[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6544345B2 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JP6544345B2
JP6544345B2 JP2016231853A JP2016231853A JP6544345B2 JP 6544345 B2 JP6544345 B2 JP 6544345B2 JP 2016231853 A JP2016231853 A JP 2016231853A JP 2016231853 A JP2016231853 A JP 2016231853A JP 6544345 B2 JP6544345 B2 JP 6544345B2
Authority
JP
Japan
Prior art keywords
power
transmission
shift
gear
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016231853A
Other languages
Japanese (ja)
Other versions
JP2018086973A (en
Inventor
寛英 小林
寛英 小林
吉川 雅人
雅人 吉川
健太 熊崎
健太 熊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016231853A priority Critical patent/JP6544345B2/en
Priority to US15/800,381 priority patent/US10369987B2/en
Priority to BR102017023600-5A priority patent/BR102017023600B1/en
Priority to MYPI2017704165A priority patent/MY189598A/en
Priority to RU2017138443A priority patent/RU2675484C1/en
Priority to KR1020170145775A priority patent/KR101982700B1/en
Priority to TW106138266A priority patent/TWI673189B/en
Priority to AU2017258809A priority patent/AU2017258809B2/en
Priority to CA2984972A priority patent/CA2984972C/en
Priority to EP17200656.1A priority patent/EP3327317B1/en
Priority to PH12017050079A priority patent/PH12017050079A1/en
Priority to MX2017014827A priority patent/MX369879B/en
Priority to CN201711183674.XA priority patent/CN108116399B/en
Publication of JP2018086973A publication Critical patent/JP2018086973A/en
Application granted granted Critical
Publication of JP6544345B2 publication Critical patent/JP6544345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は、差動機構と有段変速機とを直列に備えるハイブリッド車両の制御装置に関するものである。   The present invention relates to a control device for a hybrid vehicle including a differential mechanism and a stepped transmission in series.

エンジンと、前記エンジンと第1回転機と中間伝達部材とが各々連結された3つの回転要素を有する差動機構と、前記中間伝達部材に動力伝達可能に連結された第2回転機と、前記中間伝達部材と駆動輪との間の動力伝達経路の一部を構成すると共に複数の係合装置のうちの所定の係合装置の係合によって複数のギヤ段のうちの何れかのギヤ段が形成される有段変速機と、前記第1回転機及び前記第2回転機の各々に対して電力を授受する蓄電装置とを備えたハイブリッド車両の制御装置が良く知られている。例えば、特許文献1に記載されたハイブリッド車両がそれである。この特許文献1には、有段変速機の変速時、第2回転機の回転速度の変化速度とエンジンの回転速度の変化速度とが各々の目標値となるように、エンジンのトルクと有段変速機のトルク容量とに基づいて、第1回転機のトルクと第2回転機のトルクとを制御することが開示されている。   An engine, a differential mechanism having three rotary elements in which the engine, the first rotary machine, and the intermediate transmission member are respectively connected, a second rotary machine coupled to the intermediate transmission member so as to be able to transmit power; One of the plurality of gear stages is formed by engagement of a predetermined engagement device of the plurality of engagement devices while forming a part of a power transmission path between the intermediate transmission member and the drive wheel A control device for a hybrid vehicle is well known which includes a geared transmission to be formed, and a power storage device for transferring electric power to and from each of the first rotating machine and the second rotating machine. For example, the hybrid vehicle described in Patent Document 1 is that. In this patent document 1, at the time of gear shifting of the stepped transmission, the torque of the engine and the stepped position of the engine are set so that the change speed of the rotational speed of the second rotating machine and the change speed of the rotational speed of the engine become respective target values It is disclosed to control the torque of the first rotating machine and the torque of the second rotating machine based on the torque capacity of the transmission.

特開2014−223888号公報JP 2014-223888 A

ところで、有段変速機の変速時に蓄電装置のパワーが小さいと、蓄電装置のパワーの制限に因って第1回転機の出力トルクや第2回転機の出力トルクが制限される。そうすると、有段変速機の変速時に所望する第1回転機の出力トルクや第2回転機の出力トルクが得られず、エンジンの回転速度の変化速度を目標値とするように適切に制御することができないおそれがある。エンジンの回転速度の変化速度は差動機構と有段変速機とを合わせた変速機全体の変速の進行具合を表しているので、エンジンの回転速度の変化速度を目標値に適切に制御することができないと言うことは、変速機全体の変速を適切に実行できないということである。   By the way, when the power of the power storage device is small at the time of gear shifting of the geared transmission, the output torque of the first rotating machine and the output torque of the second rotating machine are limited due to the power limitation of the power storage device. In this case, the desired output torque of the first rotating machine and the desired output torque of the second rotating machine can not be obtained at the time of gear shifting of the stepped transmission, and control appropriately to set the change speed of the engine rotational speed to the target value. May not be Since the speed of change of the rotational speed of the engine represents the progress of shifting of the entire transmission including the differential and the stepped transmission, properly control the speed of change of the rotational speed of the engine to the target value. What we can not do is that we can not properly shift the entire transmission.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、蓄電装置のパワーの制限に拘わらず、差動機構と有段変速機とを合わせた変速機全体の変速を適切に実行することができるハイブリッド車両の制御装置を提供することにある。   The present invention has been made against the background described above, and the object of the present invention is to provide an overall transmission combining a differential and a stepped transmission regardless of the power limitation of the storage device. It is an object of the present invention to provide a control device of a hybrid vehicle that can appropriately execute a shift.

第1の発明の要旨とするところは、(a) エンジンと、前記エンジンが動力伝達可能に連結された第1回転要素と第1回転機が動力伝達可能に連結された第2回転要素と中間伝達部材が連結された第3回転要素とを有する差動機構と、前記中間伝達部材に動力伝達可能に連結された第2回転機と、前記中間伝達部材と駆動輪との間の動力伝達経路の一部を構成すると共に複数の係合装置のうちの所定の係合装置の係合によって複数のギヤ段のうちの何れかのギヤ段が形成される有段変速機と、前記第1回転機及び前記第2回転機の各々に対して電力を授受する蓄電装置とを備えたハイブリッド車両の、制御装置であって、(b) 変速前の前記ギヤ段を形成する前記所定の係合装置のうちの解放側係合装置の解放と変速後の前記ギヤ段を形成する前記所定の係合装置のうちの係合側係合装置の係合とを制御することで前記有段変速機にて形成される前記ギヤ段を切り替える変速制御部と、(c) 前記有段変速機の変速時、前記第2回転機の回転速度の変化速度と前記エンジンの回転速度の変化速度とが各々の目標値となるように、前記エンジンの出力トルクと、前記解放側係合装置及び前記係合側係合装置のうちの変速を進行させる側の変速進行側係合装置の伝達トルクとに基づいて、前記第1回転機の出力トルクと前記第2回転機の出力トルクとを制御するハイブリッド制御部と、(d) 前記有段変速機の変速時に前記蓄電装置の充放電可能電力の制限に因って前記第1回転機の出力トルクと前記第2回転機の出力トルクとが制限されることが抑制されるように、前記エンジンのパワー、前記差動機構及び前記有段変速機における変速の進行に必要なパワー、及び前記蓄電装置の充放電可能電力に基づいて、前記変速進行側係合装置の伝達トルクを設定する伝達トルク設定部とを、含むことにある。 The gist of the first invention is as follows: (a) an engine, and a first rotating element to which the engine is connected to transmit power and a second rotating element to which the first rotating machine is connected to transmit power; A power transmission path between the intermediate transmission member and the drive wheel, a differential mechanism having a third rotation element to which the transmission member is connected, a second rotary machine power-transmission coupled to the intermediate transmission member, and A geared transmission which constitutes a part of the gear and in which one of a plurality of gear stages is formed by engagement of a predetermined engagement device of the plurality of engagement devices, and the first rotation Control device for a hybrid vehicle including a power storage device for transferring electric power to and from each of the first and second rotating machines, and (b) the predetermined engagement device for forming the gear before shifting Of the release side engagement device of the A shift control unit that switches the gear formed in the stepped transmission by controlling engagement of an engagement-side engagement device among fixed engagement devices; (c) the stepped transmission The output torque of the engine, the disengagement side engagement device, and the change speed of the rotational speed of the second rotary machine and the change speed of the rotational speed of the engine become respective target values at the time of gear shift of the machine The output torque of the first rotating machine and the output torque of the second rotating machine are controlled based on the transmission torque of the shift advancing side engaging device on the side of advancing the shift of the engagement side engaging device. (D) the output torque of the first rotating machine and the output torque of the second rotating machine due to the limitation of the chargeable / dischargeable power of the storage device at the time of shifting of the stepped transmission The power of the engine, the differential, so as to be limited Organization and the power required for progression of the shift in the multi-stage transmission, and based on the charge and discharge electric power of said power storage device, a transmission torque setting unit for setting the transmission torque of the shift progress side engagement device includes It is.

また、第2の発明は、前記第1の発明に記載のハイブリッド車両の制御装置において、前記エンジンのパワーと前記変速の進行に必要なパワーと前記蓄電装置の充放電可能電力と前記変速進行側係合装置の伝達パワーとの収支バランスにおいて、前記各パワーの収支バランスが取れるか否かを判定する状態判定部を更に備えており、前記ハイブリッド制御部は、前記各パワーの収支バランスが取れないときには、前記各パワーの収支バランスが取れるように前記エンジンのパワーを変更するものであり、前記伝達トルク設定部は、前記変速進行側係合装置の伝達トルクを設定する際の基になる前記エンジンのパワーとして、前記変更されたエンジンのパワーを用いることにある。 According to a second aspect of the present invention, in the control device for a hybrid vehicle according to the first aspect, the power of the engine, the power necessary for the progress of the shift, the chargeable / dischargeable power of the storage device, and the shift progression side The hybrid control unit further includes a state determination unit that determines whether or not the balance of the powers can be balanced in balance with the transmission power of the engagement device, and the hybrid controller does not balance the balance of the respective powers. At the same time, the power of the engine is changed so that the balance of each power can be balanced, and the transmission torque setting unit is the engine on which the transmission torque of the shift advancing engagement device is set. The power of the modified engine is used as the power of.

また、第3の発明は、前記第1の発明又は第2の発明に記載のハイブリッド車両の制御装置において、前記伝達トルク設定部は、前記エンジンのパワー、前記変速の進行に必要なパワー、及び前記蓄電装置の充放電可能電力のそれぞれの大きさに応じた複数の段階を引き数とし、前記引き数に応じた前記変速進行側係合装置の伝達トルクを読み取り値として予め定められた関係を有し、前記関係を用いて前記変速進行側係合装置の伝達トルクを設定することにある。 Further, according to a third invention, in the control device for a hybrid vehicle according to the first invention or the second invention, the transmission torque setting unit is a power of the engine, a power necessary for the progress of the shift, and A plurality of stages corresponding to respective magnitudes of chargeable and dischargeable electric power of the power storage device are set as a pull, and a transmission torque of the shift advancing engagement device according to the pull is set as a read value. And setting the transmission torque of the shift advancing engagement device using the relationship.

また、第4の発明は、前記第3の発明に記載のハイブリッド車両の制御装置において、前記有段変速機のアップシフト時は、前記差動機構と前記有段変速機とが直列に配置された変速機全体のアップシフトが行われる一方で、前記有段変速機のダウンシフト時は、前記変速機全体のダウンシフトが行われるものであり、前記有段変速機のパワーオンダウンシフトにおける前記段階の数は、前記有段変速機のパワーオンアップシフトにおける前記段階の数と比較して多くされていることにある。
また、第5の発明は、前記第1の発明から第4の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記有段変速機の変速時とは、前記有段変速機のアップシフト時には前記第2回転機の回転速度を変速後の同期回転速度へ向けて低下させ、前記有段変速機のダウンシフト時には前記第2回転機の回転速度を変速後の同期回転速度へ向けて上昇させる変速過渡中である、前記有段変速機の変速過渡におけるイナーシャ相中である。
Further, according to a fourth aspect of the present invention, in the control device for a hybrid vehicle according to the third aspect, the differential mechanism and the stepped transmission are arranged in series at the time of upshifting of the stepped transmission. While the upshift of the entire transmission is performed, the downshift of the entire transmission is performed during the downshift of the stepped transmission, and the power on downshift of the stepped transmission is performed. The number of stages is increased compared to the number of stages in the power-on upshift of the stepped transmission.
Further, according to a fifth aspect of the present invention, in the control apparatus for a hybrid vehicle according to any one of the first to fourth aspects of the present invention, at the time of a gear shift of the stepped transmission, At the time of upshifting, the rotational speed of the second rotating machine is reduced toward the synchronized rotational speed after shifting, and at the time of downshifting of the stepped transmission, the rotational speed of the second rotating machine is directed to the synchronized rotating speed after shifting During the gear shift transition to raise, and during the inertia phase in the gear shift transition of the stepped transmission.

前記第1の発明によれば、有段変速機の変速時に蓄電装置の充放電可能電力の制限に因って第1回転機の出力トルクと第2回転機の出力トルクとが制限されることが抑制されるように、エンジンのパワー、差動機構及び有段変速機における変速の進行に必要なパワー、及び蓄電装置の充放電可能電力に基づいて、変速進行側係合装置の伝達トルクが設定されるので、各パワーの収支バランスが考慮された変速進行側係合装置の伝達トルクにて有段変速機の変速が実行される。これにより、有段変速機の変速時に蓄電装置の充放電可能電力が制限されたとしても所望する第1回転機の出力トルクや第2回転機の出力トルクが得られ易く、エンジンの回転速度の変化速度を目標値とするように適切に制御することができる。よって、蓄電装置の充放電可能電力の制限に拘わらず、差動機構と有段変速機とを合わせた変速機全体の変速を適切に実行することができる。 According to the first aspect of the invention, the output torque of the first rotating machine and the output torque of the second rotating machine are limited due to the limitation of the chargeable / dischargeable power of the storage device at the time of shifting of the stepped transmission. Transfer torque of the shift advancing engagement device based on the power of the engine, the power required for the progress of the shift in the differential mechanism and the stepped transmission, and the chargeable / dischargeable power of the storage device so that Since it is set, the gear shift of the stepped transmission is executed by the transmission torque of the shift advancing engagement device in which the balance of each power is taken into consideration. This makes it easy to obtain the desired output torque of the first rotating machine and the output torque of the second rotating machine even if the chargeable / dischargeable power of the power storage device is limited at the time of gear shifting of the stepped transmission. It can control appropriately so that change speed may be made into a target value. Therefore, regardless of the limitation of the chargeable and dischargeable power of the power storage device, it is possible to appropriately execute the shift of the entire transmission that combines the differential mechanism and the stepped transmission.

また、前記第2の発明によれば、各パワーの収支バランスにおいて、各パワーの収支バランスが取れないときには、各パワーの収支バランスが取れるようにエンジンのパワーが変更され、変速進行側係合装置の伝達トルクを設定する際の基になるエンジンのパワーとして、その変更されたエンジンのパワーが用いられるので、各パワーの収支バランスが一層考慮された有段変速機の変速が実行される。これにより、変速機全体の変速を一層適切に実行することができる。   Further, according to the second aspect of the invention, when the balance of each power can not be balanced in the balance of each power, the power of the engine is changed so that the balance of each power can be balanced, and the shift advancing engagement device Since the power of the changed engine is used as the power of the engine that is the basis for setting the transmission torque, the gear shift of the stepped transmission is performed in which the balance of each power is further taken into consideration. As a result, the entire transmission can be shifted more appropriately.

また、前記第3の発明によれば、エンジンのパワー、変速の進行に必要なパワー、及び蓄電装置の充放電可能電力のそれぞれの大きさに応じた複数の段階を引き数とし、その引き数に応じた変速進行側係合装置の伝達トルクを読み取り値として予め定められた関係を用いて変速進行側係合装置の伝達トルクが設定されるので、各パワーの数値そのものに基づいて変速進行側係合装置の伝達トルクを設定する場合は予め定められた関係(マップ)が高次元化してしまい適合が複雑なものとなることに対して、各パワーの大きさに応じた複数の段階を用いた区分によって変速進行側係合装置の伝達トルクを設定することで(つまり、引き数を低減することで)、予め定められた関係を低次元化して適合を簡素化することができる。 Further, according to the third aspect of the invention, the power of the engine, the power necessary for the progress of the shift, and the plurality of stages corresponding to the respective sizes of the chargeable and dischargeable power of the storage device are used as arguments. Since the transmission torque of the shift advancing engagement device is set using a predetermined relationship with the transmission torque of the shift advancing engagement device according to the reading value as the read value, the shift advance side is determined based on the numerical value of each power itself. When setting the transmission torque of the engagement device, a plurality of stages according to the magnitude of each power are used, as the predetermined relationship (map) becomes higher in dimension and the adaptation becomes complicated. By setting the transmission torque of the shift advancing engagement device (that is, reducing the number of pulls) according to the section, it is possible to reduce the dimension of the predetermined relationship and simplify the adaptation.

また、前記第4の発明によれば、変速機全体のダウンシフトが行われる、有段変速機のパワーオンダウンシフトにおける段階の数は、変速機全体のアップシフトが行われる、有段変速機のパワーオンアップシフトにおける段階の数と比較して多くされているので、有段変速機のパワーオンアップシフトと比較して変速制御が難しい有段変速機のパワーオンダウンシフトを適切に実行することができる。このように、変速の種類によって(例えば変速制御の難易度に合わせて)引き数を変更することができるので、変速制御が容易な程、より適合を簡素化することができる。   Further, according to the fourth aspect of the present invention, the number of steps in the power-on downshift of the stepped transmission in which the downshift of the entire transmission is performed is the stepped transmission in which the upshift of the entire transmission is performed. The power-on downshift of the stepped transmission, which is more difficult to control the shift compared to the power-on upshift of the stepped transmission, is appropriately performed because be able to. As described above, since the number of pulls can be changed according to the type of shift (for example, according to the degree of difficulty of shift control), the easier the shift control is, the simpler the adaptation can be.

本発明が適用される車両に備えられた車両用駆動装置の概略構成を説明する図であると共に、車両における各種制御の為の制御機能及び制御系統の要部を説明する図である。While explaining the schematic configuration of a vehicle drive device provided in a vehicle to which the present invention is applied, it is a diagram explaining main control functions and control systems for various controls in the vehicle. 図1で例示した機械式有段変速部の変速作動とそれに用いられる係合装置の作動の組み合わせとの関係を説明する作動図表である。It is an operation chart explaining the relation between the shift operation of the mechanical stepped transmission illustrated in FIG. 1 and the combination of the operation of the engagement device used therein. 電気式無段変速部と機械式有段変速部とにおける各回転要素の回転速度の相対的関係を表す共線図である。It is an alignment chart showing the relative relationship of the rotational speed of each rotation element in an electrical stepless transmission part and a mechanical stepped transmission part. 複数のATギヤ段に複数の模擬ギヤ段を割り当てたギヤ段割当テーブルの一例を説明する図である。FIG. 7 is a diagram for explaining an example of a gear position assignment table in which a plurality of simulated gear positions are assigned to a plurality of AT gear positions. 図3と同じ共線図上に有段変速部のATギヤ段と変速機の模擬ギヤ段とを例示した図である。FIG. 4 is a diagram illustrating an AT gear of a stepped transmission and a simulated gear of a transmission on the same alignment chart as FIG. 3; 複数の模擬ギヤ段の変速制御に用いる模擬ギヤ段変速マップの一例を説明する図である。It is a figure explaining an example of the simulated gear shift map used for shift control of a plurality of simulated gear stages. 有段変速部の変速を伴うときの変速機の模擬有段変速制御におけるパワーの収支の概念図である。FIG. 6 is a conceptual diagram of balance of power in simulated stepped transmission control of the transmission when the transmission of the stepped transmission unit is involved. 電子制御装置の制御作動の要部すなわちバッテリパワーの制限に拘わらず変速機全体の変速を適切に実行する為の制御作動を説明するフローチャートである。It is a flowchart explaining the control action for appropriately performing the shift of the whole transmission irrespective of the main part of the control action of the electronic control unit, that is, the limitation of the battery power.

好適には、回転部材(例えば前述の、エンジン、第1回転機、第2回転機、差動機構の各回転要素、中間伝達部材、有段変速機の各回転要素など)の回転速度ωは回転部材の角速度に対応するものであり、又、回転速度ωの変化速度は回転速度ωの時間変化率すなわち時間微分であって回転部材の角加速度dω/dtであり、数式中においては角加速度dω/dtをωのドットで表すこともある。   Preferably, the rotational speed ω of the rotating member (for example, the above-mentioned engine, first rotating machine, second rotating machine, rotating elements of differential mechanism, intermediate transmission member, rotating elements of stepped transmission, etc.) is It corresponds to the angular velocity of the rotating member, and the rate of change of the rotational speed ω is the time rate of change of the rotational speed ω, ie, the time derivative and the angular acceleration dω / dt of the rotating member. In some cases, dω / dt is represented by a dot of ω.

以下、本発明の実施例を図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明が適用される車両10に備えられた車両用駆動装置12の概略構成を説明する図であると共に、車両10における各種制御の為の制御系統の要部を説明する図である。図1において、車両用駆動装置12は、エンジン14と、車体に取り付けられる非回転部材としてのトランスミッションケース16(以下、ケース16という)内において共通の軸心上に配設された、エンジン14に直接或いは図示しないダンパーなどを介して間接的に連結された電気式無段変速部18(以下、無段変速部18という)と、無段変速部18の出力側に連結された機械式有段変速部20(以下、有段変速部20という)とを直列に備えている。又、車両用駆動装置12は、有段変速部20の出力回転部材である出力軸22に連結された差動歯車装置24、差動歯車装置24に連結された一対の車軸26等を備えている。車両用駆動装置12において、エンジン14や後述する第2回転機MG2から出力される動力(特に区別しない場合にはトルクや力も同義)は、有段変速部20へ伝達され、その有段変速部20から差動歯車装置24等を介して車両10が備える駆動輪28へ伝達される。車両用駆動装置12は、例えば車両10において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものである。尚、無段変速部18や有段変速部20等はエンジン14などの回転軸心(上記共通の軸心)に対して略対称的に構成されており、図1ではその回転軸心の下半分が省略されている。   FIG. 1 is a view for explaining a schematic configuration of a vehicle drive device 12 provided in a vehicle 10 to which the present invention is applied, and a view for explaining a main part of a control system for various control in the vehicle 10. is there. In FIG. 1, the vehicle drive device 12 is mounted on an engine 14 and an engine 14 disposed on a common axial center in a transmission case 16 (hereinafter referred to as the case 16) as a non-rotational member attached to a vehicle body. An electric stepless transmission unit 18 (hereinafter referred to as continuously variable transmission unit 18) connected directly or indirectly via a damper or the like (not shown) and a mechanical stepped connected to the output side of continuously variable transmission unit 18 A transmission unit 20 (hereinafter referred to as a stepped transmission unit 20) is provided in series. Further, the vehicle drive device 12 includes a differential gear 24 connected to the output shaft 22 which is an output rotating member of the stepped transmission unit 20, a pair of axles 26 connected to the differential gear 24 and the like. There is. In the vehicle drive device 12, the power (a torque and a force also mean the same unless otherwise distinguished) output from the engine 14 and the second rotary machine MG2 described later is transmitted to the stepped transmission unit 20, and the stepped transmission unit 20 are transmitted to the drive wheels 28 provided in the vehicle 10 via the differential gear device 24 and the like. The vehicle drive device 12 is suitably used, for example, in an FR (front engine / rear drive) type vehicle vertically disposed in the vehicle 10. The continuously variable transmission unit 18, the stepped transmission unit 20, and the like are substantially symmetrical with respect to the rotation axis (the common axis) of the engine 14 and the like, and in FIG. Half is omitted.

エンジン14は、車両10の走行用の動力源であり、ガソリンエンジンやディーゼルエンジン等の公知の内燃機関である。このエンジン14は、後述する電子制御装置80によってスロットル弁開度或いは吸入空気量、燃料供給量、点火時期等の運転状態が制御されることによりエンジン14の出力トルクであるエンジントルクTeが制御される。本実施例では、エンジン14は、トルクコンバータやフルードカップリング等の流体式伝動装置を介することなく無段変速部18に連結されている。   The engine 14 is a power source for traveling the vehicle 10, and is a known internal combustion engine such as a gasoline engine or a diesel engine. The engine torque Te, which is the output torque of the engine 14, is controlled by controlling the operating state of the engine 14, such as the throttle valve opening or the intake air amount, the fuel supply amount, and the ignition timing, by the electronic control unit 80 described later. Ru. In the present embodiment, the engine 14 is connected to the continuously variable transmission unit 18 without a fluid transmission such as a torque converter or a fluid coupling.

無段変速部18は、第1回転機MG1と、エンジン14の動力を第1回転機MG1及び無段変速部18の出力回転部材である中間伝達部材30に機械的に分割する動力分割機構としての差動機構32と、中間伝達部材30に動力伝達可能に連結された第2回転機MG2とを備えている。無段変速部18は、第1回転機MG1の運転状態が制御されることにより差動機構32の差動状態が制御される電気式無段変速機である。第1回転機MG1は、差動用回転機(差動用電動機)に相当し、又、第2回転機MG2は、動力源として機能する電動機であって、走行駆動用回転機(走行駆動用電動機)に相当する。車両10は、走行用の動力源として、エンジン14及び第2回転機MG2を備えたハイブリッド車両である。   The continuously variable transmission unit 18 mechanically splits the power of the first rotary machine MG1 and the engine 14 into an intermediate transmission member 30 which is an output rotary member of the first rotary machine MG1 and the continuously variable transmission unit 18. And a second rotary machine MG2 coupled to the intermediate transmission member 30 so as to be capable of transmitting power. The continuously variable transmission unit 18 is an electric continuously variable transmission in which the differential state of the differential mechanism 32 is controlled by controlling the operating state of the first rotary machine MG1. The first rotating machine MG1 corresponds to a differential rotating machine (differential motor), and the second rotating machine MG2 is an electric motor functioning as a power source, and is used for traveling drive rotating machine (for traveling drive). Equivalent to a motor). The vehicle 10 is a hybrid vehicle including an engine 14 and a second rotating machine MG2 as a power source for traveling.

第1回転機MG1及び第2回転機MG2は、電動機(モータ)としての機能及び発電機(ジェネレータ)としての機能を有する回転電気機械であって、所謂モータジェネレータである。第1回転機MG1及び第2回転機MG2は、各々、車両10に備えられたインバータ50を介して、車両10に備えられた蓄電装置としてのバッテリ52に接続されており、後述する電子制御装置80によってインバータ50が制御されることにより、第1回転機MG1及び第2回転機MG2の各々の出力トルク(力行トルク又は回生トルク)であるMG1トルクTg及びMG2トルクTmが制御される。バッテリ52は、第1回転機MG1及び第2回転機MG2の各々に対して電力を授受する蓄電装置である。   The first rotary machine MG1 and the second rotary machine MG2 are rotary electric machines having a function as an electric motor (motor) and a function as a generator (generator), and are so-called motor generators. The first rotary machine MG1 and the second rotary machine MG2 are each connected to a battery 52 as a power storage device provided in the vehicle 10 via an inverter 50 provided in the vehicle 10, and an electronic control unit described later By controlling the inverter 50 by 80, the MG1 torque Tg and the MG2 torque Tm, which are output torques (powering torque or regenerative torque) of the first rotary machine MG1 and the second rotary machine MG2, are controlled. The battery 52 is an electric storage device that transmits and receives electric power to and from each of the first rotating machine MG1 and the second rotating machine MG2.

差動機構32は、シングルピニオン型の遊星歯車装置にて構成されており、サンギヤS0、キャリアCA0、及びリングギヤR0を備えている。キャリアCA0には連結軸34を介してエンジン14が動力伝達可能に連結され、サンギヤS0には第1回転機MG1が動力伝達可能に連結され、リングギヤR0には第2回転機MG2が動力伝達可能に連結されている。差動機構32において、キャリアCA0は入力要素として機能し、サンギヤS0は反力要素として機能し、リングギヤR0は出力要素として機能する。   The differential mechanism 32 is configured by a single pinion type planetary gear device, and includes a sun gear S0, a carrier CA0, and a ring gear R0. The engine 14 is connected to the carrier CA0 via a connecting shaft 34 so as to be able to transmit power, the first rotary machine MG1 is connected to be able to transmit power to the sun gear S0, and the second rotary machine MG2 is possible to transmit power to the ring gear R0. Is linked to In the differential mechanism 32, the carrier CA0 functions as an input element, the sun gear S0 functions as a reaction force element, and the ring gear R0 functions as an output element.

有段変速部20は、中間伝達部材30と駆動輪28との間の動力伝達経路の一部を構成する有段変速機である。中間伝達部材30は、有段変速部20の入力回転部材としても機能する。中間伝達部材30には第2回転機MG2が一体回転するように連結されているので、有段変速部20は、第2回転機MG2と駆動輪28との間の動力伝達経路の一部を構成する有段変速機である。有段変速部20は、例えば第1遊星歯車装置36及び第2遊星歯車装置38の複数組の遊星歯車装置と、クラッチC1、クラッチC2、ブレーキB1、ブレーキB2の複数の係合装置(以下、特に区別しない場合は単に係合装置CBという)とを備えている、公知の遊星歯車式の自動変速機である。   The stepped transmission unit 20 is a stepped transmission that constitutes a part of a power transmission path between the intermediate transmission member 30 and the drive wheel 28. The intermediate transmission member 30 also functions as an input rotation member of the stepped transmission 20. Since the second rotary machine MG2 is connected to the intermediate transmission member 30 so as to rotate integrally, the stepped transmission unit 20 forms part of the power transmission path between the second rotary machine MG2 and the drive wheel 28. It is a stepped transmission to be configured. The stepped transmission unit 20 includes, for example, a plurality of sets of planetary gear sets of the first planetary gear set 36 and the second planetary gear set 38, and a plurality of engagement devices (hereinafter referred to as a clutch C1, a clutch C2, a brake B1, and a brake B2). It is a known planetary gear type automatic transmission provided with an engaging device CB) unless otherwise specified.

係合装置CBは、油圧アクチュエータにより押圧される多板式或いは単板式ののクラッチやブレーキ、油圧アクチュエータによって引き締められるバンドブレーキなどにより構成される、油圧式の摩擦係合装置である。係合装置CBは、車両10に備えられた油圧制御回路54内のソレノイドバルブSL1−SL4等から各々出力される調圧された各係合油圧PRcbによりそれぞれのトルク容量(係合トルク、クラッチトルクともいう)Tcbが変化させられることで、それぞれ作動状態(係合や解放などの状態)が切り替えられる。係合装置CBを滑らすことなく(すなわち係合装置CBに差回転速度を生じさせることなく)中間伝達部材30と出力軸22との間でトルク(例えば有段変速部20に入力される入力トルクであるAT入力トルクTi)を伝達する為には、そのトルクに対して係合装置CBの各々にて受け持つ必要がある伝達トルク(係合伝達トルク、クラッチ伝達トルクともいう)分(すなわち係合装置CBの分担トルク)が得られる係合トルクTcbが必要になる。但し、伝達トルク分が得られる係合トルクTcbにおいては、係合トルクTcbを増加させても伝達トルクは増加しない。つまり、係合トルクTcbは、係合装置CBが伝達できる最大のトルクに相当し、伝達トルクは、係合装置CBが実際に伝達するトルクに相当する。従って、係合装置CBに差回転速度が生じている状態では、係合トルクTcbと伝達トルクとは同意である。本実施例では、有段変速部20の変速過渡中において差回転速度が生じている状態(例えばイナーシャ相中)の係合装置CBの伝達トルクを係合トルクTcbで表す(すなわち伝達トルクTcbで表す)。尚、係合トルクTcb(或いは伝達トルク)と係合油圧PRcbとは、例えば係合装置CBのパック詰めに必要な係合油圧PRcbを供給する領域を除けば、略比例関係にある。   The engagement device CB is a hydraulic friction engagement device constituted by a multi-plate or single-plate clutch or brake pressed by a hydraulic actuator, a band brake tightened by the hydraulic actuator, or the like. The engagement device CB has a torque capacity (engagement torque, clutch torque) controlled by the adjusted engagement hydraulic pressure PRcb output from the solenoid valves SL1 to SL4 and the like in the hydraulic control circuit 54 provided in the vehicle 10. The operation state (the state such as engagement or release) is switched by changing Tcb). Torque between the intermediate transmission member 30 and the output shaft 22 without sliding the engagement device CB (that is, without causing the engagement device CB to generate a differential rotation speed) In order to transmit the AT input torque Ti), the transmission torque (also referred to as engagement transmission torque and clutch The engagement torque Tcb that can obtain the shared torque of the device CB is required. However, in the engagement torque Tcb in which the transmission torque is obtained, the transmission torque does not increase even if the engagement torque Tcb is increased. That is, the engagement torque Tcb corresponds to the maximum torque that can be transmitted by the engagement device CB, and the transmission torque corresponds to a torque that is actually transmitted by the engagement device CB. Accordingly, in the state where the differential rotation speed is generated in the engagement device CB, the engagement torque Tcb and the transmission torque are in agreement. In this embodiment, the transmission torque of the engagement device CB in the state (for example, during the inertia phase) in which the differential rotational speed is generated during the shift transition of the stepped transmission unit 20 is represented by the engagement torque Tcb (that is, the transmission torque Tcb). Represent). The engagement torque Tcb (or transmission torque) and the engagement hydraulic pressure PRcb are in a substantially proportional relationship, for example, except for a region for supplying the engagement hydraulic pressure PRcb necessary for packing the engagement device CB.

有段変速部20は、第1遊星歯車装置36及び第2遊星歯車装置38の各回転要素(サンギヤS1,S2、キャリアCA1,CA2、リングギヤR1,R2)が、直接的に或いは係合装置CBやワンウェイクラッチF1を介して間接的(或いは選択的)に、一部が互いに連結されたり、中間伝達部材30、ケース16、或いは出力軸22に連結されている。   In the stepped transmission unit 20, the respective rotating elements (sun gears S1 and S2, carriers CA1 and CA2, and ring gears R1 and R2) of the first planetary gear device 36 and the second planetary gear device 38 directly or in engagement device CB. A portion is connected to each other indirectly (or selectively) via the one-way clutch F1, or to the intermediate transmission member 30, the case 16, or the output shaft 22.

有段変速部20は、係合装置CBのうちの所定の係合装置の係合によって、変速比(ギヤ比)γat(=AT入力回転速度ωi/出力回転速度ωo)が異なる複数の変速段(ギヤ段)のうちの何れかのギヤ段が形成される。本実施例では、有段変速部20にて形成されるギヤ段をATギヤ段と称す。AT入力回転速度ωiは、有段変速部20の入力回転部材の回転速度(角速度)である有段変速部20の入力回転速度であって、中間伝達部材30の回転速度と同値であり、又、第2回転機MG2の回転速度であるMG2回転速度ωmと同値である。AT入力回転速度ωiは、MG2回転速度ωmで表すことができる。出力回転速度ωoは、有段変速部20の出力回転速度である出力軸22の回転速度であって、無段変速部18と有段変速部20とを合わせた全体の変速機40の出力回転速度でもある。   The stepped transmission unit 20 has a plurality of shift speeds that are different in gear ratio (gear ratio) γat (= AT input rotational speed ωi / output rotational speed ωo) by engagement of a predetermined engagement device of the engagement device CB. One of the (gear stages) is formed. In this embodiment, the gear formed by the stepped transmission unit 20 is referred to as an AT gear. The AT input rotational speed ωi is the input rotational speed of the stepped transmission unit 20 which is the rotational speed (angular velocity) of the input rotary member of the stepped transmission unit 20, and has the same value as the rotational speed of the intermediate transmission member 30, The rotational speed of the second rotary machine MG2 is equal to the MG2 rotational speed ωm. The AT input rotational speed ωi can be represented by the MG2 rotational speed ωm. The output rotational speed ωo is the rotational speed of the output shaft 22 which is the output rotational speed of the stepped transmission 20, and the output rotation of the entire transmission 40 in which the stepless transmission 18 and the stepped transmission 20 are combined. It's also a speed.

有段変速部20は、例えば図2の係合作動表に示すように、複数のATギヤ段として、AT1速ギヤ段(図中の「1st」)−AT4速ギヤ段(図中の「4th」)の4段の前進用のATギヤ段が形成される。AT1速ギヤ段の変速比γatが最も大きく、高車速側(ハイ側のAT4速ギヤ段側)程、変速比γatが小さくなる。図2の係合作動表は、各ATギヤ段と係合装置CBの各作動状態(各ATギヤ段において各々係合される係合装置である所定の係合装置)との関係をまとめたものであり、「○」は係合、「△」はエンジンブレーキ時や有段変速部20のコーストダウンシフト時に係合、空欄は解放をそれぞれ表している。AT1速ギヤ段を成立させるブレーキB2には並列にワンウェイクラッチF1が設けられているので、発進時(加速時)にはブレーキB2を係合させる必要は無い。有段変速部20のコーストダウンシフトは、駆動要求量(例えばアクセル開度θacc)の減少やアクセルオフ(アクセル開度θaccがゼロ又は略ゼロ)による減速走行中の車速関連値(例えば車速V)の低下によってダウンシフトが判断(要求)されたパワーオフダウンシフトのうちで、アクセルオフの減速走行状態のままで要求されたダウンシフトである。尚、係合装置CBが何れも解放されることにより、有段変速部20は、何れのギヤ段も形成されないニュートラル状態(すなわち動力伝達を遮断するニュートラル状態)とされる。   For example, as shown in the engagement operation table of FIG. 2, the stepped transmission unit 20 has a plurality of AT gear stages, such as a first AT gear ("1st" in the figure)-a fourth AT (fourth AT). "4" forward gear AT gear is formed. The gear ratio γat of the first AT gear is the largest, and the gear ratio γat decreases as the vehicle speed increases (the fourth AT gear side on the high side). The engagement operation table of FIG. 2 summarizes the relationship between each AT gear and each operation state of the engagement device CB (predetermined engagement device which is an engagement device engaged in each AT gear). “○” indicates engagement, “△” indicates engagement during engine braking or coast downshift of the stepped transmission 20, and a blank indicates release. Since the one-way clutch F1 is provided in parallel to the brake B2 that establishes the first AT gear, there is no need to engage the brake B2 at the time of start (acceleration). The coast downshift of the stepped transmission unit 20 is a vehicle speed related value (for example, the vehicle speed V) during deceleration traveling due to a decrease in the required driving amount (for example, the accelerator opening θacc) or an accelerator off (the accelerator opening θacc is zero or almost zero). Among the power-off downshifts for which a downshift has been determined (requested) due to a decrease in A, the downshift is a requested downshift while the accelerator is off. By releasing the engagement device CB, the geared transmission unit 20 is brought into the neutral state in which no gear is formed (that is, the neutral state in which power transmission is interrupted).

有段変速部20は、後述する電子制御装置80(特には有段変速部20の変速制御を実行する後述するAT変速制御部82)によって、運転者のアクセル操作や車速V等に応じて係合装置CBのうちの(つまり変速前のATギヤ段を形成する所定の係合装置のうちの)解放側係合装置の解放と係合装置CBのうちの(つまり変速後のATギヤ段を形成する所定の係合装置のうちの)係合側係合装置の係合とが制御されることで、形成されるATギヤ段が切り替えられる(すなわち複数のATギヤ段が選択的に形成される)。つまり、有段変速部20の変速制御においては、例えば係合装置CBの何れかの掴み替えにより(すなわち係合装置CBの係合と解放との切替えにより)変速が実行される、所謂クラッチツゥクラッチ変速が実行される。例えば、AT2速ギヤ段からAT1速ギヤ段へのダウンシフト(2→1ダウンシフトと表す)では、図2の係合作動表に示すように、解放側係合装置となるブレーキB1が解放されると共に、係合側係合装置となるブレーキB2が係合させられる。この際、ブレーキB1の解放過渡油圧やブレーキB2の係合過渡油圧が調圧制御される。   The stepped transmission unit 20 is engaged according to the driver's accelerator operation, the vehicle speed V, and the like by an electronic control unit 80 described later (in particular, an AT transmission control unit 82 described later that executes shift control of the stepped transmission unit 20). Release of the release side engagement device of the coupling device CB (that is, of the predetermined engagement device that forms the AT gear before shifting) and that of the engagement device CB (that is, the AT gear after shifting) By controlling the engagement of the engagement-side engagement device (of the predetermined engagement devices to be formed), the formed AT gear is switched (ie, a plurality of AT gears are selectively formed) ). That is, in the shift control of the stepped transmission portion 20, for example, a shift is performed by regripping of any of the engagement devices CB (that is, switching of engagement and disengagement of the engagement devices CB). A clutch shift is performed. For example, in the downshift from the second AT to the first AT (denoted as 2 → 1 downshift), as shown in the engagement operation table of FIG. 2, the brake B1 serving as the release side engagement device is released. And the brake B2 serving as the engagement side engagement device is engaged. At this time, the release transient hydraulic pressure of the brake B1 and the engagement transient hydraulic pressure of the brake B2 are pressure-controlled.

図3は、無段変速部18と有段変速部20とにおける各回転要素の回転速度の相対的関係を表す共線図である。図3において、無段変速部18を構成する差動機構32の3つの回転要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素RE2に対応するサンギヤS0の回転速度を表すg軸であり、第1回転要素RE1に対応するキャリアCA0の回転速度を表すe軸であり、第3回転要素RE3に対応するリングギヤR0の回転速度(すなわち有段変速部20の入力回転速度)を表すm軸である。又、有段変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素RE4に対応するサンギヤS2の回転速度、第5回転要素RE5に対応する相互に連結されたリングギヤR1及びキャリアCA2の回転速度(すなわち出力軸22の回転速度)、第6回転要素RE6に対応する相互に連結されたキャリアCA1及びリングギヤR2の回転速度、第7回転要素RE7に対応するサンギヤS1の回転速度をそれぞれ表す軸である。縦線Y1、Y2、Y3の相互の間隔は、差動機構32のギヤ比(歯車比)ρ0に応じて定められている。又、縦線Y4、Y5、Y6、Y7の相互の間隔は、第1、第2遊星歯車装置36,38の各歯車比ρ1,ρ2に応じて定められている。共線図の縦軸間の関係においてサンギヤとキャリアとの間が「1」に対応する間隔とされるとキャリアとリングギヤとの間が遊星歯車装置の歯車比ρ(=サンギヤの歯数Zs/リングギヤの歯数Zr)に対応する間隔とされる。   FIG. 3 is a collinear diagram showing the relative relationship between the rotational speeds of the respective rotary elements in the stepless transmission 18 and the stepped transmission 20. As shown in FIG. In FIG. 3, three vertical lines Y1, Y2 and Y3 corresponding to the three rotating elements of the differential mechanism 32 constituting the continuously variable transmission unit 18 are, in order from the left side, the sun gear S0 corresponding to the second rotating element RE2. It is a g-axis representing the rotational speed, and an e-axis representing the rotational speed of the carrier CA0 corresponding to the first rotating element RE1, and the rotational speed of the ring gear R0 corresponding to the third rotating element RE3. It is m axis which represents input rotation speed. Further, the four vertical lines Y4, Y5, Y6, Y7 of the stepped transmission unit 20 correspond to the rotational speed of the sun gear S2 corresponding to the fourth rotating element RE4, the mutual corresponding to the fifth rotating element RE5 in order from the left. The rotational speed of the connected ring gear R1 and the carrier CA2 (ie, the rotational speed of the output shaft 22), the rotational speed of the carrier CA1 and the ring gear R2 connected to each other corresponding to the sixth rotating element RE6, corresponding to the seventh rotating element RE7 It is an axis which expresses rotation speed of sun gear S1 which carries out. The distance between the vertical lines Y1, Y2, Y3 is determined in accordance with the gear ratio (gear ratio) 00 of the differential mechanism 32. Further, the intervals between the vertical lines Y4, Y5, Y6, Y7 are determined in accordance with the gear ratios ρ1, 22 of the first and second planetary gear devices 36, 38. When the distance between the sun gear and the carrier in the relationship between the longitudinal axes of the alignment graph is made to correspond to "1", the gear ratio 遊 星 (= number of teeth of the sun gear Zs / of the sun gear) between the carrier and the ring gear. The distance corresponds to the number of teeth of the ring gear Zr).

図3の共線図を用いて表現すれば、無段変速部18の差動機構32において、第1回転要素RE1にエンジン14(図中の「ENG」参照)が連結され、第2回転要素RE2に第1回転機MG1(図中の「MG1」参照)が連結され、中間伝達部材30と一体回転する第3回転要素RE3に第2回転機MG2(図中の「MG2」参照)が連結されて、エンジン14の回転を中間伝達部材30を介して有段変速部20へ伝達するように構成されている。無段変速部18では、縦線Y2を横切る各直線L0により、サンギヤS0の回転速度とリングギヤR0の回転速度との関係が示される。   Expressed using the alignment chart of FIG. 3, in the differential mechanism 32 of the continuously variable transmission unit 18, the engine 14 (see “ENG” in the drawing) is connected to the first rotating element RE1, and the second rotating element The first rotary machine MG1 (see “MG1” in the figure) is connected to RE2, and the second rotary machine MG2 (see “MG2” in the figure) is connected to the third rotary element RE3 that rotates integrally with the intermediate transmission member 30. Thus, the rotation of the engine 14 is transmitted to the stepped transmission 20 through the intermediate transmission member 30. In the continuously variable transmission unit 18, the relationship between the rotational speed of the sun gear S0 and the rotational speed of the ring gear R0 is shown by straight lines L0 crossing the vertical line Y2.

又、有段変速部20において、第4回転要素RE4はクラッチC1を介して中間伝達部材30に選択的に連結され、第5回転要素RE5は出力軸22に連結され、第6回転要素RE6はクラッチC2を介して中間伝達部材30に選択的に連結されると共にブレーキB2を介してケース16に選択的に連結され、第7回転要素RE7はブレーキB1を介してケース16に選択的に連結されている。有段変速部20では、係合装置CBの係合解放制御によって縦線Y5を横切る各直線L1,L2,L3,L4により、出力軸22における「1st」,「2nd」,「3rd」,「4th」の各回転速度が示される。   Further, in the step-variable transmission unit 20, the fourth rotation element RE4 is selectively coupled to the intermediate transmission member 30 via the clutch C1, the fifth rotation element RE5 is coupled to the output shaft 22, and the sixth rotation element RE6 is The seventh rotating element RE7 is selectively connected to the intermediate transmission member 30 via the clutch C2 and to the case 16 via the brake B2. The seventh rotating element RE7 is selectively connected to the case 16 via the brake B1. ing. In the stepped transmission unit 20, “1st”, “2nd”, “3rd”, “on the output shaft 22” by the respective straight lines L1, L2, L3, L4 crossing the longitudinal line Y5 by the engagement release control of the engagement device CB. Each rotation speed of 4th "is shown.

図3中の実線で示す、直線L0及び直線L1,L2,L3,L4は、少なくともエンジン14を動力源として走行するエンジン走行が可能なハイブリッド走行モードでの前進走行における各回転要素の相対速度を示している。このハイブリッド走行モードでは、差動機構32において、キャリアCA0に入力されるエンジントルクTeに対して、第1回転機MG1による負トルクである反力トルクが正回転にてサンギヤS0に入力されると、リングギヤR0には正回転にて正トルクとなるエンジン直達トルクTd(=Te/(1+ρ)=−(1/ρ)×Tg)が現れる。そして、要求駆動力に応じて、エンジン直達トルクTdとMG2トルクTmとの合算トルクが車両10の前進方向の駆動トルクとして、AT1速ギヤ段−AT4速ギヤ段のうちの何れかのATギヤ段が形成された有段変速部20を介して駆動輪28へ伝達される。このとき、第1回転機MG1は正回転にて負トルクを発生する発電機として機能する。第1回転機MG1の発電電力Wgは、バッテリ52に充電されたり、第2回転機MG2にて消費される。第2回転機MG2は、発電電力Wgの全部又は一部を用いて、或いは発電電力Wgに加えてバッテリ52からの電力を用いて、MG2トルクTmを出力する。   A straight line L0 and straight lines L1, L2, L3 and L4 shown by solid lines in FIG. 3 indicate the relative speeds of the respective rotating elements in forward running in the hybrid running mode in which engine running with at least engine 14 as a power source is possible. It shows. In this hybrid travel mode, when, in the differential mechanism 32, a reaction torque, which is a negative torque by the first rotary machine MG1, is input to the sun gear S0 in positive rotation with respect to the engine torque Te input to the carrier CA0. In the ring gear R0, a direct engine torque Td (= Te / (1 + ρ) =-(1 / と な る) × Tg), which is a positive torque in positive rotation, appears. Then, according to the required driving force, the combined torque of the engine direct delivery torque Td and the MG2 torque Tm is used as the driving torque in the forward direction of the vehicle 10, any one of the AT1 gear stage-the AT4 gear stage. Is transmitted to the drive wheel 28 via the stepped transmission unit 20. At this time, the first rotating machine MG1 functions as a generator that generates negative torque in positive rotation. The generated power Wg of the first rotary machine MG1 is charged to the battery 52 or consumed by the second rotary machine MG2. The second rotary machine MG2 outputs the MG2 torque Tm using all or part of the generated power Wg, or using the power from the battery 52 in addition to the generated power Wg.

図3に図示はしていないが、エンジン14を停止させると共に第2回転機MG2を動力源として走行するモータ走行が可能なモータ走行モードでの共線図では、差動機構32において、キャリアCA0はゼロ回転とされ、リングギヤR0には正回転にて正トルクとなるMG2トルクTmが入力される。このとき、サンギヤS0に連結された第1回転機MG1は、無負荷状態とされて負回転にて空転させられる。つまり、モータ走行モードでは、エンジン14は駆動されず、エンジン14の回転速度であるエンジン回転速度ωeはゼロとされ、MG2トルクTm(ここでは正回転の力行トルク)が車両10の前進方向の駆動トルクとして、AT1速ギヤ段−AT4速ギヤ段のうちの何れかのATギヤ段が形成された有段変速部20を介して駆動輪28へ伝達される。又、車両10の後進走行では、例えばモータ走行モードにおいて、リングギヤR0には負回転にて負トルクとなるMG2トルクTmが入力され、そのMG2トルクTmが車両10の後進方向の駆動トルクとして、前進用のAT1速ギヤ段が形成された有段変速部20を介して駆動輪28へ伝達される。   Although not shown in FIG. 3, in the alignment chart in the motor travel mode in which the motor 14 can be driven by stopping the engine 14 and traveling with the second rotary machine MG2 as a power source, the carrier CA0 in the differential mechanism 32. Is zero rotation, and the MG2 torque Tm, which is positive torque in positive rotation, is input to the ring gear R0. At this time, the first rotary machine MG1 connected to the sun gear S0 is brought into a no-load state and is idled by negative rotation. That is, in the motor travel mode, the engine 14 is not driven, the engine rotational speed ωe which is the rotational speed of the engine 14 is made zero, and the MG2 torque Tm (here, power running torque for positive rotation) drives the vehicle 10 in the forward direction. The torque is transmitted to the drive wheel 28 via the stepped transmission unit 20 in which any one of the first AT gear stage and the fourth AT gear stage is formed. Further, in reverse travel of the vehicle 10, for example, in the motor travel mode, the MG2 torque Tm which is a negative torque in negative rotation is input to the ring gear R0, and the MG2 torque Tm is used as a drive torque in the reverse direction of the vehicle 10 The first AT 1st gear is transmitted to the drive wheels 28 via the stepped transmission unit 20 in which is formed.

車両用駆動装置12では、エンジン14が動力伝達可能に連結された第1回転要素RE1としてのキャリアCA0と第1回転機MG1が動力伝達可能に連結された第2回転要素RE2としてのサンギヤS0と中間伝達部材30が連結された(見方を換えれば第2回転機MG2が動力伝達可能に連結された)第3回転要素RE3としてのリングギヤR0との3つの回転要素を有する差動機構32を備えて、第1回転機MG1の運転状態が制御されることにより差動機構32の差動状態が制御される電気式変速機構(電気式差動機構)としての無段変速部18が構成される。つまり、エンジン14が動力伝達可能に連結された差動機構32と差動機構32に動力伝達可能に連結された第1回転機MG1とを有して、第1回転機MG1の運転状態が制御されることにより差動機構32の差動状態が制御される無段変速部18が構成される。無段変速部18は、中間伝達部材30の回転速度であるMG2回転速度ωmに対する連結軸34の回転速度(すなわちエンジン回転速度ωe)の変速比γ0(=ωe/ωm)が変化させられる電気的な無段変速機として作動させられる。   In the vehicle drive device 12, the carrier CA0 as the first rotating element RE1 to which the engine 14 is transferably connected and the sun gear S0 as the second rotating element RE2 to which the first rotating machine MG1 is transferably connected It has a differential mechanism 32 having three rotating elements with a ring gear R0 as a third rotating element RE3 to which the intermediate transmission member 30 is connected (in another view, the second rotary machine MG2 is power transmitably connected) The continuously variable transmission unit 18 is configured as an electric transmission mechanism (electric differential mechanism) in which the differential state of the differential mechanism 32 is controlled by controlling the operating state of the first rotary machine MG1. . That is, the differential mechanism 32 to which the engine 14 is connected to be able to transmit power and the first rotary machine MG1 to be connected to be able to transmit power to the differential mechanism 32 controls the operating state of the first rotary machine MG1. As a result, the continuously variable transmission unit 18 in which the differential state of the differential mechanism 32 is controlled is configured. The continuously variable transmission unit 18 is electrically changed in gear ratio γ0 (= ωe / ωm) of the rotation speed of the connecting shaft 34 (that is, the engine rotation speed ωe) to the MG2 rotation speed ωm which is the rotation speed of the intermediate transmission member 30 Is operated as a continuously variable transmission.

例えば、ハイブリッド走行モードにおいては、有段変速部20にてATギヤ段が形成されたことで駆動輪28の回転に拘束されるリングギヤR0の回転速度に対して、第1回転機MG1の回転速度を制御することによってサンギヤS0の回転速度が上昇或いは下降させられると、キャリアCA0の回転速度(すなわちエンジン回転速度ωe)が上昇或いは下降させられる。従って、エンジン走行では、エンジン14を効率の良い運転点にて作動させることが可能である。つまり、ATギヤ段が形成された有段変速部20と無段変速機として作動させられる無段変速部18とで、無段変速部18(差動機構32も同意)と有段変速部20とが直列に配置された変速機40全体として無段変速機を構成することができる。   For example, in the hybrid travel mode, the rotational speed of the first rotary machine MG1 with respect to the rotational speed of the ring gear R0 restrained by the rotation of the drive wheel 28 due to the AT gear being formed by the stepped transmission unit 20. When the rotation speed of the sun gear S0 is increased or decreased by controlling the rotation speed of the sun gear S0, the rotation speed of the carrier CA0 (that is, the engine rotation speed ωe) is increased or decreased. Therefore, in engine travel, it is possible to operate the engine 14 at an efficient operating point. That is, the continuously variable transmission unit 18 (also the differential mechanism 32 agrees) and the continuously variable transmission unit 20 have the stepped gear unit 20 in which the AT gear is formed and the continuously variable transmission unit 18 operated as a continuously variable transmission. The continuously variable transmission can be configured as a whole of the transmission 40 arranged in series.

又は、無段変速部18を有段変速機のように変速させることも可能であるので、ATギヤ段が形成される有段変速部20と有段変速機のように変速させる無段変速部18とで、変速機40全体として有段変速機のように変速させることができる。つまり、変速機40において、出力回転速度ωoに対するエンジン回転速度ωeの変速比γt(=ωe/ωo)が異なる複数のギヤ段(模擬ギヤ段と称する)を選択的に成立させるように、有段変速部20と無段変速部18とを制御することが可能である。変速比γtは、直列に配置された、無段変速部18と有段変速部20とで形成されるトータル変速比であって、無段変速部18の変速比γ0と有段変速部20の変速比γatとを乗算した値(γt=γ0×γat)となる。   Alternatively, since it is possible to shift the continuously variable transmission unit 18 like a stepped transmission, the continuously variable transmission unit which shifts like the stepped transmission and the stepped transmission unit 20 in which the AT gear is formed. At 18, the transmission 40 as a whole can be shifted like a stepped transmission. That is, in the transmission 40, the gear ratio γt (= ωe / ωo) of the engine rotational speed ωe with respect to the output rotational speed ωo is selectively stepped so that a plurality of different gear stages (referred to as simulated gear stages) are selectively established. It is possible to control the transmission unit 20 and the continuously variable transmission unit 18. The gear ratio γt is a total gear ratio formed by the continuously variable transmission unit 18 and the stepped transmission unit 20 disposed in series, and the transmission ratio γ0 of the continuously variable transmission unit 18 and the gear ratio of the stepped transmission unit 20 A value (γt = γ0 × γat) obtained by multiplying the transmission gear ratio γat is obtained.

模擬ギヤ段は、例えば有段変速部20の各ATギヤ段と1又は複数種類の無段変速部18の変速比γ0との組合せによって、有段変速部20の各ATギヤ段に対してそれぞれ1又は複数種類を成立させるように割り当てられる。例えば、図4は、ギヤ段割当(ギヤ段割付)テーブルの一例であり、AT1速ギヤ段に対して模擬1速ギヤ段−模擬3速ギヤ段が成立させられ、AT2速ギヤ段に対して模擬4速ギヤ段−模擬6速ギヤ段が成立させられ、AT3速ギヤ段に対して模擬7速ギヤ段−模擬9速ギヤ段が成立させられ、AT4速ギヤ段に対して模擬10速ギヤ段が成立させられるように予め定められている。   The simulated gear is, for example, for each AT gear of the stepped transmission 20 by the combination of each AT gear of the stepped transmission 20 and the gear ratio γ0 of one or more continuously variable transmissions 18. It is assigned to establish one or more types. For example, FIG. 4 shows an example of a gear position assignment (gear position assignment) table, in which simulated 1st gear position-simulated 3rd gear position are established for the 1st AT gear position, and for the 2nd AT gear position. A simulated 4th gear-a simulated 6th gear is established, and a simulated 7th gear-a simulated 9th gear is established for the 3rd AT gear, a simulated 10th gear for the 4th AT gear It is determined in advance that stages can be established.

図5は、図3と同じ共線図上に有段変速部20のATギヤ段と変速機40の模擬ギヤ段とを例示した図である。図5において、実線は、有段変速部20がAT2速ギヤ段のときに、模擬4速ギヤ段−模擬6速ギヤが成立させられる場合を例示したものである。変速機40では、出力回転速度ωoに対して所定の変速比γtを実現するエンジン回転速度ωeとなるように無段変速部18が制御されることによって、あるATギヤ段において異なる模擬ギヤ段が成立させられる。又、破線は、有段変速部20がAT3速ギヤ段のときに、模擬7速ギヤ段が成立させられる場合を例示したものである。変速機40では、ATギヤ段の切替えに合わせて無段変速部18が制御されることによって、模擬ギヤ段が切り替えられる。   FIG. 5 is a diagram illustrating the AT gear of the stepped transmission unit 20 and the simulated gear of the transmission 40 on the same collinear chart as FIG. 3. In FIG. 5, the solid line exemplifies a case where the simulated fourth gear-simulated sixth gear is established when the stepped transmission unit 20 is the AT second gear. In the transmission 40, the continuously variable transmission unit 18 is controlled so that the engine rotational speed ωe becomes the engine rotational speed ωe that achieves a predetermined gear ratio γt with respect to the output rotational speed ωo. It will be established. Further, the broken line exemplifies the case where the simulated 7th gear is established when the stepped transmission unit 20 is in the 3rd AT gear. In the transmission 40, the simulated gear is switched by controlling the continuously variable transmission unit 18 in accordance with the switching of the AT gear.

図1に戻り、車両10は、更に、エンジン14、無段変速部18、及び有段変速部20などの制御に関連する車両10の制御装置を含むコントローラとしての電子制御装置80を備えている。よって、図1は、電子制御装置80の入出力系統を示す図であり、又、電子制御装置80による制御機能の要部を説明する機能ブロック線図である。電子制御装置80は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。電子制御装置80は、必要に応じてエンジン制御用、変速制御用等に分けて構成される。   Returning to FIG. 1, the vehicle 10 further includes an electronic control unit 80 as a controller including a control unit of the vehicle 10 related to the control of the engine 14, the continuously variable transmission unit 18, the stepped transmission unit 20 and the like. . Therefore, FIG. 1 is a diagram showing an input / output system of the electronic control unit 80, and is a functional block diagram for explaining a main part of a control function of the electronic control unit 80. The electronic control unit 80 is configured to include, for example, a so-called microcomputer provided with a CPU, a RAM, a ROM, an input / output interface and the like, and the CPU follows a program stored in advance in the ROM using a temporary storage function of the RAM. By performing signal processing, various controls of the vehicle 10 are executed. The electronic control unit 80 is configured separately for engine control, gear change control, and the like as needed.

電子制御装置80には、車両10に備えられた各種センサ等(例えばエンジン回転速度センサ60、MG1回転速度センサ62、MG2回転速度センサ64、出力回転速度センサ66、アクセル開度センサ68、スロットル弁開度センサ70、Gセンサ72、シフトポジションセンサ74、バッテリセンサ76など)による検出値に基づく各種信号等(例えばエンジン回転速度ωe、第1回転機MG1の回転速度であるMG1回転速度ωg、AT入力回転速度ωiであるMG2回転速度ωm、車速Vに対応する出力回転速度ωo、運転者の加速操作の大きさを表す運転者の加速操作量(すなわちアクセルペダルの操作量)であるアクセル開度θacc、電子スロットル弁の開度であるスロットル弁開度θth、車両10の前後加速度G、車両10に備えられたシフト操作部材としてのシフトレバー56の操作位置(操作ポジション)POSsh、バッテリ52のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbatなど)が、それぞれ供給される。又、電子制御装置80からは、車両10に備えられた各装置(例えばスロットルアクチュエータや燃料噴射装置や点火装置等のエンジン制御装置58、インバータ50、油圧制御回路54など)に各種指令信号(例えばエンジン14を制御する為のエンジン制御指令信号Se、第1回転機MG1及び第2回転機MG2を制御する為の回転機制御指令信号Smg、係合装置CBの作動状態を制御する為の(すなわち有段変速部20の変速を制御する為の)油圧制御指令信号Satなど)が、それぞれ出力される。この油圧制御指令信号Satは、例えば係合装置CBの各々の油圧アクチュエータへ供給される各係合油圧PRcbを調圧する各ソレノイドバルブSL1−SL4等を駆動する為の指令信号(駆動電流)であり、油圧制御回路54へ出力される。尚、電子制御装置80は、係合装置CBの狙いの係合トルクTcbを得る為の、各油圧アクチュエータへ供給される各係合油圧PRcbの値に対応する油圧指令値(指示圧ともいう)を設定し、その油圧指令値に応じた駆動電流を出力する。又、電子制御装置80は、例えばバッテリ充放電電流Ibat及びバッテリ電圧Vbatなどに基づいてバッテリ52の充電状態(充電容量)SOCを算出する。   The electronic control unit 80 includes various sensors (for example, an engine rotation speed sensor 60, an MG1 rotation speed sensor 62, an MG2 rotation speed sensor 64, an output rotation speed sensor 66, an accelerator opening degree sensor 68, and a throttle valve Various signals etc. (for example, engine rotation speed ωe, MG1 rotation speed ωg which is the rotation speed of the first rotary machine MG1, etc.) based on detected values by the opening degree sensor 70, G sensor 72, shift position sensor 74, battery sensor 76 etc. MG2 rotation speed ωm which is the input rotation speed ωi, output rotation speed ωo corresponding to the vehicle speed V, accelerator opening degree which is the driver's acceleration operation amount (that is, operation amount of the accelerator pedal) representing the magnitude of the driver's acceleration operation θacc, throttle valve opening degree θth which is the opening degree of the electronic throttle valve, longitudinal acceleration G of the vehicle 10, shift operation provided to the vehicle 10 Operating position of the shift lever 56 as member (operating position) POSsh, such as a battery temperature THbat and battery charge and discharge current Ibat, a battery voltage Vbat of the battery 52) is supplied. Further, various command signals (for example, an engine control device 58 such as a throttle actuator, a fuel injection device, or an ignition device, an inverter 50, a hydraulic control circuit 54, etc.) provided in the vehicle 10 from the electronic control device 80 An engine control command signal Se for controlling the engine 14, a rotary machine control command signal Smg for controlling the first rotary machine MG1 and the second rotary machine MG2, an operation state of the engagement device CB (ie, A hydraulic control command signal Sat or the like (for controlling the shift of the stepped transmission unit 20) is output. The hydraulic pressure control command signal Sat is, for example, a command signal (drive current) for driving the solenoid valves SL1 to SL4 and the like that adjust the engagement hydraulic pressure PRcb supplied to the hydraulic actuators of the engagement devices CB. , And is output to the hydraulic control circuit 54. Note that the electronic control unit 80 is a hydraulic pressure command value (also referred to as an instruction pressure) corresponding to the value of each engagement hydraulic pressure PRcb supplied to each hydraulic actuator for obtaining the target engagement torque Tcb of the engagement device CB. Is set, and a drive current corresponding to the hydraulic pressure command value is output. Further, the electronic control unit 80 calculates the state of charge (charge capacity) SOC of the battery 52 based on, for example, the battery charge / discharge current Ibat and the battery voltage Vbat.

電子制御装置80は、車両10における各種制御を実現する為に、変速制御手段としてのAT変速制御手段すなわち変速制御部としてのAT変速制御部82、及びハイブリッド制御手段すなわちハイブリッド制御部84を備えている。   The electronic control unit 80 includes an AT shift control unit as a shift control unit, that is, an AT shift control unit 82 as a shift control unit, and a hybrid control unit or a hybrid control unit 84 in order to realize various controls in the vehicle 10. There is.

AT変速制御部82は、予め実験的に或いは設計的に求められて記憶された(すなわち予め定められた)関係(例えばATギヤ段変速マップ)を用いて有段変速部20の変速判断を行い、必要に応じて有段変速部20の変速制御を実行して有段変速部20のATギヤ段を自動的に切り替えるように、ソレノイドバルブSL1−SL4により係合装置CBの係合解放状態を切り替える為の油圧制御指令信号Satを油圧制御回路54へ出力する。上記ATギヤ段変速マップは、例えば出力回転速度ωo(ここでは車速Vなども同意)及びアクセル開度θacc(ここでは要求駆動トルクTdemやスロットル弁開度θthなども同意)を変数とする二次元座標上に、有段変速部20の変速が判断される為の変速線(アップシフト線及びダウンシフト線)を有する所定の関係である。   The AT shift control unit 82 determines the shift of the stepped transmission unit 20 using a relationship (for example, an AT gear shift map) which is obtained and stored in advance experimentally or by design (for example, an AT gear shift map). The engagement release state of the engagement device CB is set by the solenoid valves SL1 to SL4 so that the shift control of the stepped transmission unit 20 is performed as needed to automatically switch the AT gear of the stepped transmission unit 20. A hydraulic pressure control command signal Sat for switching is output to the hydraulic pressure control circuit 54. The AT gear shift map is a two-dimensional variable, for example, with the output rotational speed ωo (here, the vehicle speed V and the like also agree) and the accelerator opening θacc (here, the requested drive torque Tdem and the throttle valve opening θth, etc. also agree) It is a predetermined relationship having shift lines (up shift line and down shift line) for determining the shift of the stepped transmission unit 20 on the coordinates.

ハイブリッド制御部84は、エンジン14の作動を制御するエンジン制御手段すなわちエンジン制御部としての機能と、インバータ50を介して第1回転機MG1及び第2回転機MG2の作動を制御する回転機制御手段すなわち回転機制御部としての機能を含んでおり、それら制御機能によりエンジン14、第1回転機MG1、及び第2回転機MG2によるハイブリッド駆動制御等を実行する。ハイブリッド制御部84は、予め定められた関係(例えば駆動力マップ)にアクセル開度θacc及び車速Vを適用することで要求駆動パワーPdem(見方を換えれば、そのときの車速Vにおける要求駆動トルクTdem)を算出する。ハイブリッド制御部84は、要求駆動パワーPdemを実現するように、エンジン14、第1回転機MG1、及び第2回転機MG2を制御する指令信号(エンジン制御指令信号Se及び回転機制御指令信号Smg)を出力する。エンジン制御指令信号Seは、例えばそのときのエンジン回転速度ωeにおけるエンジントルクTeを出力するエンジン14のパワーであるエンジンパワーPeの指令値である。回転機制御指令信号Smgは、例えばエンジントルクTeの反力トルク(そのときのMG1回転速度ωgにおけるMG1トルクTg)を出力する第1回転機MG1の発電電力Wgの指令値であり、又、そのときのMG2回転速度ωmにおけるMG2トルクTmを出力する第2回転機MG2の消費電力Wmの指令値である。   The hybrid control unit 84 has a function as an engine control unit that controls the operation of the engine 14, that is, an engine control unit, and a rotary machine control unit that controls the operation of the first rotary machine MG1 and the second rotary machine MG2 through the inverter 50. That is, it includes a function as a rotary machine control unit, and executes hybrid drive control and the like by the engine 14, the first rotary machine MG1, and the second rotary machine MG2 by these control functions. The hybrid control unit 84 applies the accelerator opening degree θacc and the vehicle speed V to a predetermined relationship (for example, a driving force map) to request the required drive power Pdem (if the view is changed, the required drive torque Tdem at the vehicle speed V at that time). Calculate). The hybrid control unit 84 instructs the engine 14, the first rotary machine MG1, and the second rotary machine MG2 to realize the required drive power Pdem (the engine control command signal Se and the rotary machine control command signal Smg) Output The engine control command signal Se is, for example, a command value of the engine power Pe, which is the power of the engine 14 that outputs the engine torque Te at the engine rotational speed ωe at that time. The rotary machine control command signal Smg is, for example, a command value of the generated power Wg of the first rotary machine MG1 that outputs the reaction torque (the MG1 torque Tg at the MG1 rotational speed ωg at that time) of the engine torque Te. It is a command value of the power consumption Wm of the second rotary machine MG2 that outputs the MG2 torque Tm at the MG2 rotational speed ωm.

ハイブリッド制御部84は、例えば無段変速部18を無段変速機として作動させて変速機40全体として無段変速機として作動させる場合、エンジン最適燃費点等を考慮して、要求駆動パワーPdemを実現するエンジンパワーPeが得られるエンジン回転速度ωeとエンジントルクTeとなるように、エンジン14を制御すると共に第1回転機MG1の発電電力Wgを制御することで、無段変速部18の無段変速制御を実行して無段変速部18の変速比γ0を変化させる。この制御の結果として、無段変速機として作動させる場合の変速機40の変速比γtが制御される。   For example, when the continuously variable transmission unit 18 is operated as a continuously variable transmission to operate as a whole continuously variable transmission as the continuously variable transmission, the hybrid control unit 84 takes the required drive power Pdem into consideration in consideration of the engine optimum fuel consumption point and the like. By controlling the engine 14 and controlling the generated power Wg of the first rotary machine MG1 so that the engine rotation speed ωe and the engine torque Te can be obtained, the continuously variable section 18 of the continuously variable transmission 18 The transmission control is executed to change the gear ratio γ0 of the continuously variable transmission unit 18. As a result of this control, the gear ratio γt of the transmission 40 in the case of operating as a continuously variable transmission is controlled.

ハイブリッド制御部84は、例えば無段変速部18を有段変速機のように変速させて変速機40全体として有段変速機のように変速させる場合、予め定められた関係(例えば模擬ギヤ段変速マップ)を用いて変速機40の変速判断を行い、AT変速制御部82による有段変速部20のATギヤ段の変速制御と協調して、複数の模擬ギヤ段を選択的に成立させるように無段変速部18の変速制御を実行する。複数の模擬ギヤ段は、それぞれの変速比γtを維持できるように出力回転速度ωoに応じて第1回転機MG1によりエンジン回転速度ωeを制御することによって成立させることができる。各模擬ギヤ段の変速比γtは、出力回転速度ωoの全域に亘って必ずしも一定値である必要はなく、所定範囲で変化させても良いし、各部の回転速度の上限や下限等によって制限が加えられても良い。   The hybrid control unit 84 has a predetermined relationship (for example, a simulated gear shift) when, for example, the continuously variable transmission unit 18 is shifted as a stepped transmission and the entire transmission 40 is shifted as a stepped transmission. In order to make a plurality of simulated gear stages selectively, in coordination with the shift control of the AT gear of the stepped transmission unit 20 by the AT shift control unit 82, the shift determination of the transmission 40 is performed using the map). The shift control of the continuously variable transmission unit 18 is executed. A plurality of simulated gear stages can be established by controlling the engine rotational speed ωe by the first rotary machine MG1 according to the output rotational speed ωo so as to maintain the respective gear ratios γt. The gear ratio γt of each simulated gear need not necessarily be a constant value over the entire range of the output rotational speed ωo, and may be changed within a predetermined range, and the upper or lower limit of the rotational speed of each part limits It may be added.

上記模擬ギヤ段変速マップは、ATギヤ段変速マップと同様に出力回転速度ωo及びアクセル開度θaccをパラメータとして予め定められている。図6は、模擬ギヤ段変速マップの一例であって、実線はアップシフト線であり、破線はダウンシフト線である。模擬ギヤ段変速マップに従って模擬ギヤ段が切り替えられることにより、無段変速部18と有段変速部20とが直列に配置された変速機40全体として有段変速機と同様の変速フィーリングが得られる。変速機40全体として有段変速機のように変速させる模擬有段変速制御は、例えば運転者によってスポーツ走行モード等の走行性能重視の走行モードが選択された場合や要求駆動トルクTdemが比較的大きい場合に、変速機40全体として無段変速機として作動させる無段変速制御に優先して実行するだけでも良いが、所定の実行制限時を除いて基本的に模擬有段変速制御が実行されても良い。   The simulated gear shift map is predetermined with the output rotational speed ωo and the accelerator opening θacc as parameters as in the AT gear shift map. FIG. 6 shows an example of the simulated gear shift map, where the solid line is an upshift line and the dashed line is a downshift line. By switching the simulated gear in accordance with the simulated gear shift map, a transmission feeling similar to that of the stepped transmission can be obtained as the entire transmission 40 in which the continuously variable transmission unit 18 and the stepped transmission unit 20 are arranged in series. Be The simulated stepped shift control for shifting the transmission 40 as a whole like a stepped transmission is, for example, when the driving mode with emphasis on running performance such as a sports running mode is selected by the driver or the required driving torque Tdem is relatively large. In this case, it may only be executed prior to the continuously variable transmission control to operate as a continuously variable transmission as the entire transmission 40, but the simulated stepped transmission control is basically executed except at a predetermined execution restriction time. Also good.

ハイブリッド制御部84による模擬有段変速制御と、AT変速制御部82による有段変速部20の変速制御とは、協調して実行される。本実施例では、AT1速ギヤ段−AT4速ギヤ段の4種類のATギヤ段に対して、模擬1速ギヤ段−模擬10速ギヤ段の10種類の模擬ギヤ段が割り当てられている。このようなことから、模擬3速ギヤ段と模擬4速ギヤ段との間での変速(模擬3⇔4変速と表す)が行われるときにAT1速ギヤ段とAT2速ギヤ段との間での変速(AT1⇔2変速と表す)が行なわれ、又、模擬6⇔7変速が行われるときにAT2⇔3変速が行なわれ、又、模擬9⇔10変速が行われるときにAT3⇔4変速が行なわれる(図4参照)。その為、模擬ギヤ段の変速タイミングと同じタイミングでATギヤ段の変速が行なわれるように、ATギヤ段変速マップが定められている。具体的には、図6における模擬ギヤ段の「3→4」、「6→7」、「9→10」の各アップシフト線は、ATギヤ段変速マップの「1→2」、「2→3」、「3→4」の各アップシフト線と一致している(図6中に記載した「AT1→2」等参照)。又、図6における模擬ギヤ段の「3←4」、「6←7」、「9←10」の各ダウンシフト線は、ATギヤ段変速マップの「1←2」、「2←3」、「3←4」の各ダウンシフト線と一致している(図6中に記載した「AT1←2」等参照)。又は、図6の模擬ギヤ段変速マップによる模擬ギヤ段の変速判断に基づいて、ATギヤ段の変速指令をAT変速制御部82に対して出力するようにしても良い。このように、有段変速部20のアップシフト時は、変速機40全体のアップシフトが行われる一方で、有段変速部20のダウンシフト時は、変速機40全体のダウンシフトが行われる。AT変速制御部82は、有段変速部20のATギヤ段の切替えを、模擬ギヤ段が切り替えられるときに行う。模擬ギヤ段の変速タイミングと同じタイミングでATギヤ段の変速が行なわれる為、エンジン回転速度ωeの変化を伴って有段変速部20の変速が行なわれるようになり、その有段変速部20の変速に伴うショックがあっても運転者に違和感を与え難くされる。   The simulated stepped shift control by the hybrid control unit 84 and the shift control of the stepped shift unit 20 by the AT shift control unit 82 are performed in cooperation with each other. In the present embodiment, ten kinds of simulated gear stages of simulated first gear stage-simulated tenth gear stage are assigned to four types of AT gear stages of AT first gear stage-AT fourth gear stage. Because of this, when a shift between the simulated 3rd gear and the simulated 4th gear (referred to as simulated 3/4 shift) is performed, it is possible between the 1st AT gear and the 2nd AT gear. Speed change (denoted as AT 1 ⇔ 2 shift), and when simulated 6 ⇔ 7 shift is performed, AT 2 ⇔ 3 shift is performed, and when simulated 9 ⇔ 10 shift is performed, AT 3 ⇔ 4 shift Is performed (see FIG. 4). Therefore, the AT gear shift map is defined so that the AT gear shift is performed at the same timing as the simulated gear shift timing. Specifically, the upshift lines “3 → 4”, “6 → 7” and “9 → 10” of the simulated gear in FIG. 6 are “1 → 2” and “2” in the AT gear shift map, respectively. This corresponds to the upshift line of “3” and “3 → 4” (see “AT1 → 2” and the like described in FIG. 6). Further, the downshift lines “334”, “6 ← 7” and “9910” of the simulated gear in FIG. 6 are “1 ← 2” and “2 ← 3” in the AT gear shift map. , And each downshift line of “344” (see “AT1 ← 2” and the like described in FIG. 6). Alternatively, the shift command of the AT gear may be output to the AT shift control unit 82 based on the shift judgment of the simulated gear based on the simulated gear shift map of FIG. Thus, while the upshift of the stepped transmission unit 20 is performed, the upshift of the entire transmission 40 is performed, while the downshift of the entire transmission 40 is performed when the downshift of the stepped transmission unit 20 is performed. The AT shift control unit 82 performs switching of the AT gear of the stepped transmission unit 20 when the simulated gear is switched. Since the gear shift of the AT gear is performed at the same timing as the gear shift timing of the simulated gear, the gear shift of the stepped gear shift unit 20 is performed with the change of the engine rotational speed ωe. Even if there is a shock associated with the shift, the driver is less likely to feel discomfort.

ハイブリッド制御部84は、走行モードとして、モータ走行モード或いはハイブリッド走行モードを走行状態に応じて選択的に成立させる。例えば、ハイブリッド制御部84は、要求駆動パワーPdemが予め定められた閾値よりも小さなモータ走行領域にある場合には、モータ走行モードを成立させる一方で、要求駆動パワーPdemが予め定められた閾値以上となるエンジン走行領域にある場合には、ハイブリッド走行モードを成立させる。又、ハイブリッド制御部84は、要求駆動パワーPdemがモータ走行領域にあるときであっても、バッテリ52の充電容量SOCが予め定められた閾値未満となる場合には、ハイブリッド走行モードを成立させる。   The hybrid control unit 84 selectively establishes the motor travel mode or the hybrid travel mode as the travel mode according to the travel state. For example, when the required drive power Pdem is in a motor travel area smaller than a predetermined threshold, the hybrid control unit 84 establishes the motor travel mode while the required drive power Pdem is equal to or higher than the predetermined threshold. When in the engine travel area, the hybrid travel mode is established. Further, even when the required drive power Pdem is in the motor travel area, the hybrid control unit 84 establishes the hybrid travel mode if the charge capacity SOC of the battery 52 is smaller than a predetermined threshold.

ここで、有段変速部20の変速を伴うときの変速機40の模擬有段変速制御について詳述する。ハイブリッド制御部84は、AT変速制御部82による有段変速部20の変速時(特には変速過渡におけるイナーシャ相中において)、MG2回転速度ωmの変化速度であるMG2角加速度dωm/dtとエンジン回転速度ωeの変化速度であるエンジン角加速度dωe/dtとが各々の目標値となるように、エンジントルクTeと、有段変速部20における解放側係合装置及び係合側係合装置のうちの変速を進行させる側の変速進行側係合装置の伝達トルクTcbとに基づいて、MG1トルクTgとMG2トルクTmとを制御する。   Here, the simulated stepped transmission control of the transmission 40 when accompanied by the shift of the stepped transmission unit 20 will be described in detail. The hybrid control unit 84 controls the MG2 angular acceleration dωm / dt, which is the change speed of the MG2 rotational speed ωm, and the engine rotation at the time of the gear shift of the stepped transmission unit 20 by the AT shift control unit 82 (in particular, during the inertia phase at shift transient). The engine torque Te and the release side engagement device and the engagement side engagement device in the stepped transmission unit 20 are set such that the engine angular acceleration dωe / dt, which is the change speed of the speed ωe, becomes the respective target values. The MG1 torque Tg and the MG2 torque Tm are controlled based on the transmission torque Tcb of the shift advancing engagement device on the side of advancing the shift.

有段変速部20の変速制御においては、パワーオンアップシフト、パワーオフアップシフト、パワーオンダウンシフト、及びパワーオフダウンシフトといった様々な変速パターン(変速様式)がある。パワーオンでの変速は、例えばアクセル開度θaccの増大やアクセルオンが維持された状態での車速Vの上昇によって判断された変速であり、パワーオフでの変速は、例えばアクセル開度θaccの減少やアクセルオフが維持された状態での車速Vの低下によって判断された変速である。仮に変速中に解放側係合装置及び係合側係合装置の何れにも伝達トルクTcbを発生させない状態とすると、パワーオンではAT入力回転速度ωiは成り行きで上昇させられる一方で、パワーオフではAT入力回転速度ωiは成り行きで低下させられる。その為、成り行きではAT入力回転速度ωiを変速後の同期回転速度ωisyca(=ωo×変速後の変速比γata)へ向けて変化させられない、パワーオンアップシフトやパワーオフダウンシフトでは、変速後のATギヤ段を形成する係合側係合装置に伝達トルクTcbを発生させることで変速を進行させることが好ましい。一方で、成り行きでAT入力回転速度ωiを変速後の同期回転速度ωisycaへ向けて変化させられる、パワーオフアップシフトやパワーオンダウンシフトでは、変速前のATギヤ段を形成する解放側係合装置の伝達トルクTcbを低下させることで変速を進行させることが好ましい。従って、パワーオンアップシフトやパワーオフダウンシフトにおける変速進行側係合装置は係合側係合装置である一方で、パワーオフアップシフトやパワーオンダウンシフトにおける変速進行側係合装置は解放側係合装置である。   In shift control of the stepped transmission unit 20, there are various shift patterns (shift modes) such as power on upshift, power off upshift, power on downshift, and power off downshift. A shift at power on is a shift determined by, for example, an increase in the accelerator opening θacc or an increase in the vehicle speed V in a state in which the accelerator is maintained. A shift at power off is, for example, a decrease in the accelerator opening θacc And the shift determined based on the decrease of the vehicle speed V in the state where the accelerator off is maintained. Assuming that the transfer torque Tcb is not generated in any of the release side engagement device and the engagement side engagement device during gear shifting, the AT input rotational speed ωi is steadily increased at power on, while it is increased at power off. The AT input rotational speed ωi is reduced as a matter of course. Therefore, it is not possible to change the AT input rotational speed ωi towards the synchronized rotational speed ωisyca (= ωo × the gear ratio γata after the shift) in the situation, but in the power-on upshift and the power off downshift, after the shift Preferably, the transmission is advanced by generating the transmission torque Tcb in the engagement-side engagement device forming the AT gear. On the other hand, in the power-off upshift and the power-on downshift, the release-side engagement device that forms the AT gear before shifting is capable of changing the AT input rotation speed ωi toward the synchronized rotation speed ωisyca after shifting. It is preferable to advance the gear shift by reducing the transmission torque Tcb. Therefore, while the shift engagement side engagement device in the power on up shift and the power off down shift is the engagement engagement device, the shift advance engagement device in the power off up shift and the power on down shift is the release engagement. Combined device.

具体的には、ハイブリッド制御部84は、予め定められた次式(1)を用いて、MG2角加速度dωm/dtとエンジン角加速度dωe/dtとの各々の目標値、エンジントルクTe、及びAT伝達トルクTatに基づいて、MG1トルクTgとMG2トルクTmとを算出する。ハイブリッド制御部84は、算出したMG1トルクTgとMG2トルクTmとが各々得られる為の各回転機制御指令信号Smgをインバータ50へ出力する。次式(1)は、例えば無段変速部18におけるg軸、e軸、及びm軸(図3参照)の各軸毎において成立する、慣性(イナーシャ)、角加速度、及び軸上のトルクで示される運動方程式と、無段変速部18が2自由度(すなわち各軸のうちの2つの軸の各回転速度が決まると残りの1つの軸の回転速度が決まるという2自由度)であることで規定される相互間の関係式とに基づいて、導き出された式である。従って、次式(1)中の2×2の各行列における各値a11、・・・、b11、・・・、c22は、各々、無段変速部18を構成する各回転部材の慣性や差動機構32の歯車比ρ0等の組み合わせで構成された値となっている。   Specifically, hybrid control unit 84 uses MG2 angular acceleration dω m / dt and engine angular acceleration d ω e / dt, engine torque Te, and AT using the following equation (1). The MG1 torque Tg and the MG2 torque Tm are calculated based on the transmission torque Tat. The hybrid control unit 84 outputs each rotating machine control command signal Smg for obtaining the calculated MG1 torque Tg and MG2 torque Tm to the inverter 50. The following equation (1) is obtained, for example, by inertia, angular acceleration, and on-axis torque which are established for each of the g-axis, e-axis, and m-axis (see FIG. 3) in the continuously variable transmission unit 18. The equation of motion shown and the continuously variable transmission unit 18 have two degrees of freedom (ie, two degrees of freedom such that the rotational speed of one of the axes is determined when the rotational speed of one of the axes is determined) Is an equation derived on the basis of the relationship between the two. Therefore, each value a11,..., B11,..., C22 in the 2 × 2 matrix in the following equation (1) is the inertia or difference of each rotating member constituting the stepless transmission unit 18 The value is configured by a combination of the gear ratio ρ0 and the like of the moving mechanism 32.

Figure 0006544345
Figure 0006544345

前記式(1)中のMG2角加速度dωm/dtとエンジン角加速度dωe/dtとの各々の目標値は、例えば有段変速部20の変速が様々な変速パターンのうちのどの変速パターンであるか、どのATギヤ段間での変速であるか、及びどの模擬ギヤ段間での変速であるかなどによって予め定められている。又、前記式(1)中のエンジントルクTeは、例えば要求駆動パワーPdemを実現するエンジンパワーPeが得られる、そのときのエンジン回転速度ωeにおけるエンジントルクTeである。   The target values of each of the MG2 angular acceleration dω m / dt and the engine angular acceleration d ω e / dt in the above equation (1) are, for example, which one of various shifting patterns the shifting of the stepped transmission unit 20 is. It is determined in advance by which AT gear stage the gear shift is, and which simulated gear stage the gear shift is. Further, the engine torque Te in the equation (1) is, for example, the engine torque Te at the engine rotation speed ωe at which the engine power Pe for achieving the required driving power Pdem can be obtained.

又、前記式(1)中のAT伝達トルクTatは、有段変速部20の変速時に係合装置CBの各々にて受け持つ必要がある各伝達トルクを中間伝達部材30(すなわちm軸上)に換算した各換算値の合算値(すなわち有段変速部20が伝達する伝達トルクを中間伝達部材30上に換算した値)である。前記式(1)は有段変速部20の変速を進行させるときのモデル式であるので、本実施例では、前記式(1)中のAT伝達トルクTatを便宜上、変速を進行させる主体となる変速進行側係合装置の伝達トルクTcbとする。前記式(1)において、変速進行側係合装置の伝達トルクTcbの値としてはフィードフォワード値が与えられる。その為、電子制御装置80は、変速進行側係合装置の伝達トルクTcbを設定する、伝達トルク設定手段すなわち伝達トルク設定部86を更に備えている。   Further, the AT transmission torque Tat in the above equation (1) is required to be handled by each of the engagement devices CB at the time of shifting of the stepped transmission unit 20 to each intermediate transmission member 30 (that is, on the m axis). It is a total value of the converted values (i.e., a value obtained by converting the transmission torque transmitted by the stepped transmission unit 20 onto the intermediate transmission member 30). Since the equation (1) is a model equation for advancing the shift of the stepped transmission unit 20, in the present embodiment, the AT transmission torque Tat in the equation (1) is mainly driven to advance the shift for convenience. It is assumed that the transmission torque Tcb of the shift advancing engagement device. In the equation (1), a feedforward value is given as the value of the transmission torque Tcb of the shift advancing engagement device. Therefore, the electronic control unit 80 further includes transmission torque setting means, that is, a transmission torque setting unit 86, which sets the transmission torque Tcb of the shift advancing engagement device.

伝達トルク設定部86による変速進行側係合装置の伝達トルクTcbの設定では、有段変速部20の変速ショックや変速時間等のバランスを取るように、有段変速部20の変速パターンやどのATギヤ段間での変速であるかなどの異なる変速の種類毎に予め定められた関係を用いて、要求駆動パワーPdemを実現するエンジンパワーPeに基づくAT入力トルクTiに応じた変速進行側係合装置の伝達トルクTcbの値を設定することが考えられる。しかしながら、変速時にバッテリ52のパワーであるバッテリパワーPbatが小さいと、そのバッテリパワーPbatの制限に因って、MG1トルクTgとMG2トルクTmとを、バッテリパワーPbatが考慮されていない変速進行側係合装置の伝達トルクTcbに基づいて前記式(1)を用いて算出した値の通りに出力することが難しくなって、MG2角加速度dωm/dtとエンジン角加速度dωe/dtとを各々の目標値とするように適切に制御できない可能性がある。特に、変速機40では、有段変速部20の変速制御とは独立してエンジン回転速度ωeの制御を行うことができるので(つまり有段変速部20の変速制御だけではエンジン回転速度ωeを制御することができないので)、エンジン角加速度dωe/dtを目標値とするように適切に制御できない可能性がある。   When setting the transfer torque Tcb of the shift advancing engagement device by the transfer torque setting unit 86, the shift pattern of the stepped shift unit 20 or which AT is selected so as to balance the shift shock of the stepped shift unit 20 and shift time. Shift advance side engagement according to AT input torque Ti based on engine power Pe that achieves required drive power Pdem using a predetermined relationship for each different shift type such as whether it is a shift between gear stages It is conceivable to set the value of the transmission torque Tcb of the device. However, if battery power Pbat, which is the power of battery 52, is small during gear shifting, MG1 torque Tg and MG2 torque Tm can not be considered due to the limitation of battery power Pbat. It becomes difficult to output according to the value calculated using the above equation (1) based on the transmission torque Tcb of the coupling device, and the MG2 angular acceleration dωm / dt and the engine angular acceleration dωe / dt are set to their respective target values. It may not be possible to control properly. In particular, in the transmission 40, the control of the engine rotational speed ωe can be performed independently of the shift control of the stepped transmission unit 20 (that is, the engine rotational speed ωe is controlled only by the shift control of the stepped transmission unit 20) Can not be properly controlled to set the engine angular acceleration dω e / dt as the target value.

そこで、伝達トルク設定部86は、バッテリパワーPbatを考慮して、変速進行側係合装置の伝達トルクTcbを設定する。バッテリ52はパワー(電力)の次元で制御されるので、変速進行側係合装置の伝達トルクTcbをパワーの観点で設定する。   Therefore, the transmission torque setting unit 86 sets the transmission torque Tcb of the shift advancing engagement device in consideration of the battery power Pbat. Since the battery 52 is controlled in the dimension of power (power), the transmission torque Tcb of the shift advancing engagement device is set in terms of power.

具体的には、伝達トルク設定部86は、有段変速部20の変速時にバッテリパワーPbatの制限に因ってMG1トルクTgとMG2トルクTmとが制限されることが抑制されるように、エンジンパワーPe、無段変速部18(差動機構32)及び有段変速部20における変速の進行に必要なパワーPina(以下、変速進行パワーPinaという)、及びバッテリパワーPbatに基づいて、変速進行側係合装置の伝達トルクTcbを設定する。変速進行パワーPinaは、中間伝達部材30やエンジン14等が変速時に回転変化する際に必要なパワーであって、無段変速部18及び有段変速部20における回転エネルギー変化率に応じた回転変化パワーである。   Specifically, the transmission torque setting unit 86 is configured so that the restriction of the battery power Pbat during the shift of the stepped transmission unit 20 prevents the restriction of the MG1 torque Tg and the MG2 torque Tm. Based on power Pe, power Pina (hereinafter referred to as shift progressing power Pina) necessary for progressing the shift in continuously variable transmission unit 18 (differential mechanism 32) and stepped transmission unit 20, and battery power Pbat The transmission torque Tcb of the engagement device is set. The shift progressing power Pina is a power required when the intermediate transmission member 30, the engine 14 and the like change in rotation at the time of a shift, and the rotational change according to the rotational energy change rate in the stepless transmission 18 and the stepped transmission 20 It is power.

図7は、有段変速部20の変速を伴うときの変速機40の模擬有段変速制御におけるパワーの収支の概念図である。図7において、車両駆動パワーPvと内部ロスパワーPlossとを合わせたパワーは、変速進行側係合装置の伝達パワーPcbである。バッテリパワーPbatは、バッテリ52の使用可能なバッテリパワーPbatであって、バッテリ52の入力電力の制限を規定する充電可能電力(入力可能電力)Win、及びバッテリ52の出力電力の制限を規定する放電可能電力(出力可能電力)Woutである、充放電可能電力Win,Woutである。変速進行側係合装置の伝達トルクTcbを設定する際の基本的な考え方としては、図7に示すようなパワーの収支バランスが取れるようにすることである。伝達トルク設定部86は、次式(2)に示すような変速機40の模擬有段変速制御時のパワーの関係が成立するように(すなわちパワーの収支バランスが取れるように)、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatに基づいて、変速進行側係合装置の伝達パワーPcbが得られる変速進行側係合装置の伝達トルクTcbを設定する。変速進行側係合装置の伝達パワーPcbは車速Vに比例する。変速中には車速Vが略変化しない為、変速進行側係合装置の伝達パワーPcbの大きさと変速進行側係合装置の伝達トルクTcbの大きさとは略比例する。従って、車速Vをパラメータとして予め定められた変速進行側係合装置の伝達パワーPcbと変速進行側係合装置の伝達トルクTcbとの関係(マップ)を用いて、車速V及びその伝達パワーPcbに基づいてその伝達トルクTcbが設定されても良い。尚、次式(2)中のバッテリパワーPbatは、バッテリ52の放電側(電力供給側)を正値としている。   FIG. 7 is a conceptual diagram of a balance of power in the simulated stepped shift control of the transmission 40 when the stepped shift unit 20 is shifted. In FIG. 7, the combined power of the vehicle drive power Pv and the internal loss power Ploss is the transmission power Pcb of the gear shift advancing engagement device. The battery power Pbat is a usable battery power Pbat of the battery 52, and a dischargeable power (inputtable power) Win defining the limitation of the input power of the battery 52 and a discharge defining the limitation of the output power of the battery 52 Chargeable and dischargeable powers Win and Wout, which are possible powers (outputtable powers) Wout. As a basic idea when setting the transmission torque Tcb of the shift advancing engagement device, the balance of power as shown in FIG. 7 can be balanced. Transmission torque setting unit 86 sets engine power Pe such that the relationship of power at the time of simulated stepped shift control of transmission 40 as shown in the following equation (2) holds (that is, balance of power can be balanced). The transmission torque Tcb of the shift advancing engagement device from which the transmission power Pcb of the shift advancing engagement device can be obtained is set based on the shift advancing power Pina and the battery power Pbat. The transmission power Pcb of the shift advancing engagement device is proportional to the vehicle speed V. Since the vehicle speed V does not substantially change during gear shifting, the magnitude of the transmission power Pcb of the gear shifting advancing engagement device is substantially proportional to the magnitude of the transmission torque Tcb of the gear shifting advancing engagement device. Therefore, using the relationship (map) between the transmission power Pcb of the shift advancing engagement device and the transmission torque Tcb of the shift advancement engagement device, which is predetermined using the vehicle speed V as a parameter, the vehicle velocity V and the transmission power Pcb thereof are determined. The transmission torque Tcb may be set based on that. The battery power Pbat in the following equation (2) has a positive value on the discharge side (power supply side) of the battery 52.

Pe+Pbat = Pcb+Pina …(2)   Pe + Pbat = Pcb + Pina (2)

前述したように、前記式(2)を用いて変速進行側係合装置の伝達トルクTcbを設定しても良いが、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatと、変速進行側係合装置の伝達パワーPcb(又は伝達トルクTcb)との予め定められた関係(マップ)を用いて、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatの各パワーの数値そのものに基づいて変速進行側係合装置の伝達トルクTcbを設定しても良い。但し、各パワーの数値そのものに基づいて変速進行側係合装置の伝達トルクTcbを設定する場合、各パワーの取り得る状態数が多く、マップが高次元化してしまい適合が複雑なものとなる。   As described above, the transmission torque Tcb of the shift advancing engagement device may be set using the above equation (2), but the engine power Pe, the shift advancing power Pina, and the battery power Pbat The shift progress is made based on the respective values of the engine power Pe, the shift progress power Pina, and the battery power Pbat using a predetermined relationship (map) with the transfer power Pcb (or transfer torque Tcb) of the coupling device. The transmission torque Tcb of the side engagement device may be set. However, when setting the transmission torque Tcb of the shift advancing engagement device based on the numerical value of each power itself, the number of possible states of each power is large, and the map becomes more dimensional, and the adaptation becomes complicated.

これに対して、本実施例では、予め定められた関係(マップ)を用いて変速進行側係合装置の伝達トルクTcbを設定する場合に、マップを低次元化して適合を簡素化する手法を提案する。この手法では、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatをそれぞれの大きさに応じた複数の段階(レベルともいう)に分類する。複数のレベルは、例えば予め定められた閾値によって区分した、大、中、小の3つのレベル、又は、大、小の2つのレベルなどである。各パワーのレベルの組合せと、変速進行側係合装置の伝達トルクTcbとを対応付けた関係(マップ)を予め定め、そのマップを用いて、実際の各パワーを分類したレベルの組合せに基づいて、変速進行側係合装置の伝達トルクTcbを設定する。すなわち、伝達トルク設定部86は、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatのそれぞれの大きさに応じた複数のレベルを引き数とし、その引き数に応じた変速進行側係合装置の伝達トルクTcbを読み取り値として予め定められた関係(マップ、低次元化マップともいう)を有し、その低次元化マップを用いて変速進行側係合装置の伝達トルクTcbを設定する。前記引き数は、例えば大、中、小などの各レベルをそのまま用いても良いし、大、中、小などの各レベルに各々割り当てた数値(例えば3、2、1など)を用いても良い。   On the other hand, in the present embodiment, when setting the transmission torque Tcb of the shift advancing engagement device using a predetermined relationship (map), a method of reducing the dimension of the map and simplifying the adaptation is used. suggest. In this method, the engine power Pe, the shift progress power Pina, and the battery power Pbat are classified into a plurality of stages (also referred to as levels) according to their respective sizes. The plurality of levels are, for example, three levels of large, medium, and small, or two levels of large and small, divided by a predetermined threshold. A relationship (map) in which the combination of each power level and the transmission torque Tcb of the shift advancing engagement device are associated with each other is determined in advance, and the map is used to classify the actual power based on the combination of levels. The transmission torque Tcb of the shift advancing engagement device is set. That is, the transmission torque setting unit 86 sets a plurality of levels corresponding to the respective sizes of the engine power Pe, the shift progression power Pina, and the battery power Pbat as an argument, and the shift advance engagement device according to the argument. The transmission torque Tcb of the gear shift side has a predetermined relationship (also referred to as a map or a reduced dimensional map) as a read value, and the transmitted torque Tcb of the shift advancing engagement device is set using the reduced dimensional map. As the argument, for example, each level such as large, medium, and small may be used as it is, or a numerical value (for example, 3, 2, 1, etc.) assigned to each level such as large, medium, and small may be used. good.

具体的には、伝達トルク設定部86は、変速進行側係合装置の伝達トルクTcbを設定する際の基になるエンジンパワーPeとしてのエンジン14の発生パワーの推定値を算出する。例えば、伝達トルク設定部86は、ハイブリッド制御部84により出力されたエンジン制御指令信号Se(エンジンパワーPeの指令値)に基づいて、エンジン14の発生パワーの推定値を算出する。従って、このエンジン14の発生パワーの推定値は、要求駆動パワーPdemを実現するエンジンパワーPeの要求値である。   Specifically, the transmission torque setting unit 86 calculates an estimated value of the generated power of the engine 14 as the engine power Pe, which is the basis for setting the transmission torque Tcb of the shift advancing engagement device. For example, the transmission torque setting unit 86 calculates an estimated value of the generated power of the engine 14 based on the engine control command signal Se (command value of the engine power Pe) output by the hybrid control unit 84. Therefore, the estimated value of the generated power of the engine 14 is a required value of the engine power Pe that realizes the required drive power Pdem.

伝達トルク設定部86は、変速進行パワーPinaの推定値を算出する。例えば、伝達トルク設定部86は、次式(3)に示すように、有段変速部20の変速前後の、無段変速部18及び有段変速部20における消費イナーシャエネルギーである回転エネルギー差ΔE(=Eaft−Ebfr)を、有段変速部20の変速の種類(例えば2→3アップシフト、3→2ダウンシフト等)毎に予め定められた目標イナーシャ相時間である有段変速部20の目標変速時間Tinaで除算することで、消費イナーシャパワーである変速進行パワーPinaの推定値を算出する。次式(3)において、Eaftは変速後回転エネルギーであり、Ebfrは変速前回転エネルギーである。伝達トルク設定部86は、次式(4)に示すように、回転エネルギーEを算出する。つまり、伝達トルク設定部86は、次式(4)を用いて、変速前のMG2回転速度ωm、変速前のエンジン回転速度ωe、及び変速前のMG1回転速度ωgに基づいて変速前回転エネルギーEbfrを算出し、又、変速後のMG2回転速度ωm、変速後のエンジン回転速度ωe、及び変速後のMG1回転速度ωgに基づいて変速後回転エネルギーEaftを算出する。変速前後のMG2回転速度ωmは、出力回転速度ωo×変速前後の有段変速部20のATギヤ段における変速比γatで算出される。変速前後のエンジン回転速度ωeは、出力回転速度ωo×変速前後の変速機40の模擬ギヤ段における変速比γtで算出される。変速前後のMG1回転速度ωgは、差動機構32における3つの回転要素の回転速度の相対的関係に基づいて予め定められた次式(5)を用いて算出される。次式(4)において、Imは、有段変速部20のATギヤ段毎に決まる(つまり有段変速部20内の係合装置CBの係合状態に依る)、中間伝達部材30(つまり第2回転機MG2+有段変速部20)におけるイナーシャである。Ieは、エンジン14のイナーシャである。Igは、第1回転機MG1のイナーシャである。次式(5)において、ρ0は、前述した差動機構32の歯車比である。   The transmission torque setting unit 86 calculates an estimated value of the shift progression power Pina. For example, as shown in the following equation (3), the transmission torque setting unit 86 sets rotational energy difference .DELTA.E which is consumed inertia energy in the continuously variable transmission unit 18 and the stepped transmission unit 20 before and after shifting of the stepped transmission unit 20. (= Eaft-Ebfr) is the target inertia phase time of the geared transmission unit 20 which is a predetermined target inertia phase time for each type of shift of the geared transmission unit 20 (for example, 2 → 3 upshift, 3 → 2 downshift, etc.) By dividing by the target shift time Tina, an estimated value of the shift progress power Pina which is the consumed inertia power is calculated. In the following equation (3), Eaft is rotational energy after shifting, and Ebfr is rotational energy before shifting. The transfer torque setting unit 86 calculates the rotational energy E as shown in the following equation (4). That is, using the following equation (4), the transmission torque setting unit 86 uses the MG2 rotational speed ωm before the shift, the engine rotational speed ωe before the shift, and the MG1 rotational speed ωg before the shift, and the pre-shift rotational energy Ebfr The after-shift rotational energy Eaft is calculated based on the MG2 rotational speed ωm after the shift, the engine rotational speed ωe after the shift, and the MG1 rotational speed ωg after the shift. The MG2 rotational speed ωm before and after the shift is calculated by the output rotational speed ωo × the transmission ratio γat of the AT gear of the stepped transmission unit 20 before and after the shift. The engine rotational speed ωe before and after the shift is calculated by the output rotational speed ωo × the transmission ratio γt at the simulated gear of the transmission 40 before and after the shift. The MG1 rotational speed ωg before and after the speed change is calculated using the following equation (5), which is predetermined based on the relative relationship between the rotational speeds of the three rotary elements in the differential mechanism 32. In the following expression (4), Im is determined for each AT gear of the stepped transmission unit 20 (that is, depends on the engagement state of the engagement device CB in the stepped transmission unit 20), the intermediate transmission member 30 (that is, It is an inertia in the two-rotating machine MG 2 + stepped transmission unit 20). Ie is the inertia of the engine 14. Ig is an inertia of the first rotary machine MG1. In the following equation (5), ρ 0 is the gear ratio of the differential mechanism 32 described above.

Pina = (Eaft−Ebfr)/Tina …(3)
E = (Im×ωm+Ie×ωe+Ig×ωg)/2 …(4)
ωg = (1+ρ0)/ρ0×ωe−(1/ρ0)×ωm …(5)
Pina = (Eaft-Ebfr) / Tina (3)
E = (Im x ω m 2 + I e x ω e 2 + Ig x ω g 2 ) / 2 (4)
ωg = (1 + ρ0) / ρ0 × ωe− (1 / ρ0) × ωm (5)

伝達トルク設定部86は、変速進行側係合装置の伝達トルクTcbを設定する際の基になるバッテリパワーPbatとしての使用可能なバッテリパワーPbat(すなわち充放電可能電力Win,Wout)の推定値を算出する。例えば、伝達トルク設定部86は、バッテリ温度THbat及びバッテリ52の充電容量SOCに基づいて、バッテリ52の充放電可能電力Win,Woutの推定値を算出する。充放電可能電力Win,Woutは、例えばバッテリ温度THbatが常用域より低い低温域ではバッテリ温度THbatが低い程小さくされ、又、バッテリ温度THbatが常用域より高い高温域ではバッテリ温度THbatが高い程小さくされる。又、充電可能電力Winは、例えば充電容量SOCが大きな領域では充電容量SOCが大きい程小さくされる。又、放電可能電力Woutは、例えば充電容量SOCが小さな領域では充電容量SOCが小さい程小さくされる。   Transfer torque setting unit 86 estimates an estimated value of usable battery power Pbat (that is, chargeable / dischargeable power Win, Wout) as battery power Pbat to be a basis for setting transfer torque Tcb of the shift advancing engagement device. calculate. For example, the transmission torque setting unit 86 calculates estimated values of the chargeable / dischargeable power Win, Wout of the battery 52 based on the battery temperature THbat and the charge capacity SOC of the battery 52. Chargeable / dischargeable electric power Win, Wout, for example, decreases as battery temperature THbat decreases in a low temperature range where battery temperature THbat is lower than the normal usage range, and is smaller as battery temperature THbat is higher in a high temperature range where battery temperature THbat is higher than the normal usage range. Be done. Further, the chargeable power Win is reduced, for example, as the charge capacity SOC is larger in a region where the charge capacity SOC is large. In addition, for example, in a region where the charge capacity SOC is small, the dischargeable power Wout is reduced as the charge capacity SOC is smaller.

伝達トルク設定部86は、算出した、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatをそれぞれの大きさに応じた複数のレベル(引き数)に分類する。伝達トルク設定部86は、前記低次元化マップを用いて、その引き数に基づいて変速進行側係合装置の伝達トルクTcbを設定する。尚、車両10としては、専ら、バッテリ52をパワーを取る側として制御することでパワーの収支バランスを取る場面が想定される。例えば、高車速走行中で高車速側(ハイギヤ側)のATギヤ段の切替えが為される場合のように、エンジンパワーPeが大きく、パワーを取る側の変速進行パワーPinaが小さい場面がそれである。その為、バッテリパワーPbatとしては、バッテリ52の充電可能電力Winの推定値を用いることが好適である。但し、エンジンパワーPeが小さく、変速進行パワーPinaが大きい場面が発生するような車両では、適宜、バッテリ52の充電可能電力Winに替えて放電可能電力Woutの推定値が用いられる。   The transmission torque setting unit 86 classifies the calculated engine power Pe, shift progress power Pina, and battery power Pbat into a plurality of levels (arguments) according to their respective sizes. The transmission torque setting unit 86 sets the transmission torque Tcb of the shift advancing engagement device on the basis of the argument using the reduction map. In addition, as the vehicle 10, the scene which balances the balance of power is assumed only by controlling as the side which takes the battery 52 power. For example, as in the case where high speed vehicle speed traveling and high speed vehicle side (high gear side) AT gear stages are switched, a situation where the engine power Pe is large and the shift progress power Pina on the power take side is small . Therefore, it is preferable to use the estimated value of the chargeable power Win of the battery 52 as the battery power Pbat. However, in a vehicle where engine power Pe is small and a situation occurs in which shift progress power Pina is large, an estimated value of dischargeable power Wout is used instead of chargeable power Win of battery 52 as appropriate.

ここで、バッテリパワーPbatに頼らない安定した変速を実施するには、エンジンパワーPeと変速進行パワーPinaと変速進行側係合装置の伝達パワーPcbとのバランスを取る必要がある。しかしながら、例えばバッテリパワーPbat(充電可能電力Win)が小、且つ、変速進行パワーPinaが小の領域で実行されるパワーオンダウンシフトにおいては、変速進行側係合装置の伝達トルクTcbがエンジントルクTeよりも大きくなる関係の時、MG2回転速度ωmが変化し難くなり、変速が進行し難くなる。変速が進行し易くなるように変速進行側係合装置の伝達トルクTcbを制限して変速進行側係合装置の伝達トルクTcbがエンジントルクTeよりも十分に小さくなる関係の時、余剰なエンジンパワーPeがエンジン回転速度ωeの上昇に使用されて、エンジン回転速度ωeが急上昇する可能性がある。これに対して、ハイブリッド制御部84は、バッテリパワーPbat(充電可能電力Win)が小、且つ、変速進行パワーPinaが小の状態のときには、エンジンパワーPeを要求値よりも低減する。又、例えばバッテリパワーPbat(放電可能電力Wout)が小、且つ、変速進行パワーPinaが大の領域で実行されるパワーオフダウンシフトにおいては、エンジンパワーPeが不足する可能性がある。これに対して、ハイブリッド制御部84は、エンジンパワーPeを要求値よりも増大する。その為、電子制御装置80は、エンジンパワーPeと変速進行パワーPinaとバッテリパワーPbatと変速進行側係合装置の伝達パワーPcbとの各パワーの収支バランスにおいて、各パワーの収支バランスが取れるか否かを判定する、状態判定手段すなわち状態判定部88を更に備えている。   Here, in order to implement a stable shift that does not rely on the battery power Pbat, it is necessary to balance the engine power Pe, the shift progression power Pina, and the transmission power Pcb of the shift progression engaging device. However, for example, in a power on downshift where battery power Pbat (rechargeable power Win) is small and shift progress power Pina is performed in a small range, the transfer torque Tcb of the shift advancing engagement device is the engine torque Te When the relationship is larger than this, the MG2 rotational speed ωm becomes hard to change, and the shift becomes difficult to progress. Excessive engine power is obtained when the transfer torque Tcb of the shift advancing engagement device is limited so that the shift can be easily advanced, and the transfer torque Tcb of the shift advance engagement device is sufficiently smaller than the engine torque Te. As Pe is used to increase the engine rotational speed ωe, the engine rotational speed ωe may jump up. On the other hand, when battery power Pbat (rechargeable power Win) is small and shift progress power Pina is small, hybrid control unit 84 reduces engine power Pe to a level lower than the required value. Further, for example, in a power off downshift that is executed in a region where the battery power Pbat (dischargeable power Wout) is small and the shift advancing power Pina is large, there is a possibility that the engine power Pe runs short. In contrast, hybrid control unit 84 increases engine power Pe more than the required value. Therefore, whether or not the electronic control unit 80 can balance the respective power balances in balance balance of the engine power Pe, the shift proceeding power Pina, the battery power Pbat, and the transmission power Pcb of the shift proceeding engagement device. The apparatus further includes state determination means, that is, a state determination unit 88 that determines whether the

状態判定部88は、例えば伝達トルク設定部86により算出された、変速進行パワーPina及びバッテリパワーPbat(充放電可能電力Win,Wout)に基づいて、エンジンパワーPeと変速進行パワーPinaとバッテリパワーPbatと変速進行側係合装置の伝達パワーPcbとの各パワーの収支バランスが取れるか否かを判定する。状態判定部88は、例えば伝達トルク設定部86により分類されたエンジンパワーPeのレベルが大であり、且つ、伝達トルク設定部86により分類された変速進行パワーPinaのレベルが小であり、且つ、伝達トルク設定部86により分類されたバッテリパワーPbat(充電可能電力Win)のレベルが小である場合には、各パワーの収支バランスが取れない(すなわちエンジンパワーPeが余剰になる)と判定する。   State determination unit 88 determines engine power Pe, shift progress power Pina and battery power Pbat based on shift progress power Pina and battery power Pbat (chargeable / dischargeable powers Win, Wout) calculated by, for example, transfer torque setting unit 86. It is determined whether the balance of each power with the transmission power Pcb of the shift advance side engagement device can be balanced. State determination unit 88 has, for example, a high level of engine power Pe classified by transmission torque setting unit 86, and a low level of shift progressing power Pina classified by transmission torque setting unit 86, and When the level of the battery power Pbat (rechargeable power Win) classified by the transmission torque setting unit 86 is small, it is determined that the balance of each power can not be balanced (that is, the engine power Pe becomes surplus).

ハイブリッド制御部84は、状態判定部88により各パワーの収支バランスが取れないと判定された場合には、各パワーの収支バランスが取れるようにエンジンパワーPeを要求値よりも所定パワーだけ変更する。エンジンパワーPeが余剰になる場合には、この所定パワーは、例えば伝達トルク設定部86により分類されるエンジンパワーPeのレベルが大から中又は小とされる為の予め定められた低減量である。   When it is determined by the state determination unit 88 that the balance of each power can not be balanced, the hybrid control unit 84 changes the engine power Pe by a predetermined power more than the required value so that the balance of each power can be balanced. When engine power Pe becomes surplus, this predetermined power is, for example, a predetermined reduction amount for making the level of engine power Pe classified by transmission torque setting unit 86 large to medium or small. .

伝達トルク設定部86は、状態判定部88により各パワーの収支バランスが取れないと判定された場合には、変速進行側係合装置の伝達トルクTcbを設定する際の基になるエンジンパワーPeとして、ハイブリッド制御部84により変更されたエンジンパワーPeを用いる。   When it is determined by the state determination unit 88 that the balance between powers can not be balanced, the transmission torque setting unit 86 uses the engine power Pe as a basis for setting the transmission torque Tcb of the shift advancing engagement device. The engine power Pe changed by the hybrid control unit 84 is used.

ところで、有段変速部20のパワーオンアップシフトを伴うときの変速機40のアップシフトでは、係合側係合装置を係合に向けて制御することでAT入力回転速度ωiが変速後の同期回転速度ωisycaへ向けて低下させられる。その為、係合側係合装置の係合力は、AT入力回転速度ωiを引き下げる方向へ作用させて、エンジン回転速度ωeを引き下げる方向へ作用させるものである。つまり、係合側係合装置が仕事をする方向と、変速機40のアップシフトにおけるエンジン回転速度ωeの変化方向とは同じ方向である。従って、設定した変速進行側係合装置の伝達トルクTcbを用いた変速時に各パワーの収支バランスが崩れてもエンジン角加速度dωe/dtの目標値からのずれが目立ち難い。このようなことから、有段変速部20のパワーオンアップシフトにおいては、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatをそれぞれ分類する複数のレベルが少なくても問題が生じ難い。   By the way, in the upshift of the transmission 40 when the power on upshift of the stepped transmission unit 20 is accompanied, the AT input rotational speed ωi is synchronized after the shift by controlling the engagement side engagement device toward the engagement. It is reduced towards the rotational speed ωisyca. Therefore, the engagement force of the engagement side engagement device acts in the direction to lower the AT input rotational speed ωi and acts in the direction to lower the engine rotational speed ωe. That is, the direction in which the engagement-side engagement device works and the direction in which the engine rotational speed ωe changes in the upshift of the transmission 40 are the same. Therefore, even if the balance of powers is lost at the time of gear shift using the set transmission torque Tcb of the shift advancing engagement device, the deviation of the engine angular acceleration dωe / dt from the target value is less noticeable. Because of this, in the power-on upshift of the stepped transmission portion 20, problems are less likely to occur even if the engine power Pe, the shift progressing power Pina, and the battery power Pbat are each classified into a plurality of levels.

一方で、有段変速部20のパワーオンダウンシフトを伴うときの変速機40のダウンシフトでは、解放側係合装置を解放に向けて制御することでAT入力回転速度ωiが変速後の同期回転速度ωisycaへ向けて上昇させられる。その為、解放側係合装置の係合力は、AT入力回転速度ωiを引き下げる方向へ作用させて、エンジン回転速度ωeを引き下げる方向へ作用させるものである。つまり、解放側係合装置が仕事をする方向と、変速機40のダウンシフトにおけるエンジン回転速度ωeの変化方向とは反対方向である。従って、設定した変速進行側係合装置の伝達トルクTcbを用いた変速時に各パワーの収支バランスが崩れるとエンジン角加速度dωe/dtの目標値からのずれが目立ち易い。このようなことから、有段変速部20のパワーオンダウンシフトにおいては、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatをそれぞれ分類する複数のレベルを多くしてより精度の良い変速進行側係合装置の伝達トルクTcbを設定する必要がある。   On the other hand, in the downshift of the transmission 40 when the step-down transmission of the stepped transmission unit 20 is accompanied by the power on downshift, the AT input rotational speed ωi is synchronized with that after the shift by controlling the release side engagement device toward release. It is raised towards the speed ωisyca. Therefore, the engagement force of the release side engagement device acts in the direction to lower the AT input rotational speed ωi and acts in the direction to lower the engine rotational speed ωe. That is, the direction in which the release side engagement device works and the direction in which the engine rotational speed ωe changes in the downshift of the transmission 40 are opposite to each other. Therefore, when the balance of powers is broken at the time of gear shift using the transmission torque Tcb of the gear shift advancing engagement device set, the deviation of the engine angular acceleration dωe / dt from the target value tends to be noticeable. Because of this, in the power-on downshift of the stepped transmission unit 20, the shift progressing side is more accurate by increasing the plurality of levels for classifying the engine power Pe, the shift progressing power Pina, and the battery power Pbat. It is necessary to set the transmission torque Tcb of the engagement device.

以上のことから、有段変速部20のパワーオンダウンシフトにおける前記レベルの数は、有段変速部20のパワーオンアップシフトにおける前記レベルの数と比較して多くされている。   From the above, the number of levels in the power-on downshift of the stepped transmission unit 20 is larger than the number of levels in the power-on upshift of the stepped transmission unit 20.

図8は、電子制御装置80の制御作動の要部すなわちバッテリパワーPbatの制限に拘わらず変速機40全体の変速を適切に実行する為の制御作動を説明するフローチャートであり、例えば有段変速部20の変速を伴うときの変速機40の模擬有段変速制御時に繰り返し実行される。   FIG. 8 is a flow chart for explaining the control operation for appropriately executing the shift of the entire transmission 40 regardless of the main part of the control operation of the electronic control device 80, that is, the limitation of the battery power Pbat. It is repeatedly performed at the time of simulated stepped shift control of the transmission 40 when there are 20 shifts.

図8において、先ず、伝達トルク設定部86の機能に対応するステップ(以下、ステップを省略する)S10において、エンジン14の発生パワーの推定値が算出される。次いで、伝達トルク設定部86の機能に対応するS20において、消費イナーシャパワーである変速進行パワーPinaの推定値が算出される。次いで、伝達トルク設定部86の機能に対応するS30において、使用可能なバッテリパワーPbat(すなわち充放電可能電力Win,Wout)の推定値が算出される。次いで、状態判定部88の機能に対応するS40において、エンジンパワーPeと変速進行パワーPinaとバッテリパワーPbatと変速進行側係合装置の伝達パワーPcbとの各パワーの収支バランスが取れるか否かが判定される。このS40の判断が否定される場合はハイブリッド制御部84の機能に対応するS50において、各パワーの収支バランスが取れるようにエンジンパワーPeが要求値から変更(増減)される。上記S40の判断が肯定される場合は、又は、上記S50に次いで、伝達トルク設定部86の機能に対応するS60において、上記S10(又は上記S50)、上記S20、上記S30の各状態(パワー観点)に従い、有段変速部20の変速における油圧制御に用いる変速進行側係合装置の伝達トルクTcbが設定される。すなわち、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatがそれぞれの大きさに応じた複数のレベル(引き数)に分類され、前記低次元化マップを用いて、その引き数に基づいて変速進行側係合装置の伝達トルクTcbが設定される。   In FIG. 8, first, in step (hereinafter, step will be omitted) S10 corresponding to the function of the transmission torque setting unit 86, an estimated value of the generated power of the engine 14 is calculated. Next, in S20 corresponding to the function of the transmission torque setting unit 86, an estimated value of the shift progression power Pina, which is the consumed inertia power, is calculated. Next, in S30 corresponding to the function of the transmission torque setting unit 86, an estimated value of the usable battery power Pbat (i.e. chargeable / dischargeable power Win, Wout) is calculated. Next, in S40 corresponding to the function of the state determination unit 88, it is determined whether balance of each power of engine power Pe, shift progress power Pina, battery power Pbat, and transfer power Pcb of shift advance engagement device can be balanced. It is judged. If the determination in S40 is negative, in S50 corresponding to the function of the hybrid control unit 84, the engine power Pe is changed (increased or decreased) from the required value so that the balance of each power can be balanced. If the determination in S40 is affirmed, or in S60 corresponding to the function of the transmission torque setting unit 86 following S50, each state of S10 (or S50), S20, and S30 (power aspect) According to the above, the transmission torque Tcb of the shift advancing engagement device used for oil pressure control in shifting of the stepped transmission unit 20 is set. That is, the engine power Pe, the shift progressing power Pina, and the battery power Pbat are classified into a plurality of levels (arguments) according to their respective sizes, and using the reduction map, the gear shift is performed based on the arguments. The transmission torque Tcb of the advancing side engagement device is set.

上述のように、本実施例によれば、有段変速部20の変速時にバッテリパワーPbatの制限に因ってMG1トルクTgとMG2トルクTmとが制限されることが抑制されるように、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatに基づいて、変速進行側係合装置の伝達トルクTcbが設定されるので、各パワーの収支バランスが考慮された変速進行側係合装置の伝達トルクTcbにて有段変速部20の変速が実行される。これにより、有段変速部20の変速時にバッテリパワーPbatが制限されたとしても所望するMG1トルクTgやMG2トルクTmが得られ易く、エンジン角加速度dωe/dtを目標値とするように適切に制御することができる。よって、バッテリパワーPbatの制限に拘わらず、変速機40全体の変速を適切に実行することができる。   As described above, according to the present embodiment, the engine is controlled such that the restriction of the MG1 torque Tg and the MG2 torque Tm due to the restriction of the battery power Pbat is suppressed at the time of shifting of the stepped transmission unit 20. Since the transmission torque Tcb of the shift advancing engagement device is set based on the power Pe, the shift advancing power Pina, and the battery power Pbat, the transmission torque of the shift advancing engagement device in which the balance of each power is considered. The gear shift of the stepped transmission unit 20 is executed at Tcb. As a result, even if the battery power Pbat is limited at the time of gear shifting of the stepped transmission unit 20, desired MG1 torque Tg and MG2 torque Tm can be easily obtained, and the engine angular acceleration dωe / dt is appropriately controlled to the target value. can do. Therefore, regardless of the limitation of the battery power Pbat, it is possible to appropriately shift the transmission 40 as a whole.

また、本実施例によれば、各パワーの収支バランスにおいて、各パワーの収支バランスが取れないときには、各パワーの収支バランスが取れるようにエンジンパワーPeが変更され、変速進行側係合装置の伝達トルクTcbを設定する際の基になるエンジンパワーPeとして、その変更されたエンジンパワーPeが用いられるので、各パワーの収支バランスが一層考慮された有段変速部20の変速が実行される。これにより、変速機40全体の変速を一層適切に実行することができる。   Further, according to the present embodiment, when the balance of each power can not be balanced in the balance of each power, the engine power Pe is changed so that the balance of each power can be balanced, and transmission of the shift advancing engagement device Since the changed engine power Pe is used as the engine power Pe that is a basis for setting the torque Tcb, the gear shift of the stepped transmission unit 20 in which the balance of each power is further considered is performed. Thereby, the shift of the entire transmission 40 can be performed more appropriately.

また、本実施例によれば、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatのそれぞれの大きさに応じた複数のレベルを引き数とし、その引き数に応じた変速進行側係合装置の伝達トルクTcbを読み取り値として予め定められた関係(マップ)を用いて変速進行側係合装置の伝達トルクTcbが設定されるので、各パワーの大きさに応じた複数のレベルを用いた区分によって変速進行側係合装置の伝達トルクTcbを設定することで(つまり、引き数を低減することで)、予め定められた関係を低次元化して適合を簡素化することができる。   Further, according to the present embodiment, a plurality of levels corresponding to the respective sizes of the engine power Pe, the shift progression power Pina, and the battery power Pbat are used as arguments, and the shift engagement side engagement device according to the arguments Since the transmission torque Tcb of the shift advancing engagement device is set using a predetermined relationship (map) with the transmission torque Tcb as the reading value, classification using a plurality of levels according to the magnitude of each power By setting the transmission torque Tcb of the shift advancing engagement device (that is, by reducing the number of pulls), the predetermined relationship can be reduced and the adaptation can be simplified.

また、本実施例によれば、変速機40全体のダウンシフトが行われる、有段変速部20のパワーオンダウンシフトにおけるレベルの数は、変速機40全体のアップシフトが行われる、有段変速部20のパワーオンアップシフトにおけるレベルの数と比較して多くされているので、有段変速部20のパワーオンアップシフトと比較して変速制御が難しい有段変速部20のパワーオンダウンシフトを適切に実行することができる。このように、変速の種類によって(例えば変速制御の難易度に合わせて)引き数を変更することができるので、変速制御が容易な程、より適合を簡素化することができる。   Further, according to the present embodiment, the number of levels in the power-on downshift of the stepped transmission portion 20 where downshifting of the entire transmission 40 is performed is that of upshifting of the entire transmission 40 is performed. Since it is increased compared to the number of levels in the power-on upshift of section 20, the power-on downshift of stepped transmission section 20 for which shift control is difficult compared to the power-on upshift of stepped transmission section 20 It can be done properly. As described above, since the number of pulls can be changed according to the type of shift (for example, according to the degree of difficulty of shift control), the easier the shift control is, the simpler the adaptation can be.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention is also applicable in other aspects.

例えば、前述の実施例における図8のフローチャートでは、低次元化マップを用いて変速進行側係合装置の伝達トルクTcbを設定する場合を例示したが、この態様に限らない。例えば、図8のフローチャートにおけるS60では、前記式(2)を用いて変速進行側係合装置の伝達トルクTcbを設定しても良いし、又は、予め定められた関係(例えば高次元マップ)を用いて、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatの各パワーの数値そのものに基づいて変速進行側係合装置の伝達トルクTcbを設定しても良い。又、何れの場合も、図8のフローチャートにおけるS50に示すように、各パワーの収支バランスが取れない場合には、エンジンパワーPeを要求値から変更(増減)しても良い。   For example, although the case where transmission torque Tcb of the shift advance engagement device is set using the low-dimensionalization map is illustrated in the flowchart of FIG. 8 in the above-described embodiment, the present invention is not limited to this aspect. For example, at S60 in the flowchart of FIG. 8, the transmission torque Tcb of the shift advancing engagement device may be set using the equation (2), or a predetermined relationship (for example, a high dimensional map) may be set. The transmission torque Tcb of the shift advancing engagement device may be set based on the respective values of the engine power Pe, the shift advancing power Pina, and the battery power Pbat. Also, in any case, as shown in S50 in the flowchart of FIG. 8, when the balance of the powers can not be balanced, the engine power Pe may be changed (increased or decreased) from the required value.

また、前述の実施例では、低次元化マップを用いて変速進行側係合装置の伝達トルクTcbを設定する場合は、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatをそれぞれの大きさに応じた複数のレベル(引き数)に分類し、その引き数に基づいて伝達トルクTcbを設定するので、エンジンパワーPe、変速進行パワーPina、及びバッテリパワーPbatの各推定値を精緻に算出する必要はない。つまり、分類ができれば良いので、例えば変速進行パワーPinaの分類では、変速進行パワーPinaを用いず、回転エネルギー差ΔE(=Eaft−Ebfr)を用いて分類したレベルを変速進行パワーPinaのレベルとしても良い。   Further, in the above embodiment, when setting the transmission torque Tcb of the shift advancing engagement device using the reduced-order map, the engine power Pe, the shift progress power Pina, and the battery power Pbat are set to the respective sizes. Since the transmission torque Tcb is set based on the arguments, it is necessary to finely calculate each estimated value of the engine power Pe, the shift progressing power Pina, and the battery power Pbat. There is no. That is, as long as classification is possible, for example, in the classification of the shift progression power Pina, the level classified using the rotational energy difference ΔE (= Eaft-Ebfr) without using the shift progression power Pina is also used as the level of the shift progression power Pina. good.

また、前述の実施例における前記式(1)を用いた変速制御、及び、各パワーの収支バランスを考慮した、変速進行側係合装置の伝達トルクTcbの設定は、有段変速部20の変速を伴うときの変速機40の模擬有段変速制御時の他に、変速機40全体として無段変速機として作動させているときの有段変速部20の変速制御時にも適用することができる。   Further, the setting of the transmission torque Tcb of the shift advancing engagement device in consideration of the balance of each power and the shift control using the equation (1) in the above-described embodiment is the shift of the stepped transmission unit 20 In addition to the simulated stepped transmission control of the transmission 40 when it involves, the present invention can also be applied to the shift control of the stepped transmission unit 20 when the entire transmission 40 is operated as a continuously variable transmission.

また、前述の実施例では、有段変速部20は、前進4段の各ATギヤ段が形成される遊星歯車式の自動変速機であったが、この態様に限らない。例えば、有段変速部20は、複数の係合装置のうちの所定の係合装置の係合によって複数のギヤ段のうちの何れかのギヤ段が形成される有段変速機であれば良い。このような有段変速機としては、有段変速部20のような遊星歯車式の自動変速機でも良いし、又は、同期噛合型平行2軸式自動変速機であって入力軸を2系統備えて各系統の入力軸に係合装置(クラッチ)がそれぞれつながり更にそれぞれ偶数段と奇数段へと繋がっている型式の変速機である公知のDCT(Dual Clutch Transmission)などの自動変速機であっても良い。DCTの場合には、所定の係合装置は、2系統の各入力軸にそれぞれつながる係合装置が相当する。   Moreover, in the above-mentioned embodiment, although the geared transmission part 20 was a planetary gear type automatic transmission in which each forward four AT gear stages are formed, it is not limited to this aspect. For example, the geared transmission unit 20 may be a geared transmission in which any one of a plurality of gear stages is formed by the engagement of a predetermined engagement unit of a plurality of engagement units. . As such a stepped transmission, a planetary gear type automatic transmission such as the stepped transmission unit 20 may be used, or a synchronous mesh type parallel two-shaft automatic transmission may be provided with two input shafts. An automatic transmission such as a known DCT (Dual Clutch Transmission), which is a transmission of a type in which engaging devices (clutches) are respectively connected to input shafts of respective systems and further connected to even and odd stages Also good. In the case of the DCT, the predetermined engagement device corresponds to an engagement device connected to each of the two input shafts.

また、前述の実施例では、変速機40全体として有段変速機のように変速させる場合、模擬ギヤ段変速マップを用いて模擬ギヤ段を切り替えたが、この態様に限らない。例えば、シフトレバー56やアップダウンスイッチ等による運転者の変速指示に従って変速機40の模擬ギヤ段を切り替えるものでも良い。   Further, in the above-described embodiment, the simulated gear is switched using the simulated gear shift map when the transmission 40 as a whole is shifted like a stepped transmission, but the present invention is not limited to this mode. For example, the simulated gear of the transmission 40 may be switched according to the shift instruction of the driver by the shift lever 56 or the up / down switch.

また、前述の実施例では、4種類のATギヤ段に対して10種類の模擬ギヤ段を割り当てる実施態様を例示したが、この態様に限らない。好適には、模擬ギヤ段の段数はATギヤ段の段数以上であれば良く、ATギヤ段の段数と同じであっても良いが、ATギヤ段の段数よりも多いことが望ましく、例えば2倍以上が適当である。ATギヤ段の変速は、中間伝達部材30やその中間伝達部材30に連結される第2回転機MG2の回転速度が所定の回転速度範囲内に保持されるように行なうものであり、又、模擬ギヤ段の変速は、エンジン回転速度ωeが所定の回転速度範囲内に保持されるように行なうものであり、それら各々の段数は適宜定められる。   Moreover, although the above-mentioned embodiment illustrated the embodiment which allocates ten types of simulated gear to four types of AT gear, it does not restrict to this aspect. Preferably, the number of simulated gear stages may be equal to or greater than the number of AT gear stages, and may be the same as the number of AT gear stages, but is preferably greater than the number of AT gear stages, for example, twice The above is appropriate. The transmission of the AT gear is performed so that the rotational speed of the second rotary machine MG2 connected to the intermediate transmission member 30 and the intermediate transmission member 30 is maintained within a predetermined rotational speed range, and simulation is also performed. The gear shift is performed such that the engine rotational speed ωe is maintained within a predetermined rotational speed range, and the number of stages of each of them is appropriately determined.

また、前述の実施例では、差動機構32は、3つの回転要素を有するシングルピニオン型の遊星歯車装置の構成であったが、この態様に限らない。例えば、差動機構32は、複数の遊星歯車装置が相互に連結されることで4つ以上の回転要素を有する差動機構であっても良い。又、差動機構32は、ダブルプラネタリの遊星歯車装置であっても良い。又、差動機構32は、エンジン14によって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車に第1回転機MG1及び中間伝達部材30が各々連結された差動歯車装置であっても良い。   Moreover, in the above-mentioned Example, although the differential mechanism 32 was a structure of the single pinion type planetary gear apparatus which has three rotation elements, it does not restrict to this aspect. For example, the differential mechanism 32 may be a differential mechanism having four or more rotating elements by connecting a plurality of planetary gear devices to one another. The differential mechanism 32 may also be a double planetary gear. Also, even if the differential mechanism 32 is a differential gear device in which the first rotary machine MG1 and the intermediate transmission member 30 are respectively connected to a pinion rotationally driven by the engine 14 and a pair of bevel gears meshing with the pinion. good.

尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is merely an embodiment, and the present invention can be implemented in variously modified and / or improved modes based on the knowledge of those skilled in the art.

10:車両(ハイブリッド車両)
14:エンジン
20:機械式有段変速部(有段変速機)
28:駆動輪
30:中間伝達部材
32:差動機構
CA0:キャリア(第1回転要素)
S0:サンギヤ(第2回転要素)
R0:リングギヤ(第3回転要素)
40:変速機
52:バッテリ(蓄電装置)
80:電子制御装置(制御装置)
82:AT変速制御部(変速制御部)
84:ハイブリッド制御部
86:伝達トルク設定部
88:状態判定部
CB:係合装置
MG1:第1回転機
MG2:第2回転機
10: Vehicle (hybrid vehicle)
14: engine 20: mechanical stepped transmission (stepped transmission)
28: Drive wheel 30: Intermediate transmission member 32: Differential mechanism CA0: Carrier (first rotating element)
S0: Sun gear (2nd rotation element)
R0: Ring gear (3rd rotation element)
40: Transmission 52: Battery (power storage device)
80: Electronic control unit (control unit)
82: AT transmission control unit (transmission control unit)
84: hybrid control unit 86: transmission torque setting unit 88: state determination unit CB: engagement device MG1: first rotary machine MG2: second rotary machine

Claims (5)

エンジンと、前記エンジンが動力伝達可能に連結された第1回転要素と第1回転機が動力伝達可能に連結された第2回転要素と中間伝達部材が連結された第3回転要素とを有する差動機構と、前記中間伝達部材に動力伝達可能に連結された第2回転機と、前記中間伝達部材と駆動輪との間の動力伝達経路の一部を構成すると共に複数の係合装置のうちの所定の係合装置の係合によって複数のギヤ段のうちの何れかのギヤ段が形成される有段変速機と、前記第1回転機及び前記第2回転機の各々に対して電力を授受する蓄電装置とを備えたハイブリッド車両の、制御装置であって、
変速前の前記ギヤ段を形成する前記所定の係合装置のうちの解放側係合装置の解放と変速後の前記ギヤ段を形成する前記所定の係合装置のうちの係合側係合装置の係合とを制御することで前記有段変速機にて形成される前記ギヤ段を切り替える変速制御部と、
前記有段変速機の変速時、前記第2回転機の回転速度の変化速度と前記エンジンの回転速度の変化速度とが各々の目標値となるように、前記エンジンの出力トルクと、前記解放側係合装置及び前記係合側係合装置のうちの変速を進行させる側の変速進行側係合装置の伝達トルクとに基づいて、前記第1回転機の出力トルクと前記第2回転機の出力トルクとを制御するハイブリッド制御部と、
前記有段変速機の変速時に前記蓄電装置の充放電可能電力の制限に因って前記第1回転機の出力トルクと前記第2回転機の出力トルクとが制限されることが抑制されるように、前記エンジンのパワー、前記差動機構及び前記有段変速機における変速の進行に必要なパワー、及び前記蓄電装置の充放電可能電力に基づいて、前記変速進行側係合装置の伝達トルクを設定する伝達トルク設定部と
を、含むことを特徴とするハイブリッド車両の制御装置。
A difference between an engine, a first rotating element to which the engine is motive power connected, a second rotating element to which the first rotating machine is motive power connected, and a third rotating element to which the intermediate transmission member is connected Of a plurality of engagement devices, constituting a part of a power transmission path between the intermediate transmission member and the driving wheel, Power transmission to each of the first rotating machine and the second rotating machine, and a geared transmission in which any one of a plurality of gear stages is formed by engagement of a predetermined engagement device of A control device of a hybrid vehicle provided with a storage device for transferring and receiving,
Of the predetermined engagement devices that form the gear before shifting, release of the release side engaging device and an engagement side of the predetermined engagement that forms the gear after shifting A shift control unit that switches the gear stages formed in the stepped transmission by controlling the engagement of
The output torque of the engine and the release side so that the change speed of the rotational speed of the second rotating machine and the change speed of the rotational speed of the engine become their respective target values at the time of shifting of the stepped transmission. The output torque of the first rotary machine and the output of the second rotary machine based on the transmission torque of the gear shift-side engagement device on the side of advancing the transmission among the engagement device and the engagement side engagement device. A hybrid control unit that controls torque and
It is suppressed that the output torque of the first rotating machine and the output torque of the second rotating machine are limited due to the limitation of the chargeable / dischargeable power of the power storage device at the time of shifting of the stepped transmission. The transmission torque of the shift advancing engagement device is calculated based on the power of the engine, the power required for the progress of the shift in the differential mechanism and the stepped transmission, and the chargeable / dischargeable power of the storage device. A control device for a hybrid vehicle, comprising: a transmission torque setting unit to set.
前記エンジンのパワーと前記変速の進行に必要なパワーと前記蓄電装置の充放電可能電力と前記変速進行側係合装置の伝達パワーとの収支バランスにおいて、前記各パワーの収支バランスが取れるか否かを判定する状態判定部を更に備えており、
前記ハイブリッド制御部は、前記各パワーの収支バランスが取れないときには、前記各パワーの収支バランスが取れるように前記エンジンのパワーを変更するものであり、
前記伝達トルク設定部は、前記変速進行側係合装置の伝達トルクを設定する際の基になる前記エンジンのパワーとして、前記変更されたエンジンのパワーを用いることを特徴とする請求項1に記載のハイブリッド車両の制御装置。
Whether balance of each power can be balanced in balance balance of power of the engine, power necessary for progress of the shift, chargeable / dischargeable power of the storage device, and transmission power of the shift advancing engagement device Further includes a state determination unit that determines
The hybrid control unit is configured to change the power of the engine so that the balance of the powers can be balanced when the balance of the powers can not be balanced.
The said transmission torque setting part uses the power of the said changed engine as a power of the said engine used as the basis at the time of setting the transmission torque of the said transmission advance side engaging device, It is characterized by the above-mentioned. Control device for hybrid vehicles.
前記伝達トルク設定部は、前記エンジンのパワー、前記変速の進行に必要なパワー、及び前記蓄電装置の充放電可能電力のそれぞれの大きさに応じた複数の段階を引き数とし、前記引き数に応じた前記変速進行側係合装置の伝達トルクを読み取り値として予め定められた関係を有し、前記関係を用いて前記変速進行側係合装置の伝達トルクを設定することを特徴とする請求項1又は2に記載のハイブリッド車両の制御装置。 The transmission torque setting unit sets, as arguments, a plurality of stages corresponding to respective sizes of the power of the engine, the power necessary for the progress of the shift, and the chargeable / dischargeable power of the storage device. The transmission torque of the gear shift advancing engagement device corresponding to the transmission speed has a predetermined relationship as a read value, and the transmission torque of the gear shift advancing engagement device is set using the relationship. The control device of the hybrid vehicle according to 1 or 2. 前記有段変速機のアップシフト時は、前記差動機構と前記有段変速機とが直列に配置された変速機全体のアップシフトが行われる一方で、前記有段変速機のダウンシフト時は、前記変速機全体のダウンシフトが行われるものであり、
前記有段変速機のパワーオンダウンシフトにおける前記段階の数は、前記有段変速機のパワーオンアップシフトにおける前記段階の数と比較して多くされていることを特徴とする請求項3に記載のハイブリッド車両の制御装置。
At the time of the upshift of the stepped transmission, while the upshift of the entire transmission in which the differential mechanism and the stepped transmission are arranged in series is performed, at the time of the downshift of the stepped transmission. , The entire transmission is downshifted,
A power transmission system according to claim 3, wherein the number of said stages in the power on downshift of said stepped transmission is greater than the number of said stages in power on upshift of said stepped transmission. Control device for hybrid vehicles.
前記有段変速機の変速時とは、前記有段変速機のアップシフト時には前記第2回転機の回転速度を変速後の同期回転速度へ向けて低下させ、前記有段変速機のダウンシフト時には前記第2回転機の回転速度を変速後の同期回転速度へ向けて上昇させる変速過渡中である、前記有段変速機の変速過渡におけるイナーシャ相中であることを特徴とする請求項1から4の何れか1項に記載のハイブリッド車両の制御装置。At the time of the gear shift of the stepped transmission, at the time of the upshift of the stepped transmission, the rotational speed of the second rotating machine is lowered toward the synchronous rotational speed after the shift, and at the time of the downshift of the stepped transmission. 5. An inertia phase during a gear shift transition of the stepped transmission, which is during a gear shift transition in which the rotational speed of the second rotary machine is increased toward the synchronized rotational speed after gear shift. The control device of the hybrid vehicle according to any one of the above.
JP2016231853A 2016-11-29 2016-11-29 Control device for hybrid vehicle Active JP6544345B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2016231853A JP6544345B2 (en) 2016-11-29 2016-11-29 Control device for hybrid vehicle
US15/800,381 US10369987B2 (en) 2016-11-29 2017-11-01 Control device and control method for hybrid vehicle
BR102017023600-5A BR102017023600B1 (en) 2016-11-29 2017-11-01 CONTROL DEVICE FOR HYBRID VEHICLE
MYPI2017704165A MY189598A (en) 2016-11-29 2017-11-02 Control device and control method for hybrid vehicle
KR1020170145775A KR101982700B1 (en) 2016-11-29 2017-11-03 Control device and control method for hybrid vehicle
RU2017138443A RU2675484C1 (en) 2016-11-29 2017-11-03 Control device and method for hybrid vehicle
TW106138266A TWI673189B (en) 2016-11-29 2017-11-06 Control device and control method for hybrid vehicle
AU2017258809A AU2017258809B2 (en) 2016-11-29 2017-11-06 Control device and control method for hybrid vehicle
CA2984972A CA2984972C (en) 2016-11-29 2017-11-08 Control device and control method for hybrid vehicle
EP17200656.1A EP3327317B1 (en) 2016-11-29 2017-11-08 Control device and control method for hybrid vehicle
PH12017050079A PH12017050079A1 (en) 2016-11-29 2017-11-09 Control device and control method for hybrid vehicle
MX2017014827A MX369879B (en) 2016-11-29 2017-11-17 Hybrid vehicle control device.
CN201711183674.XA CN108116399B (en) 2016-11-29 2017-11-23 Control apparatus and control method for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231853A JP6544345B2 (en) 2016-11-29 2016-11-29 Control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2018086973A JP2018086973A (en) 2018-06-07
JP6544345B2 true JP6544345B2 (en) 2019-07-17

Family

ID=60293830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231853A Active JP6544345B2 (en) 2016-11-29 2016-11-29 Control device for hybrid vehicle

Country Status (12)

Country Link
US (1) US10369987B2 (en)
EP (1) EP3327317B1 (en)
JP (1) JP6544345B2 (en)
KR (1) KR101982700B1 (en)
CN (1) CN108116399B (en)
AU (1) AU2017258809B2 (en)
CA (1) CA2984972C (en)
MX (1) MX369879B (en)
MY (1) MY189598A (en)
PH (1) PH12017050079A1 (en)
RU (1) RU2675484C1 (en)
TW (1) TWI673189B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351415B1 (en) * 2015-09-16 2018-12-12 Nissan Motor Co., Ltd. Rotational speed display device
CN109263629B (en) * 2018-08-15 2020-03-31 科力远混合动力技术有限公司 Hybrid electric vehicle energy recovery decoupling control method
CN112026906B (en) * 2019-06-04 2024-05-24 合肥工业大学 Steering switching system of formula car
CN112297870B (en) * 2019-07-30 2023-03-14 比亚迪股份有限公司 Vehicle and control method and device thereof
CN112406846B (en) * 2019-08-23 2022-08-09 比亚迪股份有限公司 Vehicle control method and device and vehicle
CN112477843B (en) * 2020-11-24 2022-09-06 上汽通用五菱汽车股份有限公司 Torque distribution method, system, device and storage medium for hybrid vehicle
CN114909467B (en) * 2021-02-07 2024-04-12 广汽埃安新能源汽车有限公司 Vehicle upshift control method, device and storage medium
CN117841966B (en) * 2024-03-06 2024-05-10 成都赛力斯科技有限公司 Range extender control strategy determining method and device, electronic equipment and storage medium

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063744B2 (en) * 2003-09-24 2008-03-19 トヨタ自動車株式会社 Control device for hybrid vehicle
JP4306597B2 (en) * 2004-02-25 2009-08-05 トヨタ自動車株式会社 Control device for vehicle drive device
JP4155230B2 (en) * 2004-06-03 2008-09-24 トヨタ自動車株式会社 Control device for vehicle drive device
JP4114643B2 (en) 2004-06-25 2008-07-09 トヨタ自動車株式会社 Control device for vehicle drive device
JP4155244B2 (en) * 2004-08-05 2008-09-24 トヨタ自動車株式会社 Control device for vehicle drive device
JP2007092665A (en) 2005-09-29 2007-04-12 Nissan Motor Co Ltd Transmission for vehicle
JP2010188794A (en) 2009-02-17 2010-09-02 Nissan Motor Co Ltd Speed change control device for hybrid vehicle
JP2010120639A (en) * 2010-01-15 2010-06-03 Toyota Motor Corp Control apparatus for vehicle
JP5742124B2 (en) * 2010-07-21 2015-07-01 日産自動車株式会社 Control device for hybrid vehicle
DE112010005907T5 (en) * 2010-09-27 2013-07-18 Toyota Jidosha Kabushiki Kaisha Control device for a hybrid vehicle
JP2012158264A (en) * 2011-02-01 2012-08-23 Toyota Motor Corp Controller of hybrid vehicle
JP5815279B2 (en) * 2011-05-16 2015-11-17 トヨタ自動車株式会社 Control device for vehicle power transmission device
KR20140062506A (en) 2011-09-05 2014-05-23 혼다 기켄 고교 가부시키가이샤 Hybrid vehicle control device and control method
KR101337701B1 (en) 2011-10-18 2013-12-06 주식회사 현대케피코 Shift control method of automatic transmission
US8808140B2 (en) * 2012-05-04 2014-08-19 Ford Global Technologies, Llc Methods and systems for driveline sailing mode entry
WO2014045412A1 (en) 2012-09-21 2014-03-27 トヨタ自動車株式会社 Vehicle control apparatus
JP6003592B2 (en) 2012-12-04 2016-10-05 トヨタ自動車株式会社 Vehicle control device
JP2014184804A (en) 2013-03-22 2014-10-02 Toyota Motor Corp Control unit of vehicular transmission system
JP5876442B2 (en) 2013-05-17 2016-03-02 トヨタ自動車株式会社 Hybrid vehicle
JP6348340B2 (en) 2014-05-21 2018-06-27 トヨタ自動車株式会社 Drive device for hybrid vehicle

Also Published As

Publication number Publication date
CN108116399B (en) 2020-09-22
AU2017258809B2 (en) 2019-07-25
KR101982700B1 (en) 2019-05-27
CA2984972A1 (en) 2018-05-29
EP3327317A1 (en) 2018-05-30
JP2018086973A (en) 2018-06-07
AU2017258809A1 (en) 2018-06-14
KR20180060975A (en) 2018-06-07
US20180148042A1 (en) 2018-05-31
RU2675484C1 (en) 2018-12-19
MX2017014827A (en) 2018-10-04
US10369987B2 (en) 2019-08-06
MY189598A (en) 2022-02-18
TW201819221A (en) 2018-06-01
PH12017050079B1 (en) 2018-08-06
TWI673189B (en) 2019-10-01
CA2984972C (en) 2019-07-02
BR102017023600A2 (en) 2018-06-19
MX369879B (en) 2019-11-25
PH12017050079A1 (en) 2018-08-06
CN108116399A (en) 2018-06-05
EP3327317B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6551381B2 (en) Control device for hybrid vehicle
JP6683593B2 (en) Control device for hybrid vehicle
JP6544345B2 (en) Control device for hybrid vehicle
JP6607179B2 (en) Vehicle control device
JP6673817B2 (en) Control device for hybrid vehicle
JP6747954B2 (en) Vehicle control device
JP6512160B2 (en) Control device of power transmission device for vehicle
JP6856477B2 (en) Vehicle control device
JP2020032854A (en) Vehicular control apparatus
JP6780610B2 (en) Vehicle control device
JP6515908B2 (en) Control device for vehicle drive device
JP2020101219A (en) Control device of vehicle
JP6673815B2 (en) Control device for hybrid vehicle
JP6551380B2 (en) Vehicle control device
JP6853139B2 (en) Vehicle control device
JP2019064328A (en) Vehicular control device
JP7107783B2 (en) vehicle controller
JP2020019356A (en) Control device for vehicle
JP7180968B2 (en) vehicle controller
JP6729318B2 (en) Control device for hybrid vehicle
JP2020029170A (en) Vehicle control device
JP2020090994A (en) Control device of vehicle
JP2020020396A (en) Control device of vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R151 Written notification of patent or utility model registration

Ref document number: 6544345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151