JP6544155B2 - Method of adding setting accelerator to cement composition - Google Patents
Method of adding setting accelerator to cement composition Download PDFInfo
- Publication number
- JP6544155B2 JP6544155B2 JP2015174108A JP2015174108A JP6544155B2 JP 6544155 B2 JP6544155 B2 JP 6544155B2 JP 2015174108 A JP2015174108 A JP 2015174108A JP 2015174108 A JP2015174108 A JP 2015174108A JP 6544155 B2 JP6544155 B2 JP 6544155B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- water
- setting
- cement composition
- setting accelerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、セメント組成物への凝結促進剤の添加方法に関し、特に凝結性能に優れるとともに、強度発現性に優れるセメント混練物を得るためのセメント組成物への凝結促進剤である炭酸リチウムの添加方法に関する。 The present invention relates to a method of adding a setting accelerator to a cement composition, and in particular to the addition of lithium carbonate as a setting promoter to a cement composition for obtaining a cement kneaded material excellent in setting performance and having excellent setting performance. On the way.
土木、建築分野における補修工事や緊急工事には、一定の可使時間を確保して作業性を向上させるとともに、速硬性及び強度発現性が要求される。
従来、コンクリートやモルタルの硬化を促進する方法としては、アルミン酸ナトリウム、炭酸リチウム、C12A7等のカルシウムアルミネート類等の凝結促進剤を添加する方法が用いられていた。
In the field of civil engineering and construction, repair work and emergency work are required to secure a certain work life and to improve the workability, as well as to have high-speed hardening and strength development.
Conventionally, as a method of promoting the hardening of concrete and mortar, a method of adding a setting accelerator such as calcium aluminates such as sodium aluminate, lithium carbonate and C12A7 has been used.
凝結促進剤をセメント組成物に添加する方法としては、例えば、特開2013−103847号公報(特許文献1)に、硬化促進剤として、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム、硝酸カルシウム、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸カルシウム、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸アルミニウム、ギ酸リチウム、ギ酸カルシウム、無水マレイン酸等の水溶液が記載されており、かかる硬化促進剤水溶液は、ひび割れ自己治癒材を調製する際に、そのまま添加配合されていることが開示されている。 As a method of adding a setting accelerator to a cement composition, for example, lithium silicate, sodium silicate, potassium silicate, lithium aluminate as a hardening accelerator is disclosed in JP-A-2013-103847 (patent document 1). , Sodium aluminate, potassium aluminate, calcium nitrate, lithium nitrate, sodium nitrate, potassium nitrate, lithium nitrite, sodium nitrite, potassium nitrite, potassium nitrite, calcium nitrite, lithium sulfate, sodium sulfate, sodium sulfate, potassium sulfate, aluminum sulfate, lithium formate, An aqueous solution of calcium formate, maleic anhydride, etc. is described, and it is disclosed that such a hardening accelerator aqueous solution is added and blended as it is when preparing a cracked self-healing material.
また、特開2006−298661号公報(特許文献2)には、水硬性組成物中に含まれる必須構成成分の凝結調整剤として、クエン酸塩及び重炭酸塩と、炭酸リチウム、塩化リチウム、硫酸リチウム、硝酸リチウム、水酸化リチウム、酢酸リチウム、酒石酸リチウム、リンゴ酸リチウム、クエン酸リチウムなどの無機リチウム塩や有機リチウム塩などのリチウム塩などの公知の凝結促進剤とを併用することが記載され、更に、付加的に例えば、塩化リチウム、硫酸アルミニウム、ミョウバン類、硫酸リチウム、硫酸ナトリウム及び硫酸カリウムなどの無機硫酸塩類、炭酸リチウム、炭酸ナトリウム及び炭酸カリウムなどの炭酸塩類、アルミン酸ナトリウム及びアルミン酸カリウムなどのアルカリアルミン酸塩類、硝酸リチウム、硝酸ナトリウム、硝酸カリウム及び硝酸カルシウムなどの硝酸塩類、亜硝酸ナトリウム、亜硝酸カリウム及び亜硝酸カルシウムなどの亜硝酸塩類、ギ酸、ギ酸ナトリウム、ギ酸カリウム及びギ酸カルシウムなどのギ酸塩類、乳酸、乳酸ナトリウム、乳酸カリウム及び乳酸カルシウムなどの乳酸塩類、酢酸、酢酸リチウム、酢酸ナトリウム、酢酸カリウム及び酢酸カルシウムなどの酢酸塩類、チオシアン酸ナトリウム、チオシアン酸カリウム及びチオシアン酸カルシウムなどのチオシアン酸塩類、チオ硫酸ナトリウム、チオ硫酸カリウム及びチオ硫酸カルシウムなどのチオ硫酸塩類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン及びトリイソプロパノールアミンなどのアルカノールアミン類、オキシカルボン酸及びその塩などの凝結調製剤を含むことができることが記載されており、かかる凝結調調整剤はセメント組成物を調製する際に、そのまま添加配合されている。 Further, in JP-A-2006-298661 (Patent Document 2), a citrate and a bicarbonate, lithium carbonate, lithium chloride and sulfuric acid as a setting regulator of an essential component contained in a hydraulic composition. It is described that it is used in combination with known setting accelerators such as inorganic lithium salts such as lithium, lithium nitrate, lithium hydroxide, lithium acetate, lithium tartrate, lithium malate, lithium citrate and lithium salts such as organic lithium salts. Furthermore, additionally, for example, inorganic sulfates such as lithium chloride, aluminum sulfate, alums, lithium sulfate, sodium sulfate and potassium sulfate, carbonates such as lithium carbonate, sodium carbonate and potassium carbonate, sodium aluminate and aluminate Alkaline aluminates such as potassium, lithium nitrate, sodium nitrate , Nitrates such as potassium nitrate and calcium nitrate, nitrites such as sodium nitrite, potassium nitrite and calcium nitrite, formates such as formic acid, sodium formate, potassium formate and calcium formate, lactic acid, sodium lactate, potassium lactate Lactate salts such as calcium lactate, acetic acid, lithium acetate, sodium acetate, acetates such as potassium acetate and calcium acetate, sodium thiocyanate, potassium thiocyanate such as potassium thiocyanate and calcium thiocyanate, sodium thiosulfate, potassium thiosulfate and the like Thiosulfates such as calcium thiosulfate, alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, triethanolamine and triisopropanolamine, condensations such as oxycarboxylic acids and salts thereof That can include preparations have been described, such condensation tone modifier in the preparation of the cement composition is as added weight.
ところで、炭酸リチウムは粉末状であるため、現場での使用形態としては、予めセメント粉体と混合されたプレミクス製品であることが通常である。
かかる炭酸リチウムは、水への溶解性が低く、従って、プレミクス粉体製品を水と混練りする際に、均質に分散混合することが難しく、まだら混合となってしまい、従って、強度発現性に劣るという問題があった。
By the way, since lithium carbonate is in the form of powder, it is usually used as a pre-mix product which is previously mixed with cement powder as a usage form in the field.
Such lithium carbonate has low solubility in water, and therefore, it is difficult to uniformly disperse and mix the premix powder product with water when it is mixed with water. There was a problem that it was inferior.
本発明は、上記課題を解決し、凝結促進剤をセメント組成物に添加してセメント混練物を調製する際に、特に水への溶解度が低い凝結促進剤である炭酸リチウムを、均質にセメント混練物に含有させることができるとともに、良好な凝結性能である急硬性に優れるとともに、短時間で高強度を発現することができる、凝結促進剤である炭酸リチウムをセメント組成物に添加する方法を提供することである。
なお、セメント組成物とは、セメント粉体、モルタル粉体、コンクリート粉体を含む概念であり、セメント混練物とは、セメント組成物に水を添加配合してなる、セメントペースト、セメントモルタル、コンクリートを含む概念である。
The present invention solves the above-mentioned problems, and when preparing a cement-kneaded product by adding a setting accelerator to a cement composition, lithium carbonate, which is a setting promoter having a low solubility in water, is homogeneously mixed with cement. Provides a method of adding lithium carbonate, which is a setting accelerator, to a cement composition, which can be contained in a material, is excellent in rapid hardening that is good setting performance, and can express high strength in a short time It is to be.
The cement composition is a concept including cement powder, mortar powder and concrete powder, and the cement-kneaded product is a cement paste, cement mortar, concrete which is prepared by adding water to the cement composition. Is a concept that includes
本発明は、凝結促進剤をセメント組成物へ均一に添加する方法に着目し、凝結促進剤である炭酸リチウムを、高濃度で水に溶解させた高濃度水溶液を予め調製し、該高濃度水溶液を水に希釈混合して混練水とする2段階ステップを経て、セメント組成物と該混練水とを混練する、凝結促進剤のセメント組成物への添加方法により、上記課題が達成できるものである。 The present invention focuses on a method of uniformly adding a setting accelerator to a cement composition, and prepares in advance a high concentration aqueous solution prepared by dissolving lithium carbonate, which is a setting accelerator, in water at a high concentration, The above problems can be achieved by a method of adding a setting accelerator to a cement composition, in which the cement composition and the kneading water are kneaded through a two-step step of diluting and mixing in water to make the kneading water. .
即ち、請求項1記載のセメント組成物への凝結促進剤の添加方法は、ギ酸及び凝結促進剤である炭酸リチウムを水に添加して、ギ酸濃度が10〜30質量%で炭酸リチウム濃度が10〜30質量%の凝結促進剤含有混合水溶液を予め調製し、該凝結促進剤含有混合水溶液を、セメント混練物を調製するために添加する混練水の一部としてセメント組成物に配合することを特徴とする、セメント組成物への凝結促進剤の添加方法である。 That is, in the method for adding a setting accelerator to a cement composition according to claim 1, formic acid and lithium carbonate which is a setting accelerator are added to water, and the concentration of formic acid is 10 to 30% by mass and the concentration of lithium carbonate is 10 It is characterized in that an aqueous solution containing 30 to 30% by mass of a setting accelerator is prepared in advance, and the setting aqueous solution containing the setting accelerator is added to the cement composition as a part of kneading water added to prepare a cement mixture. and a method of adding the setting accelerator to the cementitious composition.
請求項2記載のセメント組成物への凝結促進剤の添加方法は、請求項1記載のセメント組成物への凝結促進剤の添加方法において、前記凝結促進剤含有混合水溶液を水と混合して予め混練水を調製し、該混練水をセメント組成物に配合することを特徴とする、セメント組成物への凝結促進剤の添加方法である。 In the method of adding a setting accelerator to a cement composition according to claim 2, in the method for adding a setting accelerator to a cement composition according to claim 1, the aqueous mixture containing the setting accelerator is mixed with water to be previously mixed. A method for adding a setting accelerator to a cement composition, which comprises preparing kneading water and blending the kneading water into a cement composition.
請求項3記載のセメント組成物への凝結促進剤の添加方法は、請求項1又は2記載のセメント組成物への凝結促進剤の添加方法において、更に、セメント混練物に凝結遅延剤が配合されることを特徴とする、セメント組成物への凝結促進剤の添加方法である。 In the method for adding a setting accelerator to a cement composition according to claim 3, in the method for adding a setting accelerator to a cement composition according to claim 1 or 2, a setting retarder is further added to the cement mixture. It is a method of adding a setting accelerator to a cement composition, characterized in that
請求項4記載のセメント組成物への凝結促進剤の添加方法は、請求項3記載のセメント組成物への凝結促進剤の添加方法において、凝結遅延剤は、前記凝結促進剤混合水溶液又は混練水に添加配合されることを特徴とする、セメント組成物への凝結促進剤の添加方法である。 The method for adding a setting accelerator to a cement composition according to claim 4 is the method for adding a setting accelerator to a cement composition according to claim 3, wherein the setting delaying agent is the aqueous solution for mixing the setting accelerator or the kneading water. It is a method of adding a setting accelerator to a cement composition characterized in that it is added to
請求項5記載のセメント組成物への凝結促進剤の添加方法は、請求項1乃至4いずれかの項記載のセメント組成物への凝結促進剤の添加方法において、前記凝結促進剤含有混合液のpHは1〜8であることを特徴とする、セメント組成物への凝結促進剤の添加方法である。 The method for adding a setting accelerator to a cement composition according to claim 5 is the method for adding a setting accelerator to a cement composition according to any one of claims 1 to 4, wherein the mixing accelerator containing the setting accelerator is used. It is a method for adding a setting accelerator to a cement composition, characterized in that the pH is 1 to 8.
本発明のセメント混練物への凝結促進剤の添加方法により、凝結促進剤である炭酸リチウムを均質にセメント組成物へ配合することができ、従って、得られるセメント混練物が、優れた凝結性能である急硬性に優れるとともに、短時間で高強度を発現することが可能となる。
これまでは、炭酸リチウム等の凝結促進剤は、一般的にプレミクス粉体として予め配合されていたところ、炭酸リチウムの凝結促進剤は水への溶解度が小さいため、セメント混練物を調製する際には、炭酸リチウムの凝結促進剤の配合がまだらになってしまい、均質に混練り配合することが困難であり、従って強度発現性に問題があった。本発明の添加方法によれば、セメント混練物中に炭酸リチウムが均質に分散配合されることができることが可能となり、凝結促進性能のみならず、早期強度発現性に優れることができる。
また、必要に応じて、凝結促進剤を添加配合することで、適度な可使時間を有することも可能となる。
According to the method of the present invention for adding the setting accelerator to the cement mixture, lithium carbonate, which is the setting promoter, can be homogeneously blended into the cement composition, and accordingly, the obtained cement mixture has excellent setting performance. While being excellent in a certain rapid hardness, it becomes possible to express high intensity in a short time.
In the past, setting accelerators such as lithium carbonate were generally pre-blended as a premix powder, but since lithium carbonate's setting accelerator has a low solubility in water, it is difficult to prepare a cement mixture. However, it is difficult to blend the setting accelerator of lithium carbonate, so that it is difficult to knead and blend homogeneously, and there is a problem in strength development. According to the addition method of the present invention, lithium carbonate can be homogeneously dispersed and mixed in the cement-kneaded product, and not only the setting acceleration performance but also the early strength development can be excellent.
In addition, it is also possible to have a suitable working life by adding a setting accelerator as needed.
本発明を以下の好適例により説明するが、これらに限定されるものではない。
本発明は、ギ酸及び凝結促進剤である炭酸リチウムを水に添加して、ギ酸の濃度が10〜30質量%で、炭酸リチウムの濃度が10〜30質量%である凝結促進剤含有混合水溶液を予め調製し、該凝結促進剤含有混合水溶液を、セメント混練物を調製するために添加する混練水の一部としてセメント組成物に配合する、セメント組成物への凝結促進剤の添加方法である。
The invention will be illustrated by the following preferred examples, without being limited thereto.
The present invention adds a formic acid and lithium carbonate which is a setting accelerator to water so that the concentration of formic acid is 10 to 30% by mass, and the concentration of lithium carbonate is 10 to 30% by mass. It is a method of adding the setting accelerator to the cement composition, which is prepared in advance and mixed with the cement composition as a part of the mixing water to be added to prepare the cement mixture, with the setting solution containing the setting accelerator.
本発明においては、凝結促進剤として炭酸リチウムを使用し、ギ酸と組み合わせて用いることで、上記本発明の効果を有効に発現することが可能となる。
まず、当該炭酸リチウムとギ酸とを予め水に溶解させて、高濃度の凝結促進剤含有混合水溶液を調製する。
In the present invention, by using lithium carbonate as a setting accelerator and using it in combination with formic acid, it is possible to effectively exhibit the effects of the present invention.
First, the lithium carbonate and formic acid are dissolved in water in advance to prepare a mixed accelerator solution containing a high concentration of a setting accelerator.
本発明における凝結促進剤含有混合水溶液の濃度は、ギ酸と炭酸リチウムが高濃度で溶解・存在することができれば、特に限定されないが、ギ酸と炭酸リチウムを組み合わせた溶解性の点から、ギ酸濃度が10〜30質量%で炭酸リチウム濃度が10〜30質量%の混合水溶液とする。
ギ酸と凝結促進剤である炭酸リチウムとを上記濃度で組み合わせて用いて凝結促進剤含有混合水溶液とすることで、凝結促進剤である炭酸リチウムを均質にセメント組成物へ配合することができ、従って、得られるセメント混練物が、優れた凝結性能である急硬性に優れるとともに、短時間で高強度を発現することが可能となる。
The concentration of the coagulation accelerator-containing mixed aqueous solution in the present invention is not particularly limited as long as formic acid and lithium carbonate can be dissolved and present at a high concentration, but from the viewpoint of solubility combining formic acid and lithium carbonate, the concentration of formic acid is It is set as a mixed aqueous solution having a lithium carbonate concentration of 10 to 30% by mass at 10 to 30% by mass.
By combining formic acid and lithium carbonate which is a setting accelerator at the above concentration to form a mixed aqueous solution containing a setting accelerator, lithium carbonate which is a setting accelerator can be homogeneously blended into the cement composition, and therefore The resulting cement-kneaded product is excellent in rapid hardening, which is an excellent setting performance, and can exhibit high strength in a short time.
本発明における凝結促進剤含有混合水溶液は、含有されるギ酸の存在により、粉体の炭酸リチウムの水への溶解性が向上し、炭酸リチウムが混合水溶液中に均一に溶解するが可能となる。
従って、かかる凝結促進剤含有混合水溶液のpHは1〜8程度、好ましくは2〜7とすることが、炭酸リチウムの水への均一な溶解性を保持するため望ましい。
In the coagulation accelerator-containing mixed aqueous solution in the present invention, the presence of the contained formic acid improves the solubility of powder lithium carbonate in water and enables lithium carbonate to be uniformly dissolved in the mixed aqueous solution.
Therefore, it is desirable that the pH of the coagulation accelerator-containing mixed aqueous solution be about 1 to 8, preferably 2 to 7 in order to maintain uniform solubility of lithium carbonate in water.
かかる凝結促進剤が高濃度で溶解している凝結促進剤含有混合水溶液を、セメント組成物への混練水の一部として用いる。
まず該凝結促進剤含有混合水溶液を水に希釈して凝結促進剤を含有する混練水を予め調製し、該混練水を、セメント組成物に配合して混練りすることにより、セメント混練物を調製する。
本発明においては、凝結促進剤含有混合水溶液をセメント組成物に直接配合するのではなく、上記したように、高濃度の凝結促進剤含有混合水溶液を予め水で希釈して混練水とし、該混練水を用いることで、セメント組成物へ凝結促進剤である炭酸リチウムが均質に分散混練されることが容易となり、上記本発明の効果を有効に発現することができる。
A mixing accelerator-containing mixed aqueous solution in which such a setting accelerator is dissolved at a high concentration is used as part of kneading water to the cement composition.
First, the coagulation accelerator-containing mixed aqueous solution is diluted with water to prepare kneading water containing the coagulation accelerator in advance, and the kneading water is blended with the cement composition and kneaded to prepare a cement kneaded material. Do.
In the present invention, the setting solution-containing mixed aqueous solution is not directly blended into the cement composition, but as described above, the high concentration setting-setting agent-containing mixed aqueous solution is diluted with water in advance to form kneading water. By using water, it is easy to disperse and knead homogeneously lithium carbonate which is a setting accelerator into the cement composition, and the effects of the present invention can be effectively exhibited.
本発明の方法に用いるセメント組成物には、任意の公知のセメントを用いることができ、セメントの種類は特に限定されず、例えば、普通、早強、超早強、中庸熱、低熱などの各種ポルトランドセメントや、高炉セメント、シリカセメント及びフライアッシュセメントの各種混合セメントや、白色ポルトランドセメント及びアルミナセメント、超速硬セメント等、市場で入手できる種々のセメントを例示することができ、これらを単独で又は混合して用いることができる。
また、粉体中に占めるセメントの割合は、20質量%程度以上とすることが好ましい。
Any known cement can be used for the cement composition used in the method of the present invention, and the type of cement is not particularly limited. For example, various types such as ordinary, early strong, super early strong, moderate heat, low heat, etc. Various cements commercially available, such as Portland cement, blast-furnace cement, various mixed cements of silica cement and fly ash cement, white Portland cement and alumina cement, super rapid-hardening cement, etc., can be exemplified, either alone or It can be mixed and used.
The proportion of cement in the powder is preferably about 20% by mass or more.
また、本発明で使用するセメントには、長期強度の向上、乾燥収縮の緩和のため、ポゾラン活性を有する材料である高炉スラグ粉末、フライアッシュ、シリカヒューム、石灰石粉末、石英粉末、硫酸塩等の混和材を、単独でもしくは併用して、適量配合することも可能である。
硫酸塩としては、例えば、芒硝(硫酸ナトリウム)、硫酸カリウムなどのアルカリ金属硫酸塩、硫酸マグネシウム、石こう(硫酸カルシウム)などのアルカリ土類金属硫酸塩、硫酸アルミニウムなどが挙げられ、強度発現性から、石膏の使用が、あるいは石こうと芒硝の併用が好ましい。
石膏としては、無水石膏、半水石膏、二水石膏、またはこれらの混合物が例示できる。
また、その他必要に応じて配合が可能な材料として消石灰が挙げられる。当該消石灰は更なる強度増進のために添加される。
これらの硫酸塩や消石灰等の細かさは、特に限定するものではないが、好ましくは3000cm2/g以上である。強度発現性およびコストを考慮した場合、より好ましいのは4000〜10000cm2/gの細かさのものである。
In addition, the cement used in the present invention includes blast furnace slag powder, fly ash, silica fume, limestone powder, quartz powder, sulfate and the like which are materials having pozzolanic activity for the improvement of long-term strength and relaxation of drying shrinkage. Admixtures may be compounded singly or in combination in appropriate amounts.
Examples of the sulfate include alkali metal sulfates such as sodium sulfate (sodium sulfate) and potassium sulfate, alkaline earth metal sulfates such as magnesium sulfate, gypsum (calcium sulfate) and the like, and aluminum sulfate. The use of gypsum, or the combined use of gypsum and sodium sulfate is preferred.
As gypsum, anhydrous gypsum, hemihydrate gypsum, gypsum dihydrate, or a mixture thereof can be exemplified.
Moreover, slaked lime is mentioned as a material which can be mix | blended as needed. The slaked lime is added for further strength enhancement.
The fineness of these sulfates and slaked lime is not particularly limited, but is preferably 3000 cm 2 / g or more. In consideration of strength development and cost, more preferable are those with a fineness of 4000 to 10000 cm 2 / g.
特に、セメント組成物には必要に応じて、カルシウムアルミネート系鉱物を含有することができる。
カルシウムアルミネート系鉱物としては、12CaO・7Al2O3、CaO・Al2O3、3CaO・Al2O3、CaO・2Al2O3などの化学成分としてCaOとAl2O3からなる結晶質又はガラス化が進んだ構造のものの他、他の化学成分も加わった4CaO・3Al2O3・SO3、11CaO・7Al2O3・CaX2(Xはハロゲン)、Na2O・8CaO・3Al2O3などの広義のカルシウムアルミネートも含まれる。
かかるカルシウムアルミネート系鉱物は、セメント混練物を調製する際に、添加配合してもよい。カルシウムアルミネート系鉱物を含有すると、速硬性能を更に有効に発現することができる。
In particular, the cement composition can contain a calcium aluminate mineral, if necessary.
Calcium aluminate-based mineral, 12CaO · 7Al 2 O 3, CaO · Al 2 O 3, 3CaO · Al 2 O 3, CaO · 2Al 2 O 3 crystalline consisting CaO and for Al 2 O 3 chemical components, such as or others of the advanced structure vitrification, other chemical components be joined 4CaO · 3Al 2 O 3 · SO 3, 11CaO · 7Al 2 O 3 · CaX 2 (X is halogen), Na 2 O · 8CaO · 3Al Also included are calcium aluminates in a broad sense such as 2 O 3 .
Such calcium aluminate mineral may be added and blended when preparing a cement kneaded material. When the calcium aluminate mineral is contained, rapid hardening performance can be more effectively exhibited.
また、本発明の方法に用いるセメント組成物であるモルタルやコンクリートには、細骨材や粗骨材の骨材が含有されるが、これらの粗骨材や細骨材の種類は、特に限定されるものではない。
必要に応じて含有される細骨材としては、特に限定はなく、山砂、川砂、陸砂、砕砂、海砂、珪砂3〜7号等の比較的粒径の細かい細骨材、または珪石粉、石灰石粉等の微粉末等の公知の細骨材やこれらの混合物を使用できる。また、本発明では、細骨材としては、土木建築学会で規定される、5mmふるいを85重量%以上通過するものを用いることもできる。
In addition, although mortar and concrete which are cement compositions used in the method of the present invention contain fine aggregate and aggregate of coarse aggregate, types of these coarse aggregate and fine aggregate are particularly limited. It is not something to be done.
There is no particular limitation on the fine aggregate contained as required, and it is possible to use relatively fine particle size fine aggregate such as mountain sand, river sand, land sand, crushed sand, sea sand, silica sand No. 3-7, etc., or silica stone Well-known fine aggregates, such as fine powder, such as powder and limestone powder, and these mixtures can be used. Further, in the present invention, as the fine aggregate, one which passes 85% by weight or more of a 5 mm sieve, which is defined by the Civil Engineering and Architectural Institute, can also be used.
また、粗骨材としては、特に限定はなく、一般的に用いられる任意の粗骨材を用いることができ、例えば、川砂利、陸砂利、砕石等を用いることができる。粗骨材は、通常、最大粒径5mm〜30mmの、例えば4号〜7号砕石を用いることができる。
その配合割合は特に限定されず、使用する用途に応じて決定することができる。
Moreover, there is no limitation in particular as a coarse aggregate, Arbitrary coarse aggregate generally used can be used, For example, river gravel, land gravel, crushed stone etc. can be used. The coarse aggregate can usually be, for example, crushed stone No. 4 to No. 7 having a maximum particle size of 5 mm to 30 mm.
The compounding ratio is not particularly limited, and can be determined according to the application to be used.
また、本発明の方法に用いるセメント組成物には、各種添加剤や混和剤を必要に応じて、配合されることができる。
各種添加剤や混和剤としては、コンクリートを調製する際に添加される公知の添加剤であれば、用途に応じて添加することができ、例えば、凝結遅延剤、消泡剤、防錆剤、防凍剤、着色剤、減水剤、高性能減水剤等の各種の混和剤や、耐久性を向上させるための炭素繊維や鋼繊維などの補強材を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
In addition, various additives and admixtures can be added to the cement composition used in the method of the present invention as required.
As various additives and admixtures, known additives added when preparing concrete can be added according to the application, for example, setting retarder, antifoamer, rust inhibitor, A range that does not substantially impair the object of the present invention, such as various admixtures such as antifreeze agent, coloring agent, water reducing agent, high performance water reducing agent, and reinforcing materials such as carbon fiber and steel fiber for improving durability. It is possible to use in
必要に応じて配合される凝結遅延剤としては、クエン酸、リンゴ酸、グルコン酸や酒石酸等のオキシカルボン酸等の公知の凝結遅延剤を、本発明の目的を損なわない範囲で添加配合することができる。必要に応じて添加する凝結遅延剤は、例えば、混練時に混練水の添加と同時あるいは混練水に添加して、又は凝結促進剤混合水溶液に予め添加して用いることにより、一定の可使時間を確保できるようにすることも可能である。 As a setting retarder to be added if necessary, known addition retarders such as citric acid, malic acid, oxycarboxylic acid such as gluconic acid and tartaric acid may be added and blended within the range not to impair the object of the present invention. Can. The setting delaying agent added as necessary is, for example, simultaneously with or during the addition of the kneading water at the time of kneading, or added to the kneading water, or previously added to the coagulation accelerator mixed aqueous solution and used for a certain usable time. It is also possible to secure it.
上記セメント組成物は、セメント、凝結促進剤含有混合水溶液を水で希釈した混練水、及び、必要に応じて添加配合される混和材や添加剤を混練りすることにより、セメント混練物を調製することができる。
セメント混練物の調製法は、特に限定するものではなく、慣用のミキサーで原料を混合すれば良い。
混練には、通常のコンクリートの混練に用いられるミキサー、例えば、オムニタイプミキサー、パンタイプミキサー、2軸ミキサー等を用いることができる。混練方法は、特に限定されないが、一般的には、材料を一括してミキサーに投入して、混練すればよい。また、モルタルを先練りし、これを粗骨材にまぶす方法によってコンクリート混練物としてもよい。
The cement composition is prepared by kneading cement, kneading water prepared by diluting a mixed aqueous solution containing a setting accelerator with water, and additives and additives added and blended as required. be able to.
The preparation method of the cement kneaded material is not particularly limited, and the raw materials may be mixed by a conventional mixer.
For kneading, a mixer used for ordinary concrete kneading, for example, an omni-type mixer, a pan-type mixer, a twin-screw mixer or the like can be used. The kneading method is not particularly limited, but in general, the materials may be collectively introduced into a mixer and kneaded. Alternatively, the mortar may be pre-kneaded, and this may be coated on a coarse aggregate to obtain a concrete mixture.
このようにして得られたセメント混練物は、良好な凝結性能の急硬性に優れ、短時間で高強度を発現することができる強度発現性に優れることができる。 The cement-kneaded product thus obtained is excellent in rapid hardening of good setting performance, and can be excellent in strength development capable of expressing high strength in a short time.
本発明を具体的な実施例、比較例及び試験例により詳述するが、これらに限定されるものではない。
(使用材料)
以下の材料を用いて、下記実施例及び比較例を実施した。
・超速硬セメント粉体(JC):製品名 ジェットセメント、住友大阪セメント株式会社製
・細骨材:株式会社丸東 珪砂3号
・炭酸リチウム粉体:本庄ケミカル株式会社製
・ギ酸:株式会社朝日化学工業所製
・クエン酸: 扶桑化学工業株式会社製
・高性能減水剤:製品名 マイティ150、花王ケミカル株式会社製
・水:上水道
The present invention will be described in detail by way of specific examples, comparative examples and test examples, but the invention is not limited thereto.
(Material used)
The following examples and comparative examples were carried out using the following materials.
・ Super fast cement powder (JC): Product name Jet cement, made by Sumitomo Osaka Cement Co., Ltd. ・ Fine aggregate: Marito Co., Ltd. Silica sand No. 3 ・ Lithium carbonate powder: Made by Honjo Chemical Co., Ltd. ・ Formic acid: Asahi Co., Ltd. Chemical industry made · Citric acid: Made by Sakai Chemical Industry Ltd. · High-performance water reducing agent: Product name Mighty 150, manufactured by Kao Chemical Co., Ltd. · Water: Waterworks
(実施例1)
ギ酸及び炭酸リチウム粉体を、ギ酸濃度が20質量%で炭酸リチウム濃度が20質量%となるように予め水に溶解させた凝結促進剤混合水溶液1を調製した。
水の総量が360gとなるように、10ccの凝結促進剤混合水溶液1と2gのクエン酸と水とを混合して、混練水1を調製した。
超速硬セメント粉体1000gに、砂1200gと、高性能減水剤20gと、該混練水1を添加して、均一に混練することによりセメント混練物1を得た。
得られたセメント混練物1中、超速硬セメント粉体100質量部に対して含有されるギ酸は2.00質量%(2g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
Example 1
A coagulation accelerator mixed aqueous solution 1 was prepared in which formic acid and lithium carbonate powder were previously dissolved in water so that the concentration of formic acid was 20% by mass and the concentration of lithium carbonate was 20% by mass.
Kneaded water 1 was prepared by mixing 10 cc of a coagulation accelerator mixed aqueous solution 1 with 2 g of citric acid and water so that the total amount of water was 360 g.
1,200 g of sand, 20 g of a high-performance water-reducing agent, and the kneading water 1 were added to 1,000 g of super rapid-hardening cement powder and uniformly kneaded to obtain a cement kneaded product 1.
Formic acid contained was 2.00 mass% (2 g) and lithium carbonate 2.00 mass% (2.0 g) with respect to 100 parts by mass of ultra rapid-hardening cement powder in the obtained cement kneaded material 1 . The formulations are shown in Table 1 below.
(実施例2)
ギ酸及び炭酸リチウム粉体を、ギ酸濃度が30質量%で炭酸リチウム濃度が30質量%となるように予め水に溶解させた凝結促進剤混合水溶液2を調製した。
水の総量が360gとなるように、約6.7ccの凝結促進剤混合水溶液2と2gのクエン酸と水とを混合して、混練水2を調製した。
超速硬セメント粉体1000gに、砂1200gと、高性能減水剤20gと、該混練水2を添加して、均一に混練することによりセメント混練物2を得た。
得られたセメント混練物2中、超速硬セメント粉体100質量部に対して含有されるギ酸は2.00質量%(2g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Example 2)
A setting accelerator mixed aqueous solution 2 was prepared in which formic acid and lithium carbonate powder were previously dissolved in water so that the concentration of formic acid is 30% by mass and the concentration of lithium carbonate is 30% by mass.
Knead water 2 was prepared by mixing approximately 6.7 cc of the aqueous solution of a mixture of setting accelerators, 2 g of citric acid and water so that the total amount of water is 360 g.
The cement kneaded material 2 was obtained by adding 1200 g of sand, 20 g of a high-performance water reducing agent, and the kneading water 2 to 1000 g of super rapid-hardening cement powder and uniformly kneading.
Formic acid contained 2.00 mass% (2 g) and lithium carbonate 2.00 mass% (2.0 g) with respect to 100 parts by mass of super rapid-hardening cement powder in the obtained cement kneaded material 2 . The formulations are shown in Table 1 below.
(実施例3)
ギ酸及び炭酸リチウム粉体を、ギ酸濃度が10質量%で炭酸リチウム濃度が10質量%となるように予め水に溶解させた凝結促進剤混合水溶液3を調製した。
水の総量が360gとなるように、20ccの凝結促進剤混合水溶液3と2gのクエン酸と水とを混合して、混練水3を調製した。
超速硬セメント粉体1000gに、砂1200gと、高性能減水剤20gと、該混練水3を添加して、均一に混練することによりセメント混練物3を得た。
得られたセメント混練物3中、超速硬セメント粉体100質量部に対して含有されるギ酸は2.00質量%(2g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Example 3)
A setting accelerator mixed aqueous solution 3 was prepared in which formic acid and lithium carbonate powder were previously dissolved in water so that the concentration of formic acid was 10% by mass and the concentration of lithium carbonate was 10% by mass.
Kneaded water 3 was prepared by mixing 20 cc of a coagulation accelerator mixed aqueous solution 3 with 2 g of citric acid and water so that the total amount of water was 360 g.
1,200 g of sand, 20 g of a high-performance water-reducing agent, and the kneading water 3 were added to 1000 g of super rapid-hardening cement powder and uniformly kneaded to obtain a cement kneaded material 3.
Formic acid contained was 2.00 mass% (2 g) and lithium carbonate was 2.00 mass% (2.0 g) with respect to 100 parts by mass of ultra rapid-hardening cement powder in the obtained cement kneaded material 3 . The formulations are shown in Table 1 below.
なお、実施例1〜3の凝結促進剤混合水溶液のpHは2〜7の範囲内のpHを有していた。 In addition, pH of the coagulation accelerator mixed aqueous solution of Examples 1-3 had pH in the range of 2-7.
(比較例1)
クエン酸2.0gを、360gの水に混合して、混練水溶液4を調製した。なお、炭酸リチウム及びギ酸は添加配合しない。
超速硬セメント粉末1000gに、砂1200gと、高性能減水剤20gと、該混練水4を添加して、均一に混練することによりセメント混練物4を得た。なお、配合を以下の表1に示す。
(Comparative example 1)
2.0 g of citric acid was mixed with 360 g of water to prepare a kneaded aqueous solution 4. Lithium carbonate and formic acid are not added and blended.
The cemented mixture 4 was obtained by adding 1200 g of sand, 20 g of a high-performance water reducing agent, and the kneading water 4 to 1000 g of super rapid-hardening cement powder and uniformly kneading. The formulations are shown in Table 1 below.
(比較例2)
ギ酸2gを360gの水と混合して、混練水溶液5を調製した。
炭酸リチウム粉体2.0gを超速硬セメント粉体1000gに予め混合して、混合粉体5を調製した。
得られた混合粉体5に、砂1200gと、高性能減水剤20gと、混練水溶液5を配合して、均一に混練することによりセメント混練物5を調製した。
得られたセメント混練物5中、含有されるギ酸は2.00質量%(2g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Comparative example 2)
2g of formic acid was mixed with 360g of water to prepare a kneaded aqueous solution 5.
Mixed powder 5 was prepared by preliminarily mixing 2.0 g of lithium carbonate powder with 1000 g of super rapid-hardening cement powder.
1,200 g of sand, 20 g of a high-performance water-reducing agent, and the aqueous mixing solution 5 were mixed with the obtained mixed powder 5 and uniformly mixed to prepare a cement mixed material 5.
In the obtained cement kneaded product 5, the contained formic acid was 2.00% by mass (2 g) and the lithium carbonate was 2.00% by mass (2.0 g). The formulations are shown in Table 1 below.
(比較例3)
炭酸リチウム粉体2.0g、ギ酸2.0g及びクエン酸2.0gを、360gの水と混合して、混練水溶液6を調製した。
超速硬セメント粉末1000gに、砂1200gと、高性能減水剤20gと、混練水溶液6を配合して、均一に混練することによりセメント混練物6を調製した。
得られたセメント混練物6中、含有されるギ酸は2.00質量%(2g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Comparative example 3)
A kneaded aqueous solution 6 was prepared by mixing 2.0 g of lithium carbonate powder, 2.0 g of formic acid and 2.0 g of citric acid with 360 g of water.
Cemented mixture 6 was prepared by blending 1200 g of sand, 20 g of a high-performance water reducing agent, and a kneading aqueous solution 6 with 1000 g of super rapid-hardening cement powder and uniformly kneading it.
In the obtained cement kneaded product 6, the contained formic acid was 2.00% by mass (2 g) and the lithium carbonate was 2.00% by mass (2.0 g). The formulations are shown in Table 1 below.
(比較例4)
炭酸リチウム2.0g及びクエン酸2.0gを、360gの水と混合して、混練水溶液7を調製した。なお、ギ酸は添加配合しなかった。
超速硬セメント粉体1000gに、砂1200gと、高性能減水剤20gと、該混練水溶液7を添加して、均一に混練することによりセメント混練物7を得た。
得られたセメント混練物7中、超速硬セメント粉体100質量部に対して含有される炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Comparative example 4)
A kneaded aqueous solution 7 was prepared by mixing 2.0 g of lithium carbonate and 2.0 g of citric acid with 360 g of water. Formic acid was not added and blended.
The cemented mixture 7 was obtained by adding 1200 g of sand, 20 g of a high-performance water reducing agent, and the aqueous mixing solution 7 to 1000 g of super rapid-hardening cement powder and uniformly mixing.
The lithium carbonate contained with respect to 100 mass parts of super rapid-hardening cement powder in the obtained cement kneaded material 7 was 2.00 mass% (2.0 g). The formulations are shown in Table 1 below.
(比較例5)
クエン酸及び炭酸リチウム粉体を、クエン酸濃度が10質量%で炭酸リチウム濃度が5質量%となるように予め水に溶解させた凝結促進剤混合水溶液8を調製した。
水の総量が360gとなるように、20ccの凝結促進剤混合水溶液8と、高性能減水剤20gと、水とを混合して、混練水8を調製した。
超速硬セメント粉体1000gに、砂1200gと、該混練水8を添加して、均一に混練することによりセメント混練物8を得た。
得られたセメント混練物8中、超速硬セメント粉体100質量部に対して含有されるギ酸は0質量%(0g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Comparative example 5)
An aqueous solution of coagulation accelerator mixed solution 8 was prepared in which citric acid and lithium carbonate powder were previously dissolved in water so that the concentration of citric acid was 10% by mass and the concentration of lithium carbonate was 5% by mass.
The mixed water 8 was prepared by mixing 20 cc of the coagulation accelerator mixed aqueous solution 8, 20 g of the high-performance water reducing agent, and water so that the total amount of water is 360 g.
The cement kneaded material 8 was obtained by adding 1200 g of sand and the kneading water 8 to 1000 g of super rapid-hardening cement powder and uniformly kneading.
Formic acid contained was 0 mass% (0 g) and lithium carbonate was 2.00 mass% (2.0 g) with respect to 100 parts by mass of ultra rapid-hardening cement powder in the obtained cement kneaded product 8. The formulations are shown in Table 1 below.
(比較例6)
ギ酸及び炭酸リチウム粉体を、ギ酸濃度が20質量%で炭酸リチウム濃度が20質量%となるように予め水に溶解させた凝結促進剤混合水溶液9を調製した。
水の総量が360gとなるように、10ccの凝結促進剤混合水溶液9と2gのクエン酸と水と砂1200gと高性能減水剤20gとを、超速硬セメント粉体1000gに、直接それぞれ添加して、混練することによりセメント混練物9を得た。
得られたセメント混練物9中、超速硬セメント粉体100質量部に対して含有されるギ酸は2.00質量%(2g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Comparative example 6)
A setting accelerator mixed aqueous solution 9 was prepared in which formic acid and lithium carbonate powder were previously dissolved in water so that the concentration of formic acid was 20% by mass and the concentration of lithium carbonate was 20% by mass.
Add 10 cc of aqueous solution of mixed accelerator, 9 g of 2 g of citric acid, water, 1200 g of sand and 20 g of high-performance water-reducing agent directly to 1000 g of super fast-hardening cement powder so that the total amount of water is 360 g. The mixture was kneaded to obtain a cement mixture 9.
In the obtained cement kneaded product 9, formic acid contained was 2.00 mass% (2 g) and lithium carbonate was 2.00 mass% (2.0 g) with respect to 100 mass parts of super rapid-hardening cement powder. . The formulations are shown in Table 1 below.
(比較例7)
ギ酸及び炭酸リチウム粉体を、ギ酸濃度が30質量%で炭酸リチウム濃度が30質量%となるように予め水に溶解させた凝結促進剤混合水溶液10を調製した。
水の総量が360gとなるように、約6.7ccの凝結促進剤混合水溶液10と水と2gのクエン酸と砂1200gと高性能減水剤20gとを、超速硬セメント粉体1000gに、直接それぞれ添加して、混練することによりセメント混練物10を得た。
得られたセメント混練物10中、超速硬セメント粉体100質量部に対して含有されるギ酸は2.00質量%(2g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Comparative example 7)
A setting accelerator mixed aqueous solution 10 was prepared in which formic acid and lithium carbonate powder were previously dissolved in water so that the concentration of formic acid is 30% by mass and the concentration of lithium carbonate is 30% by mass.
10 g of a mixture of a mixture of a setting accelerator and 10 g of water, 2 g of citric acid, 1200 g of sand and 20 g of high-performance water-reducing agent to 1000 g of super fast-hardening cement powder so that the total amount of water is 360 g A cement paste 10 was obtained by adding and kneading.
In the obtained cement kneaded product 10, formic acid contained was 2.00 mass% (2 g) and lithium carbonate was 2.00 mass% (2.0 g) with respect to 100 parts by mass of ultra rapid-hardening cement powder. . The formulations are shown in Table 1 below.
(比較例8)
ギ酸及び炭酸リチウム粉体を、ギ酸濃度が10質量%で炭酸リチウム濃度が10質量%となるように予め水に溶解させた凝結促進剤混合水溶液11を調製した。
水の総量が360gとなるように、20ccの凝結促進剤混合水溶液11と水と2gのクエン酸と砂1200gと高性能減水剤20gとを、超速硬セメント粉体1000gに、直接それぞれ添加して、混練することによりセメント混練物11を得た。
得られたセメント混練物11中、超速硬セメント粉体100質量部に対して含有されるギ酸は2.00質量%(2g)、炭酸リチウムは2.00質量%(2.0g)であった。なお、配合を以下の表1に示す。
(Comparative example 8)
A setting accelerator mixed aqueous solution 11 was prepared in which formic acid and lithium carbonate powder were previously dissolved in water so that the concentration of formic acid was 10% by mass and the concentration of lithium carbonate was 10% by mass.
Add 20 cc of coagulation accelerator mixed aqueous solution 11, water, 2 g of citric acid, 1200 g of sand and 20 g of high-performance water-reducing agent directly to 1000 g of super rapid-hardening cement powder so that the total amount of water is 360 g. The mixture was kneaded to obtain a cement mixture 11.
In the obtained cement kneaded product 11, formic acid contained was 2.00 mass% (2 g) and lithium carbonate was 2.00 mass% (2.0 g) with respect to 100 parts by mass of ultra rapid-hardening cement powder. . The formulations are shown in Table 1 below.
(試験例)
実施例1〜3及び比較例1〜8で得られた各セメント混練物について、以下の試験を実施して、各性能を評価した。
(Test example)
The following tests were implemented about each cement mixing material obtained in Examples 1-3 and Comparative Examples 1-8, and each performance was evaluated.
(試験例1)凝結試験(硬化)
実施例1〜3及び比較例1〜8で得られた各セメント混練物について、JIS R 5201「セメントの物理試験方法」に規定された試験方法に基づき、凝結の始発時間及び終結時間を測定した。その結果を、下記表2に示す。
また、比較例1の凝結性能を基準として、各セメント混練物について、以下の基準で評価を行った。
+++・・比較例1の基準値と比較して、始発及び終結時間の両方が6分以上で促進された場合
++・・・比較例1の基準値と比較して、始発及び終結時間の両方が3分以上且つ6分未満で促進された場合
+・・・・比較例1の基準値よりも、始発又は終結時間が3分以上で促進された場合
0・・・・比較例1の基準値とほぼ同じ場合(始発及び終結時間の両方ともが基準値と2分以内の差の場合)
−・・・・比較例1の基準値よりも劣る場合
その結果を、下記表2に示す。
(Test example 1) Setting test (hardening)
With respect to each of the cement kneaded products obtained in Examples 1 to 3 and Comparative Examples 1 to 8, the start time and finish time of setting were measured based on the test method defined in JIS R 5201 "Physical test method for cement". . The results are shown in Table 2 below.
Moreover, on the basis of the setting performance of the comparative example 1, it evaluated based on the following references | standards about each cement kneaded material.
+ ++ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Comparison Is promoted in 3 minutes or more and less than 6 minutes + ··· · · · · · · · · · When the start or finish time is promoted in 3 minutes or more than the reference value of Comparative Example 1 0 · · · · The criteria of Comparative Example 1 If the value is almost the same (if the start and end times are both within 2 minutes of the reference value)
-When inferior to the reference value of Comparative Example 1 The results are shown in Table 2 below.
(試験例2)強度試験
実施例1〜3及び比較例1〜8で得られた各セメント混練物について、強度試験を実施した。
実施例1〜3及び比較例1〜8の各セメント混練物について、JIS R 5201「セメントの物理試験方法」に規定された試験方法に基づき、材齢3時間における圧縮強度を測定した。なお、各セメント混練物について2回測定し、各測定結果及び平均値を、下記表2に示す。
また、比較例1の圧縮強度性能値を基準として、各セメント混練物の平均値について、以下の基準で評価を行った。
+++・・比較例1の基準値と比較して、3時間強度が4.5N/mm2以上向上している場合
++・・・比較例1の基準値と比較して、3時間強度が3.5N/mm2以上且つ4.5N/mm2未満で向上している場合
+・・・・比較例1の基準値と比較して、3時間強度が3.5N/mm2未満内で向上している場合
0・・・比較例1の基準値と同じ場合
−・・・比較例1の基準値よりも劣る場合
(Test Example 2) Strength Test A strength test was conducted on each of the cement-kneaded products obtained in Examples 1 to 3 and Comparative Examples 1 to 8.
The compressive strength at a material age of 3 hours was measured for each of the cement kneaded products of Examples 1 to 3 and Comparative Examples 1 to 8 based on the test method defined in JIS R 5201 "Physical test method for cement". In addition, it measured twice about each cement kneaded material, and each measurement result and an average value are shown in following Table 2.
Moreover, on the basis of the compressive strength performance value of the comparative example 1, about the average value of each cement mixing material, evaluation was performed on the following references | standards.
+ + · · · · 3 hours intensity is improved by 4.5 N / mm 2 or more compared to the reference value of Comparative Example 1 ++ · · · · 3 hours intensity compared to the reference value of Comparative Example 1 3 .5N / mm 2 or more and is compared with a reference value when + ... Comparative example 1 is improved by less than 4.5 N / mm 2, improved 3 hours intensity within less than 3.5 N / mm 2 When it is 0: When it is the same as the reference value of Comparative Example 1-When it is inferior to the reference value of Comparative Example 1
上記表2より、本発明の凝結促進剤のセメント組成物への添加方法により得られた実施例のセメント混練物は、凝結促進性能に優れるとともに、早期強度発現性に優れることがわかる。
比較例2のように、炭酸リチウム粉体をセメント組成物と混合し、またギ酸を配合する混練水と混合した場合、比較例3のようにギ酸と炭酸リチウムとを混練水全体に添加する場合、比較例4〜5のようにギ酸を用いないで場合は、強度発現性が基準値又は実施例のものと比較して劣ることがわかる。更に、比較例6〜8のように、凝結促進剤混合水溶液を直接セメント組成物に添加配合した場合では、凝結促進剤が均質に配合されないため、強度発現性に劣ることがわかる。これは凝結促進剤がセメントに対して局所的に作用し、部分的に促進又は遅延が発生し、高強度が発現しにくいものと推測される。
From Table 2 above, it can be seen that the cement-kneaded product of the example obtained by the method of adding the setting accelerator of the present invention to the cement composition is excellent in setting acceleration performance and excellent in early strength development.
As in Comparative Example 2, when lithium carbonate powder is mixed with a cement composition and mixed with kneading water containing formic acid, as in Comparative Example 3, when formic acid and lithium carbonate are added to the whole of the kneading water When no formic acid is used as in Comparative Examples 4 to 5, it is understood that the strength development is inferior to the reference value or those of the examples. Furthermore, as in Comparative Examples 6 to 8, when the setting solution mixed aqueous solution is directly added to the cement composition, since the setting promoter is not mixed homogeneously, it is understood that the strength developing property is inferior. It is presumed that this causes the setting accelerator to act locally on the cement, partially promoting or delaying it and making it difficult to develop high strength.
本発明のセメント組成物への凝結促進剤の添加方法を適用して得られたセメント混練物は、シールドトンネル等の裏込め、橋梁やダム、道路舗装体や河川の護岸等の土木構造体や建築構造体の種々の用途、特に緊急工事や補修工事等に適用することができる。 The cement mixture obtained by applying the method of adding the setting accelerator to the cement composition of the present invention is a civil engineering structure such as backfill for shield tunnels, bridges and dams, rebars for road pavements and rivers, etc. The present invention can be applied to various uses of a building structure, particularly for emergency work and repair work.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015174108A JP6544155B2 (en) | 2015-09-03 | 2015-09-03 | Method of adding setting accelerator to cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015174108A JP6544155B2 (en) | 2015-09-03 | 2015-09-03 | Method of adding setting accelerator to cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017047640A JP2017047640A (en) | 2017-03-09 |
JP6544155B2 true JP6544155B2 (en) | 2019-07-17 |
Family
ID=58278572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015174108A Active JP6544155B2 (en) | 2015-09-03 | 2015-09-03 | Method of adding setting accelerator to cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6544155B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020121738A1 (en) * | 2018-12-10 | 2020-06-18 | デンカ株式会社 | Soil grouting material, cured product thereof, soil improvement method, and powder material for soil grouting |
CN112279974A (en) * | 2020-09-27 | 2021-01-29 | 山西佳维新材料股份有限公司 | Composition for preparing early strength agent, early strength agent and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001048617A (en) * | 1999-08-05 | 2001-02-20 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP3976255B2 (en) * | 2002-08-21 | 2007-09-12 | 電気化学工業株式会社 | Quick setting cement concrete for prelining and prelining method using the same |
-
2015
- 2015-09-03 JP JP2015174108A patent/JP6544155B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017047640A (en) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007029399A1 (en) | Cement composition for grouting and grout material comprising the same | |
JP7341366B2 (en) | Cement composition and its manufacturing method | |
JPWO2007138648A1 (en) | Injection material | |
JP7372491B2 (en) | Cement composition and its manufacturing method | |
JPWO2007091629A1 (en) | Injection material | |
TWI624445B (en) | Cement composition | |
JP6030438B2 (en) | Spraying material and spraying method using the same | |
JP2009132808A (en) | Grouting material and regulation method of curing time | |
JP6040016B2 (en) | Ground injection material | |
JP6544155B2 (en) | Method of adding setting accelerator to cement composition | |
JP6956468B2 (en) | Fast-curing grout composition | |
JP2003277111A (en) | Hardening accelerator and cement composition | |
JP3162758B2 (en) | Cement composition and quick-setting method | |
JP2010155758A (en) | Cement admixture and cement composition | |
KR101503841B1 (en) | Environment-friendly geopolymer composition for stabilization of soft ground and strength enhancement and the method using thereof | |
JP6133598B2 (en) | Fast-hardening grout composition and fast-hardening grout material | |
JP2005324982A (en) | Super-quick hardening cement composition | |
JP6783118B2 (en) | Cement composition and its manufacturing method | |
JP2007177077A (en) | Grouting material | |
JP2008201605A (en) | Rapid-hardening material for highly flowable hydraulic composition and highly flowable hydraulic composition | |
JP2006182568A (en) | Hardening accelerator and quick-hardening cement composition | |
JP6531573B2 (en) | Method of adding setting modifier to cement composition | |
JP6258033B2 (en) | Method for producing fast-curing expanded cement kneaded material | |
JP4413605B2 (en) | Cement admixture and fast-curing cement composition | |
JP6809761B2 (en) | Cement composition and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6544155 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |