JP6439260B2 - Telescopic hard sail control method and control device for hard sail ship - Google Patents
Telescopic hard sail control method and control device for hard sail ship Download PDFInfo
- Publication number
- JP6439260B2 JP6439260B2 JP2014054306A JP2014054306A JP6439260B2 JP 6439260 B2 JP6439260 B2 JP 6439260B2 JP 2014054306 A JP2014054306 A JP 2014054306A JP 2014054306 A JP2014054306 A JP 2014054306A JP 6439260 B2 JP6439260 B2 JP 6439260B2
- Authority
- JP
- Japan
- Prior art keywords
- bending moment
- telescopic
- sail
- hard sail
- hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000005452 bending Methods 0.000 claims description 59
- 230000008602 contraction Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 description 5
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B15/00—Superstructures, deckhouses, wheelhouses or the like; Arrangements or adaptations of masts or spars, e.g. bowsprits
- B63B15/0083—Masts for sailing ships or boats
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H9/00—Marine propulsion provided directly by wind power
- B63H9/04—Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
- B63H9/06—Types of sail; Constructional features of sails; Arrangements thereof on vessels
- B63H9/061—Rigid sails; Aerofoil sails
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H9/00—Marine propulsion provided directly by wind power
- B63H9/04—Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
- B63H9/08—Connections of sails to masts, spars, or the like
- B63H9/10—Running rigging, e.g. reefing equipment
- B63H9/1021—Reefing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B15/00—Superstructures, deckhouses, wheelhouses or the like; Arrangements or adaptations of masts or spars, e.g. bowsprits
- B63B2015/0016—Masts characterized by mast configuration or construction
- B63B2015/0041—Telescoping masts
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Wind Motors (AREA)
Description
本発明は、硬帆船の伸縮硬帆制御方法および制御装置に関する。さらに詳しくは、航行中の硬帆船の安全を確保するための伸縮硬帆制御方法および制御装置に関する。 The present invention relates to a telescopic hard sail control method and control device for a hard sail ship. More particularly, the present invention relates to a telescopic hard sail control method and a control device for ensuring the safety of a hard sailing ship during navigation.
海運における大幅なCO2削減を実現するために、同性能の従来型機走船に比べて燃料油使用量の半減を目標とする帆主機従の新形式風力推進船が開発されている。この新形式の風力推進船は大面積高揚力が得られる伸縮硬帆を用いたものである(特許文献1,2参照)。 In order to achieve significant CO2 reduction in shipping, a new type of wind-driven propulsion ship with a sail craft has been developed that aims to halve the amount of fuel oil used compared to a conventional aircraft with the same performance. This new type wind-powered propulsion ship uses a telescopic hard sail capable of obtaining a large area and high lift (see Patent Documents 1 and 2).
伸縮硬帆自体は飛行機の翼断面かあるいは三日月形の断面形状をした大形の部材であって、船上に立設されたマストに取り付けられており、伸縮自在かつ旋回自在である。かかる伸縮硬帆を高く伸長させ、風向きに対し適切な角度に向けると大風力を受けこれを推進力に変換すると船は航行する。
しかるに、伸縮硬帆は自然には風を逃がさないので、風荷重や船体傾斜で伸縮硬帆に過大な力が作用すれば、伸縮硬帆が損傷するという問題がある。
The telescopic hard sail itself is a large member having an airplane wing cross section or a crescent cross section, and is attached to a mast standing on the ship, and is telescopic and swivelable. When such a telescopic hard sail is stretched highly and directed at an appropriate angle with respect to the wind direction, the ship sails when it receives a large wind force and converts it into propulsion.
However, since the telescopic hard sail does not let the wind naturally escape, there is a problem that if the excessive force acts on the telescopic hard sail due to wind load or hull inclination, the telescopic hard sail is damaged.
本発明は上記事情に鑑み、伸縮硬帆の損傷を防止する硬帆船の硬帆制御方法および制御装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a hard sail control method and control device for a hard sail ship that prevents damage to the telescopic hard sail.
第1発明の硬帆船の伸縮硬帆船制御方法は、硬帆船の伸縮硬帆を支持する伸縮マストに作用する実曲げモーメントを求め、実曲げモーメントが閾値を超えた時に、縮帆するか、硬帆を風向に平行に旋回させる負荷低減措置をとるに際し、前記閾値として、前記伸縮硬帆におけるマスト長さ、旋回角度毎の各航行速度時における許容最大曲げモーメントを用い、前記実曲げモーメントは、前記伸縮マストに作用する曲げモーメントを計測して得ることを特徴とする。
第2発明の硬帆船の伸縮硬帆制御方法は、第1発明において、前記閾値として、前記許容最大曲げモーメントとして船体傾斜角に対応させた傾斜時許容最大曲げモーメントを用いることを特徴とする。
第3発明の硬帆船の伸縮硬帆制御装置は、伸縮硬帆を備えた船舶において、伸縮硬帆の伸縮マストに作用する実曲げモーメントを計測する曲げモーメント検出器と、該曲げモーメント検出器の検出値と閾値とを比較し、該検出値が前記閾値を超えたとき前記伸縮硬帆の高さを縮小するか風向きに平行になるように旋回させる制御信号を発するコントローラと、該コントローラからの制御信号に基づき前記伸縮硬帆を縮小させるか旋回させる駆動機構とからなり、前記閾値として、前記伸縮硬帆におけるマスト長さ、旋回角度毎の各航行速度時における許容最大曲げモーメントを用い、前記実曲げモーメントは、前記伸縮マストに作用する曲げモーメントを計測して得ることを特徴とする。
第4発明の硬帆船の伸縮硬帆制御装置は、第3発明において、前記閾値として、前記許容最大曲げモーメントとして船体傾斜角に対応させた傾斜時許容最大曲げモーメントを用いることを特徴とする。
According to the first aspect of the invention, the method for controlling the expansion and contraction of the hard sailing ship obtains the actual bending moment acting on the expansion and contraction mast that supports the expansion and contraction hard sail of the hard sailing ship, and when the actual bending moment exceeds a threshold value, Runisaishi and the load reduction measures for parallel pivoting the sail the wind direction, as the threshold value, the mast length in the extendable hard sail, using the allowable maximum bending moment at each cruising speed of each turning angle, the actual bending moment The bending moment acting on the telescopic mast is measured and obtained .
According to a second aspect of the present invention, there is provided a method for controlling the expansion and contraction of a hard sail ship according to the first invention , wherein the allowable maximum bending moment during tilting corresponding to the inclination angle of the hull is used as the allowable maximum bending moment .
According to a third aspect of the present invention, there is provided a telescopic hard sail control device for a hard sailing ship, comprising: a bending moment detector for measuring an actual bending moment acting on the telescopic mast of the telescopic hard sail; A controller that compares a detected value with a threshold value, and when the detected value exceeds the threshold value, a controller that generates a control signal for reducing the height of the telescopic hard sail or turning it so as to be parallel to the wind direction; Ri Do a drive mechanism for turning or to shrink the elastic hard sail based on the control signal, as the threshold value, the mast length in the extendable hard sail, the allowable maximum bending moment at each cruising speed for each turning angle used, The actual bending moment is obtained by measuring a bending moment acting on the telescopic mast .
The expansion / contraction hard sail control device for a hard sail ship according to a fourth aspect of the invention is characterized in that, in the third aspect of the invention, as the threshold value, an allowable maximum bending moment during tilting corresponding to a ship inclination angle is used as the allowable maximum bending moment.
第1発明によれば、つぎの効果を奏する。
a)強風時等の風荷重が大きくなって伸縮マストに作用する実曲げモーメントが過大となったときに、i)伸縮マストを縮小させるか、ii)風を逃がすよう旋回させるという二つの対策のうち迅速な対応をとれる対策を選択できるので、伸縮硬帆の損傷を防止する効果が高い。
b)伸縮マストに作用する実曲げモーメントを計測するので人為ミスが生ずることなく確実に伸縮硬帆の損傷を防止できる。
第2発明によれば、船体の傾斜が大きくなったときは、より小さい実曲げモーメントで縮帆あるいは旋回させるので、硬帆の損傷防止効果がより高くなる。
第3発明によれば、つぎの効果を奏する。
a)曲げモーメント検出器の検出値をコントローラに入力させ、その検出値が閾値を超えたときは、i)伸縮硬帆の縮小またはii)旋回という二つの対策のうち迅速な対応をとれる対策を選択できるので、確実に伸縮硬帆の損傷を防止できる。
b)伸縮マストに作用する実曲げモーメントを計測するので人為ミスが生ずることなく確実に伸縮硬帆の損傷を防止できる。
第4発明によれば、船体の傾斜が大きくなったとき、より小さい実曲げモーメントで縮帆あるいは旋回させるので、硬帆の損傷防止効果がより高くなる。
According to the first invention, the following effects are obtained.
when it becomes excessive the actual bending moment that a) wind load such as strong wind is applied to the larger becomes by telescoping mast, i) telescoping mast is reduced Luke, ii) two measures that pivots so as to release the air Since measures can be taken quickly, it is highly effective in preventing damage to the telescopic hard sail.
b) Since the actual bending moment acting on the telescopic mast is measured, damage to the telescopic hard sail can be reliably prevented without causing human error.
According to the second invention, when the inclination of the hull becomes large, the sail is reduced or turned with a smaller actual bending moment, so that the damage prevention effect of the hard sail becomes higher.
According to the third invention, the following effects are obtained.
a) When the detected value of the bending moment detector is input to the controller, and the detected value exceeds the threshold value, take measures that can quickly take the following measures : i) reduction of telescopic hard sail or ii) turning. Since it can be selected , damage to the stretchable hard sail can be surely prevented.
b) Since the actual bending moment acting on the telescopic mast is measured, damage to the telescopic hard sail can be reliably prevented without causing human error.
According to the fourth aspect of the invention, when the inclination of the hull becomes large, the sail is reduced or turned with a smaller actual bending moment, so that the effect of preventing the damage of the hard sail becomes higher.
つぎに、本発明の実施形態を図面に基づき説明する。
まず、本発明が適用される硬帆船の基本構成を説明する。
図2は伸縮硬帆ESを用いた風力推進式の硬帆船Sを示している。硬帆船Sは大面積であって高揚力が得られる伸縮硬帆ESを船上に立設する形式の船舶である。伸縮硬帆ESの設置数は任意であり、1基であっても複数であってもよい。
図示の例では4基用いているが、あくまでも例示である。
Next, an embodiment of the present invention will be described with reference to the drawings.
First, a basic configuration of a hard sail ship to which the present invention is applied will be described.
FIG. 2 shows a wind-propelled hard sailing ship S using the telescopic hard sail ES. The hard sailing ship S is a ship of a type in which a telescopic hard sail ES having a large area and high lift is erected on the ship. The number of expansion / contraction hard sails ES is arbitrary, and may be one or more.
In the illustrated example, four units are used, but are merely examples.
伸縮硬帆ESの基本構造を図3に基づき説明する。
(A)図に示す伸縮マストMは単位マスト1,2,3,4,5を用いた5段マストであり、内蔵した油圧シリンダ等により伸縮し、また基部に設けた油圧モータ等により旋回自在となっている。
(B)図に示すように、硬帆Saは5段の単位帆11,12,13,14,15からなり、前記単位マスト1,2,3,4,5にそれぞれ取付けられている。各単位帆11〜15は、軽量高剛性のアルミニウム、GFRP(ガラス繊維強化プラスチック)、CFRP(炭素繊維強化プラスチック)等を用いた硬質の帆であって、断面形状は三日月形あるいは飛行機の翼断面に似た形状を有している。
The basic structure of the telescopic hard sail ES will be described with reference to FIG.
(A) The telescopic mast M shown in the figure is a five-stage mast using unit masts 1, 2, 3, 4 and 5, which can be expanded and contracted by a built-in hydraulic cylinder or the like and can be swung freely by a hydraulic motor or the like provided at the base. It has become.
(B) As shown in the drawing, the hard sail Sa is composed of five-stage unit sails 11, 12, 13, 14, and 15, which are attached to the unit masts 1, 2, 3, 4, and 5, respectively. Each of the unit sails 11 to 15 is a rigid sail using lightweight high-rigidity aluminum, GFRP (glass fiber reinforced plastic), CFRP (carbon fiber reinforced plastic), etc., and the cross-sectional shape is a crescent or a wing cross section of an airplane. It has a shape similar to
上記のごとき構造の伸縮硬帆ESは、マストM内に図示しない伸縮機構と旋回機構からなる駆動機構を内蔵している。この駆動機構を用いて、図2に示すように、上下方向に伸縮させることによって高さを変え、旋回させることによって伸縮硬帆ESの向きも変えることができる。
このような伸縮硬帆ESを使い風力を受けて推進力に換えると硬帆船が航行する。
The telescopic hard sail ES having the structure as described above has a built-in drive mechanism composed of a telescopic mechanism and a turning mechanism (not shown) in the mast M. As shown in FIG. 2, by using this drive mechanism, the height can be changed by expanding and contracting in the vertical direction, and the direction of the expanding and contracting hard sail ES can also be changed by turning.
When such a telescopic hard sail ES is used to receive wind force and change to propulsion, a hard sailing vessel will sail.
つぎに硬帆船の伸縮硬帆制御装置を図1に基づき説明する。
図1に示す伸縮硬帆ESは、マストM内に硬帆Saを伸縮させる伸縮機構である伸縮シリンダーと旋回させる旋回機構である旋回モータとを備えている。そして、伸縮シリンダーの油圧回路内のバルブは伸縮駆動部11で制御できるようになっており、旋回モータの油圧回路内のバルブは旋回駆動部12で制御できるようになっている。
Next, a telescopic hard sail control device for a hard sail ship will be described with reference to FIG.
The telescopic hard sail ES shown in FIG. 1 includes an expansion cylinder that is an expansion / contraction mechanism that expands / contracts the hard sail Sa in the mast M and a turning motor that is a turning mechanism for turning. The valves in the hydraulic circuit of the telescopic cylinder can be controlled by the telescopic drive unit 11, and the valves in the hydraulic circuit of the swing motor can be controlled by the swing drive unit 12.
伸縮駆動部11と旋回駆動部12にはコントローラ20が接続されている。コントローラ20は閾値と各種検出値とを比較して必要な駆動信号を生成する機能を備えており、コンピュータ等で構成されている。 A controller 20 is connected to the telescopic drive unit 11 and the turning drive unit 12. The controller 20 has a function of generating a necessary drive signal by comparing a threshold value with various detection values, and is configured by a computer or the like.
検出部30は、曲げモーメント検出器31や風向計32、風速計33などの外部情報検出部、旋回角計36やマスト長さ計37、航行速度計38や船体傾斜計39どの内部情報検出部からなり、これらはコントローラ20に接続されている。
曲げモーメント検出器31は硬帆Saに作用する実曲げモーメントを計測するもので、たとえば、硬帆Saが受ける風圧に基づいてマストMに発生する曲げモーメントを伸縮マストM内に生じた歪によって検出する歪検出器から構成したもの等が用いられる。
風向計32と風速計33は公知の計器が用いられる。旋回角計36、マスト長さ計37、航行速度計38および船体傾斜計39も公知の計器が用いられる。
The detection unit 30 is an external information detection unit such as a bending moment detector 31, anemometer 32, and anemometer 33, an internal information detection unit such as a turning angle meter 36, a mast length meter 37, a navigation speed meter 38, and a hull inclinometer 39. These are connected to the controller 20.
The bending moment detector 31 measures the actual bending moment acting on the hard sail Sa. For example, the bending moment detector 31 detects the bending moment generated in the mast M based on the wind pressure applied to the hard sail Sa by the strain generated in the telescopic mast M. For example, a device composed of a strain detector is used.
For the anemometer 32 and the anemometer 33, known instruments are used. As the turning angle meter 36, the mast length meter 37, the navigation speed meter 38, and the hull inclinometer 39, known instruments are used.
コントローラ20の記憶部には検出値と閾値とを比較するため下記(1),(2),(3)に例示する値が記憶されている。
(1)伸縮硬帆ESにおけるマスト長さ、旋回角度毎の各航行速度時における許容最大曲げモーメント
(2)前記(1)の許容最大曲げモーメントを船体傾斜角に対応させた傾斜時許容最大曲げモーメント
(3)曲げモーメント検出器(たとえば、マストに取り付けた歪センサ)の検出値に対応する実マスト曲げモーメント
The storage unit of the controller 20 stores values exemplified in the following (1), (2), and (3) in order to compare the detected value with the threshold value.
(1) Maximum allowable bending moment at each sailing speed for each mast length and turning angle in telescopic hard sail ES (2) Maximum allowable bending when tilting the allowable maximum bending moment of (1) above corresponding to the hull inclination angle Moment (3) Actual mast bending moment corresponding to the detected value of the bending moment detector (for example, a strain sensor attached to the mast)
つぎに、本発明による伸縮硬帆の制御方法を説明する。
船舶の航行中は常時、検出部30の曲げモーメント検出器31や風向計32、風速計33などの外部情報、そして旋回角計36やマスト長さ計37、航行速度計38などの内部情報がコントローラ20に入力されてくる。これらの各検出情報に基づき、コントローラ20はそのときどきの内外情報に合った閾値を記憶部から取り出してくる。コントローラ20は曲げモーメント検出器31の検出値に基づき対応する実曲げモーメントを記憶部から取り出すか演算により求める。
また、旋回角計36やマスト長さ計37の検出値に基づき、それぞれのマスト状態に対応した許容最大曲げモーメントを記憶部から取り出すか演算する。さらに、船体傾斜計39の検出値に基づき船体傾斜角に対応させた許容最大曲げモーメントを記憶部から取り出すか演算する。この値が閾値である。
Next, a method for controlling the telescopic hard sail according to the present invention will be described.
During the navigation of the ship, external information such as the bending moment detector 31, the anemometer 32, and the anemometer 33 of the detection unit 30 and the internal information such as the turning angle meter 36, the mast length meter 37, and the navigation speedometer 38 are always present. Input to the controller 20. Based on these pieces of detection information, the controller 20 retrieves a threshold value that matches the internal / external information from the storage unit. Based on the detection value of the bending moment detector 31, the controller 20 obtains the corresponding actual bending moment from the storage unit or obtains it by calculation.
Further, based on the detection values of the turning angle meter 36 and the mast length meter 37, an allowable maximum bending moment corresponding to each mast state is extracted from the storage unit or calculated. Further, based on the detection value of the hull inclinometer 39, an allowable maximum bending moment corresponding to the hull inclination angle is extracted from the storage unit or calculated. This value is a threshold value.
コントローラ20内では、実曲げモーメントと閾値とを比較し、実曲げモーメントが閾値を超ええたとき硬帆への負荷を軽減する措置をとる。負荷軽減措置としては、硬帆の高さを縮小するか、硬帆を風向きに平行になるように旋回させる措置などが含まれる。 In the controller 20, the actual bending moment is compared with the threshold value, and when the actual bending moment exceeds the threshold value, measures are taken to reduce the load on the hard sail. The load reducing measures include measures for reducing the height of the hard sail or turning the hard sail so that it is parallel to the wind direction.
実曲げモーメントが閾値を超えたときには、コントローラ20から伸縮駆動部11にむけ縮小信号を出力する。これにより、伸縮シリンダーが作動して伸縮硬帆ESが収縮する。または旋回制御部12に向け旋回信号を出力する。これにより、旋回モータが作動して伸縮硬帆ES を風抵抗が小さくなる方向に旋回させる。
収縮と旋回のうちいずれか一方、あるいは両方を行ってもよいが、いずれか一方を選択するときはより迅速な対応がとれる方法を選択すればよい。この場合の選択基準も閾値を超えた超過量などをパラメータとして選択するとよい。
When the actual bending moment exceeds the threshold, a reduction signal is output from the controller 20 to the telescopic drive unit 11. As a result, the telescopic cylinder operates and the telescopic hard sail ES contracts. Alternatively, a turning signal is output to the turning control unit 12. As a result, the turning motor operates to turn the telescopic hard sail ES in a direction in which the wind resistance is reduced.
Either one or both of contraction and turning may be performed, but when either one is selected, a method capable of taking a quicker response may be selected. In this case, an excess amount exceeding a threshold may be selected as a parameter as a selection criterion.
本発明の制御装置では、実曲げモーメントが閾値を超えた時に、自動的に縮帆あるいは帆を風向に平行になるよう旋回させるがこれらの負荷軽減措置は自動的に行われるので、人為ミスが生ずることなく確実に硬帆の損傷を防止できる。 In the control device of the present invention, when the actual bending moment exceeds the threshold value, the sail is automatically shortened or the sail is turned so as to be parallel to the wind direction, but these load reduction measures are automatically performed. The hard sail can be reliably prevented from being damaged without occurring.
本発明の自動制御は、強風時等に自動的に負荷軽減措置をとり伸縮硬帆の損傷を防止するが、船体の傾斜が大きいときには、その傾斜角度をパラメータに入れておきより小さい実曲げモーメントで縮帆あるいは旋回させると、硬帆の損傷防止効果がより高くなる。 The automatic control of the present invention automatically reduces the load when strong winds occur to prevent damage to the telescopic hard sail, but when the hull is tilted, the tilt angle is included in the parameter and the actual bending moment is smaller. If the sails are shortened or turned, the damage prevention effect of the hard sails becomes higher.
自動制御以外にも、閾値を超えると警告音を発したり、警告ランプを表示すれば使用者に危険を知らせる手段としても使用できる。 In addition to automatic control, it can be used as a means for notifying a user of a danger by generating a warning sound when a threshold value is exceeded or displaying a warning lamp.
前記実施形態では、伸縮硬帆ESに作用する風荷重をマストMに発生する曲げモーメントから求めたが、この代りにマストMに発生するせん断応力から求めてもよい。この場合、曲げモーメント検出器31の代りにせん断応力を検出する歪検出器がマストMに取り付けられる。
マストMに発生するせん断応力も伸縮硬帆ESに作用する風荷重のパラメータであるので、閾値と比較することにより伸縮硬帆ESの負荷軽減措置を適切にとることができる。
なお、マストせん断応力の利用は、曲げモーメント検出器の故障対策という意義もあるが、全く代替的な手段として用いてもよい。
In the above embodiment, the wind load acting on the telescopic hard sail ES is determined from the bending moment generated in the mast M, but instead, it may be determined from the shear stress generated in the mast M. In this case, a strain detector that detects shear stress is attached to the mast M instead of the bending moment detector 31.
Since the shear stress generated in the mast M is also a wind load parameter acting on the telescopic hard sail ES, the load reducing measures for the telescopic hard sail ES can be appropriately taken by comparing with the threshold value.
Note that the use of mast shear stress also has a significance as a countermeasure for failure of the bending moment detector, but may be used as a completely alternative means.
ES 伸縮硬帆
11 伸縮駆動部
12 旋回駆動部
20 コントローラ
30 検出部
31 曲げモーメント検出器
ES telescopic hard sail 11 telescopic drive unit 12 turning drive unit 20 controller 30 detection unit 31 bending moment detector
Claims (4)
前記閾値として、前記伸縮硬帆におけるマスト長さ、旋回角度毎の各航行速度時における許容最大曲げモーメントを用い、
前記実曲げモーメントは、前記伸縮マストに作用する曲げモーメントを計測して得る
ことを特徴とする硬帆船の伸縮硬帆制御方法。 Finds the real bending moment acting on the telescoping mast which supports a telescopic hard sail of hard sail boat, when the actual bending moment exceeds a threshold value, or Chijimiho, Ru preparative load reduction measures to be parallel to pivot the wind direction the hard sail sections On the occasion
As the threshold, using the mast length in the telescopic hard sail, the allowable maximum bending moment at each navigation speed for each turning angle,
The method for controlling telescopic hard sail of a hard sail ship, wherein the actual bending moment is obtained by measuring a bending moment acting on the telescopic mast .
ことを特徴とする請求項1記載の硬帆船の伸縮硬帆制御方法。 The method for controlling expansion and contraction of hard sailboats according to claim 1 , wherein the threshold value is an allowable maximum bending moment at the time of inclination corresponding to a hull inclination angle as the allowable maximum bending moment .
伸縮硬帆の伸縮マストに作用する実曲げモーメントを計測する曲げモーメント検出器と、
該曲げモーメント検出器の検出値と閾値とを比較し、該検出値が前記閾値を超えたとき前記伸縮硬帆の高さを縮小するか風向きに平行になるように旋回させる制御信号を発するコントローラと、
該コントローラからの制御信号に基づき前記伸縮硬帆を縮小させるか旋回させる駆動機構とからなり、
前記閾値として、前記伸縮硬帆におけるマスト長さ、旋回角度毎の各航行速度時における許容最大曲げモーメントを用い、
前記実曲げモーメントは、前記伸縮マストに作用する曲げモーメントを計測して得る
ことを特徴とする硬帆船の伸縮硬帆制御装置。 In ships with telescopic hard sails,
A bending moment detector that measures the actual bending moment acting on the telescopic mast of the telescopic rigid sail;
A controller that compares a detection value of the bending moment detector with a threshold value and generates a control signal for reducing the height of the telescopic hard sail or turning it to be parallel to the wind direction when the detection value exceeds the threshold value. When,
Ri Do a drive mechanism for turning or to shrink the elastic hard sail based on a control signal from the controller,
As the threshold, using the mast length in the telescopic hard sail, the allowable maximum bending moment at each navigation speed for each turning angle,
The expansion / contraction hard sail control device for a rigid sail ship, wherein the actual bending moment is obtained by measuring a bending moment acting on the expansion / contraction mast .
ことを特徴とする請求項3記載の硬帆船の伸縮硬帆制御装置。The expansion / contraction hard sail control device for a hard sail ship according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014054306A JP6439260B2 (en) | 2014-03-18 | 2014-03-18 | Telescopic hard sail control method and control device for hard sail ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014054306A JP6439260B2 (en) | 2014-03-18 | 2014-03-18 | Telescopic hard sail control method and control device for hard sail ship |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015174604A JP2015174604A (en) | 2015-10-05 |
JP6439260B2 true JP6439260B2 (en) | 2018-12-19 |
Family
ID=54254161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014054306A Active JP6439260B2 (en) | 2014-03-18 | 2014-03-18 | Telescopic hard sail control method and control device for hard sail ship |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6439260B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202019102941U1 (en) * | 2019-02-18 | 2019-06-05 | Becker Marine Systems Gmbh | Fixed sails for watercraft, in particular for large ships, and watercraft with rigid sails |
DE202019002884U1 (en) * | 2019-07-05 | 2019-07-31 | Gunter Tannhäuser | Telescopic mast for sailboats and ships |
KR20210151639A (en) * | 2020-06-05 | 2021-12-14 | 한국조선해양 주식회사 | Wind-propelled System and Ship having the same |
CN112455639B (en) * | 2020-12-11 | 2021-09-21 | 广东海洋大学 | Telescopic sail for unmanned sea boat |
FR3123307A1 (en) * | 2021-05-28 | 2022-12-02 | Compagnie Generale Des Etablissements Michelin | Wind-powered vehicle |
CN113200121B (en) * | 2021-06-17 | 2022-05-31 | 中国船舶科学研究中心 | Sail hull structure |
EP4169829B8 (en) * | 2021-10-20 | 2024-07-17 | Marc De Maeyer | Sailing system for a boat |
CN115503876B (en) * | 2022-08-08 | 2024-05-31 | 北京航天控制仪器研究所 | Unmanned ship self-stabilization mast |
EP4431380A1 (en) * | 2023-03-17 | 2024-09-18 | AlfaWall Oceanbird AB | Automatic reefing |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS584696A (en) * | 1981-07-01 | 1983-01-11 | Nippon Yuusen Kk | Make-sail method and system for sailboat |
JPS59102689A (en) * | 1982-12-02 | 1984-06-13 | Senpaku Gijutsu Kaihatsu Kk | Horizontally split and foldable hard sail |
JPS6022590A (en) * | 1983-07-14 | 1985-02-05 | Nippon Hakuyo Kiki Kaihatsu Kyokai | Hard sail reducible by vertical sliding |
JPS60124592A (en) * | 1983-12-09 | 1985-07-03 | Mitsubishi Heavy Ind Ltd | Sailing boat with engine |
JPS61200092A (en) * | 1985-02-28 | 1986-09-04 | Osaka Sosenjo:Kk | Hard sail device for ship |
JP5318008B2 (en) * | 2010-03-19 | 2013-10-16 | 株式会社大内海洋コンサルタント | Sailing ship |
JP2012006561A (en) * | 2010-06-28 | 2012-01-12 | Universal Shipbuilding Corp | Foldable cascade sail for wind ship, and wind ship |
-
2014
- 2014-03-18 JP JP2014054306A patent/JP6439260B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015174604A (en) | 2015-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6439260B2 (en) | Telescopic hard sail control method and control device for hard sail ship | |
NO860715L (en) | AERODYNAMIC DEVICE WITH REVERSIBLE SUSTAINABLE AND SUBSTANTABLE C ONCAVITY FOR PROGRESS THROUGH WIND POWER. | |
EP2409912B1 (en) | Set of stowable rigid sails | |
NO337483B1 (en) | Device and method for providing active motion compensation control of a joint gangway | |
WO2013174886A1 (en) | Vessel gangway system | |
JP6021752B2 (en) | Ship operation method and ship operation device | |
WO2015120862A1 (en) | A boat heel compensation method and system, and a boat with said system | |
SE516927C2 (en) | The sailing craft | |
He et al. | Research on sail aerodynamics performance and sail-assisted ship stability | |
WO2016185582A1 (en) | Hybrid ship using wind-powered propulsive force as auxiliary | |
US2147501A (en) | Sailing rig | |
JP6001750B2 (en) | Ship with side sail formed by hard sail and method for storing and deploying side sail | |
Renzsch et al. | An experimental validation case for fluid-structure-interaction simulations of downwind sails | |
CN109533217B (en) | Marine operation ship with variable balance wings | |
CN203996852U (en) | Inflatable airfoil wind sail device peculiar to vessel | |
KR20090007779U (en) | A boat having folding type sail | |
GB2468839A (en) | Keel with deployable hydrofoil surfaces | |
JPS61200091A (en) | Hard sail device for ship | |
CN201849656U (en) | Sail propulsion module | |
RU2772291C1 (en) | Sail | |
ES2434102B1 (en) | BOAT | |
US20140182500A1 (en) | Aerodynamic Fairing and Flap for Generating Lift and Methods of Using the Same | |
Deakin | Stability Regulation of Very Large Sailing Yachts | |
EP1655220A2 (en) | Device for reducing the rotation speed of the boom of a mainsail during gybing | |
JP5558226B2 (en) | Sailboat wing sail |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180320 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6439260 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |