[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6548046B2 - Novel low carbon emission biodegradable sheet and product thereof - Google Patents

Novel low carbon emission biodegradable sheet and product thereof Download PDF

Info

Publication number
JP6548046B2
JP6548046B2 JP2017100692A JP2017100692A JP6548046B2 JP 6548046 B2 JP6548046 B2 JP 6548046B2 JP 2017100692 A JP2017100692 A JP 2017100692A JP 2017100692 A JP2017100692 A JP 2017100692A JP 6548046 B2 JP6548046 B2 JP 6548046B2
Authority
JP
Japan
Prior art keywords
plastic
novel low
biodegradable sheet
low carbon
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100692A
Other languages
Japanese (ja)
Other versions
JP2017210614A (en
Inventor
楊華鴻
金國軸
林建誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Ming Eco Technology Co Ltd
Original Assignee
Hong Ming Eco Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Ming Eco Technology Co Ltd filed Critical Hong Ming Eco Technology Co Ltd
Publication of JP2017210614A publication Critical patent/JP2017210614A/en
Application granted granted Critical
Publication of JP6548046B2 publication Critical patent/JP6548046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本願発明は、生分解性シートに関し、特に、分解後の炭素排出量が低い生分解性シートに関するものである。   The present invention relates to biodegradable sheets, and more particularly to biodegradable sheets with low carbon emission after degradation.

石化由来のプラスチック材料が、日常用品に広く使われているが、石油採取量の減少、温室効果の悪化及び分解しにくいプラスチック材料の使用によって進行する環境汚染の問題が日々深刻になるため、石化プラスチックの使用の減少、または生分解性プラスチックの開発が、プラスチック関連産業の新たなトレンドになり、それによって様々なバイオプラスチック生まれる。現在のバイオプラスチックは、主に二種類に分かれて、その1つはバイオベースプラスチックであり、もう1つは生分解可能なスプラスチックである。前記バイオベースプラスチックと云うのは、プラスチック材料の一部または全部が再生可能な生物由来のもので、その目的は石化由来のプラスチックの置換または使用の減少によって二酸化炭素(CO)の排出量を減らす。一方、生分解可能なスプラスチックと云うのは、コーンスターチ、エンドウ澱粉など非石化由来の生分解可能な材料からなるもので、その目的はプラスチック廃棄物による汚染を減らす。また、生分解可能なスプラスチックは生分解可能であるため、一定の時間を置くとその機械的強度がすぐに衰え、一般の袋類製品の寿命は一年以内しか持たないので、その代わりに、石化プラスチックを生分解可能になるように石化プラスチックの分解を促進する生分解助剤の開発に転向する業者も出始める。現在市販の生分解助剤は、光酸化分解助剤及び新規の酵素制御剤がある。光酸化分解助剤を取り扱う業者とその製品は、例えばEPI社製のTDPA及びSymphony社製のd2w等が現在主流の助剤であるが、重金属の成分が含まれ、且つ堆肥テストも不合格であるため、一部の地区または国家にその使用が禁じられている。一方、新規の酵素制御剤には重金属残留の問題がなく、発展の展望が期待されている。現在取り扱っている業者は、例えばEarth Nurture(ENAR additive)、ECM BioFilms、Bio−Tec Environmental(EcopureR)、Enso Plastics、IQON Ecozyme等、その酵素制御型の助剤に関する公開情報は、以下のURLに示されている:
http://agbio.coa.gov.tw/information_detail.aspx?dno=34347&ito=87
http://technews.tw/2016/03/13/bacteria-eat-plastic/
http://www.bioindustry.cn/info/view/26856
Although plastic materials derived from petrification are widely used in everyday products, petrification is apt because the problems of environmental pollution that progress due to the decrease in oil yield, deterioration of the greenhouse effect and the use of plastic materials that are difficult to decompose become serious every day. The reduction in the use of plastics, or the development of biodegradable plastics, will be a new trend in the plastics related industry, resulting in the birth of various bioplastics. Current bioplastics are mainly divided into two types, one of which is biobased plastics and the other of biodegradable plastics. The term "bio-based plastic" means that part or all of the plastic material is derived from renewable organisms, and the purpose is to reduce carbon dioxide (CO 2 ) emissions by reducing substitution or use of plastic from plasticization. cut back. On the other hand, biodegradable plastics are made of biodegradable materials derived from non-petrification such as corn starch and pea starch, and their purpose is to reduce contamination by plastic waste. Also, since biodegradable plastic is biodegradable, its mechanical strength quickly declines after a certain period of time, and the life of ordinary bag products is only within one year, instead. Also, some companies will turn to the development of biodegradation aids that promote the degradation of petroplastics to be biodegradable. Currently commercially available biodegradation aids include photo-oxidation degradation aids and novel enzyme regulators. For example, TDPA manufactured by EPI and d2w manufactured by Symphony are the mainstream at present, but they are heavy metal components and the compost test is also rejected. For some reasons, some districts or states are prohibited from using it. On the other hand, new enzyme regulators do not have the problem of heavy metal residue, and development prospects are expected. The vendors that are currently handling include, for example, the following URL for public information on the enzyme-controlled auxiliaries of Earth Nurture (ENAR additive), ECM BioFilms, Bio-Tec Environmental (Ecopure®), Enso Plastics, IQON Ecozyme, etc. Has been:
http://agbio.coa.gov.tw/information_detail.aspx?dno=34347&ito=87
http://technews.tw/2016/03/13/bacteria-eat-plastic/
http://www.bioindustry.cn/info/view/26856

酵素制御剤には、プラスチックと反応できる特殊な酵素を含有するため、プラスチック分子間の炭素−炭素(C−C)結合と炭素−水素(C−H)結合の結合力を弱めることができ、前記石化プラスチックを微生物に分解されやすくなり、作物に使用する堆肥として利用することもできる。   Since the enzyme control agent contains a special enzyme that can react with the plastic, it can weaken the bond between carbon-carbon (C-C) bond and carbon-hydrogen (C-H) bond between plastic molecules, The petrified plastic is easily decomposed into microorganisms and can be used as a compost used for crops.

酵素制御剤は、天然の方法でプラスチックを分解するが、現時点でそれのみをポリエチレン(Polyethylene, PE)またはポリプロピレン(Polypropylene, PP)のような石化プラスチックに使うと、分解速度が遅すぎる欠点があり、初期では材料の機械的強度を少ししか減らすことができないので、一般認知の分解可能とはまだ程遠い。また、石化プラスチックの分解速度を促進する能力は添加剤量によって決められるので、価格の高い添加剤は製品の最終コストに反映されるため、利用の普及を阻む一因でもある。   Enzyme control agents degrade plastics in a natural way, but at the moment they are only used for petrified plastics such as polyethylene (PE) or polypropylene (PP), they have the disadvantage of being too slow In the initial stage, the mechanical strength of the material can be reduced only a little, so it is far from general degradability. In addition, since the ability to accelerate the decomposition rate of mineralized plastic is determined by the amount of additives, expensive additives are also reflected in the final cost of the product, thus contributing to the spread of utilization.

以上を鑑みて、現在石化プラスチックの元となる石油の減少及び分解できない廃棄物による環境汚染、さらに従来の酵素制御剤の高コスト等様々な課題を解決するため、本発明は1種の新規低炭素排出生分解性シートを提供し、そのシートは新規低炭素排出生分解性材料からなり、厚さが0.01〜0.15mmであり、前記新規低炭素排出生分解性材料は、石化プラスチック材料20〜90wt%と、バイオベース材料10〜80wt%と、酵素制御剤1〜10wt%とを混練して作成され、そのうち、前記石化プラスチック材料は石化由来のプラスチック材料であり、前記バイオベース材料は澱粉、植物繊維粉または前述両者の組み合わせであり、前記酵素制御剤はポリオレフィン樹脂とプラスチック分解酵素とを含み、前記ポリオレフィン樹脂と前記プラスチック分解酵素が、プラスチック分解酵素含有のポリオレフィン樹脂粒に形成された後、前記石化プラスチック材料と前記バイオベース材料と混練させ、前記新規低炭素排出生分解性シートの分解率が少なくとも90%である。   In view of the above, in order to solve various problems such as reduction of petroleum, which is the source of petroplastics, environmental pollution by wastes that can not be decomposed, and high cost of conventional enzyme control agents, the present invention Provided is a carbon-emitting biodegradable sheet, wherein the sheet is made of a novel low-carbon-emitting biodegradable material and has a thickness of 0.01 to 0.15 mm, and the novel low-carbon-emitting biodegradable material is a petrified plastic Made by kneading 20-90 wt% of material, 10-80 wt% of bio-based material and 1-10 wt% of enzyme control agent, wherein the petrified plastic material is a plastic material derived from petrification and the bio-based material Is starch, vegetable fiber powder or a combination of the foregoing, and the enzyme control agent comprises a polyolefin resin and a plastic degrading enzyme, and the polyolefin Resin and the plastic-degrading enzyme are formed into plastic resin-containing polyolefin resin particles, and then kneaded with the petroplastic material and the bio-based material, so that the decomposition rate of the novel low-carbon discharged biodegradable sheet is at least 90%.

前記新規低炭素排出生分解性シートの表面に複数の発泡泡体を有し、且つシート体に複数の微小孔が形成され、密度が0.6〜1g/cmである。 A plurality of foam foams are formed on the surface of the novel low-carbon-discharge biodegradable sheet, and a plurality of micropores are formed in the sheet, and the density is 0.6 to 1 g / cm 3 .

前記石化プラスチック材料は、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、エチレン−酢酸ビニル共重合体、またはポリエチレンテレフタレートを含み、前記ポリオレフィン樹脂はポリエチレン、ポリプロピレンまたはエチレン−酢酸ビニル共重合体であり、前記プラスチック分解酵素は脱水素酵素、酸化酵素または二酸素添加酵素であり、さらに微生物、微生物の栄養源または乳化剤を含み、前記バイオベース材料が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、エチレン−酢酸ビニル共重合体またはポリエチレンテレフタレートと混和して前記バイオベース材料含有のプラスチック粒に形成された後、前記石化プラスチック材料と前記酵素制御剤と混練させる。 The petrified plastic material comprises polyethylene, polypropylene, polystyrene, polyvinyl chloride, ethylene-vinyl acetate copolymer, or polyethylene terephthalate, and the polyolefin resin is polyethylene, polypropylene or ethylene-vinyl acetate copolymer, and the plastic The degrading enzyme is a dehydrogenase, an oxidase or a dioxygenating enzyme, and further contains a microorganism, a nutrient source of a microorganism or an emulsifying agent, and the biobased material is polyethylene, polypropylene, polystyrene, polyvinyl chloride, ethylene-vinyl acetate co The mixture is mixed with a polymer or polyethylene terephthalate to form the biobased material-containing plastic particles, and then the mineralized plastic material and the enzyme control agent are mixed.

前記バイオベース材料が形成前記プラスチック粒に形成される前の含水率が0.01〜0.5wt%である。   The moisture content is 0.01 to 0.5 wt% before the bio-based material is formed into the plastic particles.

前記植物繊維粉は竹粉、米ぬか粉、麦わら粉、木粉またはコーヒー粉を含む。   The vegetable fiber powder includes bamboo powder, rice bran powder, straw powder, wood powder or coffee powder.

そのシートは、さらに機能性材料または加工助剤を1〜20wt%含む。   The sheet further comprises 1 to 20 wt% of functional material or processing aid.

前記機能性材料は顔料、充填剤または強化剤を含み、前記加工助剤は散剤、スリップ剤または無機ナノ材料を含む。   The functional material comprises a pigment, a filler or a toughening agent, and the processing aid comprises a powder, a slip agent or an inorganic nanomaterial.

前記強化剤は熱可塑ポリオレフィン、熱可塑エラストマーまたは加硫熱可塑ポリオレフィン系エラストマーを含み、前記加工助剤は散剤またはスリップ剤を含み、前記スリップ剤はパラフィン、ポリエチレンワックス、脂肪酸または脂質アミドを含み、前記無機ナノ材料はナノスケールのタルク、マイカ、カオリンを含む。   The toughening agent comprises thermoplastic polyolefin, thermoplastic elastomer or vulcanized thermoplastic polyolefin based elastomer, the processing aid comprises powder or slip agent, and the slip agent comprises paraffin, polyethylene wax, fatty acid or lipid amide, The inorganic nanomaterials include nanoscale talc, mica and kaolin.

前記新規低炭素排出生分解性シートは、押し出しまたはブロー成形で形成される。   The novel low carbon waste biodegradable sheet is formed by extrusion or blow molding.

本発明は、さらに前述の新規低炭素排出生分解性シートによって製造された1種の新規低炭素排出生分解性シートの容器、袋類製品またはボトルを提供する。   The present invention further provides a container, bag product or bottle of one of the novel low carbon emission biodegradable sheets produced by the above-mentioned novel low carbon emission biodegradable sheets.

本発明は、植物由来の粉末であるバイオベース材料を、現有の酵素制御剤と組み合わせた後に、押し出しまたはブロー成形の成形工程によってフィルム、袋、板、シート等の製品を製造するので、以下の利点を有する。   The present invention combines a bio-based material which is a powder derived from a plant with an existing enzyme control agent and then manufactures a product such as a film, a bag, a plate, a sheet or the like by an extrusion or blow molding process. Have an advantage.

1.植物由来の粉末を含むバイオベース材料に含まれた微量の水分は、製造の過程に発泡の効果を生み、発泡剤の添加がなくても密度が0.6〜1g/cmのフィルム、袋、板、シート等の製品が得られるため、製品に一定数量の微小孔を含むことで、製品に軽量化の効果も得られる。また、微小孔の形成によって、澱粉とプラスチック分解酵素が細菌、微生物との接触面積が増加し、澱粉または石化プラスチック材料の分解に寄与することができる。さらに、植物由来の粉末自身が良好且つ早い分解特性を保有するので、微生物を迅速に増殖するための栄養源として提供することもでき、石化プラスチックの崩壊と分解の速度を加速する他、植物由来の粉末が分解された後に、酵素制御剤中のプラスチック分解酵素の作用面積をさらに増加することになり、材料全体の分解速度をさらに加速することができる。 1. The trace amount of water contained in the bio-based material containing the powder of plant origin produces the effect of foaming in the process of production, and a film with a density of 0.6 to 1 g / cm 3 even without the addition of a foaming agent Since products such as plates and sheets can be obtained, by including a certain number of micropores in the product, a weight reduction effect can also be obtained for the product. In addition, the formation of micropores can increase the contact area between starch and plastic degrading enzyme with bacteria and microorganisms, and can contribute to the degradation of starch or plasticized plastic material. Furthermore, since the plant-derived powder itself possesses good and fast degradation characteristics, it can also serve as a nutrient source for the rapid growth of microorganisms, accelerating the rate of disintegration and degradation of mineralized plastic, and also plant-derived After decomposition of the powder, the working area of the plastic degrading enzyme in the enzyme control agent can be further increased, and the degradation rate of the whole material can be further accelerated.

2.本発明は高度分解または完全分解の利点があるため、ISO14855、EN13432等の堆肥テストをクリアできる。   2. Since the present invention has the advantage of high degradation or complete degradation, it can clear compost tests such as ISO14855, EN13432.

3.石化プラスチック材料の化学式、例えばポリエチレンの(CH)nと、バイオベース材料の化学式、例えば澱粉の(C12)nとに比べて、両者が分解または燃焼後に生成する二酸化炭素の量は、プラスチックのほうが多いので、本発明が石化プラスチック材料の代わりに大量の再生可能なバイオベース材料を含有することで、分解または燃焼後に生成する二酸化炭素の量を大幅に減少し、本発明が企図する低炭素排出の効果を発揮することができる。 3. Compared to the chemical formula of the petrified plastic material, such as (CH 2 ) n of polyethylene and the chemical formula of the biobased material, such as (C 6 H 12 O 5 ) n of starch, of carbon dioxide formed after decomposition or combustion of both Because the amount of plastic is higher, the present invention contains a large amount of renewable bio-based material instead of petrified plastic material, significantly reducing the amount of carbon dioxide generated after decomposition or combustion, the present invention Can exert the effects of low carbon emissions intended by

本発明は、澱粉または植物繊維など、低コストの植物由来のバイオベース材料を添加することで、酵素制御剤の用量を直接的に減少することができる以外、比重の低減により酵素制御剤の用量を間接的に減少することができるため、コストダウンと共に高度分解または完全分解の効果を達成する他、石化由来の石化プラスチック材料の用量も減らすことができ、さらに制限なしに他の種類の石化プラスチック材料と複合、且つそれを分解することができる。また、本発明の表1である分解速度の比較表で確認できるように、バイオベース材料の添加は石化由来の石化プラスチック材料の分解速度をさらに加速することができる。そして表2は、ポリエチレンプラスチックフィルムと、バイオベースプラスチックフィルムと、バイオベース酵素分解可能のフィルムとの物理性質の比較表であり、その表で確認できるように、澱粉及び酵素制御剤を添加した本発明のフィルムと、酵素制御剤を添加しなかった対照グループ2のフィルムまたは酵素制御剤のみを添加した対照グループ1との物理性質の差が少ない。   In the present invention, the dosage of the enzyme control agent can be reduced by the reduction of the specific gravity, except that the dosage of the enzyme control agent can be directly reduced by adding low cost plant-derived bio-based material such as starch or vegetable fiber In addition to achieving cost reduction as well as achieving the effect of high degradation or complete degradation, the dose of petrified plastic material derived from petrification can also be reduced, and other types of petrified plastic can be further reduced without limitation. It can be composited with the material and it can be disassembled. In addition, as can be confirmed in the degradation rate comparison table of Table 1 of the present invention, the addition of the bio-based material can further accelerate the degradation rate of the petrified plasticized plastic material. And Table 2 is a comparison table of physical properties of polyethylene plastic film, bio-based plastic film, and bio-based enzyme-degradable film, and it can be confirmed in the table that the starch and the enzyme control agent were added The difference in physical properties between the inventive film and the control group 2 film to which no enzyme control agent was added or the control group 1 to which only an enzyme control agent was added is small.

バイオベースプラスチックと酵素制御剤における生物粉末、プロテイン、及び細菌成分が、水素結合やファンデルワールス力などの引力によって凝集しやすくなる。凝集現象は製品強度の低減、及び印刷適性不良の問題を引き起こすので、これらのバイオベース材料がプラスチックにおける分散状態と微小化は製品の品質を影響する。また、バイオベース材料または酵素制御剤における酵素と菌株に関わらず、温度が高すぎると製品の機能と機械的強度が影響を受けるため、製品の製造プロセスにおいて温度を下げることも重要の一環となる。本発明は、まずバイオベース材料と、基礎となるプラスチックとでプラスチック粒を形成し、及び酵素制御剤と、ポリオレフィン樹脂とでポリオレフィン樹脂粒を形成した後から、石化プラスチック材料と混和することで、本発明の材料フォーミュラの分散性を増す。さらに、加工助剤や無機ナノ材料の添加と、適切な機材設備と合わせることにより、プラスチックにおけるバイオベース材料の分散性、製品の強度または印刷適性が共に優れる高品質のシートを製造することができる。   Biopowders, proteins, and bacterial components in biobased plastics and enzyme control agents tend to aggregate due to attractive forces such as hydrogen bonding and van der Waals forces. Because the agglomeration phenomenon causes problems of reduced product strength and printability problems, the dispersion state and miniaturization of these bio-based materials in plastic affect the product quality. In addition, regardless of the enzymes and strains in biobased materials or enzyme control agents, lowering the temperature in the product manufacturing process is also an important part, as too high temperatures affect the product's function and mechanical strength. . According to the present invention, first, plastic particles are formed of the biobased material and the underlying plastic, and polyolefin resin particles are formed of the enzyme control agent and the polyolefin resin, and then mixed with the petrified plastic material. Increase the dispersibility of the material formula of the present invention. Furthermore, by combining the addition of processing aids and inorganic nanomaterials with appropriate equipment and equipment, it is possible to produce high quality sheets that are both excellent in the dispersibility of bio-based materials in plastics, product strength or printability. .

本発明の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of this invention. 本発明の製品の表面の走査電子顕微鏡(SEM)写真である。Figure 2 is a scanning electron microscope (SEM) picture of the surface of the product of the present invention. 本発明の製品の断面の走査電子顕微鏡(SEM)写真である。Figure 2 is a scanning electron microscope (SEM) picture of a cross section of a product of the invention.

本発明におけるシートは、基本的にフラット状の材料を表し、一般的に言えば、その厚さの違いによって分けられるように、厚さが薄いシートはフィルムとして、厚さが厚いシートは板としても称されるが、いずれも本発明の要旨に含まれることは言うまでもない。   The sheet in the present invention basically represents a flat material, and generally speaking, a thin sheet is a film and a thick sheet is a plate so that they can be divided by the difference in thickness. It is needless to say that all are also included in the scope of the present invention.

以下、図1を参照して、本発明を詳細に説明する。本発明の新規低炭素排出生分解性シートは、厚さが0.01〜0.15mmであり、新規低炭素排出生分解性材料からなるものであって、前記新規低炭素排出生分解性材料は、石化プラスチック材料20〜90wt%と、バイオベース材料10〜80wt%と、酵素制御剤1〜10wt%と含む材料を混練して作成されたもの、且つ前記新規低炭素排出生分解性プラスチックの分解率が少なくとも90%である。好ましくは、前記新規低炭素排出生分解性材料に含まれる前記石化プラスチック材料が20〜80wt%を占め、前記バイオベース材料及び前記酵素制御剤が10〜80wt%を占め、且つ前記バイオベース材料及び前記酵素制御剤における前記酵素制御剤の量が10〜12wt%を占める。   Hereinafter, the present invention will be described in detail with reference to FIG. The novel low carbon-discharge biodegradable sheet of the present invention has a thickness of 0.01 to 0.15 mm and is made of a novel low-carbon discharge biodegradable material, and the novel low-carbon discharge biodegradable material Made by kneading a material containing 20 to 90 wt% of a petrified plastic material, 10 to 80 wt% of a biobased material, and 1 to 10 wt% of an enzyme control agent, and the novel low carbon-discharge biodegradable plastic The degradation rate is at least 90%. Preferably, the mineralized plastic material contained in the novel low carbon-emitting biodegradable material accounts for 20 to 80 wt%, the biobased material and the enzyme control agent account for 10 to 80 wt%, and the biobased material and The amount of the enzyme control agent in the enzyme control agent accounts for 10 to 12 wt%.

上述した前記新規低炭素排出生分解性材料における前記石化プラスチック材料は一般の石化由来のプラスチック材料であり、例えばポリエチレン(Polyethylene, PE)、ポリプロピレン(Polypropylene, PP)、ポリスチレン(Polystyrene, PS)、ポリ塩化ビニル、エチレン−酢酸ビニル共重合体(Poly ethylene−co−vinyl acetate, EVA)またはポリエチレンテレフタレート(Polyethylene Terephthalate, PET)などである。前記石化プラスチック材料は、材料の分解を補助する他の成分が添加される前に、自然環境において分解することができない。   The petrified plastic material in the above-mentioned novel low-carbon-emitting biodegradable material is a plastic material derived from common petrification, for example, polyethylene (Polyethylene, PE), polypropylene (Polypropylene, PP), polystyrene (Polystyrene, PS), poly And vinyl chloride, ethylene-co-vinyl acetate (EVA) or polyethylene terephthalate (PET). The mineralized plastic material can not be degraded in its natural environment before other components are added that aid in the degradation of the material.

前記バイオベース材料は澱粉、植物繊維粉または前述両者の組み合わせであり、前記植物繊維粉は竹粉、木粉、米ぬか粉、麦わら粉、コーヒー粉などの1種または多種の混和物とを含む。さらに、前記バイオベース材料は、まず澱粉または植物繊維粉を、基礎となるプラスチック(ポリエチレン、ポリプロピレン、ポリスチレン、エチレン−酢酸ビニル共重合体またはポリエチレンテレフタレートなど)と混練してプラスチック粒に形成された後、本発明の他の成分と混和させることにより、前記石化プラスチック材料における前記バイオベース材料の分散性を増すことができる。好ましくは、プラスチック粒に含有する澱粉または植物繊維粉の含有量が60〜80wt%である。   The bio-based material is starch, vegetable fiber powder, or a combination of the foregoing, and the vegetable fiber powder includes one or more blends of bamboo powder, wood powder, rice bran powder, straw powder, coffee powder and the like. Furthermore, the bio-based material is first formed into plastic particles by kneading starch or vegetable fiber powder with the underlying plastic (polyethylene, polypropylene, polystyrene, ethylene-vinyl acetate copolymer or polyethylene terephthalate etc) By mixing with the other components of the present invention, the dispersibility of the bio-based material in the petrified plastic material can be increased. Preferably, the content of starch or vegetable fiber powder contained in plastic particles is 60 to 80 wt%.

本発明のバイオベース材料は、澱粉または植物繊維粉を修飾(Modify)して修飾澱粉または修飾植物繊維粉になり、修飾の方法は、一般の澱粉(Starch)または植物繊維粉の分子内の分岐鎖を切断して、その分岐鎖にエステル系官能基を含む新たな官能基を連結することで前記修飾澱粉または修飾植物繊維粉が得られる。修飾澱粉または修飾植物繊維粉は、前記バイオベース材料とプラスチック(前述した石化プラスチック材料と、基礎となるプラスチックとを含む)による混和の適合性を高め、且つ官能基連結後の材料は比較的長い且つ複雑な分岐鎖構造を有するので、後の発泡工程の時に発泡ガスをうまく包むと共に、発泡泡体を支持して気泡の破裂や消失を防ぐことができる。   The bio-based material of the present invention is modified to modify starch or vegetable fiber powder to become modified starch or modified vegetable fiber powder, and the modification method is to branch within the molecule of general starch (Starch) or vegetable fiber powder. The modified starch or modified vegetable fiber powder is obtained by cleaving the chain and connecting a new functional group including an ester functional group to the branched chain. The modified starch or modified vegetable fiber powder improves compatibility of the mixing with the bio-based material and the plastic (including the petrified plastic material described above and the underlying plastic), and the material after functional group linkage is relatively long And since it has a complicated branched chain structure, it is possible to well wrap the foaming gas at the time of the subsequent foaming step and to support the foam so as to prevent the burst and the disappearance of the bubbles.

前記酵素制御剤はプラスチック分解酵素を含み、前記プラスチック分解酵素は、石化由来プラスチック材料に対する反応特異性を持ち、土壌環境で石化由来プラスチック材料を前記プラスチック分解酵素と土壌における細菌、微生物によって分解することができる。前記プラスチック分解酵素は、脱水素酵素(デヒドロゲナーゼともいう)、酸化酵素(オキシダーゼともいう)または二酸素添加酵素(ジオキシゲナーゼともいう)などを含むことが好ましい。なお、本発明の前記酵素制御剤は前記プラスチック分解酵素以外に、さらに前記石化プラスチック材料の分解を促進する微生物、微生物の栄養源または乳化剤を含み、その微生物は、例えば、シュードモナス属(Pseudomonas)、フラボバクテリウム属(Flavobacterium)、ビブリオ属(Vibrio)、セラチア属(Serratia)またはアルカニヴォラックス属(Alcanivorax)などであり、それを添加した石化プラスチック材料を高度分解または完全分解できる効果を有する。また、微生物の栄養源は炭水化物を含むことができる。本発明に言う高度分解または完全分解とは、前記石化プラスチック材料の分解率が90%以上に達することである。   The enzyme control agent includes a plastic-degrading enzyme, and the plastic-degrading enzyme has reaction specificity to the petrification-derived plastic material, and decomposes the petrification-derived plastic material in the soil environment by the plastic-degrading enzyme and bacteria in the soil Can. The plastic degrading enzyme preferably contains a dehydrogenase (also referred to as a dehydrogenase), an oxidase (also referred to as an oxidase) or a dioxygenated enzyme (also referred to as a dioxygenase). In addition to the plastic degrading enzyme, the enzyme control agent of the present invention further includes a microorganism that promotes the degradation of the petroplastic material, a nutrient source of the microorganism, or an emulsifying agent, and the microorganism is, for example, Pseudomonas. Flavobacterium, Vibrio, Serratia or Alcanivorax, and the like, and has the effect of being capable of highly degrading or completely degrading the petrified plastic material to which it is added. Also, the nutrient source of the microorganism can comprise carbohydrate. The high decomposition or complete decomposition referred to in the present invention means that the decomposition rate of the petrified plastic material reaches 90% or more.

本発明の前記酵素制御剤を前記石化プラスチック材料に均一に分散されるために、まず前記プラスチック分解酵素をポリオレフィン樹脂(PE、PP、EVAなど)と混練して前記プラスチック分解酵素含有のポリオレフィン樹脂粒を形成した後、前記プラスチック分解酵素含有の前記ポリオレフィン樹脂粒を前記石化プラスチック材料と混和することで、石化プラスチック材料における前記酵素制御剤の分散性を増すことができ、もとの前記酵素制御剤と前記石化プラスチック材料の分散界面の問題を克服する。   In order to uniformly disperse the enzyme control agent of the present invention in the petrified plastic material, the plastic decomposing enzyme is first kneaded with a polyolefin resin (PE, PP, EVA, etc.) to obtain the plastic decomposing enzyme-containing polyolefin resin particles The dispersability of the enzyme control agent in the petrified plastic material can be increased by mixing the polyolefin resin particles containing the plastic decomposing enzyme with the petrified plastic material after forming the And overcome the problem of the dispersed interface of said petrified plastic material.

上述した本発明の前記バイオベース材料に使用した基礎プラスチック、前記酵素制御剤に使用したポリオレフィン樹脂、及び前記石化プラスチック材料などの表現は、前記バイオベース材料と前記酵素制御剤がそれぞれ前記基礎プラスチックと前記ポリオレフィン樹脂に添加した後から、前記石化プラスチック材料と混和することを明確に区別するためである。また、前記石化プラスチック材料、基礎プラスチック及びポリオレフィン樹脂は基本的に同じく石化由来のプラスチックであるが、需要に応じて同一または異なる石化由来プラスチックを選択することができる。   The expressions such as the base plastic used for the bio-based material of the present invention described above, the polyolefin resin used for the enzyme control agent, and the petrified plastic material are as described above for the bio-based material and the enzyme control agent respectively with the base plastic This is to clearly distinguish mixing with the petroplastic material after being added to the polyolefin resin. Also, the petrified plastic material, the base plastic and the polyolefin resin are basically the same petrified plastic, but the same or different petrified plastic can be selected according to demand.

本発明の新規低炭素排出生分解性材料には、さらに製造プロセスの需要または最終製品の需要に応じて機能性材料または加工助剤を1〜20wt%添加することができる。この場合の前記新規低炭素排出生分解性材料の比率が80〜99wt%であり、前記機能性材料は顔料、充填剤または強化剤を含み、前記加工助剤は散剤、スリップ剤または無機ナノ材料などを含む。 The novel low carbon-emitting biodegradable material of the present invention may further contain 1 to 20 wt% of a functional material or a processing aid according to the demand of the manufacturing process or the demand of the final product. In this case, the ratio of the novel low carbon-emitting biodegradable material is 80 to 99 wt%, the functional material contains a pigment, a filler or a reinforcing agent, and the processing aid is a powder, a slip agent or an inorganic nanomaterial And so on.

前記充填剤は炭酸カルシウム、タルク…などの無機物を含み、前記強化剤は熱可塑ポリオレフィン(Thermoplastic olefin, TPO)、熱可塑エラストマー(Thermoplastic elastomer, TPE)または加硫熱可塑ポリオレフィン系エラストマー(Thermoplastic vulcanizate, TPV)などを含み、前記スリップ剤はパラフィン、ポリエチレンワックス(PEワックス)、酸化ポリエチレンワックス(OPEワックス)、脂肪酸または脂質アミドを含む。また、前記無機ナノ材料はナノスケールのケイ酸塩、例えばナノスケールのタルク、マイカ、カオリンなどを含む。 The filler comprises an inorganic substance such as calcium carbonate, talc, etc., and the reinforcing agent is a thermoplastic polyolefin (Thermoplastic olefin, TPO), a Thermoplastic elastomer (TPE) or a vulcanized thermoplastic polyolefin elastomer (Thermoplastic vulcanizate, TPV) and the like, and the slip agent comprises paraffin, polyethylene wax (PE wax), oxidized polyethylene wax (OPE wax), fatty acid or lipid amide. Also, the inorganic nanomaterials include nanoscale silicates, such as nanoscale talc, mica, kaolin and the like.

本発明の新規低炭素排出生分解性材料は、一般の加工技術でシートに成形できるが、その限りではなく、例えば前記石化プラスチック材料、前記バイオベース材料、前記酵素制御剤及び前記機能性材料(任意)を一緒に溶融混練した後、ホットプレス、押し出し工程などにより、厚さの需要に応じて板、シートまたはフィルムに加工し、そして前記板、シートまたはフィルムは、さらにブリスター成形の方法でプラスチックボウル、プレート、カップなどの容器または他の袋類製品に形成することができる。本発明の前記新規低炭素排出生分解性材料のフォーミュラは、ブロー成形によってボトルまたは缶に形成することもできる。 The novel low-carbon-emitting biodegradable material of the present invention can be formed into a sheet by general processing techniques, but it is not limited thereto, for example, the petrified plastic material, the bio-based material, the enzyme control agent and the functional material ( Optionally melt-knead together and then processed into a plate, sheet or film according to the thickness demand by hot pressing, extrusion process etc., and said plate, sheet or film is further plasticized by blister molding method It can be formed into containers such as bowls, plates, cups or other bag-like products. The novel low carbon waste biodegradable material formula of the present invention can also be formed into bottles or cans by blow molding.

一般的に言えば、植物由来のバイオベース材料と酵素制御剤を添加する時に、粉末状態のバイオベースプラスチックや酵素制御剤は、製造または貯蔵の過程において湿気を吸うことにより過剰の水分を含むので、製品の変形欠陥、品質不安定且つ物理性質不良になりやすくなる。故に、本発明は、後に続く工程に起こる欠陥を減少するために、石化プラスチック材料と混練する前に、バイオベース材料と酵素制御剤を0.5%以下の含水率まで乾燥する。而して、前記バイオベース材料に含まれた微量の水分は、前記新規低炭素排出生分解性材料の製造過程に発泡の効果を生むため、板材の物理性質を下げる発泡剤の添加がなくても、本発明の板材が発泡して複数のマイクロボイドや微小孔を形成し、且つ密度が0.6〜1g/cmである。また、本発明がバイオベース材料として植物繊維粉を選択すると、製品の物理性質及び耐摩耗性をさらに上げることができる故、最終製品の特性に基づいて、製品が要求された物理性質及び品質の需要に達するように、澱粉と植物繊維粉との任意な組み合わせを採用することができる。 Generally speaking, when adding plant-based biobased materials and enzyme control agents, powdered biobased plastic and enzyme control agents contain excess moisture by absorbing moisture during the process of manufacture or storage. , Product deformation defects, quality instability and physical property defects. Thus, the present invention dries the bio-based material and the enzyme control agent to a moisture content of 0.5% or less prior to kneading with the petrified plastic material to reduce defects that occur in subsequent steps. Thus, a trace amount of water contained in the bio-based material produces an effect of foaming in the process of producing the new low-carbon-discharge biodegradable material, and therefore, there is no addition of a foaming agent that reduces the physical properties of the plate. Also, the plate material of the present invention is foamed to form a plurality of microvoids and micropores, and the density is 0.6 to 1 g / cm 3 . Also, if the present invention selects plant fiber flour as a biobased material, the physical properties and abrasion resistance of the product can be further enhanced, so that based on the properties of the final product, the required physical properties and quality of the product Any combination of starch and vegetable fiber flour can be employed to reach demand.

図2〜3を参照して、それらは本発明の新規低炭素排出生分解性シートの走査電子顕微鏡(SEM)写真である。そのうち、図2の本発明の表面のSEM写真でわかるように、本発明の表面には複数の泡体が散在し、その表面のラフさ故、本発明が分解する時に微生物などが本発明の表面に付着しやすくなり、微生物の生存や作用に適した環境に形成することができる。そして図3の本発明の断面のSEM写真でわかるように、本発明のシート体には複数のマイクロボイドや微小孔が散在するので、本発明のバイオベース材料や酵素制御剤と微生物との接触面積が拡大し、石化プラスチック材料に対する酵素制御剤の分解速度を加速することができる。 Referring to FIGS. 2-3, they are scanning electron microscope (SEM) photographs of the novel low carbon excreted biodegradable sheet of the present invention. Among them, as can be seen from the SEM photograph of the surface of the present invention in FIG. 2, a plurality of foams are scattered on the surface of the present invention, and due to the roughness of the surface, microorganisms etc. It easily adheres to the surface and can be formed in an environment suitable for the survival and action of microorganisms. And, as can be seen from the SEM photograph of the cross section of the present invention in FIG. 3, since the sheet body of the present invention is interspersed with a plurality of microvoids and micropores, the biobase material of the present invention and the enzyme control agent contact with microorganisms. The area can be expanded to accelerate the degradation rate of the enzyme control agent to the petrified plastic material.

本発明は、加工助剤、例えば無機ナノ材料の添加と、適切な機材設備と合わせることにより、プラスチックにおけるバイオベース材料の分散性、製品の強度または印刷適性が共に優れる高品質のシートを製造することができる。本発明が含有する植物由来の粉末とのバイオベース材料及び酵素助剤は、前記無機ナノ材料と加工助剤の補助で、単軸パドルミクサーまたは二軸パドルミクサーによって均一に分散される。また、ミクサーのパドルは長さ対直径比が25以上のものが好適であり、且つ一定のせん断力を有するほうが好ましい。 The present invention, together with the addition of processing aids, such as inorganic nanomaterials, and appropriate equipment, produces high quality sheets which are both excellent in the dispersibility of biobased materials in plastics, the strength or the printability of the product. be able to. The biobased material and enzyme aid with the powder derived from a plant contained in the present invention are uniformly dispersed by a uniaxial paddle mixer or a biaxial paddle mixer with the aid of the inorganic nanomaterial and the processing aid. Also, the mixer paddle preferably has a length-to-diameter ratio of 25 or more, and preferably has a constant shear force.

表1を参照して、それは本発明が前記バイオベース材料及び前記酵素制御剤の組み合わせによって、前記石化プラスチック材料の分解速度をさらに加速できるという効果を確かめるための実験である。表1における対照グループ1は酵素制御剤とポリエチレン(PE)のみ、厚さが0.02mmのフィルムであり、対照グループ2は澱粉とポリエチレン(PE)のみ、厚さが0.02mmのフィルムであり、そして本発明は澱粉及び酵素制御剤を含むポリエチレンで形成された、厚さが0.02mmのフィルムである。それらが90日、150日、180日及び300日の分解速度を比較して表1で示す。この表に言う分解速度とは、重量損失率であり、フィルム材が有機肥料含有のフィールドで分解の進展を試験して、重量損失の計量結果を指している。

Figure 0006548046
Referring to Table 1, it is an experiment to confirm the effect that the present invention can further accelerate the degradation rate of the petrified plastic material by the combination of the biobased material and the enzyme control agent. Control group 1 in Table 1 is a film with a thickness of 0.02 mm only with enzyme control agent and polyethylene (PE), and control group 2 is a film with a thickness of 0.02 mm with starch and polyethylene (PE) only And, the present invention is a 0.02 mm thick film formed of polyethylene containing starch and an enzyme control agent. They are shown in Table 1 comparing the degradation rates at 90, 150, 180 and 300 days. The degradation rate referred to in this table is the weight loss rate, and indicates the weighing result of weight loss by testing the progress of degradation in the field where the film material contains organic fertilizer.
Figure 0006548046

表1で示されたように、PEと澱粉のみの対照グループ2は、150日から分解しなくなることが確認され、つまり対照グループ2に含まれた分解可能な澱粉の分解が完了された後、分解できないPEがそのまま残って環境の汚染になる。対して本発明のPE、澱粉及び酵素制御剤のグループは、同じく150日で添加された澱粉の分解が完了されるが、150日から180日のたった30日で、4wt%の酵素制御剤が56wt%のPEを完全または高度分解することができる。これは、添加された澱粉などのバイオベース材料に含まれた水分が、本発明の製造プロセスにおいて発泡して一定量のマイクロボイドや微小孔を形成し、製品に軽量化の効果をもたらす以外、マイクロボイドや微小孔の形成によって澱粉や酵素制御剤と微生物との接触面積が拡大し、石化プラスチック材料に対する酵素制御剤の分解速度を加速することができる。また、澱粉自身が良好且つ早い分解特性を保有する以外、微生物のさらなる栄養源として提供することもできるので、微生物の増殖も加速し、石化プラスチックの崩壊と分解の速度を加速する他、澱粉が先に分解された後、酵素制御剤中の酵素の作用面積をさらに増加することになり、材料全体の分解速度をさらに加速することができる。   As shown in Table 1, the PE and starch only control group 2 was found to be nondegradable after 150 days, ie after degradation of the degradable starch contained in the control group 2 was completed PEs that can not be decomposed remain as they are and cause environmental pollution. In contrast, the PE, starch and enzyme control group of the present invention complete the degradation of the added starch in 150 days, but 4 wt% of the enzyme control agent in only 30 days from 150 to 180 days 56 wt% PE can be completely or highly degraded. This is because the moisture contained in the bio-based material such as added starch foams in the production process of the present invention to form a certain amount of microvoids and micropores, and brings about a weight saving effect to the product, By the formation of microvoids and micropores, the contact area between starch and the enzyme control agent and the microorganism can be expanded, and the decomposition rate of the enzyme control agent to the petrified plastic material can be accelerated. In addition to the fact that starch itself possesses good and fast degradation characteristics, it can also be provided as an additional nutrient source for microorganisms, thus accelerating the growth of microorganisms and accelerating the rate of disintegration and degradation of petrified plastic, and starch After being previously degraded, the active area of the enzyme in the enzyme control agent will be further increased, and the degradation rate of the whole material can be further accelerated.

一方、PEと酵素制御剤のみの対照グループ1は、反応面積を増加するマイクロボイドや微小孔を形成できる澱粉などのバイオベース材料が添加されていないので、150日以前のPEの分解速度が非常に遅く、分解しない場合さえある。また、その半分の量のPE(約50wt%、即ち、本発明のグループのPE添加量に相当する量)を分解するにも、少なくとも180日はかかるので、30日(150日から180日)で56wt%のPEの分解が完了する本発明に比べて、本発明は石化プラスチック材料の分解速度を少なくとも5〜6倍加速することができる。   On the other hand, PE and the enzyme control agent only control group 1 have a very high degradation rate of PE before 150 days because bio-based materials such as microvoids and starch capable of forming micropores that increase the reaction area are not added. In some cases, it does not break down. In addition, it takes at least 180 days to decompose the half amount of PE (about 50 wt%, ie the amount corresponding to the PE addition amount of the group of the present invention), so 30 days (150 to 180 days) The present invention can accelerate the degradation rate of the petrified plastic material by at least 5 to 6 times compared to the present invention in which the degradation of 56 wt% of PE is completed.

以下の表2を参照して、それは上述の表1の各グループのフォーミュラで製造されたフィルムの物理性質の比較表であり、その表で確認できるように、酵素制御剤を添加したフィルムと、酵素制御剤を添加しなかった対照グループと比べて、物理性質への影響が少ない。(表2に試験したフィルムの厚さが0.06mmである)

Figure 0006548046
With reference to Table 2 below, it is a comparison table of the physical properties of the films produced with the formulas of each group in Table 1 above, and as can be seen in the table, films to which an enzyme control agent has been added, There is less influence on physical properties compared to the control group where no enzyme control agent was added. (The film thickness tested in Table 2 is 0.06 mm)
Figure 0006548046

本発明の新規低炭素排出生分解性シートの価格は一般の石化プラスチックに近似し、且つ原材料が入手しやすい利点がある。また、バイオベース材料と酵素制御剤との組み合わせによって材料の分解速度を向上する効果を有するので、ポリ乳酸(Poly Lactic Acid, PLA)などの高価且つ普及率の低い生分解性プラスチックに比べて、本発明は価格だけでなく効能も優れており、且つ比較的に容易な方法で環境にやさしい製品が製造される。   The price of the novel low carbon emission biodegradable sheet of the present invention is similar to that of common petrified plastic, and there is an advantage that raw materials are easily available. In addition, since the combination of the bio-based material and the enzyme control agent has the effect of improving the degradation rate of the material, compared to expensive and less popular biodegradable plastics such as poly lactic acid (PLA), The present invention is not only cost effective, but also produces environmentally friendly products in a relatively easy way.

上述の表1及び表2は、本発明の好適な実施例を開示したが、本発明はこれらの実施例により限定されるものではなく、本発明の趣旨と範囲を逸脱しないすべての変更及び修正は、本発明の請求の範囲に含まれる。   Although Tables 1 and 2 described above disclose preferred embodiments of the present invention, the present invention is not limited by these embodiments, and all changes and modifications can be made without departing from the spirit and scope of the present invention. Is included in the claims of the present invention.

Claims (9)

新規低炭素排出生分解性材料からなり、厚さが0.01〜0.15mmである新規低炭素排出生分解性シートであって、前記新規低炭素排出生分解性材料は、石化プラスチック材料20〜90wt%と、バイオベース材料10〜80wt%と、酵素制御剤1〜10wt%とを混練して作成され、
前記石化プラスチック材料は石化由来のプラスチック材料であり、
前記バイオベース材料は植物繊維粉であり、
前記酵素制御剤はポリオレフィン樹脂とプラスチック分解酵素とを含み、前記ポリオレフィン樹脂と前記プラスチック分解酵素が、プラスチック分解酵素含有のポリオレフィン樹脂粒に形成された後、前記石化プラスチック材料と前記バイオベース材料と混練させ、
前記新規低炭素排出生分解性シートの分解率が少なくとも90%であり、
前記植物繊維粉は竹粉、米ぬか粉、麦わら粉、木粉またはコーヒー粉を含むことを特徴とする、新規低炭素排出生分解性シート。
A novel low-carbon-discharge biodegradable sheet comprising a novel low-carbon-discharge biodegradable material and having a thickness of 0.01 to 0.15 mm, wherein the novel low-carbon-discharge biodegradable material is a petrified plastic material 20 ~ 90 wt%, 10 to 80 wt% of bio-based material, and 1 to 10 wt% of enzyme control agent are prepared by kneading,
The petrified plastic material is a petrified plastic material,
The bio-based material is a plant fiber powder,
The enzyme control agent comprises a polyolefin resin and a plastic decomposing enzyme, and the polyolefin resin and the plastic decomposing enzyme are formed into polyolefin resin particles containing the plastic decomposing enzyme, and then kneaded with the petrified plastic material and the bio-based material. Let
The degradation rate of the novel low carbon emission biodegradable sheet is at least 90%,
The novel low carbon-discharge biodegradable sheet, wherein the vegetable fiber powder comprises bamboo powder, rice bran powder, straw powder, wood powder or coffee powder.
前記新規低炭素排出生分解性シートの表面に複数の発泡泡体を有し、且つシート体に複数の微小孔が形成され、密度が0.6〜1g/cmであることを特徴とする、請求項1記載の新規低炭素排出生分解性シート。 The novel low carbon discharging biodegradable sheet is characterized in that it has a plurality of foam foams, and a plurality of micropores are formed in the sheet, and the density is 0.6 to 1 g / cm 3. The novel low carbon emission biodegradable sheet according to claim 1. 前記石化プラスチック材料は、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、エチレン−酢酸ビニル共重合体、またはポリエチレンテレフタレートを含み、
前記ポリオレフィン樹脂はポリエチレン、ポリプロピレンまたはエチレン−酢酸ビニル共重合体であり、前記プラスチック分解酵素は脱水素酵素、酸化酵素または二酸素添加酵素であり、さらに微生物、微生物の栄養源または乳化剤を含み、
前記バイオベース材料が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、エチレン−酢酸ビニル共重合体またはポリエチレンテレフタレートと混和して前記バイオベース材料含有のプラスチック粒に形成された後、前記石化プラスチック材料と前記酵素制御剤と混練させることを特徴とする、請求項1または2記載の新規低炭素排出生分解性シート。
The petrified plastic material comprises polyethylene, polypropylene, polystyrene, polyvinyl chloride, ethylene-vinyl acetate copolymer, or polyethylene terephthalate,
The polyolefin resin is polyethylene, polypropylene or ethylene-vinyl acetate copolymer, and the plastic degrading enzyme is a dehydrogenase, an oxidase or a dioxygenating enzyme, and further contains a microorganism, a nutrient source of a microorganism or an emulsifier.
The biobased material is mixed with polyethylene, polypropylene, polystyrene, polyvinyl chloride, ethylene-vinyl acetate copolymer or polyethylene terephthalate to form the biobased material-containing plastic particles, and The novel low-carbon-discharge biodegradable sheet according to claim 1 or 2, characterized in that it is kneaded with an enzyme control agent.
前記バイオベース材料が形成前記プラスチック粒に形成される前の含水率が0.01〜0.5wt%であることを特徴とする、請求項3記載の新規低炭素排出生分解性シート。 The novel low carbon waste biodegradable sheet according to claim 3, characterized in that the moisture content before said bio-based material is formed into said plastic particles is 0.01-0.5 wt%. さらに機能性材料または加工助剤を1〜20wt%含むことを特徴とする、請求項1または2記載の新規低炭素排出生分解性シート。 The novel low-carbon-discharge biodegradable sheet according to claim 1 or 2, further comprising 1 to 20 wt% of a functional material or a processing aid. 前記機能性材料は顔料、充填剤または強化剤を含み、前記加工助剤は散剤、スリップ剤または無機ナノ材料を含むことを特徴とする、請求項記載の新規低炭素排出生分解性シート。 The novel low carbon waste biodegradable sheet according to claim 5 , wherein the functional material comprises a pigment, a filler or a toughening agent, and the processing aid comprises a powder, a slip agent or an inorganic nanomaterial. 前記強化剤は熱可塑ポリオレフィン、熱可塑エラストマーまたは加硫熱可塑ポリオレフィン系エラストマーを含み、前記加工助剤は散剤またはスリップ剤を含み、前記スリップ剤はパラフィン、ポリエチレンワックス、脂肪酸または脂質アミドを含み、前記無機ナノ材料はナノスケールのタルク、マイカ、カオリンを含むことを特徴とする、請求項記載の新規低炭素排出生分解性シート。 The toughening agent comprises thermoplastic polyolefin, thermoplastic elastomer or vulcanized thermoplastic polyolefin based elastomer, the processing aid comprises powder or slip agent, and the slip agent comprises paraffin, polyethylene wax, fatty acid or lipid amide, The novel low carbon-emitting biodegradable sheet according to claim 6 , wherein the inorganic nanomaterial comprises nanoscale talc, mica and kaolin. 前記新規低炭素排出生分解性シートは、押し出しまたはブロー成形で形成されることを特徴とする、請求項1記載の新規低炭素排出生分解性シート。 The novel low carbon emission biodegradable sheet according to claim 1, wherein the novel low carbon emission biodegradable sheet is formed by extrusion or blow molding. 請求項1〜のいずれか一項に記載の新規低炭素排出生分解性シートによって製造された、新規低炭素排出生分解性シートの容器、袋類製品またはボトル。 Claim 1 was produced by the novel low carbon emissions biodegradable sheet according to any one of 8, the container of the new low carbon emissions biodegradable sheet, bags products or bottles.
JP2017100692A 2016-05-25 2017-05-22 Novel low carbon emission biodegradable sheet and product thereof Active JP6548046B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105116356 2016-05-25
TW105116356A TWI598389B (en) 2016-05-25 2016-05-25 Novel low carbon bio-degradable film and application thereof

Publications (2)

Publication Number Publication Date
JP2017210614A JP2017210614A (en) 2017-11-30
JP6548046B2 true JP6548046B2 (en) 2019-07-24

Family

ID=60474543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100692A Active JP6548046B2 (en) 2016-05-25 2017-05-22 Novel low carbon emission biodegradable sheet and product thereof

Country Status (2)

Country Link
JP (1) JP6548046B2 (en)
TW (1) TWI598389B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102201152B1 (en) * 2020-03-25 2021-01-12 주식회사 트래닛 Eco-friendly elastic sheet with improved elongation and specific gravity characteristics and method for manufacturing the same
CN111838952A (en) * 2020-07-08 2020-10-30 唐朋飞 Degradable plastic bottle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268112A (en) * 1994-03-30 1995-10-17 Takenaka Komuten Co Ltd Biodegradable film
JP2003041054A (en) * 2001-08-01 2003-02-13 Hideko Saegusa Biodegradable resin composition
JP3878623B2 (en) * 2004-05-20 2007-02-07 アグリフューチャー・じょうえつ株式会社 Rice-blended polyolefin resin composition, production method thereof, film molded product thereof, and molding method of this molded product
EA200801469A1 (en) * 2005-11-28 2009-02-27 Нью Айс Лимитед WAYS OF DRAWING FILMS ON BIODIZABLE BIOLOGICAL DECOMPOSITION OR COMPOSTING CONTAINERS
JP4857809B2 (en) * 2006-02-24 2012-01-18 大日本印刷株式会社 Package
JP4660528B2 (en) * 2007-05-01 2011-03-30 アグリフューチャー・じょうえつ株式会社 Polymer composite material manufacturing apparatus and manufacturing method thereof
WO2012162136A2 (en) * 2011-05-20 2012-11-29 The Procter & Gamble Company Films of starch-polymer-wax-oil compositions
JP2013023643A (en) * 2011-07-25 2013-02-04 National Institute For Agro-Environmental Science Method for accelerating decomposition of biodegradable plastic material

Also Published As

Publication number Publication date
TWI598389B (en) 2017-09-11
JP2017210614A (en) 2017-11-30
TW201741399A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
US11427686B2 (en) Starch based reactor, resultant products, and methods and processes relating thereto
US8389614B2 (en) Biodegradable nanopolymer compositions and biodegradable articles made thereof
US11674014B2 (en) Blending of small particle starch powder with synthetic polymers for increased strength and other properties
CN101392073B (en) All bio-decomposable starch-resin, preparation method thereof, film products and resin composition for preparing starch-resin
JP2020531672A (en) Liquid compositions containing biological entities and their use
JP5127593B2 (en) Biodegradable resin material, composition thereof, production method and application
US20200339784A1 (en) Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
RU2352597C1 (en) Biodegradable granular polyolefin blend and method of production
CN107835829A (en) Include the concentrate composition of high-concentration biological entity
JP6548046B2 (en) Novel low carbon emission biodegradable sheet and product thereof
Lim et al. Corn starch/PVA bioplastics—The properties and biodegradability study using Chlorella vulgaris cultivation
JP2021523957A (en) Addition of additives that impart biodegradability to plastic materials
CN107434867A (en) The degradable sheet material of novel low carbon and its product
CN112940389A (en) Anaerobic degradation material and preparation method thereof
CN107434869A (en) Synthetic paper and its product
Amin et al. Polymer-starch blend biodegradable plastics: An overview
EP3997169A1 (en) Blending of small particle starch and starch-based materials with synthetic polymers for increased strength and other properties
TWI605083B (en) Bio-degradable foaming material and application thereof
CN107434868A (en) Biodegradable foamed material and its product
JP4914982B2 (en) Biodegradable plastic composition
CN111560159A (en) Bamboo powder poly (butylene succinate) starch biodegradable plastic and preparation method thereof
TW552290B (en) Biodegradable blend composition of starch and plastic, and production method therefor
TWI619868B (en) Synthetic paper and application thereof
JP2006328405A (en) Biodegradable sheet and process for producing the same, biodegradable molded article comprising the sheet, and process for producing the same
RU2804143C1 (en) Composite material based on synthetic polymers and method for its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190612

R150 Certificate of patent or registration of utility model

Ref document number: 6548046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250