JP6542080B2 - Method for improving the amount of dissolved hydrogen in electrolytic hydrogen water - Google Patents
Method for improving the amount of dissolved hydrogen in electrolytic hydrogen water Download PDFInfo
- Publication number
- JP6542080B2 JP6542080B2 JP2015179862A JP2015179862A JP6542080B2 JP 6542080 B2 JP6542080 B2 JP 6542080B2 JP 2015179862 A JP2015179862 A JP 2015179862A JP 2015179862 A JP2015179862 A JP 2015179862A JP 6542080 B2 JP6542080 B2 JP 6542080B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- water
- electrode
- amount
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000001257 hydrogen Substances 0.000 title claims description 93
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 93
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 90
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 73
- 238000000034 method Methods 0.000 title claims description 23
- 238000005868 electrolysis reaction Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 16
- 229910001080 W alloy Inorganic materials 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 39
- 239000010931 gold Substances 0.000 description 38
- 229910052737 gold Inorganic materials 0.000 description 30
- 229910052721 tungsten Inorganic materials 0.000 description 30
- 229910052697 platinum Inorganic materials 0.000 description 26
- 238000009713 electroplating Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 238000007747 plating Methods 0.000 description 11
- 238000000635 electron micrograph Methods 0.000 description 10
- 239000002585 base Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002253 acid Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910002835 Pt–Ir Inorganic materials 0.000 description 1
- 229910018885 Pt—Au Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- NMXGVUAOPDDXJZ-UHFFFAOYSA-N [Pt].[N+](=O)([O-])S[N+](=O)[O-] Chemical compound [Pt].[N+](=O)([O-])S[N+](=O)[O-] NMXGVUAOPDDXJZ-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- ISDDBQLTUUCGCZ-UHFFFAOYSA-N dipotassium dicyanide Chemical compound [K+].[K+].N#[C-].N#[C-] ISDDBQLTUUCGCZ-UHFFFAOYSA-N 0.000 description 1
- AAQNGTNRWPXMPB-UHFFFAOYSA-N dipotassium;dioxido(dioxo)tungsten Chemical compound [K+].[K+].[O-][W]([O-])(=O)=O AAQNGTNRWPXMPB-UHFFFAOYSA-N 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- NRTDAKURTMLAFN-UHFFFAOYSA-N potassium;gold(3+);tetracyanide Chemical compound [K+].[Au+3].N#[C-].N#[C-].N#[C-].N#[C-] NRTDAKURTMLAFN-UHFFFAOYSA-N 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- ZWZLRIBPAZENFK-UHFFFAOYSA-J sodium;gold(3+);disulfite Chemical compound [Na+].[Au+3].[O-]S([O-])=O.[O-]S([O-])=O ZWZLRIBPAZENFK-UHFFFAOYSA-J 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
本発明は、電解水素水の溶存水素量向上方法に関する。
また本発明は、溶存水素量が向上した電解水素水の製造方法、及び溶存水素量向上用電極に関する。
The present invention relates to a method of improving the amount of dissolved hydrogen in electrolytic hydrogen water.
The present invention also relates to a method for producing electrolytic hydrogen water in which the amount of dissolved hydrogen is improved, and an electrode for improving the amount of dissolved hydrogen.
水道水などを直流電気分解することにより陰極に電解水素水を、陽極に電解酸性水を生成する電解水生成装置が知られている(例えば特許文献1参照)。
電解水生成装置は、例えば、イオン交換膜により隔てられた陰極室と陽極室とを備えた電解槽を設けて、この電解槽で水を電気分解することにより、陰極室から電解水素水を、また陽極室から電解酸性水をそれぞれ得るように構成されている。
すなわち、陽極室および陰極室における陽極および陰極では、以下のような電気分解反応が行われる。
陽極: 2H2O → O2 + 4H+ + 4e−
陰極: 2H2O + 2e− → H2 + 2OH−
There is known an electrolyzed water generating apparatus which produces electrolytic hydrogen water at a cathode and electrolyzed acidic water at an anode by direct current electrolysis of tap water or the like (see, for example, Patent Document 1).
The electrolyzed water generator comprises, for example, an electrolyzer comprising a cathode chamber and an anode chamber separated by an ion exchange membrane, and electrolyzed water from the cathode chamber by electrolyzing water in the electrolyzer, Moreover, it is comprised so that an electrolytic acid water may be obtained from an anode chamber, respectively.
That is, the following electrolysis reactions are performed in the anode and the cathode in the anode chamber and the cathode chamber.
Anode: 2H 2 O → O 2 + 4H + + 4e −
Cathode: 2H 2 O + 2e − → H 2 + 2OH −
ここで電解水素水は、薬学的、医学的または生物学的効果があるとされ(例えば特許文献2参照)、注目されている。該効果は、電解水素水中に含まれる溶存水素量を高めればさらに顕著になるものと推測される。
しかし、従来の電解水生成装置では、陰極室の陰極により生じた水素が水素ガスとして空気中に放出され易く、そのため電解水素水中に含まれる溶存水素量を十分に高めることができず、改善が望まれていた。
Here, the electrolytic hydrogen water is regarded as having a pharmacological, medical or biological effect (see, for example, Patent Document 2) and is attracting attention. It is assumed that the effect becomes more remarkable as the amount of dissolved hydrogen contained in the electrolytic hydrogen water is increased.
However, in the conventional electrolyzed water generating apparatus, hydrogen generated by the cathode of the cathode chamber is easily released into the air as hydrogen gas, and therefore the amount of dissolved hydrogen contained in the electrolyzed hydrogen water can not be sufficiently increased. It was desired.
したがって本発明の目的は、電解水素水中に含まれる溶存水素量を十分に向上させる方法を提供することにある。
また本発明の別の目的は、該方法により、溶存水素量が向上した電解水素水の製造方法を提供すること、さらに、電解水素水の溶存水素量を向上させるために用いる電極を提供することにある。
Therefore, an object of the present invention is to provide a method for sufficiently improving the amount of dissolved hydrogen contained in electrolytic hydrogen water.
Another object of the present invention is to provide a method of producing electrolytic hydrogen water having an improved amount of dissolved hydrogen by the method, and to provide an electrode used to improve the amount of dissolved hydrogen of the electrolytic hydrogen water. It is in.
本発明者らは鋭意研究を重ねた結果、Tiを含有する基材の上にPtと、AuおよびWの少なくとも一方を含有する被膜を有する電極を使用して水の電気分解を行うことにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち本発明は以下の通りである。
As a result of intensive studies, the present inventors conducted electrolysis of water using an electrode having a film containing Pt and at least one of Au and W on a substrate containing Ti, It has been found that the above problems can be solved, and the present invention has been completed.
That is, the present invention is as follows.
1.Tiを含有する基材の上に、Ptと、AuおよびWの少なくとも一方を含有する被膜を有する電極を使用して水の電気分解を行い、電解水素水の溶存水素量を向上させる方法。
2.前記被膜が、Pt、Au及びWを含有する被膜である、前記1に記載の方法。
3.前記被膜の膜厚が0.05〜1μmである前記1または2の記載の方法。
4.前記1〜3のいずれか1に記載の方法により、溶存水素量が向上した電解水素水の製造方法。
5.Tiを含有する基材の上に、Ptと、AuおよびWの少なくとも一方を含有する被膜を有する、溶存水素量向上用電極。
1. A method of electrolysis of water using an electrode having a film containing Pt and at least one of Au and W on a substrate containing Ti to improve the amount of dissolved hydrogen in electrolytic hydrogen water.
2. The method according to 1 above, wherein the film is a film containing Pt, Au and W.
3. The method according to the above 1 or 2, wherein the film thickness of the coating is 0.05 to 1 μm.
4. The manufacturing method of the electrolytic hydrogen water which dissolved hydrogen amount improved by the method any one of said 1-3.
5. An electrode for improving the amount of dissolved hydrogen, comprising a film containing Pt and at least one of Au and W on a substrate containing Ti.
本発明の方法に使用する電極は、Tiを含有する基材の上に、Ptと、AuおよびWの少なくとも一方を含有する被膜を有する電極であるため、該電極を使用して水の電気分解を行うことにより電解水素水の溶存水素量を向上させることができる。上記電極を用いることによって電解水素水中の溶存水素量を向上させることができる作用機序については明らかではないが、電極で発生した水素は、水素を脱離しやすい性質を有するAuによって、その気泡が大きくなる前に電極から脱離するため、水素ガスの電解水素水中での上昇速度を小さくすることができ、電解水素水中に水素が溶解しやすくなるからであると推測される。また、水素を吸着しやすい性質を有するWによって、より高分散な吸着水素原子を電極表面に生成することができ、高分散な水素分子の生成により、気泡が大きくなりにくく、効率よく溶存水素が生成できるものと推測される。 Since the electrode used in the method of the present invention is an electrode having a film containing Pt and at least one of Au and W on a substrate containing Ti, electrolysis of water using the electrode is carried out The amount of dissolved hydrogen in the electrolyzed hydrogen water can be improved by Although the mechanism of action that can improve the amount of hydrogen dissolved in the electrolytic hydrogen water by using the above electrode is not clear, the hydrogen generated at the electrode has its bubbles formed by Au, which has the property of easily desorbing hydrogen. It is presumed that the rate of rise of hydrogen gas in electrolytic hydrogen water can be reduced because hydrogen is desorbed from the electrode before it becomes large, and hydrogen is easily dissolved in the electrolytic hydrogen water. Further, W having the property of easily adsorbing hydrogen can generate more dispersed adsorbed hydrogen atoms on the electrode surface, and the generation of highly dispersed hydrogen molecules makes it difficult for bubbles to become large, and dissolved hydrogen is efficiently removed. It is presumed that it can be generated.
また、本発明者らは、上記電極が含有する被膜が、Pt、Au及びWを含有する被膜であることにより、さらに電解水素水の溶存水素量を向上させることができることを見出した。これは、電極が水素を脱離する性質を有するAuに加え、水素を吸着する性質を有するWを有することにより、発生した水素の気泡が大きくなる前に電極から脱離させることが可能である一方で、電極で発生した水素が極めて小さいまま気泡として脱離することを抑制でき、電解水素水中に溶解するのに適度なサイズの水素ガスの気泡を発生させることができるため、電解水素水中に含まれる溶存水素量をさらに高めることができるからであると推測される。 Moreover, the present inventors discovered that the film which the said electrode contains is a film containing Pt, Au, and W, and can further improve the dissolved hydrogen amount of electrolytic hydrogen water. This is because, in addition to Au having the property of desorbing hydrogen, the electrode has W having the property of adsorbing hydrogen, so that generated hydrogen can be desorbed from the electrode before the bubbles become large. On the other hand, it is possible to suppress desorption as bubbles while the hydrogen generated at the electrode is extremely small, and to generate bubbles of hydrogen gas of an appropriate size to be dissolved in electrolytic hydrogen water. It is presumed that this is because the amount of dissolved hydrogen contained can be further increased.
本発明の方法に使用する電極は、前記被膜の膜厚が0.05〜1μmであることにより、電解水素水中に含まれる溶存水素量をさらに高めることができる。 The electrode used in the method of the present invention can further increase the amount of dissolved hydrogen contained in the electrolytic hydrogen water when the film thickness of the film is 0.05 to 1 μm.
また、本発明の方法により、溶存水素量が向上した電解水素水を製造することができる。 In addition, the method of the present invention can produce electrolytic hydrogen water having an improved amount of dissolved hydrogen.
以下、本発明の実施形態を、図面を参照しながらさらに詳細に説明する。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
本発明は、Tiを含有する基材の上に、Ptと、AuおよびWの少なくとも一方を含有する被膜を有する電極を使用して水の電気分解を行い、電解水素水の溶存水素量を向上させる方法である。
図1は、本発明の方法に使用する電極の一実施形態を説明するための断面図である。
図1において、電極10は、Tiを含有する基材102の上に、Ptと、AuおよびWの少なくとも一方を含有する被膜104が形成されている。
The present invention electrolyzes water using an electrode having a film containing Pt and at least one of Au and W on a substrate containing Ti to improve the amount of dissolved hydrogen in electrolytic hydrogen water It is a way to
FIG. 1 is a cross-sectional view for explaining an embodiment of an electrode used in the method of the present invention.
In FIG. 1, in the electrode 10, a film 104 containing Pt, and at least one of Au and W is formed on a substrate 102 containing Ti.
基材102は、Tiを含有する。このような基材102は公知のものから適宜選択すればよく、例えば、Tiからなる基材、Ti合金(例えばTi−Al、V、Mo、Pd、Mn、Sn、Fe合金からなる基材)等が挙げられる。
なお基材102は、被膜104を形成する前に、清浄化処理を行うことができる。清浄化処理は、例えば基材102表面を有機溶剤とアルカリで脱脂洗浄する方法が挙げられる。また基材102は、被膜104を形成する前に、化学エッチング処理やブラスト処理等の公知の粗面化処理を行うこともできる。
基材102のサイズは、本発明に使用する電極が用いられる電解水生成装置の規模に応じて適宜設定すればよい。
The substrate 102 contains Ti. Such a base 102 may be appropriately selected from known ones, for example, a base made of Ti, a Ti alloy (for example, a base made of Ti-Al, V, Mo, Pd, Mn, Sn, Fe alloy) Etc.
Note that the base material 102 can be subjected to a cleaning treatment before forming the film 104. Examples of the cleaning treatment include a method of degreasing and cleaning the surface of the substrate 102 with an organic solvent and an alkali. The base material 102 can also be subjected to known surface roughening treatment such as chemical etching treatment or blasting treatment before forming the film 104.
The size of the substrate 102 may be appropriately set according to the size of the electrolyzed water generating apparatus in which the electrode used in the present invention is used.
上記のように、基材102には被膜104が形成される。該被膜はめっきにより形成された被膜であることが好ましい。
該被膜104は、Ptと、AuおよびWの少なくとも一方を含有する。Ptは水の電気分解の際に水素を発生させる性質を担い、Auは前記水素を脱離する性質を担い、Wは、前記水素を吸着する性質を担うと推測される。該被膜104が、Ptと、AuおよびWの少なくとも一方を含有する場合、Ptと、AuおよびWの少なくとも一方の比率は、前者:後者(at%)として、1:1〜100:1が好ましく、10:1〜100:1がさらに好ましい。この形態の場合、めっき浴に用いられるPt化合物としては、例えば、塩化白金、塩化白金酸、塩化白金酸塩、水酸化白金酸、水酸化白金酸塩、ジニトロジアンミン白金錯塩、ジニトロスルフィド白金錯塩、テトラアンミン白金錯塩、ヘキサアンミン白金錯塩等が挙げられる。Au化合物としては、例えば、シアン化金カリウム、亜硫酸金ナトリウム等が挙げられる。W化合物としては、例えば、タングステン酸、タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸アンモニウム等が挙げられる。
As described above, the coating 102 is formed on the substrate 102. The film is preferably a film formed by plating.
The film 104 contains Pt and at least one of Au and W. Pt is responsible for generating hydrogen during electrolysis of water, Au is responsible for releasing the hydrogen, and W is assumed to be responsible for absorbing the hydrogen. When the film 104 contains Pt and at least one of Au and W, the ratio of Pt to at least one of Au and W is preferably 1: 1 to 100: 1 as the former: the latter (at%). 10: 1 to 100: 1 are more preferred. In the case of this form, as a Pt compound used in the plating bath, for example, platinum chloride, chloroplatinic acid, chloroplatinic acid salt, chloroplatinic acid, hydroxyplatinic acid salt, dinitrodiammine platinum complex salt, dinitro sulfide platinum complex salt, Examples thereof include tetraammine platinum complex salts and hexaammine platinum complex salts. Examples of the Au compound include potassium potassium cyanide, sodium gold sulfite and the like. Examples of the W compound include tungstic acid, sodium tungstate, potassium tungstate, ammonium tungstate and the like.
被膜104がPtと、AuまたはWを含有する態様としては、被膜104が、Ptを含む層とAuまたはWを含む層で別々の層とする合計2層から形成されるものであってもよいし、同一層内で、Ptと、AuまたはWを含有するものであってもよい。また、被膜104がPtを含む層と、AuまたはWを含む層で別々の層として形成されたものである場合、Ptと、AuまたはWの層の位置関係(上下関係)は特に制限されず、Ptを含む層の上部に、AuまたはWを含む層が形成されていてもよいし、AuまたはWを含む層の上部に、Ptを含む層が形成されていてもよい。また、被膜104が同一層内でPtと、AuまたはWを含有するものである場合、Ptと、AuまたはWは、Pt−Au合金またはPt−W合金として含有していてもよいし、それぞれ単独で含有していてもよい。被膜104がPtと、AuまたはWを含有する態様として、好ましくは同一層内でPtと、AuまたはWを含有する態様である。電極表面は主としてPtに、AuまたはWが低濃度で含有する状態が好ましく、より高効率での溶存水素の発生が可能であるからである。 In an embodiment in which the coating 104 contains Pt and Au or W, the coating 104 may be formed of a total of two layers of a layer containing Pt and a layer containing Au or W as separate layers. Or may contain Pt and Au or W in the same layer. Also, in the case where the coating 104 is formed as separate layers of a layer containing Pt and a layer containing Au or W, the positional relationship (upper or lower) between the Pt and Au or W layers is not particularly limited. A layer containing Au or W may be formed on the top of the layer containing Pt, or a layer containing Pt may be formed on the top of the layer containing Au or W. When the film 104 contains Pt and Au or W in the same layer, Pt and Au or W may be contained as a Pt-Au alloy or Pt-W alloy, respectively. You may contain independently. In an embodiment in which the coating 104 contains Pt and Au or W, preferably, the coating 104 contains Pt and Au or W in the same layer. It is preferable that the electrode surface mainly contains Pt in a low concentration of Au or W, and it is possible to generate dissolved hydrogen with higher efficiency.
また、前記被膜104は、Pt、Au及びWを含有することが好ましい。被膜104がPt、Au及びWを含有する態様としては、被膜104が、Pt、Au及びWをそれぞれ別々の層とする合計3層から形成されるものであってもよいし、同一層内でPt、Au及びWを含有するものであってもよいし、あるいはPt、Au及びWのうちいずれか2つを1つの同一層内に含み、残りの1つを別の層に含む合計2層から形成されるものであってもよい。前記被膜が上記のような合計2層または3層を形成するものである場合、それぞれの層の位置関係(上下関係)は特に制限されない。また、被膜104が同一層内でPt、Au及びWのいずれか2つまたは3つを含有するものである場合、Pt、Au及びWは、いずれか2つまたは3つを合金として含有していてもよいし、それぞれ単独で含有していてもよい。 Preferably, the film 104 contains Pt, Au and W. In an embodiment in which the coating 104 contains Pt, Au and W, the coating 104 may be formed of a total of three layers in which Pt, Au and W are separate layers, or in the same layer. It may contain Pt, Au and W, or any two of Pt, Au and W in one and the same layer, and the remaining one in another layer. Or the like. When the coating film forms a total of two or three layers as described above, the positional relationship (upper or lower relationship) of each layer is not particularly limited. Also, when the film 104 contains any two or three of Pt, Au and W in the same layer, Pt, Au and W contain any two or three as an alloy. You may each contain independently.
被膜104の形成方法は、例えば、めっき法、スパッタリング法、CVD法等が挙げられるが、被膜104は、前記のようにめっき法により形成されるのが好ましい。 Examples of the method of forming the film 104 include a plating method, a sputtering method, a CVD method, and the like, but the film 104 is preferably formed by the plating method as described above.
被膜104を形成するためのめっき条件は、使用する元素の種類や電極のサイズにより適宜決定すればよいが、電解めっき法を採用する場合、例えば金属濃度は5〜10g/l、液温は50〜60℃、めっき液のpHは1〜4、電流密度は0.5〜1A/dm2が挙げられる。 The plating conditions for forming the film 104 may be appropriately determined according to the type of the element used and the size of the electrode, but in the case of employing the electrolytic plating method, for example, the metal concentration is 5 to 10 g / l and the solution temperature is 50 The plating solution has a pH of 1 to 4 and a current density of 0.5 to 1 A / dm 2 .
このようにして形成された被膜104の膜厚は、0.05〜1μmが好ましく、0.1〜0.3μmがさらに好ましい。このような膜厚によれば、コスト面と耐久性という理由から本発明の効果がさらに高まる。なお該膜厚は、例えばめっき時間により調整することができる。 0.05-1 micrometer is preferable and, as for the film thickness of the film | membrane 104 formed in this way, 0.1-0.3 micrometer is more preferable. According to such a film thickness, the effects of the present invention are further enhanced because of cost and durability. The film thickness can be adjusted, for example, by the plating time.
このように、上記の特定の構造を有する電極は、水中の溶存水素量を向上させるための水の電気分解用の電極として使用することができる。すなわち、本発明に使用する電極は、例えば、純水、水道水、井戸水、地下水などを直流電気分解することにより陰極に電解水素水を、陽極に電解酸性水を生成する公知の電解水生成装置における該陰極に用いて、水の電気分解を行うことができる。水の電気分解は、上記電極を陰極として使用するのであれば、任意の方法を適用できる。陰極により電気分解される水の温度は、例えば10〜25℃が好ましい。このようにして、電解水素水の溶存水素量を向上させることができる。
また、上記方法によって製造された電解水素水は、溶存水素量が向上した電解水素水となる。溶存水素量が向上した電解水素水は、例えば飲料用や人工透析用等として用いることができる。
Thus, the electrode having the above specific structure can be used as an electrode for water electrolysis to improve the amount of dissolved hydrogen in water. That is, the electrode used in the present invention is, for example, a known electrolyzed water generating device that generates electrolyzed hydrogen water at the cathode and electrolyzed acidic water at the anode by direct current electrolysis of pure water, tap water, well water, ground water, etc. Water electrolysis can be performed on the cathode in For electrolysis of water, any method can be applied as long as the electrode is used as a cathode. The temperature of water electrolyzed by the cathode is preferably, for example, 10 to 25 ° C. Thus, the amount of dissolved hydrogen in the electrolyzed hydrogen water can be improved.
Moreover, the electrolyzed hydrogen water manufactured by the said method turns into electrolyzed hydrogen water in which the amount of dissolved hydrogen improved. The electrolyzed hydrogen water in which the amount of dissolved hydrogen is improved can be used, for example, as a beverage or an artificial dialysis.
電解水素水中の溶存水素量は、任意の方法で測定することができ、例えば、溶存水素計(製品名:DHDI−1、東亜DKK製)を用いて測定することができる。 The amount of dissolved hydrogen in the electrolyzed hydrogen water can be measured by any method. For example, it can be measured using a dissolved hydrogen meter (product name: DHDI-1, manufactured by Toa DKK).
以下、本発明を実施例および比較例によりさらに説明するが本発明は下記実施例に制限されない。 Hereinafter, the present invention will be further described by examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1]
図2に示すような電極10を作成した。
まず、Tiからなる基材102を準備した(神戸製鋼所製)。基材102に対し、イートレックス(EEJA製)を用いた脱脂処理を行い、基材表面を清浄化処理した。
続いて、Auを10g/l含有するpH=14の第1電解めっき液を調製した。なお、第1電解めっき液には、Au化合物としてシアン化金カリウムを用い、これを水に溶解させたものを用いた。
次に、清浄化処理した基材102に対し、上記第1電解めっき液を用いた電解めっきを行った。電解めっき条件は、めっき温度50℃、電流密度2A/dm2、めっき時間1分とした。電解めっき完了後、基材102を水洗、乾燥し、基材102上に膜厚0.1μmのAuからなる被膜104aを形成した。
続いて、Ptを5g/l、Wを5g/l含有するpH=1の第2電解めっき液を調製した。なお、第2電解めっき液には、Pt化合物として塩化白金酸、W化合物としてタングステン酸ナトリウムを用い、これを水に溶解させたものを用いた。
Example 1
An electrode 10 as shown in FIG. 2 was produced.
First, a base material 102 made of Ti was prepared (manufactured by Kobe Steel, Ltd.). The substrate 102 was degreased using Eatrex (manufactured by EEJA) to clean the surface of the substrate.
Subsequently, a first electrolytic plating solution of pH 14 containing 10 g / l of Au was prepared. As the first electrolytic plating solution, gold potassium cyanide was used as the Au compound, and this was dissolved in water.
Next, electrolytic plating using the first electrolytic plating solution was performed on the cleaned base material 102. The electrolytic plating conditions were a plating temperature of 50 ° C., a current density of 2 A / dm 2 , and a plating time of 1 minute. After completion of the electrolytic plating, the base material 102 was washed with water and dried to form a film 104 a of Au having a thickness of 0.1 μm on the base material 102.
Subsequently, a second electrolytic plating solution of pH 1 containing 5 g / l of Pt and 5 g / l of W was prepared. The second electrolytic plating solution was prepared by dissolving chloroplatinic acid as a Pt compound and sodium tungstate as a W compound in water.
次に、被膜104aを形成した基材102に対し、上記第2電解めっき液を用いた電解めっきを行った。電解めっき条件は、めっき温度50℃、電流密度0.5A/dm2、めっき時間5分とした。電解めっき完了後、基材102を水洗、乾燥し、被膜104a上に膜厚0.1μmのPt−W合金からなる被膜104bを形成し、電極を得た。
図3は、実施例1で得られた電極の断面図および表面の電子顕微鏡写真(1000倍および10000倍)である。
続いて、得られた電極を用いて水の電気分解を行い、電解水素水中の溶存水素量(DH/μg/L)を調べた。水の電気分解は、図8に示すように、プラスチック製のセルに隔膜を隔てて、電極を5枚設置した電解槽に水道水(市水、水温20℃)を供給し、上記電極に直流電源で電流を流すことによって行った。水の電気分解は以下の条件で行った。
・流量:2.5L/min(入口)
・電流密度:1.4A/dm2
・電極:70×100×0.5t
・電極枚数:5枚
・電極触媒膜厚:0.1μm
・電極間隔:2mm
水の電気分解後、陰極側の水の溶存水素量を、溶存水素計(製品名:DHDI−1、東亜DKK製)を用いて経時的に測定した(電気分解開始時から10分間測定)。結果を図9に示す。
Next, electrolytic plating using the second electrolytic plating solution was performed on the base material 102 on which the film 104a was formed. The electrolytic plating conditions were a plating temperature of 50 ° C., a current density of 0.5 A / dm 2 , and a plating time of 5 minutes. After the completion of the electrolytic plating, the base material 102 was washed with water and dried to form a film 104b made of a Pt-W alloy having a film thickness of 0.1 μm on the film 104a, thereby obtaining an electrode.
FIG. 3 is a cross-sectional view of the electrode obtained in Example 1 and an electron micrograph (1000 × and 10000 ×) of the surface.
Subsequently, water was electrolyzed using the obtained electrode, and the amount of dissolved hydrogen (DH / μg / L) in electrolytic hydrogen water was examined. Electrolysis of water, as shown in FIG. 8, separates a diaphragm from a plastic cell and supplies tap water (city water, water temperature 20 ° C.) to an electrolytic cell provided with five electrodes, and direct current to the above electrode It did by flowing current with the power supply. The electrolysis of water was performed under the following conditions.
・ Flow rate: 2.5 L / min (inlet)
・ Current density: 1.4 A / dm 2
-Electrode: 70 x 100 x 0.5 t
・ Number of electrodes: 5 ・ Electrode film thickness: 0.1 μm
・ Electrode distance: 2 mm
After the electrolysis of water, the amount of dissolved hydrogen in the water on the cathode side was measured over time using a dissolved hydrogen meter (product name: DHDI-1, manufactured by Toa DKK) (measured for 10 minutes from the start of electrolysis). The results are shown in FIG.
[実施例2]
実施例1において、第2電解めっき液としてPtを5g/l含有するpH=1の電解めっき液を用いたこと以外は、実施例1を繰り返した。実施例2で得られた電極の断面図および表面の電子顕微鏡写真(1000倍および10000倍)を図4に、電解水素水中の溶存水素量(DH/μg/L)の結果を図9に示す。
Example 2
In Example 1, Example 1 was repeated except that an electrolytic plating solution of pH 1 containing 5 g / l of Pt was used as the second electrolytic plating solution. A cross-sectional view of the electrode obtained in Example 2 and an electron micrograph (1000 × and 10000 ×) of the surface are shown in FIG. 4, and the result of the amount of dissolved hydrogen (DH / μg / L) in electrolytic hydrogen water is shown in FIG. .
[比較例1]
実施例1において、被膜104aの膜厚を0.05μmにし、被膜104bを設けなかったこと以外は、実施例1を繰り返した。比較例1で得られた電極の断面図および表面の電子顕微鏡写真(1000倍および10000倍)を図5に、電解水素水中の溶存水素量(DH/μg/L)の結果を図9に示す。
Comparative Example 1
In Example 1, Example 1 was repeated except that the film thickness of the film 104 a was 0.05 μm and the film 104 b was not provided. The cross-sectional view of the electrode obtained in Comparative Example 1 and the electron micrographs (1000 × and 10000 ×) of the surface are shown in FIG. 5, and the results of the amount of dissolved hydrogen (DH / μg / L) in electrolytic hydrogen water are shown in FIG. .
[比較例2]
実施例1において、電極として厚さ1mmのW板を用いたこと以外は、実施例1を繰り返した。比較例2で得られた電極の断面図および表面の電子顕微鏡写真(1000倍および10000倍)を図6に、電解水素水中の溶存水素量(DH/μg/L)の結果を図9に示す。
Comparative Example 2
Example 1 was repeated except that in Example 1, a W plate having a thickness of 1 mm was used as an electrode. FIG. 6 shows a cross-sectional view of the electrode obtained in Comparative Example 2 and electron micrographs (1000 × and 10000 ×) of the surface, and FIG. 9 shows the results of the amount of dissolved hydrogen (DH / μg / L) in electrolytic hydrogen water. .
[比較例3]
実施例2において、被膜104aを設けずに、膜厚を0.1μmの被膜104bを設けたこと以外は、実施例1を繰り返した。比較例3で得られた電極の断面図および表面の電子顕微鏡写真(1000倍および10000倍)を図7に、電解水素水中の溶存水素量(DH/μg/L)の結果を図9に示す。
Comparative Example 3
Example 1 was repeated except that the film 104b having a thickness of 0.1 μm was provided without providing the film 104a. A cross-sectional view of the electrode obtained in Comparative Example 3 and an electron micrograph (at 1000 and 10000 times) of the surface are shown in FIG. 7, and the result of the amount of dissolved hydrogen (DH / μg / L) in electrolytic hydrogen water is shown in FIG. .
図9の結果から、実施例1および2で得られた電極は、電解水素水中に含まれる溶存水素量を十分に向上させることが判明した。とくに、実施例1の基材上にAuを含有する層(被膜104a)が形成され、その上にさらにPt−W合金を含有する層(被膜104b)が形成された電極は、該溶存水素量をさらに高めることが分かった。
これに対し、比較例1〜3では、本発明で規定する電極の条件を満たしていないため、実施例に比べ溶存水素量が低下している。
なお、実施例1において被膜104bのPt−Wの代わりにPt−Irを使用した場合、比較例3と同様の結果を得た。
From the results shown in FIG. 9, it was found that the electrodes obtained in Examples 1 and 2 sufficiently improve the amount of dissolved hydrogen contained in the electrolytic hydrogen water. In particular, an electrode in which a layer containing Au (coating 104a) is formed on the base material of Example 1 and a layer (coating 104b) further containing a Pt-W alloy is formed has the dissolved hydrogen amount. It turned out that the
On the other hand, in Comparative Examples 1 to 3, since the conditions of the electrode specified in the present invention are not satisfied, the amount of dissolved hydrogen is lower than in the examples.
In addition, when using Pt-Ir instead of Pt-W of the film 104b in Example 1, the same result as Comparative Example 3 was obtained.
10 電極
102 基材
104 被膜
10 electrode 102 substrate 104 coating
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015179862A JP6542080B2 (en) | 2015-09-11 | 2015-09-11 | Method for improving the amount of dissolved hydrogen in electrolytic hydrogen water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015179862A JP6542080B2 (en) | 2015-09-11 | 2015-09-11 | Method for improving the amount of dissolved hydrogen in electrolytic hydrogen water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017051935A JP2017051935A (en) | 2017-03-16 |
JP6542080B2 true JP6542080B2 (en) | 2019-07-10 |
Family
ID=58316595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015179862A Expired - Fee Related JP6542080B2 (en) | 2015-09-11 | 2015-09-11 | Method for improving the amount of dissolved hydrogen in electrolytic hydrogen water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6542080B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6737867B2 (en) * | 2018-12-27 | 2020-08-12 | 田中貴金属工業株式会社 | Metal plate material, plated plate material, plated plate material manufacturing method, and plated member manufacturing method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623361A (en) * | 1992-07-07 | 1994-02-01 | Japan Carlit Co Ltd:The | Ionized water producing device |
JP3231556B2 (en) * | 1994-07-29 | 2001-11-26 | ペルメレック電極株式会社 | Method for electrolytic reduction of disulfide compound |
DE19962155A1 (en) * | 1999-12-22 | 2001-06-28 | Basf Ag | Electrochemical reduction of vat dye using cathode with electroconductive, cathodically-polarized layer formed in situ by sedimentation on electroconductive substrate, is carried out in presence of base |
JP2004089770A (en) * | 2002-08-29 | 2004-03-25 | Masanori Tashiro | Method and apparatus for cleaning exhaust gas |
JP3996146B2 (en) * | 2004-06-30 | 2007-10-24 | 株式会社神戸製鋼所 | Titanium material for fuel cell separator and method of using the same |
US7736790B2 (en) * | 2004-12-06 | 2010-06-15 | Honda Motor Co., Ltd. | Platinum and tungsten containing electrocatalysts |
JP4981284B2 (en) * | 2004-12-09 | 2012-07-18 | 株式会社神戸製鋼所 | Method for producing titanium material for fuel cell separator |
JP2009142733A (en) * | 2007-12-13 | 2009-07-02 | Ebara Corp | Insoluble electrode and electrochemical liquid treatment apparatus |
TWI490371B (en) * | 2009-07-28 | 2015-07-01 | Industrie De Nora Spa | Electrode for electrolytic applications |
JP2012052169A (en) * | 2010-08-31 | 2012-03-15 | Sanyo Electric Co Ltd | Electrode for electrolysis, electrolyzed water generator equipped with this electrode, disinfector equipped with this generator, and method for producing electrode for electrolysis |
JP2012188706A (en) * | 2011-03-11 | 2012-10-04 | Japan Carlit Co Ltd:The | Electrode for electrolysis and method for manufacturing the same |
JP2015000354A (en) * | 2013-06-13 | 2015-01-05 | シャープ株式会社 | Hydrogen-dissolved water generator |
JP2015016414A (en) * | 2013-07-10 | 2015-01-29 | シャープ株式会社 | Reduced water generator |
-
2015
- 2015-09-11 JP JP2015179862A patent/JP6542080B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2017051935A (en) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2487197C2 (en) | Electrode | |
TWI487170B (en) | Cathode catalyst,cathode material and method for making the same and reactor using the same | |
JP2003511555A (en) | Method for electrochemical production of peroxodisulfuric acid using a diamond-coated electrode | |
US20220356589A1 (en) | Electrolytic cell equipped with microelectrodes | |
JP2013108104A (en) | Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method | |
JP6220956B1 (en) | Diamond electrode, method for producing diamond electrode, and electrolyzed water generating apparatus | |
KR101788917B1 (en) | Device for producing hydrogen water | |
TWI252216B (en) | Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith | |
WO2010061766A1 (en) | Method for producing active cathode for electrolysis | |
WO2011013261A1 (en) | Electrode material for electrolysis, electrode for electrolysis, and method for producing same | |
JP6542080B2 (en) | Method for improving the amount of dissolved hydrogen in electrolytic hydrogen water | |
JP4374439B2 (en) | Metal nanotube manufacturing apparatus and metal nanotube manufacturing method | |
TWI753143B (en) | Electrode base material, and electrode catalyst and electrolysis device using the same | |
JP6200475B2 (en) | System and method for electrochemical reduction of carbon dioxide | |
JP2002273428A (en) | Electrolytic water generator | |
JP7388500B2 (en) | Method for manufacturing hydrogen generation electrode and electrolysis method using hydrogen generation electrode | |
JP2018111874A (en) | Electrode for electrolysis | |
JP7330490B2 (en) | Electrodes for ozone generation | |
JP2013255899A (en) | Refreshing washing method of ozone water generator | |
JP4071980B2 (en) | Method and apparatus for cleaning electronic parts | |
RU2007132164A (en) | HIGH-PERFORMANCE ANODE COATING FOR PRODUCING HYPOCHLORITE | |
JP7052130B1 (en) | Electrode for chlorine generation and its manufacturing method | |
JP2001262388A (en) | Electrode for electrolysis | |
JP2021155776A (en) | Electrolytic device | |
PL224718B1 (en) | Method for producing material with photocatalytic and biocidal properties, containing spatially oriented nanotubes of metal-modified titanium dioxide, preferable noble-metal modifies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190612 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6542080 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |