[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6549442B2 - 熱電素子、熱電モジュールおよび熱電素子の製造方法 - Google Patents

熱電素子、熱電モジュールおよび熱電素子の製造方法 Download PDF

Info

Publication number
JP6549442B2
JP6549442B2 JP2015156307A JP2015156307A JP6549442B2 JP 6549442 B2 JP6549442 B2 JP 6549442B2 JP 2015156307 A JP2015156307 A JP 2015156307A JP 2015156307 A JP2015156307 A JP 2015156307A JP 6549442 B2 JP6549442 B2 JP 6549442B2
Authority
JP
Japan
Prior art keywords
type thermoelectric
metal layer
conversion layer
thermoelectric conversion
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015156307A
Other languages
English (en)
Other versions
JP2017037874A (ja
JP2017037874A5 (ja
Inventor
泰隆 吉田
泰隆 吉田
中島 健一朗
健一朗 中島
亮史 村岡
亮史 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2015156307A priority Critical patent/JP6549442B2/ja
Publication of JP2017037874A publication Critical patent/JP2017037874A/ja
Publication of JP2017037874A5 publication Critical patent/JP2017037874A5/ja
Application granted granted Critical
Publication of JP6549442B2 publication Critical patent/JP6549442B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、熱電素子、熱電モジュールおよび熱電素子の製造方法に関する。
フィルドスクッテルダイト構造の合金からなる熱電変換層を備える熱電素子、およびこのような熱電素子を用いた熱電モジュールが知られている。
従来技術として、フィルドスクッテルダイト構造の合金からなる熱電変換層を備える熱電素子において、熱電素子と電極との接合部での元素の拡散を抑制するために、熱電素子の両端面にチタンまたはチタン合金からなる層を設ける技術が存在する(特許文献1)。
特開2003−309294号公報
ところで、熱電素子のフィルドスクッテルダイト構造の合金からなる熱電変換層上に直接、チタン層を形成した場合、例えば各層の線膨張率の差に起因して各層の割れや剥がれが生じる場合がある。
本発明は、フィルドスクッテルダイト構造の合金からなる熱電変換層を有する熱電素子の割れを抑制することを目的とする。
本発明の熱電素子は、アンチモンを含むフィルドスクッテルダイト構造の合金からなる熱電変換層と、鉄単体を主成分とし、前記熱電変換層に積層される第1金属層と、チタン単体を主成分とし、前記第1金属層上に積層される第2金属層とを備え、前記第1金属層には、前記熱電変換層との界面に、鉄アンチモン化合物からなる鉄アンチモン反応層が含まれることを特徴とすることができる
ここで、前記熱電変換層は、REx(Fe1-yy4Sb12(REは、希土類元素から選ばれた少なくとも一種。Mは、Co、Niからなる群から選ばれた少なくとも一種。0.01≦x≦1、0≦y≦0.5)で表される、フィルドスクッテルダイト構造の合金からなることを特徴とすることができる。
本発明を熱電モジュールとして捉えると、熱電素子と、当該熱電素子に電気的に接続され当該熱電素子を介して対向する2つの電極とを備え、当該電極間の温度差により電力を生成する熱電モジュールであって、前記熱電素子は、アンチモンを含むフィルドスクッテルダイト構造の合金からなる熱電変換層と、鉄単体を主成分とし、前記電極と前記熱電変換層との間において当該熱電変換層に積層される第1金属層と、チタン単体を主成分とし、前記第1金属層と前記電極との間に積層される第2金属層とを備え、前記第1金属層には、前記熱電変換層との界面に、鉄アンチモン化合物からなる鉄アンチモン反応層が含まれることを特徴とする熱電モジュールである。
さらに本発明を熱電素子の製造方法として捉えると、ダイス内に、チタン粉末、鉄粉末、アンチモンと鉄と希土類元素とを含むフィルドスクッテルダイト構造合金粉末、鉄粉末およびチタン粉末を、順に積層し、前記ダイス内に積層した粉末を、当該粉末の積層方向に圧力を付加しながらプラズマ焼結し、プラズマ焼結により得られた焼結体を、予め定めた冷却速度で冷却することを特徴とする熱電素子の製造方法である。
ここで、前記冷却速度は、5℃/分〜40℃/分の範囲であることを特徴とすることができる。
本発明によれば、フィルドスクッテルダイト構造の合金からなる熱電変換層を有する熱電素子の割れを抑制することができる。
本実施の形態が適用される熱電モジュールの一例を示した模式図である。 (a)〜(b)は、本実施の形態が適用されるp型熱電素子の一例を示した断面模式図である。 (a)〜(b)は、本実施の形態が適用されるn型熱電素子の一例を示した断面模式図である。 実施例にて得られたp型熱電素子の拡大図を示す。 熱電モジュールの高温側と低温側との温度差が最大に達したときの発電出力のサイクル毎の変化率を示した図である。 熱電モジュールの高温側と低温側との温度差が最大に達したときの電気抵抗のサイクル毎の変化率を示した図である。
以下、添付図面を参照して、本発明の実施の形態について説明する。
(熱電モジュール)
図1は、本実施の形態が適用される熱電モジュールの一例を示した模式図である。
本実施の形態の熱電モジュール1は、図1に示すように、上下に対向する2枚の絶縁性基板7の間に、複数のp型熱電素子2と、複数のn型熱電素子3とが配置されている。そして、複数のp型熱電素子2および複数のn型熱電素子3は、複数の電極4により交互に直列接続されるとともに、電極4を介してそれぞれの基板7に取り付けられている。また、直列接続される複数のp型熱電素子2および複数のn型熱電素子3のうち、一端に位置するp型熱電素子2および他端に位置するn型熱電素子3には、電極4を介してリード線6が接続されている。
なお、それぞれのp型熱電素子2およびn型熱電素子3の形状は、特に限定されるものではないが、通常、角柱状または円柱状である。図1に示す熱電モジュール1では、それぞれのp型熱電素子2およびn型熱電素子3は、角柱状の形状を有している。また、それぞれのp型熱電素子2およびn型熱電素子3の側面(電極4に接続されない面)は、例えば窒化チタン等からなるコート層により被覆されていてもよい。
また、図示は省略するが、この熱電モジュール1では、一方の基板7(この例では、上側の基板7)に隣接して高温側熱交換器が配置され、他方の基板7(この例では、下側の基板7)に隣接して低温側熱交換器が配置される。
本実施の形態の熱電モジュール1では、矢印Xで示すように、高温側熱交換器により熱を加えるとともに、低温側熱交換器により熱を奪うことによって、各熱電素子(p型熱電素子2、n型熱電素子3)の高温側と低温側とに大きな温度差が生じて起電力が発生する。そして、2本のリード線6の間に電気抵抗負荷を与えることで、矢印Yで示すように電流が流れる。
なお、以下の説明では、熱電モジュール1において高温側熱交換器が設けられる側を単に高温側と称し、低温側熱交換器が設けられる側を単に低温側と称する場合がある。
(電極)
本実施の形態の電極4は、例えば銅や鉄等の高温における機械強度の高い金属により構成される。
さらに、本実施の形態の熱電モジュール1では、p型熱電素子2またはn型熱電素子3と電極4との間に、p型熱電素子2またはn型熱電素子3と電極4との接合性を改善させるための他の層を設けてもよい。
(p型熱電素子)
続いて、本実施の形態が適用されるp型熱電素子2について説明する。図2(a)は、本実施の形態が適用されるp型熱電素子2の一例を示した断面模式図であり、図2(b)は、本実施の形態が適用されるp型熱電素子2の他の一例を示した断面模式図である。
図2(a)に示すように、本実施の形態のp型熱電素子2は、高温側と低温側との温度差により起電力が発生する熱電変換層の一例としてのp型熱電変換層21と、p型熱電変換層21の対向する2面に積層される第1金属層の一例としてのp側第1金属層22と、それぞれのp側第1金属層22上に積層される第2金属層の一例としてのp側第2金属層23とを備えている。そして、本実施の形態のp型熱電素子2では、p側第2金属層23上に、上述した電極4(図1参照)が接続される。
なお、図2(b)に示すように、p側第1金属層22は、p型熱電変換層21の対向する2つの面のうちいずれか一方の面のみに設けてもよい。この場合、p側第1金属層22が設けられない側の面には、p型熱電変換層21上にp側第2金属層23が直接、積層されるようになる。図2(b)に示す例のようにp側第1金属層22がp型熱電変換層21の一方の面のみに設けられる場合、p型熱電素子2は、p側第1金属層22が設けられる側を高温側に、p側第1金属層22が設けられない側を低温側にして配置する。
(p型熱電変換層)
本実施の形態のp型熱電変換層21は、例えばREx(Fe1-yy4Sb12(REは、希土類元素から選ばれた少なくとも一種。Mは、Co、Niからなる群から選ばれた少なくとも一種。0.01≦x≦1、0≦y≦0.5)で表される、アンチモンを含むフィルドスクッテルダイト構造の合金からなる半導体が採用可能である。
ここで、REとしては、La、Nd、Pr、Ybのうち少なくとも一種を用いることが好ましい。
具体的に説明すると、本実施の形態のp型熱電変換層21を構成する、アンチモン(Sb)を含むフィルドスクッテルダイト構造の合金では、Sbが八面体の頂点位置に配置され、FeおよびMがSbに囲まれた結晶構造をとっている(スクッテルダイト構造)。そして、スクッテルダイト構造をとるFe、MおよびSbの間に形成される空隙に、REが入り込んだ構造となっている。そして、本実施の形態のp型熱電変換層21では、通常、スクッテルダイト構造をとるFe、MおよびSbにより、熱電変換作用が生じる。
なお、p型熱電変換層21には、原料に含まれる不可避不純物を含んでいてもよい。p型熱電変換層21の結晶構造については、例えばX線回折等により確認することができる。
p型熱電変換層21として上述したフィルドスクッテルダイト構造の合金を用いる場合、xは、0.01以上1以下の範囲が好ましく、yは、0以上0.5以下の範囲が好ましい。
xが0.01未満であると、p型熱電変換層21の熱伝導度が増加し、p型熱電変換層21の高温側と低温側との温度差が小さくなるため、熱電変換効率が低下するおそれがある。また、xが1を超えると、結晶格子に入りきらない希土類元素が析出してp型熱電変換層21の電気特性が低下するおそれがある。
また、yが0.5を超えると、p型熱電変換層21のゼーベック係数が低下するおそれがある。
(p側第1金属層)
本実施の形態のp側第1金属層22は、鉄単体により構成される。なお、p側第1金属層22は、例えばp側第1金属層22の性質の改良等を目的として、鉄以外の金属や、鉄と他の金属との合金等の微量の不純物を含んでいてもよい。p側第1金属層22において、鉄以外の金属や、鉄と他の金属との合金等の不純物の含有量は、2重量%以下であることが好ましい。不純物の含有量が2重量%を超えると、p型熱電素子2の歩留まりが低下するおそれがある。
本実施の形態のp側第1金属層22は、鉄の粉末を焼結することにより形成される。なお、p側第1金属層22の作製方法等については、後述する。
本実施の形態のp型熱電素子2では、p側第1金属層22を設けることで、p型熱電素子2の製造工程において各層の割れや剥がれが抑制され、p型熱電素子2の歩留まりが向上される。
また、本実施の形態のp型熱電素子2では、p側第1金属層22を設けることで、p型熱電変換層21から電極4へのアンチモンの拡散が抑制される。これにより、p型熱電素子2や熱電モジュール1の性能低下および破損が抑制される。
すなわち、本実施の形態のp側第1金属層22は、鉄により構成されることで、p型熱電変換層21からアンチモンが遊離した場合に、アンチモンが鉄と反応して鉄アンチモン化合物が形成される。この結果、p型熱電変換層21からのアンチモンがp側第1金属層22にて捕捉され、p型熱電変換層21から電極4にアンチモンが拡散することが抑制される。
これにより、本実施の形態のp型熱電素子2では、p型熱電変換層21の熱電性能の劣化および電極4の性能低下が抑制される。
なお、本実施の形態のp型熱電素子2では、p型熱電変換層21から遊離したアンチモンとp側第1金属層22の鉄とが反応することで、p側第1金属層22のうちp型熱電変換層21に接する側に、鉄アンチモン化合物からなる鉄アンチモン反応層が形成される場合がある。本実施の形態では、鉄単体からなる層と鉄アンチモン反応層とを含めて、p側第1金属層22と呼ぶ場合がある。
また、本実施の形態のp型熱電素子2では、p側第1金属層22において、熱電モジュール1の繰り返しの使用により、鉄とアンチモンとが反応することにより、鉄アンチモン反応層の厚さが徐々に厚くなる場合がある。
鉄アンチモン化合物は、通常、p型熱電変換層21に不純物として含まれる物質である。したがって、p側第1金属層22において鉄アンチモン化合物が生じた場合であっても、p型熱電素子2において、鉄アンチモン化合物による不具合は生じにくい。
また、通常、鉄は、約910℃以下の温度では、体心立方型の結晶構造を有する。また、上述したp型熱電変換層21を構成するフィルドスクッテルダイト構造の合金も、体心立方系の結晶構造を有する。すなわち、本実施の形態のp型熱電変換層21は、p側第1金属層22に含まれる鉄と、結晶構造が近い。
そして、単体の鉄の線膨張率(約12×10−6/℃)は、フィルドスクッテルダイト構造の合金からなるp型熱電変換層21の線膨張率と近い。また後述するように、本実施の形態のp側第2金属層23は、チタン(線膨張率:約8.4×10−6/℃)により構成されている。
この結果、本実施の形態では、p側第1金属層22が鉄により構成されることで、p側第1金属層22の線膨張率が、p型熱電変換層21と比較して小さく、p側第2金属層23と比較して大きくなっている。
これにより、本実施の形態のp型熱電素子2では、p型熱電変換層21とp側第1金属層22との界面、およびp側第1金属層22とp側第2金属層23との界面において、良好な接合性を得ることができる。
また、例えば熱電モジュール1の使用時等においてp型熱電素子2が高温になり、p型熱電素子2の各層で熱膨張が起こった場合であっても、各層の界面での応力の発生を抑制でき、各層の破断や剥がれの発生を抑制することができる。
さらに、本実施の形態のp型熱電素子2の製造工程において、材料粉末の焼結を行った後、冷却をする際に、p型熱電素子2の各層の線膨張率の違いによる各層の破断や剥がれの発生を抑制することができる。これにより、p型熱電素子2に鉄からなるp側第1金属層22を設けない場合や、p側第1金属層22に替えて鉄とは異なる金属からなる金属層を設ける場合と比較して、p型熱電素子2の歩留まりを向上させることが可能となる。
p側第1金属層22の厚さは、例えば、20μm以上が好ましく、100μm以上がより好ましい。また、p側第1金属層22の厚さは、例えば500μm以下が好ましく、300μm以下がより好ましい。
p側第1金属層22の厚さが500μmよりも厚い場合には、p型熱電素子2全体の厚さが厚くなりやすく、熱電モジュール1が大型化しやすい。また、p側第1金属層22の厚さが500μmよりも厚い場合には、高温側熱交換器からp型熱電変換層21への熱の伝導、またはp型熱電変換層21から低温側熱交換器への熱の伝導が抑制され、p型熱電素子2における熱電変換効率が低下するおそれがある。
一方、p側第1金属層22の厚さが20μmよりも薄い場合には、p側第1金属層22による応力緩和やアンチモンの捕捉の効果が不十分になるおそれがある。
(p側第2金属層)
本実施の形態のp側第2金属層23は、チタン単体により構成される。なお、p側第2金属層23には、チタン以外の金属や、チタンと他の金属との合金等が一部含まれていてもよい。
本実施の形態のp型熱電素子2では、p側第2金属層23を設けることで、p型熱電変換層21からのアンチモンの拡散や、電極等からp型熱電変換層21、p側第1金属層22への元素の拡散を抑制することが可能になっている。
ここで、p側第2金属層23において、チタン以外の金属や、チタンと他の金属との合金等の含有量は、2重量%以下であることが好ましい。p側第2金属層23において、チタン以外の金属や、チタンと他の金属との合金等の含有量が2重量%を超えると、p型熱電変換層21からのアンチモンの拡散や、電極4等からp型熱電変換層21、p側第1金属層22への元素の拡散を抑制する能力が低下するおそれがある。
本実施の形態のp型熱電素子2では、上述したように、p側第1金属層22を設けることで、p型熱電変換層21からのアンチモンとp側第1金属層22に含まれる鉄とが反応し、p型熱電変換層21からのアンチモンをp側第1金属層22で捕捉することが可能である。
しかし、例えばp型熱電変換層21から拡散するアンチモンの量が多い場合や、p型熱電変換層21から継続してアンチモンが拡散するような場合等には、全てのアンチモンをp側第1金属層22で捕捉することが困難になる場合がある。
これに対し、本実施の形態では、チタンを含むp側第2金属層23を設けることで、p型熱電変換層21から遊離しp側第1金属層22で捕捉しきれなかったアンチモンをp側第2金属層23にて遮断することが可能になっている。これにより、p型熱電素子2において、p型熱電変換層21から電極4へアンチモンが拡散することを抑制できる。また、本実施の形態の熱電モジュール1では、p側第2金属層23を設けることで、電極4からp型熱電素子2への元素の拡散を抑制することができる。
この結果、p型熱電素子2のp型熱電変換層21における熱電変換効率の低下や、電極4の性能低下を抑制することができる。
なお、本実施の形態のp型熱電素子2では、p型熱電変換層21から遊離したアンチモンとp側第2金属層23のチタンとが反応することで、p側第2金属層23のうちp型熱電変換層21に近い側にチタンとアンチモンとの合金からなるチタンアンチモン反応層が形成される場合がある。
この反応層も、p型熱電変換層21からのアンチモンの拡散を抑制する。
p側第2金属層23の厚さは、例えば、20μm以上が好ましく、50μm以上がより好ましい。また、p側第2金属層23の厚さは、例えば、500μm以下が好ましく、300μm以下がより好ましい。
p側第2金属層23の厚さが500μmよりも厚い場合には、p型熱電素子2が厚くなり、熱電モジュール1が大型化しやすい。
また、p側第2金属層23の厚さが20μmよりも薄い場合には、p型熱電素子2と電極4との間での元素の拡散を抑制する効果が不十分になるおそれがある。
(n型熱電素子)
続いて、本実施の形態が適用されるn型熱電素子3について説明する。図3(a)は、本実施の形態が適用されるn型熱電素子3の一例を示した断面模式図であり、図3(b)は、本実施の形態が適用されるn型熱電素子3の他の一例を示した断面模式図である。
図3(a)に示すように、本実施の形態のn型熱電素子3は、高温側と低温側との温度差により起電力が発生するn型熱電変換層31と、n型熱電変換層31上に積層されn型熱電変換層31を挟んで対向するn側第1金属層32と、n側第1金属層32上に積層されるn側第2金属層33とを備えている。そして、本実施の形態のn型熱電素子3では、n側第2金属層33上に、上述した電極4(図1参照)が接続される。
なお、図3(b)に示すように、本実施の形態のn型熱電素子3では、n側第2金属層33を設けることなく、n型熱電変換層31上にn側第1金属層32のみを設けてもよい。
本実施の形態のn型熱電素子3では、上述したp型熱電素子2と比較して、n型熱電変換層31の熱膨張率が小さいため、n側第2金属層33を設けない場合であっても割れ等が生じにくいからである。さらに、上述したp型熱電素子2のp型熱電変換層21と比較して、n型熱電変換層31はアンチモンが遊離しにくいので、n側第1金属層32のみでもアンチモンの拡散を抑制することができる。
(n型熱電変換層)
本実施の形態のn型熱電変換層31は、REx(Co1-yy4Sb12(REは、希土類元素から選択される少なくとも一種。Mは、Fe、Niからなる群から選ばれた少なくとも一種。0.01≦x≦1、0≦y≦0.3)で表されるフィルドスクッテルダイト構造の合金からなる半導体が採用可能である。この合金中には、原料に含まれる不可避不純物を含んでいてもよい。
ここで、REとしては、Ce、Nd、Pr、Ybのうち少なくとも一種を用いることが好ましい。
n型熱電変換層31として上述したフィルドスクッテルダイト構造の合金を用いる場合、xは、0.01以上1以下の範囲が好ましく、yは、0以上0.3以下の範囲が好ましい。
xが0.01未満であると熱伝導度が増加するため、n型熱電素子3の特性が低下するおそれがある。また、xが1を超えると、n型熱電変換層31の電気特性が低下するおそれがある。
さらに、yが0.3を超えると、ゼーベック係数が低下するおそれがある。
(n側第1金属層)
n側第1金属層32は、例えば、チタンとコバルトとの混合層またはチタンとアルミニウムとの混合層により構成される。
n側第1金属層32は、上述した構成を有することで、線膨張率が、n型熱電変換層31と比較して小さく、またn側第2金属層33と比較して大きくなる。これにより、熱膨張によりn型熱電変換層31が変形した場合に、n型熱電変換層31とn側第2金属層33との間の応力を緩和することが可能になる。
なお、n側第1金属層32の厚さは、例えば20μm以上200μm以下の範囲とすることができる。
(n側第2金属層)
n側第2金属層33は、n型熱電変換層31からのアンチモンの拡散を抑制するために設けられ、p側第2金属層23と同様に、チタンから構成される。なお、n側第2金属層33には、チタン以外の金属や、チタンと他の金属との合金等が含まれていてもよい。
n側第2金属層33の厚さは、例えば20μm以上500μm以下の範囲とすることができる。
(熱電素子の製造方法)
続いて、本実施の形態の熱電素子の製造方法について説明する。ここでは、図2(a)に示したp型熱電素子2を製造する場合を例に挙げて説明するが、図2(b)に示したp型熱電素子2や、図3(a)〜(b)に示したn型熱電素子3も同様の方法で製造することができる。
本実施の形態のp型熱電素子2は、焼結用のダイス内に、各層を構成する粉末状の材料を順に入れ、プラズマ焼結を行うことにより製造することができる。
具体的に説明すると、p型熱電素子2を製造する場合には、まず、p側第2金属層23を構成するチタン粉末を秤量し、グラファイト等からなる焼結用のダイス内に入れる。続いて、p側第1金属層22を構成する鉄粉末を秤量し、ダイス内に入れられたp側第2金属層23を構成するチタン粉末上に積層する。
次いで、p型熱電変換層21を構成するRE(希土類元素から選択される少なくとも一種)、鉄、M(Co、Niからなる群から選ばれた少なくとも一種)およびアンチモンを含む合金粉末(フィルドスクッテルダイト構造合金粉末)を、ダイス内に積層されたp側第2金属層23を構成するチタン粉末およびp側第1金属層22を構成する鉄粉末上に積層する。
その後、さらにp側第1金属層22を構成する鉄粉末、p側第2金属層23を構成するチタン粉末を順にダイス内に入れる。
これにより、ダイス内に、p側第2金属層23、p側第1金属層22、p型熱電変換層21、p側第1金属層22およびp側第2金属層23のそれぞれを構成する粉末状の材料が、順に積層された状態となる。
続いて、真空中またはアルゴン等の不活性ガス中で、ダイス内に積層されたこれらの粉末を各層の積層方向に加圧しながらパルス電流を印加し、焼結(放電プラズマ焼結)する。加える圧力の大きさは、例えば、1t/cm程度とすることができる。また、電流の印加により、積層された各材料の温度は、約600℃〜650℃程度になる。
これにより、p側第2金属層23、p側第1金属層22、p型熱電変換層21、p側第1金属層22およびp側第2金属層23が順次積層され一体化した焼結体を得ることができる。
次いで、得られた焼結体を、予め定めた冷却速度で冷却する。焼結体の冷却速度としては、例えば5℃/分〜40℃/分の範囲とすることができる。
その後、得られた焼結体を必要に応じて所望の大きさに切断することで、図2(a)に示したp型熱電素子2を得ることができる。
ここで、本実施の形態では、鉄により形成されるp側第1金属層22を設けることで、例えばp側第1金属層22を設けない場合や、p側第1金属層22に替えてアルミニウム等の鉄とは異なる金属や鉄と他の金属との合金等からなる金属層を設ける場合と比較して、焼結により形成されるp型熱電変換層21とp側第1金属層22との密着性、およびp側第1金属層22とp側第2金属層23との密着性を向上させることができる。
これにより、p型熱電素子2の製造における焼結工程や冷却工程においても、p型熱電変換層21とp側第1金属層22との界面や、p側第1金属層22とp側第2金属層23との界面の割れや剥がれ、p側第1金属層22自身の割れが生じることを抑制できる。この結果、本構成を採用しない場合と比較して、p型熱電素子2の歩留まりを向上させることができる。
また、本実施の形態では、p側第1金属層22を鉄粉末により形成することで、例えばp側第1金属層22に替えて鉄粉末と他の金属粉末とを混合した金属粉末により金属層を形成するような場合と比較して、p型熱電素子2の材料コストを低減することが可能となる。
p側第1金属層22の材料である鉄粉末の粒子径は、特に限定されるものではないが、例えば5μm以上150μm以下の範囲とすることができる。なお、p型熱電素子2の各層の材料となる粉末の粒子径は、例えば、レーザー回折式測定器等で測定することができる。
また、p型熱電変換層21の材料となる合金粉末は、粒子径が5μm以上200μm以下の範囲であることが好ましい。
p型熱電変換層21の材料となる合金粉末の粒子径が過度に小さい場合には、焼結時等に酸化反応が起こりやすくなり、p型熱電変換層21について所望の特性を得られなくなるおそれがある。
一方、p型熱電変換層21の材料となる合金粉末の粒子径が過度に大きい場合には、p型熱電変換層21が粗になりやすく、空隙ができやすくなる。この結果、p型熱電変換層21の機械強度が低下し、熱電モジュール1の使用時等に、p型熱電変換層21が破損しやすくなる。
なお、p型熱電変換層21の材料となる合金粉末は、例えば以下のように鋳造により調製することができる。
まず、p型熱電変換層21を構成する合金粉末の材料となる、RE(希土類元素から選択される少なくとも一種)、鉄、M(Co、Niからなる群から選ばれた少なくとも一種)およびアンチモンのそれぞれを秤量し混合する。ここで、それぞれの材料の混合比は、後の工程等における損失を考慮し、最終的に得るp型熱電変換層21の化学量論的組成比よりもアンチモンを過剰に配合することが好ましい。
アンチモンは、拡散しやすく、またp型熱電変換層21においてアンチモンが不足した場合、p型熱電変換層21における熱電変換効率の低下等の不具合が生じやすいからである。
続いて、秤量した各材料を、アルミナ等からなるるつぼ内に入れて加熱し、溶融させる。なお、溶融温度は、例えば1450℃程度とすることができる。次いで、溶融した材料を、ストリップキャスト法を用いて急冷し合金化させる。ストリップキャスト法では、アルゴン雰囲気中にて冷却速度500℃/秒〜5000℃/秒で、溶融した材料を冷却し、厚み0.1mm〜0.5mm程度の急冷凝固合金を得る。そして、得られた急冷凝固合金を粉砕することで、p型熱電変換層21の材料となる、RE(希土類元素から選択される少なくとも一種)、鉄、M(Co、Niからなる群から選ばれた少なくとも一種)およびアンチモンを含む合金粉末を得ることができる。
なお、p型熱電変換層21の材料となる粉末を調製する方法は、上述した方法に限られず、例えばアトマイズ法等により調整してもよい。また、秤量したRE(希土類元素から選択される少なくとも一種)、鉄、M(Co、Niからなる群から選ばれた少なくとも一種)およびアンチモンの粉末を混合した混合粉末を焼成し、粉砕したものをp型熱電変換層21の材料として用いてもよい。
(熱電モジュールの製造方法)
続いて、上述した方法で作製したp型熱電素子2およびn型熱電素子3を用いて図1に示した熱電モジュール1を作製する方法の一例について説明する。
熱電モジュール1を作製する場合、まず、例えばセラミック等で構成される絶縁性の基板7上に、銅等で構成される複数の電極4を並べて取り付ける。
次いで、p型熱電素子2とn型熱電素子3とが交互に直列的に接続されるように、複数のp型熱電素子2およびn型熱電素子3を、基板7上に取り付けられたそれぞれの電極4に対して接続する。この際、複数のp型熱電素子2およびn型熱電素子3を、複数の電極4が取り付けられた2枚の基板7で挟むようにする。
それぞれのp型熱電素子2は、p側第2金属層23が電極4に接続され、それぞれのn型熱電素子3は、n側第2金属層33が電極4に接続されることになる。また、p型熱電素子2およびn型熱電素子3は、例えば銀ペースト等の金属ペーストを介して電極4に接続される。
続いて、2枚の基板7で、電極4に接続された複数のp型熱電素子2およびn型熱電素子3を挟んだ状態で、加熱・加圧することで、それぞれのp型熱電素子2およびn型熱電素子3が、電極4に接合され、図1に示した熱電モジュール1が得られる。
作製した熱電モジュール1を発電に使用する場合には、上述したように、一方の基板7側を高温側とし、他方の基板7側を低温側として配置する。そして、熱電モジュール1に対して、高温側の基板7を介して熱を加え、低温側の基板7を介して熱を奪うことによって、それぞれのp型熱電素子2およびn型熱電素子3に温度差を生じさせ、起電力を発生させる。そして、電極4に接続された2本のリード線6に電気抵抗負荷を与えることで、電流を取り出す。
ここで、本実施の形態のようにアンチモンを含むフィルドスクッテルダイト構造の合金からなる熱電変換層(p型熱電変換層21、n型熱電変換層31)を含む熱電素子(p型熱電素子2、n型熱電素子3)を用いた熱電モジュール1では、高温側の温度が約400℃〜600℃、低温側の温度が約50℃〜100℃となるように使用される場合が多い。この場合、それぞれの熱電素子(p型熱電素子2、n型熱電素子3)では、高温側と低温側との温度差が、500℃程度となる。
そして、それぞれの熱電素子(p型熱電素子2、n型熱電素子3)では、高温側に位置する部分で、熱膨張が起こる。
上述したように、p型熱電変換層21を構成する、アンチモンを含むフィルドスクッテルダイト構造の合金と、p側第2金属層23を構成するチタンとの結晶構造や線膨張率が大きく異なっている。このため、p型熱電素子2においてp型熱電変換層21上に直接、p側第2金属層23を設けたような場合には、p型熱電素子2が高温になりp型熱電変換層21およびp側第2金属層23のそれぞれが熱膨張することで、p型熱電変換層21とp側第2金属層23との界面で応力が発生する。この結果、p型熱電変換層21とp側第2金属層23との界面で破断や割れ等が生じ、p型熱電素子2が破損する場合がある。
これに対し、本実施の形態のp型熱電素子2では、p型熱電変換層21とp側第2金属層23との間に、鉄から構成されるp側第1金属層22を設けている。そして、p側第1金属層22の線膨張率は、p型熱電変換層21の線膨張率とp側第2金属層23の線膨張率との間の値となっている。これにより、本実施の形態では、本構成を採用しない場合と比較して、p型熱電素子2を構成する各層間(p型熱電変換層21とp側第1金属層22との間、p側第1金属層22とp側第2金属層23との間)の線膨張率の差が小さくなっている。
この結果、本実施の形態のp型熱電素子2では、熱電モジュール1の使用時等においてp型熱電素子2が高温になった場合であっても、本構成を採用しない場合と比較して、p型熱電変換層21とp側第1金属層22との熱膨張量の差、p側第1金属層22とp側第2金属層23との熱膨張量の差を小さくすることができる。
そして、p型熱電変換層21とp側第1金属層22との界面、およびp側第1金属層22とp側第2金属層23との界面での応力の発生を抑制できる。この結果、p型熱電素子2において、p型熱電変換層21とp側第1金属層22との界面、p側第1金属層22とp側第2金属層23との界面で、破断や割れが生じることを抑制できる。
なお、上述したように、p型熱電素子2のうち熱電モジュール1の低温側に位置する部分では、高温側と比較して熱膨張量が小さい。したがって、図2(b)に示すように、p側第1金属層22は、p型熱電素子2の対向する2面のうち少なくとも一方の面に設け、p側第1金属層22が高温側になるように使用すればよい。この場合、p側第1金属層22をp型熱電素子2の両面に設ける場合と比較して、p型熱電素子2を小型化することができる。
しかし、上述したようにp側第1金属層22はp型熱電変換層21からのアンチモンの拡散を抑制できる点、および高温側と低温側との向きを誤って熱電モジュール1を使用するおそれ等の観点からすると、p側第1金属層22は、図2(a)に示すように、p型熱電素子2の対向する2面の双方に設けることが好ましい。
ここで、p型熱電変換層21を構成する、アンチモンを含むフィルドスクッテルダイト構造の合金では、アンチモンが拡散しやすい性質を有している。特に、本実施の形態のようにp型熱電素子2が高温で使用されるような場合には、p型熱電変換層21からアンチモンがより拡散しやすい傾向がある。
そして、p型熱電変換層21から電極4等へアンチモンが拡散した場合、p型熱電変換層21を構成する合金の結晶構造(フィルドスクッテルダイト構造)が崩れやすくなる。この場合、p型熱電変換層21における熱電変換効率が低下しやすい。
これに対し、本実施の形態のp型熱電素子2では、上述したように、鉄から構成されるp側第1金属層22と、チタンからから構成されるp側第2金属層23とを設けることで、本構成を採用しない場合と比較して、p型熱電変換層21からのアンチモンの拡散を抑制している。
これにより、p型熱電素子2においてp型熱電変換層21における熱電変換効率の低下を抑制することができる。さらに、p型熱電変換層21からのアンチモンが電極4に拡散することによる電極4の特性低下を抑制することができる。
そして、本実施の形態の熱電モジュール1では、p型熱電素子2において各層の破断や割れが抑制され、またp型熱電変換層21からのアンチモンの拡散が抑制されることで、例えば高温側と低温側との温度差が大きい環境下で長期間使用した場合であっても、発電出力の低下および電気抵抗の上昇を抑制でき、熱電モジュール1の耐久性を向上させることができる。
続いて、本発明を実施例に基いて具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例)
(1)p型熱電素子2の作製
直径3cmの黒鉛製のダイス内に、平均粒子径15μmのチタン粉末からなるp側第2金属層23の材料粉末と、平均粒子径70μmの鉄粉末からなるp側第1金属層22の材料粉末と、プラセオジム、ネオジム、鉄、ニッケル、アンチモンをそれぞれ1.2、3.4%、20.3%、3.6%、71.5%の比(原子比)で含み、平均粒子径が100μmのp型熱電変換層21の材料粉末と、上記p側第1金属層22の材料粉末と、上記p側第2金属層23の材料粉末とを、この順序で入れた。
続いて、焼結温度600℃、焼結圧力60MPaの条件で放電プラズマ焼結を行い、アンチモンを含むフィルドスクッテルダイト構造の合金からなるp型熱電変換層21の上下両端面に、鉄の焼結体からなるp側第1金属層22と、チタンの焼結体からなるp側第2金属層23とが積層されたp型熱電素子2を作製した。
なお、p側第1金属層22の厚さは、約200μmであり、p側第2金属層23の厚さは、約100μmであった。
図4に、得られたp型熱電素子2の拡大図を示す。
図4に示すように、本実施例では、p型熱電変換層21上に、鉄を主成分とするp側第1金属層22およびチタンを主成分とするp側第2金属層23が順に積層されたp型熱電素子2を得ることができた。また、p側第1金属層22のうちp型熱電変換層21との界面には、p側第1金属層22を構成する鉄とp型熱電変換層21から遊離したアンチモンとが反応することにより形成される鉄アンチモン反応層(図中符号22aで示す)が形成されることが確認された。鉄アンチモン反応層の厚さは、最も厚い部分で、約15μmであった。
また、得られたp型熱電素子2では、p型熱電変換層21とp側第1金属層22との界面、およびp側第1金属層22とp側第2金属層23との界面で、割れや剥がれが生じていないことが確認された。
(2)n型熱電素子3の作製
直径3cmの黒鉛製のダイス内に、平均粒子径15μmのチタン粉末からなるn側第2金属層33の材料粉末と、平均粒子径44μmのチタン粉末および平均粒子径5μmのアルミニウム粉末からなるn側第1金属層32の材料粉末と、イッテルビウム、鉄、コバルト、アンチモンをそれぞれ1.8%、1.4%、23.2%、73.6%の比(原子比)で含み、平均粒子径が100μmのn型熱電変換層31の材料粉末と、上記n側第1金属層32の材料粉末と、上記n側第2金属層33の材料粉末とを、この順序で入れた。
続いて、焼結温度700度、焼結圧力60MPaの条件で放電プラズマ焼結を行い、アンチモンを含むフィルドスクッテルダイト構造の合金からなるn型熱電変換層31の上下両端面に、アルミニウム及びチタンの焼結体からなりアルミニウムおよびチタンを単体の状態で含むn側第1金属層32と、チタンの焼結体からなるn側第2金属層33とが積層されたn型熱電素子3を作製した。
なお、n側第1金属層32の厚さは、約200μmであり、n側第2金属層33の厚さは、約100μmであった。
(3)熱電モジュール1の作製
得られたp型熱電素子2とn型熱電素子3とを、それぞれ縦3.7mm×横3.7mm×高さ4.0mmに切り出した。そして、切り出した18対のp型熱電素子2およびn型熱電素子3を、厚み0.5mmの銅からなる電極4を介して接合し、縦30mm×横30mm×高さ5mmの熱電モジュール1を作製した。
(比較例1)
p側第1金属層22を有しない以外は実施例と同様にして、p型熱電素子2を作製した。そして、実施例と同様にして、n型熱電素子3を作製し、作製したp型熱電素子2およびn型熱電素子3を用いて実施例と同様にして熱電モジュール1を作製した。
(比較例2)
鉄からなるp側第1金属層22に替えて、鉄とチタンとを単体の状態で含む金属層を設けた以外は実施例と同様にしてp型熱電素子2を作成した。具体的には、p側第1金属層22の材料となる鉄粉末に替えて、平均粒子径15μmのチタン粉末および平均粒子径100μmの鉄粉末をTi:Fe=16:84の比(重量比)で含む材料粉末を用いて、p型熱電変換層21とp側第2金属層23との間に金属層を形成した。
そして、実施例と同様にしてn型熱電素子3を作製し、作製したp型熱電素子2およびn型熱電素子3を用いて実施例と同様にして熱電モジュール1を作製した。
(4)評価
(不良発生率)
実施例および比較例1、2のそれぞれにおいて、p型熱電素子2を製造する際の不良発生率を測定した。
実施例では、p型熱電素子2の不良発生率が0%であったのに対し、比較例1では、p型熱電素子2の不良発生率が約80%であり、比較例2では、p型熱電素子2の不良発生率が約50%であった。言い換えると、実施例では、p型熱電素子2の歩留まりがほぼ100%であったのに対し、比較例1では約20%、比較例2では約50%であった。
以上より、鉄からなるp側第1金属層22を設けることで、p型熱電素子2の不良発生率が低下し、歩留まりが向上することが確認された。
(性能評価試験)
実施例および比較例1で作製した熱電モジュール1に対して、ヒートサイクル試験を行った。具体的には、熱電モジュール1の高温側に対して、ヒータ加熱により室温から500℃まで1時間で昇温し、500℃から室温まで1時間で降温するというヒートサイクルを加えた。一方、熱電モジュール1の低温側は水冷し、熱電モジュール1の高温側と低温側とで温度差を生じさせた。
図5は、熱電モジュール1の高温側と低温側との温度差が最大に達したときの発電出力のサイクル毎の変化率を示した図である。図5に示すように、比較例1の熱電モジュール1では、1200サイクル後の出力が約12も低下しているのに対し、実施例の熱電モジュール1では、約1%しか低下していなかった。
また、図6は、熱電モジュール1の高温側と低温側との温度差が最大に達したときの電気抵抗のサイクル毎の変化率を示した図である。図6に示すように、比較例1の熱電モジュール1では、1200サイクル後の電気抵抗が約15%も増加しているのに対し、実施例の熱電モジュール1では、約1%しか増加していなかった。
以上のように、実施例の熱電モジュール1ではヒートサイクルによる劣化が抑制され、初期の性能を長期間維持できることが確認された。
1…熱電モジュール、2…p型熱電素子、3…n型熱電素子、4…電極、21…p型熱電変換層、22…p側第1金属層、23…p側第2金属層

Claims (5)

  1. アンチモンを含むフィルドスクッテルダイト構造の合金からなる熱電変換層と、
    鉄単体を主成分とし、前記熱電変換層に積層される第1金属層と、
    チタン単体を主成分とし、前記第1金属層上に積層される第2金属層と
    を備え
    前記第1金属層には、前記熱電変換層との界面に、鉄アンチモン化合物からなる鉄アンチモン反応層が含まれることを特徴とする熱電素子。
  2. 前記熱電変換層は、REx(Fe1-yy4Sb12(REは、希土類元素から選ばれた少なくとも一種。Mは、Co、Niからなる群から選ばれた少なくとも一種。0.01≦x≦1、0≦y≦0.5)で表される、フィルドスクッテルダイト構造の合金からなることを特徴とする請求項に記載の熱電素子。
  3. 熱電素子と、当該熱電素子に電気的に接続され当該熱電素子を介して対向する2つの電極とを備え、当該電極間の温度差により電力を生成する熱電モジュールであって、
    前記熱電素子は、
    アンチモンを含むフィルドスクッテルダイト構造の合金からなる熱電変換層と、
    鉄単体を主成分とし、前記電極と前記熱電変換層との間において当該熱電変換層に積層される第1金属層と、
    チタン単体を主成分とし、前記第1金属層と前記電極との間に積層される第2金属層とを備え
    前記第1金属層には、前記熱電変換層との界面に、鉄アンチモン化合物からなる鉄アンチモン反応層が含まれることを特徴とする熱電モジュール。
  4. ダイス内に、チタン粉末、鉄粉末、アンチモンと鉄と希土類元素とを含むフィルドスクッテルダイト構造合金粉末、鉄粉末およびチタン粉末を、順に積層し、
    前記ダイス内に積層した粉末を、当該粉末の積層方向に圧力を付加しながらプラズマ焼結し、
    プラズマ焼結により得られた焼結体を、予め定めた冷却速度で冷却することを特徴とする熱電素子の製造方法。
  5. 前記冷却速度は、5℃/分〜40℃/分の範囲であることを特徴とする請求項に記載の熱電素子の製造方法。
JP2015156307A 2015-08-06 2015-08-06 熱電素子、熱電モジュールおよび熱電素子の製造方法 Expired - Fee Related JP6549442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156307A JP6549442B2 (ja) 2015-08-06 2015-08-06 熱電素子、熱電モジュールおよび熱電素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156307A JP6549442B2 (ja) 2015-08-06 2015-08-06 熱電素子、熱電モジュールおよび熱電素子の製造方法

Publications (3)

Publication Number Publication Date
JP2017037874A JP2017037874A (ja) 2017-02-16
JP2017037874A5 JP2017037874A5 (ja) 2018-07-26
JP6549442B2 true JP6549442B2 (ja) 2019-07-24

Family

ID=58048659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156307A Expired - Fee Related JP6549442B2 (ja) 2015-08-06 2015-08-06 熱電素子、熱電モジュールおよび熱電素子の製造方法

Country Status (1)

Country Link
JP (1) JP6549442B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309294A (ja) * 2002-02-12 2003-10-31 Komatsu Ltd 熱電モジュール
JP4279594B2 (ja) * 2003-05-16 2009-06-17 財団法人電力中央研究所 熱電変換モジュールの組立方法および当該モジュールの組立てに用いられるろう材
JP2006049736A (ja) * 2004-08-09 2006-02-16 Komatsu Ltd 熱電モジュール
JP5386239B2 (ja) * 2009-05-19 2014-01-15 古河機械金属株式会社 熱電変換モジュール
JP2014086623A (ja) * 2012-10-25 2014-05-12 Furukawa Co Ltd 熱電変換モジュール
JP6171513B2 (ja) * 2013-04-10 2017-08-02 日立化成株式会社 熱電変換モジュールおよびその製造方法

Also Published As

Publication number Publication date
JP2017037874A (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5386239B2 (ja) 熱電変換モジュール
US20040031515A1 (en) Thermoelectric conversion element
JP6182889B2 (ja) 熱電変換モジュールおよび熱電変換モジュールの製造方法
JP6317123B2 (ja) 熱電素子、熱電モジュールおよび熱電素子の製造方法
CN110998882A (zh) 热电转换元件和热电转换模块
KR20140045188A (ko) 열전모듈, 이를 구비한 열전장치, 및 열전모듈의 제조방법
JP4850083B2 (ja) 熱電変換モジュール及びそれを用いた発電装置及び冷却装置
JP5463204B2 (ja) 熱電素子およびその製造方法、ならびに熱電モジュール
JP6433245B2 (ja) 熱電素子および熱電モジュール
JP2013197265A (ja) 熱電変換モジュール
JP2011198778A (ja) 熱発電デバイスの製造方法
JP5689719B2 (ja) BiTe系多結晶熱電材料およびそれを用いた熱電モジュール
KR102198207B1 (ko) 침입형 도핑재 첨가에 의한 복합결정구조가 형성된 Te계 열전소재
JP6549442B2 (ja) 熱電素子、熱電モジュールおよび熱電素子の製造方法
JP5514523B2 (ja) 熱電素子およびその製造方法、ならびに熱電モジュール
JP7087519B2 (ja) 熱電素子、熱電変換モジュールおよび熱電素子の製造方法
KR20200054539A (ko) 열전소재의 확산방지층 및 이의 제조방법
JP2004235367A (ja) 熱電モジュール
JP2009206201A (ja) セグメント型熱電素子、熱電モジュール、発電装置および温度調節装置
JP7419917B2 (ja) 熱電変換素子の製造方法
JP4584034B2 (ja) 熱電モジュール
JP2018129349A (ja) 熱電素子、熱電モジュールおよび熱電素子の製造方法
JP4918672B2 (ja) 熱電変換セグメント素子及びその製造方法。
JP5153247B2 (ja) セグメント型熱電素子、熱電モジュール、発電装置および温度調節装置
JP4643371B2 (ja) 熱電モジュール

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190627

R150 Certificate of patent or registration of utility model

Ref document number: 6549442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees