*とを例えば出力軸回転数(車速)noおよびアクセル開度Accによりそれぞれ独立して算出した比較例が示されている。その比較例では、ギヤ走行時にはアクセル開度Accが20%であることからアップ変速用目標タービン回転数nt*upがアップ変速用目標タービン回転数nt*uph(図5参照)として設定され、そして、ベルト走行時にはアクセル開度Accが20%であるがアクセル開度Accが20%であることにより設定される目標プライマリ回転数が下限ガード値Gmimより低くなるため下限ガード値Gminが図6のフローチャートのものと同様に目標プライマリ回転数nin*1として設定される。このため、図5に示される比較例では、第2伝達経路から第1伝達経路へトルク伝達経路を切り替える切替時において、アップ変速用目標タービン回転数nt*uph(rpm)と目標プライマリ回転数nin*1(rpm)との差が、図6のフローチャートによって設定されたアップ変速用目標タービン回転数nt*up1(rpm)と目標プライマリ回転数nin*1(rpm)との差に比べて大きくなる。また、図5に示す実線L2は、タービン軸32の実際のタービン回転数ntを示す線であり、第2伝達経路から第1伝達経路へトルク伝達経路を切り替える切替時において、その切替開始時点A1のタービン軸32の実際のタービン回転数ntとその切替完了時点A2のタービン軸32の実際のタービン回転数ntとの段差が図5の比較例に比べて抑制されている。なお、図5に示す破線L3は、図5の比較例により設定されたアップ変速用目標タービン回転数nt*uphと目標プライマリ回転数nin*1とを用いた場合におけるタービン軸32の実際のタービン回転数ntを示す線である。
また、ベルト走行からギヤ走行へ切り替える場合すなわち第1伝達経路から第2伝達経路へトルク伝達経路を切り替えるダウン変速の場合には、図6のフローチャートのS2において、アクセル開度Accが100%であることから基本目標タービン回転数ntb*が図4に示す関係マップから基本目標タービン回転数ntb*100として算出され、その算出された基本目標タービン回転数ntb*100が図5に示すように上限ガード値Gmaxより高いため上限ガード値Gmaxが目標タービン回転数nt*2として設定される。また、図6のフローチャートのS5において、上記S2で設定された目標タービン回転数nt*2がダウン変速用のダウン変速用目標タービン回転数nt*dw(図5参照)として設定される。そして、図6のフローチャートのS9からS12を経てベルト走行からギヤ走行へ切り替えられるすなわち第1伝達経路から第2伝達経路へトルク伝達経路が切り替えられると、図6のフローチャートのS4において、S2で設定された目標タービン回転数nt*2がアップ変速用のアップ変速用目標タービン回転数nt*up2(図5参照)として設定される。これによって、第1伝達経路から第2伝達経路へトルク伝達経路を切り替える切替時において、その切替開始時点B1のタービン軸32の実際のタービン回転数ntとその切替完了時点B2のタービン軸32の実際のタービン回転数ntとの段差が好適に抑制される。
上述のように、本実施例の駆動装置12の電子制御装置34によれば、ギヤ伝動機構22におけるタービン回転数ntの上限ガード値Gmaxと無段変速機構20におけるタービン回転数ntの下限ガード値Gminとの間に制限された目標タービン回転数nt*を算出し、目標タービン回転数nt*に基づいて、第1伝達経路と第2伝達経路とを切り替える切替用目標タービン回転数と、無段変速機構20の変速比制御用の目標プライマリ回転数nin*とを算出する。このため、上限ガード値Gmaxと下限ガード値Gminとの間に制限された目標入力軸回転数nt*に基づいて、切替用目標タービン回転数と目標プライマリ回転数nin*とが算出されるので、切替用目標タービン回転数と目標プライマリ回転数nin*との差が好適に小さくなり、前記第1伝達経路と前記第2伝達経路との切替時において、その切替開始時点のタービン軸32の実際のタービン回転数ntとその切替完了時点のタービン軸32の実際のタービン回転数ntとの段差が抑制される。
また、本実施例の駆動装置12の電子制御装置34によれば、アクセル開度Accをパラメータとして出力軸回転数noと基本目標タービン回転数ntb*との予め定められて記憶されている関係マップから、実際の出力軸回転数noおよび実際のアクセル開度Accに基づいて、基本目標タービン回転数ntb*が算出され、基本目標タービン回転数ntb*が下限ガード値Gminより低い場合には、下限ガード値Gminが目標タービン回転数nt*に設定され、基本目標タービン回転数ntb*が上限ガード値Gmaxより高い場合には、上限ガード値Gmaxが目標タービン回転数nt*に設定され、基本目標タービン回転数ntb*が下限ガード値Gmin以上であり且つ上限ガード値Gmax以下である場合には、基本目標タービン回転数ntb*が目標タービン回転数nt*に設定されるので、目標タービン回転数nt*が上限ガード値Gmaxと下限ガード値Gminとの間に制限される。
また、本実施例の駆動装置12の電子制御装置34によれば、目標プライマリ回転数nin*は、目標タービン回転数nt*であるので、目標タービン回転数nt*から目標プライマリ回転数nin*を容易に算出することができる。
また、本実施例の駆動装置12の電子制御装置34によれば、前記切替用目標タービン回転数は、前記第2伝達経路から前記第1伝達経路へトルク伝達経路を切り替えるアップ変速用のアップ変速用目標タービン回転数nt*upであり、アップ変速用タービン回転数ntupが、アップ変速用目標タービン回転数nt*upを超えるとアップ変速が行われる。このため、第2伝達経路から第1伝達経路へトルク伝達経路を切り替える切替時において、その切替開始時点A1のタービン軸32の実際のタービン回転数ntとその切替完了時点A2のタービン軸32の実際のタービン回転数ntとの段差が抑制される。
また、本実施例の駆動装置12の電子制御装置34によれば、アップ変速用目標タービン回転数nt*upは、目標タービン回転数nt*であるので、目標タービン回転数nt*からアップ変速用目標タービン回転数nt*upを容易に算出することができる。
また、本実施例の駆動装置12の電子制御装置34によれば、ダウン変速用目標タービン回転数nt*dwは、目標タービン回転数nt*であるので、目標タービン回転数nt*からダウン変速用目標タービン回転数nt*dwを容易に算出することができる。
次に、本発明の他の実施例を説明する。なお、前述の実施例1と共通する部分には同一の符号を付して説明を省略する。
図7は、本発明の他の実施例の駆動装置12の電子制御装置(制御装置)を説明する図である。本実施例の電子制御装置は、実施例1の電子制御装置34に比較して、図3のクラッチ切替制御部96において機能がさらに追加された点とで相違しており、その他は実施例1の電子制御装置34と略同じである。
クラッチ切替制御部96は、走行モード判定部86で走行モードがベルト走行であると判定され、且つ、基本目標タービン回転数ntb*(rpm)が上限ガード値Gmax(rpm)より高くなるようにアクセルペダル(アクセル)が踏み込まれているパワーオン走行であると判定され、且つ、切替用目標タービン回転数算出部90で算出されたダウン変速用目標タービン回転数ntdw(rpm)が切替用タービン回転数算出部92で算出されたダウン変速用タービン回転数ntdw(rpm)より小さい(nt*dw<ntdw)と判定される場合には、前進用クラッチCaを係合すると共にベルト走行用クラッチCbを解放するクラッチツゥクラッチ変速の実行を、すなわち前記第1伝達経路から前記第2伝達経路へのトルク伝達経路の切り替えを禁止する。
図7は、本実施例の電子制御装置において、例えばベルト走行モードでの走行中にアクセルペダルが踏み込まれた時における制御作動の一例を説明するフローチャートである。
図7のフローチャートでは、クラッチ切替制御部96の機能に対応するS20において、基本目標タービン回転数ntb*(rpm)が上限ガード値Gmax(rpm)より高くなるようにアクセルペダルが踏み込まれているパワーオン走行であるか否かが判定される。S20の判定が肯定される場合には、クラッチ切替制御部96の機能の対応するS21において、ダウン変速用目標タービン回転数nt*dw(rpm)がダウン変速用タービン回転数ntdw(rpm)より小さいか(nt*dw<ntdw)否かが判定される。S21の判定が肯定される場合には、クラッチ切替制御部96の機能の対応するS22において、前進用クラッチCaを係合すると共にベルト走行用クラッチCbを解放するクラッチツゥクラッチ変速の実行が、すなわち前記第1伝達経路から前記第2伝達経路へのトルク伝達経路の切り替えが禁止される。なお、S20の判定およびS21の判定が否定される場合には、例えば図6のS1が実行される。
上述のように、本実施例の駆動装置12の電子制御装置によれば、前記切替用目標タービン回転数は、前記第1伝達経路から前記第2伝達経路へトルク伝達経路を切り替えるダウン変速用のダウン変速用目標タービン回転数nt*dwであり、予め記憶されたパワーオンダウン変速用タービン回転数算出線L1から出力軸28の実際の出力軸回転数noにより求められるダウン変速用タービン回転数ntdwが、ダウン変速用目標タービン回転数nt*dw以下となるとダウン変速が行われ、基本目標タービン回転数ntb*が上限ガード値Gmaxより高くなるようにアクセルペダルが踏み込まれ、且つダウン変速用目標タービン回転数ntdwがダウン変速用タービン回転数ntdwより小さい場合には、前記第1伝達経路から前記第2伝達経路へのトルク伝達経路の切り替えが禁止される。このため、基本目標タービン回転数ntb*が上限ガード値Gmaxより高くなるようにアクセルペダルが踏み込まれた際に、アクセル開度Accに相当する基本目標タービン回転数ntb*を算出するが、上限ガード値Gmaxによりダウン変速用目標タービン回転数nt*dwが制限されるので、ダウン変速用目標タービン回転数nt*dwがダウン変速用タービン回転数ntdwより小さくなる。これによって、基本目標入力軸回転数ntb*が上限ガード値Gmaxより高くなるようにアクセルペダルが踏み込まれた際においても前記第1伝達経路から前記第2伝達経路へトルク伝達経路が切り替わらないので、タービン軸32のタービン回転数ntの挙動変化を好適に抑制することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例において、無段変速機構20は、プライマリプーリ60と、セカンダリプーリ58と、それら一対のプーリ58、60の間に巻き掛けられた伝動ベルト62とが備えられたベルト式のCVTであったが、例えばトロイダル式のCVT等の無段変速機構が用いられても良い。
また、前述の実施例において、ギヤ伝動機構22は、1つのギヤ比すなわちELギヤ比γELを有していたが、例えば2つ以上のギヤ比を有するような多段変速のギヤ伝動機構22の構造を変更しても良い。
また、前述の実施例において、基本目標タービン回転数ntb*は、アクセル開度Accをパラメータとして出力軸回転数noと基本目標タービン回転数ntb*との予め定められて記憶されている関係マップから、実際の出力軸回転数noおよび実際のアクセル開度Accに基づいて、基本目標タービン回転数ntb*を算出していたが、例えば予め記憶された式から、実際の出力軸回転数noおよび実際のアクセル開度Accに基づいて、基本目標タービン回転数ntb*を算出しても良い。
また、前述の実施例において、第2伝達経路に基づくELギヤ比γELは、無段変速機構20の最大変速比γmaxよりも大きな値に設定されていたが、例えばELギヤ比γELを、無段変速機構20の最小変速比γminよりも小さな値に設定しても良い。
また、前述の実施例において、目標プライマリ回転数算出部102では、目標プライマリ回転数nin*を目標タービン回転数nt*として設定(nt*=nin*)していたが、必ずしも目標プライマリ回転数nin*を目標タービン回転数nt*に設定する必要はない。例えば目標タービン回転数nt*を所定値だけ増減させたりした値を目標プライマリ回転数nin*に設定したり、或いは予め定められた式に目標タービン回転数nt*を代入して求められた値を目標プライマリ回転数nin*に設定したりしても良い。すなわち目標タービン回転数nt*に基づいて目標プライマリ回転数nin*を算出しても良い。
また、前述の実施例において、切替用目標タービン回転数算出部90では、アップ変速用目標タービン回転数nt*upおよびダウン変速用目標タービン回転数nt*dwを目標タービン回転数nt*として設定(nt*=nt*up=nt*dw)していたが、アップ変速用目標タービン回転数nt*upおよびダウン変速用目標タービン回転数nt*dwを目標タービン回転数nt*に設定する必要はない。例えば、目標タービン回転数nt*を所定値だけ増減させたりした値をアップ変速用目標タービン回転数nt*upおよびダウン変速用目標タービン回転数nt*dwに設定したり、或いは予め定められた式に目標タービン回転数nt*を代入して求められた値をアップ変速用目標タービン回転数nt*upおよびダウン変速用目標タービン回転数nt*dwに設定したりしても良い。すなわち目標タービン回転数nt*に基づいてアップ変速用目標タービン回転数nt*upおよびダウン変速用目標タービン回転数nt*dwを算出しても良い。
また、前述の実施例において、切替用タービン回転数算出部92では、出力軸28の実際の出力軸回転数noをギヤ伝動機構22のELギヤ比γELに乗算することによってアップ変速用タービン回転数ntup(rpm)を算出(ntup=no×γEL)していたが、そのアップ変速用タービン回転数ntup(rpm)に代えて、例えばタービン回転速度センサ76から検出される実際のタービン回転数nt(rpm)を用いても良い。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
12:車両用駆動装置(駆動装置)
14:エンジン(駆動力源)
20:無段変速機構
22:ギヤ伝動機構
24L、24R:駆動輪
28:出力軸
32:タービン軸(入力軸)
34:電子制御装置(制御装置)
88:目標タービン回転数算出部
90:切替用目標タービン回転数算出部
92:切替用タービン回転数算出部
94:変速切替判断部
102:目標プライマリ回転数算出部
Acc:アクセル開度
Ca:前進用クラッチ(クラッチ機構)
Cb:ベルト走行用クラッチ(クラッチ機構)
Gmax:上限ガード値
Gmin:下限ガード値
L1:パワーオンダウン変速用タービン回転数算出線(ダウン変速用入力軸回転数算出線)
no:出力軸回転数(回転数)
nt:タービン回転数(回転数)
ntb*:基本目標タービン回転数(基本目標入力軸回転数)
ntdw:ダウン変速用タービン回転数(ダウン変速用入力軸回転数)
nin*:目標プライマリ回転数(無段変速用目標プライマリ回転数)
nt*:目標タービン回転数(目標入力軸回転数)
nt*dw:ダウン変速用目標タービン回転数(ダウン変速用目標入力軸回転数、切替用目標入力軸回転数)
nt*up:アップ変速用目標タービン回転数(アップ変速用目標入力軸回転数、切替用目標入力軸回転数)
V:車速
γEL:ELギヤ比(ギヤ比)

Claims (4)

  1. 駆動力源から出力されたトルクが伝達される入力軸と、駆動輪に対してトルクを出力する出力軸との間に、無段変速機構と、少なくとも1つのギヤ比を有するギヤ伝動機構と、前記無段変速機構を介して前記入力軸に伝達されたトルクを前記出力軸に伝達する第1伝達経路と前記ギヤ伝動機構を介して前記入力軸に伝達されたトルクを前記出力軸に伝達する第2伝達経路とを択一的に切り替えるクラッチ機構と、を備える車両用駆動装置に関して、車両の走行状態に応じて前記第1伝達経路と前記第2伝達経路とを択一的に切り替える車両用駆動装置の制御装置において、
    前記第2伝達経路が選択されている場合において前記ギヤ伝動機構内のピニオンの過回転からの保護要求により前記入力軸の回転数に上限を設定する上限ガード値と、前記第1伝達経路が選択されている場合において前記無段変速機構の保護要求により前記入力軸の回転数に下限を設定する下限ガード値との間に制限された目標入力軸回転数を算出し、
    前記目標入力軸回転数は、前記第1伝達経路と前記第2伝達経路とを切り替える切替用目標入力軸回転数であり、
    前記目標入力軸回転数は、前記無段変速機構の変速比制御用の無段変速用目標プライマリ回転数である
    とを特徴とする車両用駆動装置の制御装置。
  2. 予め記憶された関係から車速およびアクセル開度に基づいて、基本目標入力軸回転数が算出され、
    前記基本目標入力軸回転数が前記下限ガード値より低い場合には、前記下限ガード値が前記目標入力軸回転数に設定され、
    前記基本目標入力軸回転数が前記上限ガード値より高い場合には、前記上限ガード値が前記目標入力軸回転数に設定され、
    前記基本目標入力軸回転数が前記下限ガード値以上であり且つ前記上限ガード値以下である場合には、前記基本目標入力軸回転数が前記目標入力軸回転数に設定される請求項1の車両用駆動装置の制御装置。
  3. 前記切替用目標入力軸回転数は、前記第2伝達経路から前記第1伝達経路へトルク伝達経路を切り替えるアップ変速用目標入力軸回転数であり、
    前記入力軸の実際の回転数が、前記アップ変速用目標入力軸回転数を超えるとアップ変速が行われる請求項1または2の車両用駆動装置の制御装置。
  4. 前記切替用目標入力軸回転数は、前記第1伝達経路から前記第2伝達経路へトルク伝達経路を切り替えるダウン変速用目標入力軸回転数であり、
    予め記憶されたダウン変速用入力軸回転数算出線から前記出力軸の実際の回転数により求められるダウン変速用入力軸回転数が、前記ダウン変速用目標入力軸回転数以下となるとダウン変速が行われ、
    前記基本目標入力軸回転数が前記上限ガード値より高くなるようにアクセルが踏み込まれ、且つ前記ダウン変速用目標入力軸回転数が前記ダウン変速用入力軸回転数より小さい場合には、前記第1伝達経路から前記第2伝達経路へのトルク伝達経路の切り替えが禁止される請求項2の車両用駆動装置の制御装置。
JP2016250289A 2016-12-24 2016-12-24 車両用駆動装置の制御装置 Active JP6561979B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016250289A JP6561979B2 (ja) 2016-12-24 2016-12-24 車両用駆動装置の制御装置
US15/843,500 US10443713B2 (en) 2016-12-24 2017-12-15 Control device for vehicle drive system
CN201711394109.8A CN108240464B (zh) 2016-12-24 2017-12-21 用于车辆驱动系统的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016250289A JP6561979B2 (ja) 2016-12-24 2016-12-24 車両用駆動装置の制御装置

Publications (2)

Publication Number Publication Date
JP2018105369A JP2018105369A (ja) 2018-07-05
JP6561979B2 true JP6561979B2 (ja) 2019-08-21

Family

ID=62629838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250289A Active JP6561979B2 (ja) 2016-12-24 2016-12-24 車両用駆動装置の制御装置

Country Status (3)

Country Link
US (1) US10443713B2 (ja)
JP (1) JP6561979B2 (ja)
CN (1) CN108240464B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024051435A (ja) * 2022-09-30 2024-04-11 株式会社Subaru 無段変速機
JP6879196B2 (ja) * 2017-12-27 2021-06-02 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166120A (ja) * 1986-01-17 1987-07-22 Mazda Motor Corp 無段変速機の制御装置
JP3711688B2 (ja) * 1997-03-22 2005-11-02 マツダ株式会社 トロイダル式無段変速機
JP3716569B2 (ja) * 1997-08-25 2005-11-16 マツダ株式会社 無段変速機の制御装置
JP2001330144A (ja) * 2000-05-23 2001-11-30 Toyota Motor Corp 自動変速機の制御装置
JP4419660B2 (ja) * 2004-04-20 2010-02-24 トヨタ自動車株式会社 無段変速機の変速制御装置
JP2006220259A (ja) * 2005-02-14 2006-08-24 Fujitsu Ten Ltd 無段変速機制御装置及びその制御方法
JP4561407B2 (ja) * 2005-03-02 2010-10-13 トヨタ自動車株式会社 ベルト式無段変速機の変速制御装置
JP2009067256A (ja) * 2007-09-13 2009-04-02 Toyota Motor Corp 車両用駆動装置の制御装置
JP5267693B1 (ja) * 2012-02-17 2013-08-21 トヨタ自動車株式会社 車両
JP5790670B2 (ja) * 2013-01-11 2015-10-07 トヨタ自動車株式会社 車両の制御装置
JP6102466B2 (ja) * 2013-04-25 2017-03-29 トヨタ自動車株式会社 車両用変速機の制御装置
JP6263861B2 (ja) * 2013-04-26 2018-01-24 日産自動車株式会社 無段変速機の変速制御装置
KR101770053B1 (ko) * 2013-06-12 2017-08-21 도요타 지도샤(주) 차량의 제어 장치
JP6092791B2 (ja) * 2014-01-15 2017-03-08 富士重工業株式会社 無段変速機の変速制御装置
JP6070623B2 (ja) * 2014-04-25 2017-02-01 トヨタ自動車株式会社 車両の制御装置
JP6256408B2 (ja) * 2014-05-16 2018-01-10 トヨタ自動車株式会社 車両の制御装置
JP6052239B2 (ja) * 2014-05-30 2016-12-27 トヨタ自動車株式会社 車両用変速機の制御装置
JP6119676B2 (ja) 2014-06-13 2017-04-26 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP2016028205A (ja) * 2014-07-08 2016-02-25 本田技研工業株式会社 車両用無段変速機
JP6308911B2 (ja) * 2014-08-12 2018-04-11 アイシン・エィ・ダブリュ株式会社 自動変速機
JP6361590B2 (ja) * 2015-06-16 2018-07-25 トヨタ自動車株式会社 車両制御装置
JP6168107B2 (ja) * 2015-06-16 2017-07-26 トヨタ自動車株式会社 動力伝達装置の制御装置
JP6332196B2 (ja) * 2015-08-07 2018-05-30 トヨタ自動車株式会社 動力伝達装置の制御装置
CN108779853B (zh) * 2016-03-28 2020-05-12 爱信艾达株式会社 控制装置
JP2018105495A (ja) * 2016-12-28 2018-07-05 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP6919985B2 (ja) * 2017-05-19 2021-08-18 トヨタ自動車株式会社 車両用動力伝達装置

Also Published As

Publication number Publication date
US20180180174A1 (en) 2018-06-28
JP2018105369A (ja) 2018-07-05
CN108240464A (zh) 2018-07-03
US10443713B2 (en) 2019-10-15
CN108240464B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
JP4475281B2 (ja) 車両用無段変速機の変速制御装置
US9810321B2 (en) Control apparatus for power transmission system
JP2008309269A (ja) 自動変速機の変速制御装置
JP5811203B2 (ja) 車両用駆動装置の制御装置
US10661801B2 (en) Control device for vehicle and control method for vehicle
JP6561979B2 (ja) 車両用駆動装置の制御装置
CN109838550B (zh) 车辆用动力传递装置的控制装置
JP7124346B2 (ja) 車両用動力伝達装置の制御装置
KR20180018709A (ko) 변속기 및 변속기의 제어 방법
JP2017036783A (ja) 動力伝達装置の制御装置
JP2019116962A (ja) 車両用動力伝達装置の制御装置
JP2019138407A (ja) 車両の制御装置
CN109780154B (zh) 车辆用动力传递装置的控制装置
JP6891820B2 (ja) 車両用変速機の制御装置
JP6724734B2 (ja) 車両用駆動装置の制御装置
JP2007315520A (ja) 無段変速機の変速制御装置
JP2017020622A (ja) 動力伝達装置の制御装置
JP2018021582A (ja) 車両用動力伝達装置の制御装置
JP6947142B2 (ja) 車両用動力伝達装置の制御装置
JP2009014105A (ja) 車両用無段変速機の制御装置
JP6881291B2 (ja) 車両用動力伝達装置の制御装置
JP6632092B2 (ja) 自動変速機のセレクト制御装置
JP2005265059A (ja) ベルト式無段変速機の制御装置
JP6197654B2 (ja) 自動変速機の変速制御装置
JP2015232380A (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R151 Written notification of patent or utility model registration

Ref document number: 6561979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151