[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6431984B2 - 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー - Google Patents

電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー Download PDF

Info

Publication number
JP6431984B2
JP6431984B2 JP2017530816A JP2017530816A JP6431984B2 JP 6431984 B2 JP6431984 B2 JP 6431984B2 JP 2017530816 A JP2017530816 A JP 2017530816A JP 2017530816 A JP2017530816 A JP 2017530816A JP 6431984 B2 JP6431984 B2 JP 6431984B2
Authority
JP
Japan
Prior art keywords
conversion film
piezoelectric
electrode
electroacoustic
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017530816A
Other languages
English (en)
Other versions
JPWO2017018313A1 (ja
Inventor
直樹 村上
直樹 村上
三好 哲
哲 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2017018313A1 publication Critical patent/JPWO2017018313A1/ja
Application granted granted Critical
Publication of JP6431984B2 publication Critical patent/JP6431984B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/143Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means characterised by the use of a piezoelectric or magneto-strictive transducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/525Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage
    • G10H2220/531Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage made of piezoelectric film
    • G10H2220/535Piezoelectric polymer transducers, e.g. made of stretched and poled polyvinylidene difluoride [PVDF] sheets in which the molecular chains of vinylidene fluoride CH2-CF2 have been oriented in a preferential direction
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/525Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage
    • G10H2220/541Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage using piezoceramics, e.g. lead titanate [PbTiO3], zinc oxide [Zn2 O3], lithium niobate [LiNbO3], sodium tungstate [NaWO3], bismuth ferrite [BiFeO3]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/525Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage
    • G10H2220/541Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage using piezoceramics, e.g. lead titanate [PbTiO3], zinc oxide [Zn2 O3], lithium niobate [LiNbO3], sodium tungstate [NaWO3], bismuth ferrite [BiFeO3]
    • G10H2220/551Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage using piezoceramics, e.g. lead titanate [PbTiO3], zinc oxide [Zn2 O3], lithium niobate [LiNbO3], sodium tungstate [NaWO3], bismuth ferrite [BiFeO3] using LZT or PZT [lead-zirconate-titanate] piezoceramics [Pb[ZrxTi1-x]O3, 0=x=1]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/525Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage
    • G10H2220/555Bimorph transducers, i.e. piezoelectric bending multilayer structures with one or more piezoelectric layers, e.g. piezo on metal, serial bimorph or parallel bimorph
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/15Transducers incorporated in visual displaying devices, e.g. televisions, computer displays, laptops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、スピーカなどの音響デバイス等に用いられる電気音響変換フィルム、および、この電気音響変換フィルムの製造方法、ならびに、この電気音響変換フィルムを用いる電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサーに関する。
液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイなど、ディスプレイの薄型化、軽量化に対応して、これらの薄型ディスプレイに用いられるスピーカにも軽量化・薄型化が要求されている。また、プラスチック等の可撓性基板を用いたフレキシブルディスプレイの開発に対応して、これに用いられるスピーカにも可撓性が要求されている。
従来のスピーカの形状は、漏斗状のいわゆるコーン型や、球面状のドーム型等が一般的である。しかしながら、このようなスピーカを上述の薄型のディスプレイに内蔵しようとすると、十分に薄型化することができず、また、軽量性や可撓性を損なう虞れがある。また、スピーカを外付けにした場合、持ち運び等が面倒である。
そこで、薄型で、軽量性や可撓性を損なうことなく薄型のディスプレイやフレキシブルディスプレイに一体化可能なスピーカとして、シート状で可撓性を有し、印加電圧に応答して伸縮する性質を有する圧電フィルムを用いることが提案されている。
例えば、本願出願人は、シート状で、可撓性を有し、かつ、高音質な音を安定して再生することができる圧電フィルムとして、特許文献1に開示される電気音響変換フィルムを提案した。特許文献1に開示される電気音響変換フィルムは、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体(圧電体層)と、高分子複合圧電体の両面に形成された薄膜電極と、薄膜電極の表面に形成された保護層とを有するものである。
このような電気音響変換フィルムにおいては、圧電体粒子として、PZT(チタン酸ジルコン酸鉛)等の強誘電性材料が用いられる。この強誘電性材料の結晶構造は、自発分極の方向が異なる多くの分域(ドメイン)に分かれている。この状態では各分域の自発分極とそれによって生ずる圧電効果も相互に打ち消し合うため、全体としては圧電性は見られない。
そこで、コロナポーリング等の電気的な分極処理を施し、外部からある値以上の電界を加えることで、各分域の自発分極の方向を揃える(配向する)ことが行われている。電気的分極処理された圧電体粒子は、外部からの電界に応じて圧電効果を示すようになる。
電気音響変換フィルムは、圧電体層がこのような圧電性を有する圧電体粒子を含有することで、印加電圧に応答して、変換フィルム自身が面方向に伸縮し、面に垂直な方向に振動することで、振動(音)と電気信号とを変換する。
特開2014−14063号公報
Ferroelectrics Volume 62, Issue 1, 167, (1985)
本発明者らは、このような電気音響変換フィルムにおいて、より音圧(変換効率)を向上するために、分極処理による圧電体粒子内の各分域の配向性をより高くして、圧電性をより高くすることを検討した。
一般に、結晶構造の解析方法として、X線回折法(XRD)が利用されており、XRDにより結晶内部で原子がどのように配列しているかを調べることが行われている。
そこで、配向性の指標として、高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率:(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)を用いて、この強度比率を制御することで、電気音響変換フィルムの音圧をより向上することを検討した。
ここで、非特許文献1には、電気的分極処理時のポーリング電界を上げることで、(002)面ピーク強度と(200)面ピーク強度との比率を制御することが記載されている。しかしながら、電気的分極処理時のポーリング電界を上げる制御には限界があり、強度比率:(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)が、0.55付近で飽和し、それ以上の強度比率を得ることができていない。そのため、より高い変換効率を得ることができず、より高い音圧を得ることはできなかった。
発明の目的は、このような従来技術の問題点を解決することにあり、変換効率が高く、十分な音量で再生可能な電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサーを提供することにある。
本発明者らは、上記課題を解決すべき鋭意検討した結果、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、高分子複合圧電体の両面に積層された2つの薄膜電極と、2つの薄膜電極上それぞれに積層された2つの保護層とを有し、高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)が、0.6以上1未満であることにより、上記課題を解決できることを見出し、本発明を完成させた。
すなわち、本発明は、以下の構成の電気音響変換フィルムおよびその製造方法、ならびに、この電気音響変換フィルムを用いた電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサーを提供する。
(1) 常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、
高分子複合圧電体の両面に積層された2つの薄膜電極と、
2つの薄膜電極上それぞれに積層された2つの保護層と、を有し、
高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)が、0.6以上1未満である電気音響変換フィルム。
(2) 強度比率α1が、0.67以上0.75以下である(1)に記載の電気音響変換フィルム。
(3) 高分子材料が、シアノエチル基を有するものである(1)または(2)に記載の電気音響変換フィルム。
(4) 高分子材料が、シアノエチル化ポリビニルアルコールである(1)〜(3)のいずれかに記載の電気音響変換フィルム。
(5) 常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、高分子複合圧電体の両面にそれぞれ積層された2つの薄膜電極と、2つの薄膜電極上それぞれに積層された2つの保護層と、を有する電気音響変換フィルムの製造方法であって、
1つの薄膜電極と1つの保護層とが積層されてなる電極積層体を準備する準備工程、
1つの電極積層体と、高分子複合圧電体とを積層し第1積層体を作製する第1積層工程、
第1積層体の高分子複合圧電体に、電気的分極処理を施す電気的分極処理工程、
高分子複合圧電体の、電極積層体が積層されていない側の面にもう1つの電極積層体を積層し第2積層体を作製する第2積層工程、および、
第2積層体に機械的分極処理を施す機械的分極処理工程とを有する電気音響変換フィルムの製造方法。
(6) 機械的分極処理工程において、第2積層体に対してローラを用いてせん断応力を加えることで機械的分極処理を行う(5)に記載の電気音響変換フィルムの製造方法。
(7) 機械的分極処理工程において、第2積層体に対して加えるせん断応力が、0.3MPa〜0.5MPaである(6)に記載の電気音響変換フィルムの製造方法。
(8) 電気的分極処理工程において、コロナポーリング処理により電気的分極処理を行う(5)〜(7)のいずれかに記載の電気音響変換フィルムの製造方法。
(9) (1)〜(4)のいずれかに記載の電気音響変換フィルムを有する電気音響変換器。
(10) 可撓性を有するフレキシブルディスプレイの画像表示面とは反対側の面に、(1)〜(4)のいずれかに記載の電気音響変換フィルムを取り付けたフレキシブルディスプレイ。
(11) (1)〜(4)のいずれかに記載の電気音響変換フィルムをセンサーとして用いる声帯マイクロフォン。
(12) (1)〜(4)のいずれかに記載の電気音響変換フィルムをセンサーとして用いる楽器用センサー。
このような本発明によれば、変換効率が高く、十分な音量で再生可能な電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサーを提供することができる。
本発明の電気音響変換フィルムの一例を模式的に示す断面図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 電気音響変換フィルムの作製方法の一例を説明するための概念図である。 機械的分極処理工程の一例を説明するための概念図である。 本発明の電気音響変換器の一例を模式的に表す上面図である。 図4AのB−B線断面図である。 本発明の電気音響変換器の他の一例を概念的に示す断面図である。 本発明の電気音響変換器の他の一例を説明するための断面図である。 本発明の電気音響変換器の他の一例を説明するための断面図である。 本発明の電気音響変換器の他の一例を説明するための断面図である。 本発明の電気音響変換器の他の一例を概念的に示す断面図である。 本発明のフレキシブルディスプレイの一例を概念的に示す図であり、有機ELディスプレイである。 本発明のフレキシブルディスプレイの一例を概念的に示す図であり、電子ペーパである。 本発明のフレキシブルディスプレイの一例を概念的に示す図であり、液晶ディスプレイである。 一般的な声帯マイクロフォンの構成を概念的に示す図である。 実施例における音圧感度の測定方法を説明する概念図である。 実施例および比較例のXRDパターンを示すグラフである。 強度比率α1と音圧感度との関係を表すグラフである。 強度比率α1と音圧感度との関係を表すグラフである。
以下、本発明の電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサーについて、添付の図面に示される好適実施態様を基に、詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本発明の電気音響変換フィルムは、後述するように、電気音響変換器の振動板として用いられるものである。
電気音響変換器は、電気音響変換フィルムへの電圧印加によって、電気音響変換フィルムが面内方向に伸長すると、この伸長分を吸収するために、電気音響変換フィルムが、上方(音の放射方向)に移動し、逆に、電気音響変換フィルムへの電圧印加によって、電気音響変換フィルムが面内方向に収縮すると、この収縮分を吸収するために、電気音響変換フィルムが、下方(ケース側)に移動する。電気音響変換器は、この電気音響変換フィルムの伸縮の繰り返しによる振動により、振動(音)と電気信号とを変換するものであり、電気音響変換フィルムに電気信号を入力して電気信号に応じた振動により音を再生したり、音波を受けることによる電気音響変換フィルムの振動を電気信号に変換したり、振動による触感付与や物体の輸送に利用される。
具体的には、フルレンジスピーカ、ツイーター、スコーカー、ウーハーなどのスピーカ、ヘッドホン用スピーカ、ノイズキャンセラー、マイクロフォン、および、ギター等の楽器に用いられるピックアップなどの各種の音響デバイスが挙げられる。また、本発明の電気音響変換フィルムは非磁性体であるため、ノイズキャンセラーのなかでもMRI用ノイズキャンセラーとして好適に用いることが可能である。
また、上記電気音響変換器は薄く、軽く、曲がるため、帽子、マフラー、衣服といったウェアラブル製品、テレビ、デジタルサイネージなどの薄型ディスプレイ、建築物や自動車の天井、カーテン、傘、壁紙、窓、ベッドなどへ好適に使用される。
図1に、本発明の電気音響変換フィルムの一例を模式的に表す断面図を示す。
図1に示すように、本発明の電気音響変換フィルム(以下、変換フィルムともいう)10は、圧電性を有するシート状物である圧電体層12と、圧電体層12の一方の面に積層される下部薄膜電極14と、下部薄膜電極14上に積層される下部保護層18と、圧電体層12の他方の面に積層される上部薄膜電極16と、上部薄膜電極16上に積層される上部保護層20とを有する。
ここで、本発明の変換フィルム10は、高分子複合圧電体からなる圧電体層12をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)が、0.6以上1未満である。
この点に関しては後に詳述する。
変換フィルム10において、高分子複合圧電体である圧電体層12は、図1に概念的に示すような、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス24中に、圧電体粒子26を均一に分散してなる高分子複合圧電体からなるものである。なお、本明細書において、「常温」とは、0〜50℃程度の温度域を指す。
また、後述するが、圧電体層12は、分極処理されている。
ここで、高分子複合圧電体(圧電体層12)は、次の用件を具備したものであるのが好ましい。
(i) 可撓性
例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
(ii) 音質
スピーカは、20Hz〜20kHzのオーディオ帯域の周波数で圧電体粒子を振動させ、その振動エネルギーによって振動板(高分子複合圧電体)全体が一体となって振動することで音が再生される。従って、振動エネルギーの伝達効率を高めるために高分子複合圧電体には適度な硬さが求められる。また、スピーカの周波数特性が平滑であれば、曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくなる。従って、高分子複合圧電体の損失正接は適度に大きいことが求められる。
以上をまとめると、高分子複合圧電体は、20Hz〜20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。
一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下とともに大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
高分子複合圧電体(圧電体層12)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz〜20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移温度が常温、すなわち、0〜50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
常温で粘弾性を有する高分子材料としては、公知の各種のものが利用可能である。好ましくは、常温、すなわち0〜50℃において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上有る高分子材料を用いる。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックス/圧電体粒子界面の応力集中が緩和され、高い可撓性が期待できる。
また、高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下、であることが好ましい。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz〜20kHzの音響振動に対しては硬く振る舞うことができる。
また、高分子材料は、比誘電率が25℃において10以上有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、高分子マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
このような条件を満たす高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン−ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が例示される。
これら以外にも、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、ポリフッ化ビニリデン−トリフルオロエチレン共重合体及びポリフッ化ビニリデン−テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン−酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロース及びシアノエチルソルビトール等のシアノ基あるいはシアノエチル基を有するポリマー、ニトリルゴムやクロロプレンゴム等の合成ゴム等のシアノエチル基を有する高分子材料が挙げられる。
また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。なかでも、シアノエチル基を有する材料を用いることが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
なお、これらの高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。
このような常温で粘弾性を有する高分子材料を用いる粘弾性マトリックス24は、必要に応じて、複数の高分子材料を併用してもよい。
すなわち、粘弾性マトリックス24には、誘電特性や機械特性の調整等を目的として、シアノエチル化PVA等の粘弾性材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、ポリフッ化ビニリデン−トリフルオロエチレン共重合体及びポリフッ化ビニリデン−テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン−酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロース及びシアノエチルソルビトール等のシアノ基あるいはシアノエチル基を有するポリマー、ニトリルゴムやクロロプレンゴム等の合成ゴム等が例示される。
中でも、シアノエチル基を有する高分子材料は、好適に利用される。
また、圧電体層12の粘弾性マトリックス24において、シアノエチル化PVA等の常温で粘弾性を有する材料に加えて添加される誘電性ポリマーは、1種に限定はされず、複数種を添加してもよい。
また、誘電性ポリマー以外にも、ガラス転移点Tgを調整する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテン、イソブチレン、等の熱可塑性樹脂や、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、マイカ、等の熱硬化性樹脂を添加しても良い。
更に、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、石油樹脂、等の粘着付与剤を添加しても良い。
圧電体層12の粘弾性マトリックス24において、シアノエチル化PVA等の粘弾性材料以外のポリマーを添加する際の添加量には、特に限定は無いが、粘弾性マトリックス24に占める割合で30重量%以下とするのが好ましい。
これにより、粘弾性マトリックス24における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子26や電極層との密着性向上等の点で好ましい結果を得ることができる。
また、圧電体層12の誘電率を高める目的で、粘弾性マトリックスに誘電体粒子を添加してもよい。
誘電体粒子は、25℃における比誘電率が80以上の高い比誘電率を持つ粒子からなるものである。
誘電体粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸バリウム(BaTiO3)、酸化チタン(TiO2)、チタン酸ストロンチウム(SrTiO3)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、酸化亜鉛(ZnO)、チタン酸バリウムとビスマスフェライト(BiFeO3)との固溶体(BFBT)等が例示される。なかでも、高い比誘電率を有する点で、誘電体粒子としてチタン酸バリウム(BaTiO3)を用いるのが好ましい。
誘電体粒子は、平均粒径が0.5μm以下であるのが好ましい。
また、粘弾性マトリックスと誘電体粒子との合計体積に対する、誘電体粒子の体積分率は、5〜45%が好ましく、10〜30%がより好ましく、20〜30%が特に好ましい。
圧電体粒子26は、ペロブスカイト型或いはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
圧電体粒子26を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
なお、これらのセラミックス粒子は、1種のみを用いてもよく、複数種を併用して用いてもよい。
このような圧電体粒子26の粒径は、変換フィルム10のサイズや用途に応じて、適宜、選択すれば良いが、本発明者の検討によれば、1〜10μmが好ましい。
圧電体粒子26の粒径を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
なお、図1においては、圧電体層12中の圧電体粒子26は、粘弾性マトリックス24中に、均一にかつ規則性を持って分散されているが、本発明は、これに限定はされない。
すなわち、圧電体層12中の圧電体粒子26は、好ましくは均一に分散されていれば、粘弾性マトリックス24中に不規則に分散されていてもよい。
変換フィルム10において、圧電体層12中における粘弾性マトリックス24と圧電体粒子26との量比は、変換フィルム10の面方向の大きさや厚さ、変換フィルム10の用途、変換フィルム10に要求される特性等に応じて、適宜、設定すればよい。
ここで、本発明者の検討によれば、圧電体層12中における圧電体粒子26の体積分率は、30〜70%が好ましく、特に、50%以上とするのが好ましく、従って、50〜70%とするのが、より好ましい。
粘弾性マトリックス24と圧電体粒子26との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
また、変換フィルム10において、圧電体層12の厚さにも、特に限定はなく、変換フィルム10のサイズ、変換フィルム10の用途、変換フィルム10に要求される特性等に応じて、適宜、設定すればよい。
ここで、本発明者の検討によれば、圧電体層12の厚さは、8〜300μmが好ましく、8〜40μmがより好ましく、10〜35μmがさらに好ましく、特に、15〜25μmが好ましい。
圧電体層12の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
ここで、圧電体層12は、電気的分極処理(ポーリング)、および、機械的分極処理を施されている。
圧電体層12は、電気的分極処理および機械的分極処理を施されることで、X線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1が、0.6以上1未満を満たすものとなっている。
電気的分極処理および機械的分極処理、ならびに、強度比率α1に関しては、後に詳述する。
図1に示すように、本発明の変換フィルム10は、このような圧電体層12の一面に、下部薄膜電極14を形成し、下部薄膜電極14の上に下部保護層18を形成し、また、圧電体層12の他方の面に、上部薄膜電極16を形成し、上部薄膜電極16の上に上部保護層20を形成してなる構成を有する。ここで、上部薄膜電極16と下部薄膜電極14とが電極対を形成する。
なお、変換フィルム10は、これらの層に加えて、例えば、上部薄膜電極16、および、下部薄膜電極14からの電極の引出しを行う電極引出し部や、圧電体層12が露出する領域を覆って、ショート等を防止する絶縁層等を有していてもよい。
電極引出し部としては、薄膜電極および保護層が、圧電体層の面方向外部に、凸状に突出する部位を設けても良いし、あるいは、保護層の一部を除去して孔部を形成して、この孔部に銀ペースト等の導電材料を挿入して導電材料と薄膜電極とを電気的に導通して、電極引出し部としてもよい。
なお、各薄膜電極において、電極引出し部は1つには限定されず、2以上の電極引出し部を有していてもよい。特に、保護層の一部を除去して孔部に導電材料を挿入して電極引出し部とする構成の場合には、より確実に通電を確保するために、電極引出し部を3以上有するのが好ましい。
すなわち、変換フィルム10は、圧電体層12の両面を電極対、すなわち、上部薄膜電極16および下部薄膜電極14で挟持し、さらに、上部保護層20および下部保護層18で挟持してなる構成を有する。
このように、上部薄膜電極16および下部薄膜電極14で挾持された領域は、印加された電圧に応じて駆動される。
変換フィルム10において、上部保護層20および下部保護層18は、上部薄膜電極16および下部薄膜電極14を被覆すると共に、圧電体層12に適度な剛性と機械的強度を付与する役目を担っている。すなわち、本発明の変換フィルム10において、粘弾性マトリックス24と圧電体粒子26とからなる圧電体層12は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。変換フィルム10は、それを補うために上部保護層20および下部保護層18が設けられる。
なお、下部保護層18および上部保護層20は、配置位置が異なるのみで、構成は同じであるので、以下の説明においては、下部保護層18および上部保護層20を区別する必要がない場合には、両部材をまとめて、保護層ともいう。
保護層には、特に限定はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルムが好適に例示される。中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂が好適に利用される。
保護層の厚さにも、特に、限定は無い。また、上部保護層20および下部保護層18の厚さは、基本的に同じであるが、異なってもよい。
ここで、保護層の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれるため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、保護層は、薄いほど有利である。
ここで、本発明者の検討によれば、上部保護層20及び下部保護層18の厚さがそれぞれ、圧電体層12の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
例えば、圧電体層12の厚さが50μmで下部保護層18および上部保護層20がPETからなる場合、下部保護層18および上部保護層20の厚さはそれぞれ、100μm以下が好ましく、50μm以下がより好ましく、中でも25μm以下とするのが好ましい。
変換フィルム10において、圧電体層12と上部保護層20との間には上部薄膜電極(以下、上部電極とも言う)16が、圧電体層12と下部保護層18との間には下部薄膜電極(以下、下部電極とも言う)14が、それぞれ形成される。
上部電極16および下部電極14は、変換フィルム10(圧電体層12)に電界を印加するために設けられる。
なお、下部電極14および上部電極16は、大きさおよび配置位置が異なるのみで、構成は同じであるので、以下の説明においては、下部電極14および上部電極16を区別する必要がない場合には、両部材をまとめて、薄膜電極ともいう。
本発明において、薄膜電極の形成材料には、特に、限定はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、クロムおよびモリブデン等や、これらの合金、酸化インジウムスズ、PEDOT/PPS(ポリエチレンジオキシチオフェン−ポリスチレンスルホン酸)等の導電性高分子等が例示される。中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズのいずれかは、好適に例示され、導電性、コストおよび可撓性等の観点から銅がより好ましい。
また、薄膜電極の形成方法にも、特に限定はなく、真空蒸着やスパッタリング等の気相堆積法(真空成膜法)やめっきによる成膜や、上記材料で形成された箔を貼着する方法、塗布する方法等、公知の方法が、各種、利用可能である。
中でも特に、変換フィルム10の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅やアルミニウムの薄膜は、薄膜電極として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。
上部電極16および下部電極14の厚さには、特に、限定は無い。また、上部電極16および下部電極14の厚さは、基本的に同じであるが、異なってもよい。
ここで、前述の保護層と同様に、薄膜電極の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれるため、薄膜電極は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
ここで、本発明者の検討によれば、薄膜電極の厚さとヤング率との積が、保護層の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
例えば、保護層がPET(ヤング率:約6.2GPa)で、薄膜電極が銅(ヤング率:約130GPa)からなる組み合わせの場合、保護層の厚さが25μmだとすると、薄膜電極の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。
前述のように、変換フィルム10は、常温で粘弾性を有する粘弾性マトリックス24に圧電体粒子26を分散してなる圧電体層12を、上部電極16および下部電極14で挟持し、さらに、上部保護層20および下部保護層18を挟持してなる構成を有する。
このような変換フィルム10は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)が0.1以上となる極大値が常温に存在するのが好ましい。
これにより、変換フィルム10が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
変換フィルム10は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10〜30GPa、50℃において1〜10GPaであるのが好ましい。
これにより、常温で変換フィルム10が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz〜20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
また、変換フィルム10は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×106〜2.0×106(1.0E+06〜2.0E+06)N/m、50℃において1.0×105〜1.0×106(1.0E+05〜1.0E+06)N/mであるのが好ましい。
これにより、変換フィルム10が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
さらに、変換フィルム10は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が、0.05以上であるのが好ましい。
これにより、変換フィルム10を用いたスピーカの周波数特性が平滑になり、スピーカの曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくできる。
ここで、本発明の変換フィルム10は、圧電体層12である高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)が、0.6以上1未満である。
前述のとおり、粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体を圧電体層として用いる変換フィルムにおいて、圧電体粒子として、PZT等の強誘電性材料が用いられる。この強誘電性材料の結晶構造は、自発分極の方向が異なる多くの分域(ドメイン)に分かれており、この状態では各分域の自発分極とそれによって生ずる圧電効果も相互に打ち消し合うため、全体としては圧電性は見られない。
そこで、従来の変換フィルムにおいては、圧電体層にコロナポーリング等の電気的な分極処理を施し、外部からある値以上の電界を加えることで、各分域の自発分極の方向を揃えることが行われている。電気的分極処理された圧電体粒子は、外部からの電界に応じて圧電効果を示すようになる。これにより、電気音響変換フィルムは、印加電圧に応答して、変換フィルム自身が面方向に伸縮し、面に垂直な方向に振動することで、振動(音)と電気信号とを変換する。
ところで、強誘電性材料の結晶構造の、各分域(ドメイン)の自発分極の方向(以下、単に、ドメインの方向ともいう)は、変換フィルムの厚さ方向のみならず、面方向等の種々の方向を向いている。そのため、より高い電圧を印加して電気的分極処理を行った場合でも、面方向を向いているドメインの方向を、全て電界をかけた厚さ方向に向かせることはできない。言い換えると、90°ドメインを完全に除去することはできない。
したがって、従来の変換フィルムでは、変換フィルムの厚さ方向のドメイン(cドメイン)の割合をより増加させることができず、より高い圧電性を得ることができなかった。
一般に、このような圧電体層(圧電体粒子)の結晶構造の解析方法として、X線回折法(XRD)が利用されており、XRDにより結晶内部で原子がどのように配列しているかを調べることが行われている。
従来の圧電フィルムを、X線解析法(XRD)で解析すると、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)は、電気的分極処理時のポーリング電界を上げた場合でも、0.55付近で飽和し、それ以上の強度比率α1を得ることができていないことがわかった。
ここで、(002)面ピーク強度とは、XRD解析により得られるXRDパターンにおいて、43.5°付近の正方晶のピークであり、(200)面ピーク強度とは、XRD解析により得られるXRDパターンにおいて、45°付近の正方晶のピークである。
XRD解析は、X線ディフラクトメーター(Rigaku製 Rint Ultima III)等のX線回折装置を用いて行うことができる。
また、(002)面ピーク強度は、変換フィルムの厚さ方向のドメイン(cドメイン)の割合に対応しており、(200)面ピーク強度は、変換フィルムの面方向のドメイン(aドメイン)の割合に対応している。
すなわち、強度比率α1が高いほど((002)面ピーク強度の比率が高いほど)、変換フィルムの厚さ方向のドメイン(cドメイン)の割合が多くなり、より高い圧電性を得ることができる。
これに対して、本発明の変換フィルムは、圧電体層12である高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1が、0.6以上1未満であるので、変換フィルムの厚さ方向のドメイン(cドメイン)の割合が多く、より高い圧電性を得ることができる。したがって、振動(音)と電気信号との変換効率をより高くすることができ、変換フィルムをスピーカの振動板として用いた場合に、十分な音量で再生可能となる。また、変換効率が高いので消費電力を低減することができる。
また、従来の変換フィルムのように、面方向のドメイン(aドメイン)の割合が多いと、駆動電圧を印加した際に、90°ドメインウォールの移動を起こして、歪のヒステリシスの原因となり、再生される音に歪みが生じてしまうおそれがある。
これに対して、本発明の変換フィルムは、面方向のドメイン(aドメイン)の割合が少ないため、駆動電圧を印加した際の90°ドメインモーションが減少し、再生される音の歪みが低減される。
なお、XRDで評価した際の強度比率α1が、0.6以上の圧電体層を得る方法としては、電気的分極処理を施した後に、さらに、機械的分極処理を施す方法が挙げられる。電気的分極処理を施した後に、さらに、機械的分極処理を施すことで、変換フィルムの面方向のドメイン(aドメイン)を、厚さ方向に向けることができ、厚さ方向のドメイン(cドメイン)の割合を増やすことができると推定される。
電気的分極処理および機械的分極処理については後に詳述する。
ここで、強度比率α1は、0.67〜0.75がより好ましい。
強度比率α1をこの範囲とすることで、より高い圧電性を得ることができ、変換効率をより高くすることができる。
面方向を向いているドメイン(aドメイン)には、駆動電圧を印加した際に、厚さ方向(駆動電圧を印加した方向)を向くように回るものがある。このような90°ドメインモーションはパワーがあるため、この効果があるほうが圧電性がより高くなり、全てのドメインが厚さ方向を向いている場合よりも圧電性が高くなる。
したがって、強度比率α1を0.75以下として、面方向を向いているドメイン(aドメイン)を一定の割合で残したほうが、圧電性をより高くすることができる。
次に、本発明の電気音響変換フィルムの製造方法について説明する。
本発明の電気音響変換フィルムの製造方法は、
常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、高分子複合圧電体の両面にそれぞれ積層された2つの薄膜電極と、2つの薄膜電極上それぞれに積層された2つの保護層と、を有する電気音響変換フィルムの製造方法であって、
1つの薄膜電極と1つの保護層とが積層されてなる電極積層体を準備する準備工程、
1つの電極積層体と、高分子複合圧電体とを積層し第1積層体を作製する第1積層工程、
第1積層体の高分子複合圧電体に、電気的分極処理を施す電気的分極処理工程、
高分子複合圧電体の、電極積層体が積層されていない側の面にもう1つの電極積層体を積層し第2積層体を作製する第2積層工程、および、
第2積層体に機械的分極処理を施す機械的分極処理工程とを有する電気音響変換フィルムの製造方法である。
以下、図2A〜図2Eおよび図3を参照して、変換フィルム10の製造方法の一例を説明する。
準備工程は、1つの薄膜電極と1つの保護層とが積層されてなる電極積層体を準備する工程である。
まず、図2Aに示すように、下部保護層18の上に下部電極14が形成されたシート状物である下部電極積層体11aを準備する。
また、図2Eに示す、上部薄膜電極16と上部保護層20とが積層されてなるシート状物である上部電極積層体11cを準備する。
下部電極積層体11aは、下部保護層18の表面に、真空蒸着、スパッタリング、めっき等によって下部薄膜電極14として銅薄膜等を形成して、作製すればよい。
同様に、上部電極積層体11cは、上部保護層20の表面に、真空蒸着、スパッタリング、めっき等によって上部薄膜電極16として銅薄膜等を形成して、作製すればよい。
なお、保護層が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの保護層を用いても良い。尚、セパレータとしては、厚さ25〜100μmのPET等を用いることができる。なお、セパレータは、薄膜電極および保護層の熱圧着後、側面絶縁層や、第2の保護層等を形成する直前に、取り除けばよい。
第1積層工程は、下部電極積層体と、高分子複合圧電体とを積層し第1積層体を作製する工程である。
具体的には、下部電極積層体11aの下部電極14上に、圧電体層12となる塗布組成物を塗布した後、硬化して圧電体層12を形成して、下部電極積層体11aと圧電体層12とを積層した第1積層体11bを作製する。
まず、有機溶媒に、シアノエチル化PVA等の常温で粘弾性を有する高分子材料(以下、粘弾性材料とも言う)を溶解し、さらに、PZT粒子等の圧電体粒子26を添加し、攪拌して分散してなる塗料を調製する。有機溶媒には、特に限定はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン、シクロヘキサノン等の各種の有機溶媒が利用可能である。
前述の下部電極積層体11aを準備し、かつ、塗料を調製したら、この塗料を下部電極積層体11aにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図2Bに示すように、下部保護層18の上に下部電極14を有し、下部電極14の上に圧電体層12を積層してなる第1積層体11bを作製する。
この塗料のキャスティング方法には、特に、限定はなく、スライドコータやドクターナイフ等の公知の方法(塗布装置)が、全て、利用可能である。
あるいは、粘弾性材料がシアノエチル化PVAのように加熱溶融可能な物であれば、粘弾性材料を加熱溶融して、これに圧電体粒子26を添加/分散してなる溶融物を作製し、押し出し成形等によって、図2Aに示す下部電極積層体11aの上にシート状に押し出し、冷却することにより、図2Bに示すような、第1積層体11bを作製してもよい。
なお、前述のように、変換フィルム10において、粘弾性マトリックス24には、シアノエチル化PVA等の粘弾性材料以外にも、PVDF等の高分子圧電材料を添加しても良い。
粘弾性マトリックス24に、これらの高分子圧電材料を添加する際には、上記塗料に添加する高分子圧電材料を溶解すればよい。あるいは、上記加熱溶融した粘弾性材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
電気的分極処理工程は、下部保護層18の上に下部電極14を有し、下部電極14の上に圧電体層12を形成してなる第1積層体11bの圧電体層12に、電気的分極処理(ポーリング)を行う工程である。
圧電体層12の電気的分極処理の方法には、特に限定はなく、公知の方法が利用可能である。好ましい電気的分極処理の方法として、図2Cおよび図2Dに示すコロナポーリングによる電気的分極処理の方法が例示される。
この方法では、図2Cおよび図2Dに示すように、第1積層体11bの圧電体層12の上面12aの上に、間隔gを例えば1mm開けて、この上面12aに沿って移動可能な棒状あるいはワイヤー状のコロナ電極30を設ける。そして、このコロナ電極30と下部電極14とを直流電源32に接続する。
さらに、積層体11bを加熱保持する加熱手段、例えば、ホットプレートを用意する。
その上で、圧電体層12を、加熱手段によって、例えば、温度100℃に加熱保持した状態で、直流電源32から下部電極14とコロナ電極30との間に、数kV、例えば、6kVの直流電圧を印加してコロナ放電を生じさせる。さらに、間隔gを維持した状態で、圧電体層12の上面12aに沿って、コロナ電極30を移動(走査)して、圧電体層12の電気的分極処理を行う。
このようなコロナ放電を利用する電気的分極処理(以下、コロナポーリング処理とも言う)において、コロナ電極30の移動は、公知の棒状物の移動手段を用いればよい。
また、コロナポーリング処理では、コロナ電極30を移動する方法にも、限定はされない。すなわち、コロナ電極30を固定し、第1積層体11bを移動させる移動機構を設け、この第1積層体11bを移動させて分極処理をしてもよい。この第1積層体11bの移動も、公知のシート状物の移動手段を用いればよい。
さらに、コロナ電極30の数は、1本に限定はされず、複数本のコロナ電極30を用いて、コロナポーリング処理を行ってもよい。
また、電気的分極処理は、コロナポーリング処理に限定はされず、電気的分極処理を行う対象に、直接、直流電界を印加する、通常の電界ポーリングも利用可能である。但し、この通常の電界ポーリングを行う場合には、電気的分極処理の前に、上部電極16を形成する必要が有る。
なお、この電気的分極処理の前に、圧電体層12の表面を加熱ローラ等を用いて平滑化する、カレンダー処理を施してもよい。このカレンダー処理を施すことで、後述する第2積層工程がスムーズに行える。
電気的分極処理により、厚さ方向の、電界をかけた方向とは反対の方向を向いているドメイン(180°ドメイン)をスイッチングさせて、すなわち、180°ドメインモーションを起こして、厚さ方向のドメインの方向を揃えることができる。
なお、上記例では、コロナ放電電圧は6kVの直流電圧としたが、これに限定はされず、変換フィルムに求められる性能、変換フィルムの各層の材料や厚さ等に応じて適宜設定すればよい。
第2積層工程は、第1積層体11bの圧電体層12(高分子複合圧電体)の、下部電極積層体11aが積層されていない側の面に上部電極積層体11cを積層し第2積層体11dを作製する工程である。
図2Eに示すように、分極処理を行った第1積層体11bの圧電体層12側に、準備工程で準備した上部電極積層体11cを、上部電極16を圧電体層12に向けて積層する。
第1積層体11bと上部電極積層体11cとを貼り合わせる方法には特に限定はなく、接着剤を用いる方法、加熱プレス装置や加熱ローラ対等で熱圧着して貼り合わせる方法等が利用可能である。
第1積層体11bと上部電極積層体11cとを接着剤を用いて貼り合わせる場合の、接着剤の材料としては特に限定はなく、変換フィルムにおいて圧電体層と薄膜電極との接着に用いられる公知の接着剤が適宜利用可能である。また、粘弾性マトリックスの材料と同じ高分子材料を接着剤として用いてもよい。
機械的分極処理工程は、第2積層工程で作製した第2積層体11dに、機械的分極処理を施す工程である。
具体的には、機械的分極処理は、第2積層体11dの圧電体層12にせん断応力を加えることで、面方向を向いているaドメインの割合を減らし、厚さ方向を向いているcドメインの割合を増やす処理である。
圧電体層12にせん断応力を加えることで、cドメインの割合が増える理由は以下のように推定される。
圧電体層12(圧電体粒子26)にせん断応力をかけると、圧電体粒子26は、縦方向(厚さ方向)に伸びざるをえないため、その際に、90°ドメインモーションが起きて、面方向を向いているaドメインが、厚さ方向に向いて、cドメインとなる。また、厚さ方向を向いているcドメインの向きが変わることはない。その結果、aドメインの割合が減って、cドメインの割合が増加すると推定される。
このように、機械的分極処理を行って、aドメインの割合を減らし、cドメインの割合を増加させることで、圧電体層12をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1を、0.6以上とすることができ、より高い圧電性を得ることができる。
ここで、本発明においては、電気的分極処理の後に、機械的分極処理を行う。
機械的分極処理により生じる90°ドメインモーションは、180°ドメインウォールが無くなることで起こりやすくなる。
したがって、電気的分極処理によって、180°ドメインモーションを起こし、180°ドメインウォールを無くして、90°ドメインモーションが起きやすい状態にした後に、機械的分極処理を行うことで、90°ドメインモーションを起こして、面方向を向いたaドメインを厚さ方向に向かせてcドメインにすることができ、cドメインの割合を増加させることができる。
機械的分極処理として、圧電体層12にせん断応力を加える方法としては、図3に示すように、第2積層体11dの一方の表面側からローラを押し当てる方法等が挙げられる。
ローラを用いて圧電体層12にせん断応力を加える場合の、ローラの種類には特に限定はなく、ゴムローラ、金属ローラ等が適宜利用可能である。
また、圧電体層12に加えるせん断応力の値には特に限定はなく、変換フィルムに求められる性能、変換フィルムの各層の材料や厚さ等に応じて適宜設定すればよい。
圧電体層12をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1を、0.67以上0.75以下の範囲に調整できる点から、圧電体層12に加えるせん断応力は、0.3MPa〜0.5MPaとするのが好ましい。
なお、圧電体層12にかかるせん断応力は、印加したせん断荷重をせん断荷重に平行な断面積で割って求めても良いし、引張または圧縮応力により生じた引張ひずみまたは圧縮ひずみを検出して、検出結果からせん断応力を算出して求めても良い。
また、ローラを用いて圧電体層12にせん断応力を加える際には、変換フィルムおよびローラの温度は、20℃〜130℃とするのが好ましく、50℃〜100℃がより好ましい。高温過ぎると高分子材料が柔らかくなり過ぎてせん断力が伝わり難くなり、低温では高分子材料が硬すぎてドメイン比が変わり難くなるところ、適度に高分子材料が柔らかい状態を有する温度に保持することにより、ドメイン比の変化がしやすくなるものと考えられる。
次に、本発明の電気音響変換フィルムを用いる電気音響変換器について、図4Aおよび図4Bを用いて説明する。
図4Aは、電気音響変換器40を概念的に示す正面図であり、図4Bは、図4AのB−B線断面図である。
電気音響変換器40は、上述した変換フィルム10を振動板として用いるものである。
電気音響変換器40は、変換フィルム10への電圧印加によって、変換フィルム10が面内方向に伸長すると、この伸長分を吸収するために、変換フィルム10は、上方(音の放射方向)に移動し、逆に、変換フィルム10への電圧印加によって、変換フィルム10が面内方向に収縮すると、この収縮分を吸収するために、変換フィルム10は、下方(ケース42側)に移動する。電気音響変換器40は、この変換フィルム10の伸縮の繰り返しによる振動により、振動(音)と電気信号とを変換するものである。
電気音響変換器40は、変換フィルム10と、ケース42と、粘弾性支持体46と、押圧部材48とを有して構成される。
ケース42は、押圧部材48と共に、変換フィルム10および粘弾性支持体46を保持する保持部材であり、プラスチックや金属、或いは木材等で形成される、一面が開放する箱型の筐体である。図に示すように、ケース42は薄型の六面体形状で、最大面の一方が開放面である。また、開放部は正四角形状である。ケース42は、内部に粘弾性支持体46を収容する。
粘弾性支持体46は、適度な粘性と弾性を有し、変換フィルム10を湾曲した状態で保持すると共に、変換フィルム10のどの場所でも一定の機械的バイアスを与えることによって、変換フィルム10の伸縮運動を無駄なく前後運動(変換フィルムの面に垂直な方向の運動)に変換させるためのものである。
図示例において、粘弾性支持体46は、ケース42の底面とほぼ同等の底面形状を有する四角柱状である。また、粘弾性支持体46の高さは、ケース42の深さよりも大きい。
粘弾性支持体46の材料としては、適度な粘性と弾性を有し、かつ、圧電フィルムの振動を妨げず、好適に変形するものであれば、特に限定はない。一例として、羊毛のフェルト、レーヨンやPETを含んだ羊毛のフェルトなどの不織布、グラスウール、或いはポリウレタンなどの発泡材料(発泡プラスチック)、ポリエステルウール、紙を複数枚重ねたもの、磁性流体、塗料等が例示される。
粘弾性支持体46の比重には、特に限定はなく、粘弾性支持体の種類に応じて、適宜、選択すればよい。一例として、粘弾性支持体としてフェルトを用いた場合には、比重は、50〜500kg/m3が好ましく、100〜300kg/m3がより好ましい。また、粘弾性支持体としてグラスウールを用いた場合には、比重は、10〜100kg/m3が好ましい。
押圧部材48は、変換フィルム10を粘弾性支持体46に押圧した状態で支持するためのものであり、プラスチックや金属、或いは木材等で形成される、中央に開口部を有する正四角形状の板状部材である。押圧部材48は、ケース42の開放面と同様の形状を有し、また、開口部の形状は、ケース42の開放部と同様の正四角形状である。
電気音響変換器40においては、ケース42の中に粘弾性支持体46を収容して、変換フィルム10によってケース42および粘弾性支持体46を覆い、変換フィルム10の周辺を押圧部材48によってケース42の開放面に接した状態で、押圧部材48をケース42に固定して、構成される。
なお、ケース42への押圧部材48の固定方法には、特に限定はなく、ビスやボルトナットを用いる方法、固定用の治具を用いる方法等、公知の方法が、各種、利用可能である。
この電気音響変換器40においては、粘弾性支持体46は、高さ(厚さ)がケース42の内面の高さよりも厚い。すなわち、変換フィルム10および押圧部材48が固定される前の状態では、粘弾性支持体46は、ケース42の上面よりも突出した状態となっている。
そのため、電気音響変換器40では、粘弾性支持体46の周辺部に近くなるほど、粘弾性支持体46が変換フィルム10によって下方に押圧されて厚さが薄くなった状態で、保持される。すなわち、変換フィルム10の主面の少なくとも一部が湾曲した状態で保持される。これにより、変換フィルム10の少なくとも一部に湾曲部が形成される。電気音響変換器40において、この湾曲部が振動面となる。なお、以下の説明では、湾曲部を振動面ともいう。
この際、変換フィルム10の面方向において、粘弾性支持体46の全面を押圧して、全面的に厚さが薄くなるようにするのが好ましい。すなわち、変換フィルム10の全面が粘弾性支持体46により押圧されて支持されるのが好ましい。
また、このように形成された湾曲部は、中心から周辺部に向かって緩やかに曲率が変化しているのが好ましい。これにより、共振周波数を分散させ、より広帯域化できる。
また、電気音響変換器40において、粘弾性支持体46は押圧部材48に近づくほど厚さ方向に圧縮された状態になるが、静的粘弾性効果(応力緩和)によって、変換フィルム10のどの場所でも機械的バイアスを一定に保つことができる。これにより、変換フィルム10の伸縮運動が無駄なく前後運動へと変換されるため、薄型、かつ、十分な音量が得られ、音響特性に優れる平面状の電気音響変換器40を得ることができる。
このような構成の電気音響変換器40において、変換フィルム10の、押圧部材48の開口部に対応する領域が実際に振動する湾曲部となる。すなわち、押圧部材48は、湾曲部を規定する部位である。
圧電性を有する変換フィルムを用いる電気音響変換ユニットは、一般的に振動板が円形状を有するコーンスピーカに比べて、ユニット全体の大きさに対する振動板の相対的な大きさを大きくし易く、小型化が容易である。
また、上記観点から、押圧部材48の縁部の幅は、20mm以下が好ましく、1mm〜10mmが好ましい。
また、電気音響変換器40の変換フィルム10側の面と、湾曲部とは相似であるのが好ましい。すなわち、押圧部材48の外形と開口部の形状は相似であるのが好ましい。
なお、電気音響変換器40において、変換フィルム10による粘弾性支持体46の押圧力には、特に限定はないが面圧が低い位置における面圧で0.005〜1.0MPa、特に0.02〜0.2MPa程度とするのが好ましい。
加えて、粘弾性支持体46の厚さにも、特に限定は無いが、押圧される前の厚さが、1〜100mm、特に10〜50mmであるのが好ましい。
また、図示例においては、粘弾性を有する粘弾性支持体46を利用する構成としたが、これに限定はされず、少なくとも弾性を有する弾性支持体を利用する構成であればよい。
例えば、粘弾性支持体46に代えて、弾性を有する弾性支持体を有する構成としてもよい。
弾性支持体としては、天然ゴムや各種合成ゴムが例示される。
ここで、図4Aに示す電気音響変換器40は、押圧部材48によって、変換フィルム10の周辺全域をケース42に押し付けているが、本発明は、これに限定されない。
すなわち、変換フィルム10を利用する電気音響変換器は、押圧部材48を有さずに、例えばケース42の4箇所の角において、ビスやボルトナット、治具などによって、変換フィルム10をケース42の上面に押圧/固定してなる構成も利用可能である。
また、ケース42と変換フィルム10との間には、Oリング等を介在させてもよい。このような構成を有することにより、ダンパ効果を持たせることができ、変換フィルム10の振動がケース42に伝達されることを防止して、より優れた音響特性を得ることができる。
また、変換フィルム10を利用する電気音響変換器は、粘弾性支持体46を収容するケース42を有さなくても良い。
すなわち、図5に示す電気音響変換器50の断面図で、その一例を概念的に示すように、剛性を有する支持板52の上に粘弾性支持体46を載置し、粘弾性支持体46を覆って変換フィルム10を載せ、先と同様の押圧部材48を周辺部に載置する。次いで、ビス54によって押圧部材48を支持板52に固定することにより、押圧部材48と一緒に粘弾性支持体46を押圧した構成も、利用可能である。
なお、支持板52の大きさとしては粘弾性支持体46よりも大きくても良く、更に支持板52の材質としては、ポリスチレンや発泡PET、或いはカーボンファイバーなどの各種振動板を用いることで、電気音響変換器の振動を更に増幅する効果も期待できる。
さらに、電気音響変換器は、周辺を押圧する構成にも限定はされず、例えば、粘弾性支持体46と変換フィルム10の積層体の中央を、何らかの手段によって押圧してなる構成も利用可能である。
すなわち、電気音響変換器は、変換フィルム10の湾曲した状態で保持される構成であれば、各種の構成が利用可能である。
あるいは、変換フィルム10を樹脂フィルムに貼り付けて張力を付与する(湾曲させる)構成としてもよい。樹脂フィルムで保持する構成とし、湾曲させた状態で保持できるようにすることでフレキシブルなスピーカとすることができる。
あるいは、変換フィルム10を湾曲したフレームに張り上げた構成としてもよい。
また、図4Aおよび図4Bに示す例では、押圧部材48を用いて、変換フィルム10を粘弾性支持体46に押圧して支持する構成としたが、これに限定はされず、例えば、ケース42の開口面よりも大きい変換フィルム10を用いて、変換フィルムの端部をケース42の裏面側で固定する構成としてもよい。すなわち、ケース42とケース42内に配置された粘弾性支持体46とを、ケース42の開口面よりも大きい変換フィルム10で覆い、変換フィルム10の端部をケース42の裏面側に引張ることで、変換フィルム10を粘弾性支持体46に押圧して張力を付与して湾曲させ、変換フィルムの端部をケース42の裏面側で固定してもよい。
あるいは、気密性を有するケースを用い、ケースの開放端を変換フィルムで覆って閉塞し、ケース内に気体を導入して変換フィルムに圧力を掛けて、凸状に膨らませた状態で、保持する構成としてもよい。
例えば、図6Cに示す電気音響変換器56が例示される。
この電気音響変換器56は、まず、図6Aに示すように、同様のケース42として気密性を有する物を用い、ケース42内に空気を導入するパイプ42aを設ける。
このケース42の開放側の端部上面にOリング57を設け、ケース42の開放面を閉塞するように、変換フィルム10で覆う。
次いで、図6Bに示すように、ケース42の外周と略同一の内周を有する、略L字状の断面を有する枠体状の押さえ蓋58を、ケース42の外周に嵌合する(図6Bおよび図6Cにおいては、Oリング57は省略)。
これにより、変換フィルム10をケース42押圧して固定し、変換フィルム10によって、ケース42の内部を気密に閉塞する。
さらに、図6Cに示すように、パイプ42aからケース42内(ケース42と変換フィルム10とによる閉空間)に空気を導入して、変換フィルム10に圧力を掛けて、凸状に膨らました状態で、保持して、電気音響変換器56とする。
ケース42内の圧力には、限定はなく、変換フィルム10が外方に凸状に膨らむ、大気圧以上であれば良い。
なお、パイプ42aは、固定されていても、着脱自在にしてもよい。パイプ42aを取り外す際には、パイプの着脱部を気密に閉塞するのは、当然である。
また、図6Cでは、ケース内に圧力を掛けて、凸状に膨らませた状態で保持する構成としたが、図6Dに示すように、図6Cと同様の気密性を有するケースを用い、ケースの開放端を変換フィルムで覆って閉塞し、ケース内を排気して変換フィルムに負圧を掛けて、凹状にへこませた状態で保持する構成としてもよい。
次に、本発明の電気音響変換フィルムをスピーカとして用いる、可撓性を有するシート状の画像表示装置であるフレキシブルディスプレイについて説明する。
具体的には、可撓性を有する有機EL表示デバイス、可撓性を有する液晶表示デバイス、可撓性を有する電子ペーパ等の、可撓性を有するシート状の表示デバイスの裏面(画像表示面と反対側の面)に、本発明の変換フィルム10をスピーカとして取り付けた、スピーカ搭載型のフレキシブルディスプレイである。
なお、本発明のフレキシブルディスプレイは、カラーディスプレイであってもモノクロディスプレイであってもよい。
前述のように、本発明の変換フィルム10は、柔軟性および可撓性に優れ、しかも、面内に異方性が無い。そのため、本発明の変換フィルム10は、どの方向に屈曲させても音質の変化が少なく、しかも、曲率の変化に対する音質変化も少ない。
従って、このような本発明の振動フィルム10を、可撓性を有する画像表示デバイスに取り付けてなる本発明のスピーカ搭載型のフレキシブルディスプレイは、可撓性に優れ、しかも、手に持った状態等による湾曲の方向や湾曲量によらず(すなわち、任意の変形に好適に対応して)、安定した音質の音声出力を行うことができる。
本発明の電気音響変換フィルムをスピーカとして用いるフレキシブルディスプレイの各種態様について、図7A〜図7Cを用いて説明する。
図7Aは、本発明の電気音響変換フィルムを、有機EL(エレクトロルミネッセンス)ディスプレイに利用した、本発明のフレキシブルディスプレイの一例を概念的に示す断面図である。
図7Aに示す有機ELディスプレイ60は、可撓性を有するシート状の有機EL表示デバイス62の裏面に、本発明の変換フィルム10を取り付けてなる、スピーカ搭載型の有機ELフレキシブルディスプレイである。
本発明のフレキシブルディスプレイにおいて、有機EL表示デバイス62等の可撓性を有するシート状の画像表示デバイスの裏面に、本発明の変換フィルム10を取り付ける方法には、限定はない。すなわち、シート状物同士を、面を向かい合わせて取り付ける(貼り合わせる)公知の方法が、全て利用可能である。
一例として、接着剤で貼り付ける方法、熱融着で貼り付ける方法、両面テープを用いる方法、粘着テープを用いる方法、略C字状のクランプなどの積層した複数のシート状物を端部や端辺で挟持する治具を用いる方法、リベットなどの積層した複数のシート状物を面内(画像表示面を除く)で挟持する治具を用いる方法、積層した複数のシート状物の両面から保護フィルム(少なくとも画像表示側は透明)等で挟持する方法、これらを併用する方法等が例示される。
なお、接着剤等を用いて表示デバイスと変換フィルム10とを貼り付ける際には、全面的に貼り付けても、端部の全周のみを貼り付けても、四隅と中央部等の適宜設定された場所で点状に貼り付けても、これらを併用してもよい。
有機ELディスプレイ60において、変換フィルム10は、高分子複合圧電体からなる圧電体層12と、圧電体層12の一面に設けられる下部薄膜電極14および他面に設けられる上部薄膜電極16と、下部薄膜電極14の表面に設けられる下部保護層18および上部薄膜電極16の表面に設けられる上部保護層20と、を有して構成され、高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)が、0.6以上1未満である、前述の本発明の(電気音響)変換フィルム10である。
他方、有機EL表示デバイス62は、公知の可撓性を有するシート状の有機EL表示デバイス(有機ELディスプレイパネル)である。
すなわち、有機EL表示デバイス62は、一例として、プラスチックフィルム等の基板64の上に、TFT等のスイッチング回路を有する画素電極が形成された陽極68を有し、陽極68の上に有機EL材料を用いる発光層70を有し、発光層70の上にITO(酸化インジウム錫)等からなる透明な陰極72を有し、陰極72の上に透明なプラスチック等で形成された透明基板74を有して構成される。
また、陽極68と発光層70との間には、正孔注入層や正孔輸送層を有してもよく、さらに、発光層70と陰極72との間には、電子輸送層や電子注入層を有してもよい。さらに、透明基板74の上には、ガスバリアフィルム等の保護フィルムを有してもよい。
なお、図示は省略するが、変換フィルム10の下部電極14および上部電極16には、変換フィルム10すなわちスピーカを駆動するための配線が接続される。さらに、陽極68および陰極72には、有機EL表示デバイス62を駆動するための配線が接続される。
この点に関しては、後述する電子ペーパ78および液晶ディスプレイ94等に関しても、同様である。
図7Bに、本発明の電気音響変換フィルムを、電子ペーパに利用した、本発明のフレキシブルディスプレイの一例を概念的に示す。
図7Bに示す電子ペーパ78は、可撓性を有するシート状の電子ペーパデバイス80の裏面に、本発明の変換フィルム10を取り付けてなる、スピーカ搭載型の電子ペーパである。
電子ペーパ78において、変換フィルム10は、前述の物と同様である。
他方、電子ペーパデバイス80は、公知の可撓性を有する電子ペーパである。すなわち、一例として、電子ペーパデバイス80は、プラスチックフィルム等の基板82の上に、TFT等のスイッチング回路を有する画素電極が形成された下部電極84を有し、下部電極84の上に正もしくは負に帯電した白および黒の顔料を内包するマイクロカプセル86aを配列した表示層86を有し、表示層86の上にITO等からなる透明な上部電極90を有し、上部電極90の上に透明なプラスチック等で形成された透明基板92を有して構成される。
なお、図7Bに示す例は、本発明のフレキシブルディスプレイを、マイクロカプセルを用いる電気泳動方式の電子ペーパに利用した例であるが、本発明は、これに限定はされない。
すなわち、本発明のフレキシブルディスプレイには、マイクロカプセルを用いない電気泳動方式、電気泳動方式、酸化還元反応等を利用する化学変化方式、電子粉粒体方式、エレクトロウェッティング方式、液晶方式等、可撓性を有するシート状のものであれば、公知の電子ペーパが、全て、利用可能である。
図7Cに、本発明の電気音響変換フィルムを、液晶ディスプレイに利用した一例を概念的に示す。
図7Cに示す液晶ディスプレイ94は、可撓性を有するシート状の液晶ディスプレイデバイス96の裏面に、本発明の変換フィルム10を取り付けてなる、スピーカ搭載型の液晶フレキシブルディスプレイである。
液晶ディスプレイ94において、変換フィルム10は、前述の物と同様である。
他方、液晶ディスプレイデバイス96は、公知の可撓性を有するシート状の液晶ディスプレイデバイス(液晶ディスプレイパネル)である。すなわち、一例として、液晶ディスプレイデバイス96は、可撓性を有するエッジライトタイプの導光板98、および、この導光板98の端部からバックライトを入射する光源100を有する。液晶ディスプレイデバイス96は、一例として、導光板98の上に、偏光子102を有し、偏光子102の上に透明な下部基板104を有し、下部基板104の上にTFT等のスイッチング回路を有する画素電極が形成された透明な下部電極106を有し、下部電極106の上に液晶層108を有し、液晶層108の上にITO等からなる透明な上部電極110を有し、上部電極110の上に透明な上部基板112を有し、上部基板112の上に偏光子114を有し、偏光子114の上に保護フィルム116を有して構成される。
なお、本発明のフレキシブルディスプレイは、有機ELディスプレイ、電子ペーパおよび液晶ディスプレイに限定はされず、可撓性を有するシート状の表示デバイス(表示パネル)であれば、各種の表示デバイスを用いた画像表示装置が利用可能である。
次に、本発明の電気音響変換フィルムをマイクロフォンや楽器用センサーとして用いる構成について説明する。
常温で粘弾性を有する高分子マトリックスに圧電体粒子を分散してなる圧電体層12と、圧電体層12の表面に設けられる下部薄膜電極14および上部薄膜電極16と、薄膜電極それぞれの表面に設けられる下部保護層18および上部保護層20とを有する本発明の変換フィルム10は、圧電体層12が、振動エネルギーを電気信号に変換する性能も有する。
そのため、本発明の変換フィルム10は、これを利用して、マイクロフォンや楽器用センサー(ピックアップ)にも、好適に利用可能である。
一例として、声帯マイクロフォンが好適に例示される。
図8に、一般的な声帯マイクロフォンの一例を概念的に示す。
図8に示すように、従来の一般的な声帯マイクロフォン120は、PZT等の圧電体セラミックス126を黄銅板等の金属板128の上に積層し、この積層体の下面に弾性を有するクッション130を、上面にスプリング132を、それぞれ取り付けて、ケース124内に支持し、ケース内から信号線134および136を引き出してなる、複雑な構成を有する。
これに対し、本発明の変換フィルム10を、音声信号を電気信号に変換するセンサーとして用いる本発明の声帯マイクロフォンは、例えば、変換フィルム10に貼り付け手段を設け、かつ、圧電体層12(下部電極14および上部電極16)が出力する電気信号を取り出す信号線を設けるだけの簡易な構成で、声帯マイクロフォンを構成できる。
また、このような構成を有する本発明の声帯マイクロフォンは、変換フィルム10を声帯付近に貼り付けるだけで、声帯マイクロフォンとして作用する。
また、図8に示すような、圧電体セラミックス126と金属板128とを利用する従来の声帯マイクロフォンは、損失正接が非常に小さいため、共振が非常に強く出やすく、起伏の激しい周波数特性となるため、金属的な音色になりがちである。
これに対して、前述のように、本発明の変換フィルム10は、可撓性および音響特性に優れ、かつ、変形時に音質変化が小さいため、複雑な曲面を有する人の咽喉部に貼り付けることが可能であり、低音から高音まで、忠実に再現することができる。
すなわち、本発明によれば、肉声に極めて近い音声信号を出力可能で、装着感を感じさせない、簡易な構成で、超軽量かつ省スペースな声帯マイクロフォンを実現できる。
なお、本発明の声帯マイクロフォンにおいて、声帯付近への変換フィルム10の貼り付け方法には、特に限定はなく、公知のシート状物の貼り付け方法が、各種、利用可能である。
また、変換フィルム10を、直接、声帯付近に貼り付けるのではなく、変換フィルム10を、極薄いケースや袋体に収容して、声帯付近に貼り付けるようにしてもよい。
また、本発明の変換フィルム10を、音声信号を電気信号に変換するセンサーとして用いる本発明の楽器用センサーは、例えば、変換フィルム10に貼り付け手段を設け、かつ、圧電体層12(下部電極14および上部電極16)が出力する電気信号を取り出す信号線を設けるだけの簡易な構成で、楽器用センサーを構成することができる。
また、このような構成有する本発明の楽器用センサーは、変換フィルム10を楽器の筐体面に貼り付けるだけで、ピックアップとして作用する。
前述の声帯マイクロフォンと同様、本発明の変換フィルム10は、薄く、かつ、柔軟性に富むので、本発明の楽器用センサーは、可撓性および音響特性に優れ、かつ、変形時に音質変化が小さいため、複雑な曲面を有する楽器の筐体面に貼り付けることが可能であり、低音から高音まで、楽器の音を忠実に再現することができる。
しかも、本発明の楽器用センサーは、振動する楽器の筐体面に対する機械的な拘束も殆ど無いため、ピックアップを取り付けることによる楽器の原音への影響も、最小限に押さえることができる。
先の声帯マイクロフォンと同様、本発明の楽器用センサーにおいて、楽器への貼り付け方法には、特に限定はなく、公知のシート状物の貼着方法が、各種、利用可能である。また、本発明の楽器用センサーは、変換フィルム10を、極薄いケースや袋体に収容して、楽器に貼り付けるようにしてもよい。
以上、本発明の電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサーについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。なお、本発明はこの実施例に限定されるものでなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。
[実施例1]
前述の図2A〜図2Eおよび図3に示す方法によって、図1に示す変換フィルム10を作製した。
(準備工程)
厚さ4μmのPETフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなる下部電極積層体11aおよび上部電極積層体11cを用意した。すなわち、本例においては、上部電極16および下部電極14は、厚さ0.1μmの銅蒸着薄膜であり、上部保護層20および下部保護層18は厚さ4μmのPETフィルムとなる。
なお、プロセス中、良好なハンドリングを得るために、PETフィルムには厚さ50μmのセパレータ(仮支持体 PET)付きのものを用い、上部電極積層体11cの熱圧着後に、各保護層のセパレータを取り除いた。
(第1積層工程)
まず、下記の組成比で、シアノエチル化PVA(CR−V 信越化学工業社製)をメチルエチルケトン(MEK)に溶解した。その後、この溶液に、PZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で分散させて、圧電体層12を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・15質量部
・MEK・・・・・・・・・・・・・・85質量部
なお、PZT粒子は、市販のPZT原料粉を1000〜1200℃で焼結した後、これを平均粒径5μmになるように解砕および分級処理したものを用いた。
先に準備した下部電極積層体11aの下部電極14(銅蒸着薄膜)の上に、スライドコータを用いて、先に調製した圧電体層12を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が20μmになるように、塗布した。
次いで、下部電極積層体11aの上に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでMEKを蒸発させた。これにより、PET製の下部保護層18の上に、銅製の下部電極14を有し、その上に、厚さが20μmの圧電体層12(高分子複合圧電体)を形成してなる第1積層体11bを作製した。
(電気的分極処理工程)
この第1積層体11bの圧電体層12に、図2Cおよび図2Dに示す前述のコロナポーリングによって、電気的分極処理を施した。なお、電気的分極処理は、圧電体層12の温度を100℃として、下部電極14とコロナ電極30との間に6kVの直流電圧を印加してコロナ放電を生じさせて、行った。
(第2積層工程)
電気的分極処理を行った第1積層体11bの上に、上部電極16(銅薄膜側)側を圧電体層12に向けて上部電極積層体11cを積層した。
次いで、第1積層体11bと上部電極積層体11cとの積層物を、ラミネータ装置を用いて120℃で熱圧着することで、圧電体層12と上部電極16および下部電極14とを接着して第2積層体11dを作製した。
(機械的分極処理工程)
次に、作製した第2積層体11dにゴムローラー(芯材SUSのウレタンゴム)を用いて、せん断応力を加えて機械的分極処理を施し、変換フィルム10を作製した。
圧電体層12に掛かるせん断応力は、0.2MPaとした。
<強度比率の測定>
作製した変換フィルムについて、圧電体層12中の圧電体粒子26の結晶構造を、X線ディフラクトメーター(Rigaku製 Rint Ultima III)を用いたX線回折法(XRD)により、XRDパターンを測定した(図10参照)。
測定したXRDパターンから、43.5°付近の(002)面ピーク強度と、45°付近の(200)面ピーク強度とを読み取り、(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)を求めた。
強度比率α1は、0.600であった。
[実施例2〜8]
機械的分極処理工程において、圧電体層12に掛かるせん断応力をそれぞれ、表1に示す値に変更した以外は、実施例1と同様にして、電気音響変換フィルム10を作製した。
また、作製した変換フィルムそれぞれのXRDパターンを実施例1と同様にして測定し、強度比率α1を求めた。
[比較例1]
電気的分極処理および機械的分極処理を施さない以外は、実施例1と同様にして、電気音響変換フィルムを作製した。
また、作製した変換フィルムのXRDパターンを実施例1と同様にして測定し、強度比率α1を求めた。
[比較例2〜4]
機械的分極処理を施さず、また、電気的分極処理工程におけるコロナ放電電圧をそれぞれ、表1に示すように変更した以外は、実施例1と同様にして、電気音響変換フィルムを作製した。
また、作製した変換フィルムそれぞれのXRDパターンを実施例1と同様にして測定し、強度比率α1を求めた。
[評価]
<音圧感度>
(電気音響変換器の作製)
作製した変換フィルム10からφ70mmの円形試験片を切り出し、ケース42に組み込んで図6Dに示すような電気音響変換器56bを作製し、音圧感度を測定した。
ケース42は、一面が開放した円筒状の容器で、開口部の大きさφ60mm、深さ10mmのプラスチック製の円筒状容器を用いた。
変換フィルム10をケース42の開口部を覆うように配置して押さえ蓋58により周辺部を固定した後、パイプ42aからケース42内を空気を排気して、ケース42内の圧力を0.09MPaに維持し、変換フィルム10を凹状に湾曲させた。
(音圧の測定)
作製した電気音響変換器の音圧レベルを測定し、音圧感度を求めた。
具体的には、図9に示すように、電気音響変換器56bの変換フィルム10の中央に向けて、0.5m離した位置にマイクロフォンPを配置し、電気音響変換器の上部電極と下部電極との間に1kHz、1Wのサイン波を入力して、音圧レベルを測定し、音圧感度に換算した。
評価結果を表1に示す。
また、実施例1、4、6および比較例1のXRDパターンを図10に示す。
また、得られた音圧感度の値と強度比率α1との関係を表すグラフを図11Aに示し、図11Bには、強度比率α1が0.5以上の領域を拡大したグラフを示す。
表1より、本発明の電気音響変換フィルムの実施例1〜8は、比較例1〜4に比べて、音圧感度が向上していることがわかる。
また、図10に示すグラフからわかるように、電気的分極処理および機械的分極処理を施すことで、(002)面ピーク強度を高くすることができることがわかる。
また、図11Aおよび図11Bに示すグラフからわかるように、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1と、音圧感度との間に相関関係があり、強度比率α1が高くなるほど音圧感度が高くなり、強度比率α1=0.7近傍でピークとなることがわかる。
また、比較例2〜4の対比から、電気的分極処理を行うのみでは、コロナ放電電圧をより高くしても、強度比率α1は0.55程度までしか大きくならないことがわかる。
一方、実施例から、電気的分極処理を施した後に、機械的分極処理を行うことで、強度比率α1を0.6以上にすることができ、これにより、音圧感度を向上できることがわかる。
また、実施例1〜8の対比から、強度比率α1を、0.67〜0.75の範囲とすることで、音圧感度を78dB/(W・m)以上とすることができ好ましいことがわかる。
また、機械的分極処理の際に圧電体層に加えるせん断応力は、0.3〜0.5MPaの範囲とするのが好ましいことがわかる。
以上の結果より、本発明の効果は、明らかである。
10 電気音響変換フィルム
11a 下部電極積層体
11b 第1積層体
11c 上部電極積層体
11d 第2積層体
12 圧電体層
14 下部薄膜電極
16 上部薄膜電極
18 下部保護層
20 上部保護層
24 粘弾性マトリックス
26 圧電体粒子
30 コロナ電極
32 直流電源
40、50、56、56b 電気音響変換器
42、124 ケース
46 粘弾性支持体
48 押圧部材
52 支持板
54 ビス
57 Oリング
58 押さえ蓋
60 有機ELディスプレイ
62 有機EL表示デバイス
64、82 基板
68 陽極
70 発光層
72 陰極
74、92 透明基板
78 電子ペーパ
80 電子ペーパデバイス
84、106 下部電極
86 表示層
86a マイクロカプセル
90、110 上部電極
94 液晶ディスプレイ
96 液晶ディスプレイデバイス
98 導光板
100 光源
102、114 偏光子
104 下部基板
108 液晶層
112 上部基板
116 保護フィルム
120 声帯マイクロフォン
126 圧電体セラミックス
128 金属板
130 クッション
132 スプリング
134、136 信号線

Claims (13)

  1. 常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、
    前記高分子複合圧電体の両面に積層された2つの薄膜電極と、
    2つの前記薄膜電極上それぞれに積層された2つの保護層と、を有し、
    前記高分子材料が、シアノエチル基を有するものであり、
    前記高分子複合圧電体をX線回折法で評価した際の、前記圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)が、0.6以上1未満であることを特徴とする電気音響変換フィルム。
  2. 前記強度比率α1が、0.67以上0.75以下である請求項1に記載の電気音響変換フィルム。
  3. 前記高分子材料が、シアノエチル化ポリビニルアルコールである請求項1または2に記載の電気音響変換フィルム。
  4. 前記圧電体粒子は、ペロブスカイト型或いはウルツ鉱型の結晶構造を有するセラミックス粒子である請求項1〜3のいずれか一項に記載の電気音響変換フィルム。
  5. 前記圧電体粒子は、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO )、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe )との固溶体(BFBT)のいずれか一つを含む圧電粒子である請求項1〜4のいずれか一項に記載の電気音響変換フィルム。
  6. 常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、前記高分子複合圧電体の両面にそれぞれ積層された2つの薄膜電極と、2つの前記薄膜電極上それぞれに積層された2つの保護層と、を有する電気音響変換フィルムの製造方法であって、
    1つの前記薄膜電極と1つの前記保護層とが積層されてなる電極積層体を準備する準備工程、
    1つの前記電極積層体と、前記高分子複合圧電体とを積層し第1積層体を作製する第1積層工程、
    前記第1積層体の前記高分子複合圧電体に、電気的分極処理を施す電気的分極処理工程、
    前記高分子複合圧電体の、前記電極積層体が積層されていない側の面にもう1つの前記電極積層体を積層し第2積層体を作製する第2積層工程、および、
    前記第2積層体に機械的分極処理を施す機械的分極処理工程とを有することを特徴とする電気音響変換フィルムの製造方法。
  7. 前記機械的分極処理工程において、前記第2積層体に対してローラを用いてせん断応力を加えることで機械的分極処理を行う請求項に記載の電気音響変換フィルムの製造方法。
  8. 前記機械的分極処理工程において、前記第2積層体に対して加えるせん断応力が、0.3MPa〜0.5MPaである請求項に記載の電気音響変換フィルムの製造方法。
  9. 前記電気的分極処理工程において、コロナポーリング処理により電気的分極処理を行う請求項6〜8のいずれか一項に記載の電気音響変換フィルムの製造方法。
  10. 請求項1〜5のいずれか一項に記載の電気音響変換フィルムを有する電気音響変換器。
  11. 可撓性を有するフレキシブルディスプレイの画像表示面とは反対側の面に、請求項1〜5のいずれか一項に記載の電気音響変換フィルムを取り付けたフレキシブルディスプレイ。
  12. 請求項1〜5のいずれか一項に記載の電気音響変換フィルムをセンサーとして用いる声帯マイクロフォン。
  13. 請求項1〜5のいずれか一項に記載の電気音響変換フィルムをセンサーとして用いる楽器用センサー。
JP2017530816A 2015-07-27 2016-07-21 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー Active JP6431984B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015147608 2015-07-27
JP2015147608 2015-07-27
JP2016001221 2016-01-06
JP2016001221 2016-01-06
PCT/JP2016/071392 WO2017018313A1 (ja) 2015-07-27 2016-07-21 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー

Publications (2)

Publication Number Publication Date
JPWO2017018313A1 JPWO2017018313A1 (ja) 2018-06-28
JP6431984B2 true JP6431984B2 (ja) 2018-11-28

Family

ID=57884747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017530816A Active JP6431984B2 (ja) 2015-07-27 2016-07-21 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー

Country Status (3)

Country Link
US (2) US11140500B2 (ja)
JP (1) JP6431984B2 (ja)
WO (1) WO2017018313A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220146106A (ko) * 2021-04-23 2022-11-01 한국세라믹기술원 단위 압전 구조체 및 단위 커버 필름을 이용한 압전 스택 구조체 및 이를 이용한 발판형 압전 발전 모듈

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20130307A1 (it) 2013-04-17 2014-10-18 Itt Italia Srl Metodo per realizzare un elemento frenante, in particolare una pastiglia freno, sensorizzato, pastiglia freno sensorizzata, impianto frenante di veicolo e metodo associato
US10147863B2 (en) * 2014-10-09 2018-12-04 The United States Of America As Represented By The Administrator Of Nasa Pyroelectric sandwich thermal energy harvesters
US9939035B2 (en) 2015-05-28 2018-04-10 Itt Italia S.R.L. Smart braking devices, systems, and methods
JP6431984B2 (ja) * 2015-07-27 2018-11-28 富士フイルム株式会社 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
ITUB20153709A1 (it) 2015-09-17 2017-03-17 Itt Italia Srl Dispositivo di analisi e gestione dei dati generati da un sistema frenante sensorizzato per veicoli
ITUB20153706A1 (it) 2015-09-17 2017-03-17 Itt Italia Srl Dispositivo frenante per veicolo pesante e metodo di prevenzione del surriscaldamento dei freni in un veicolo pesante
JP6601174B2 (ja) * 2015-11-13 2019-11-06 セイコーエプソン株式会社 圧電アクチュエーター、積層アクチュエーター、圧電モーター、ロボット、ハンド及び送液ポンプ
ITUA20161336A1 (it) 2016-03-03 2017-09-03 Itt Italia Srl Dispositivo e metodo per il miglioramento delle prestazioni di un sistema antibloccaggio e antiscivolamento di un veicolo
IT201600077944A1 (it) 2016-07-25 2018-01-25 Itt Italia Srl Dispositivo per il rilevamento della coppia residua di frenatura in un veicolo equipaggiato con freni a disco
KR102391311B1 (ko) 2017-07-07 2022-04-26 엘지디스플레이 주식회사 필름 스피커 및 이를 포함하는 표시 장치
KR102391558B1 (ko) * 2017-07-07 2022-04-27 다이낑 고오교 가부시키가이샤 진동 센서 및 압전 소자
EP3879590A4 (en) 2018-11-08 2021-12-29 FUJIFILM Corporation Laminated piezoelectric element and electro-acoustic transducer
JP7247549B2 (ja) * 2018-11-29 2023-03-29 ヤマハ株式会社 電気音響変換器
CN114026709A (zh) * 2019-06-28 2022-02-08 富士胶片株式会社 高分子复合压电体、压电薄膜、压电扬声器、柔性显示屏
KR102612144B1 (ko) * 2019-06-28 2023-12-08 후지필름 가부시키가이샤 고분자 복합 압전체, 압전 필름, 압전 스피커, 플렉시블 디스플레이
CN110350078B (zh) * 2019-06-28 2021-01-05 东华大学 一种具有高效声电转换特性的柔性声传感器
CN114008803A (zh) * 2019-06-28 2022-02-01 富士胶片株式会社 电声转换薄膜及电声转换器
JP7245905B2 (ja) * 2019-06-28 2023-03-24 富士フイルム株式会社 高分子複合圧電体、圧電フィルム、圧電スピーカー、フレキシブルディスプレイ
WO2020261822A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 圧電フィルム
CN110311032B (zh) * 2019-06-28 2021-01-05 东华大学 一种具有高声电转换效率的柔性声传感器
JP7217807B2 (ja) * 2019-06-28 2023-02-03 富士フイルム株式会社 圧電フィルム
IT201900015839A1 (it) 2019-09-06 2021-03-06 Itt Italia Srl Pastiglia freno per veicoli e suo processo di produzione
CN114521297A (zh) 2019-10-16 2022-05-20 富士胶片株式会社 压电薄膜及压电薄膜的制造方法
EP4080908A4 (en) 2019-12-18 2023-06-07 FUJIFILM Corporation PIEZOELECTRICAL FILM
KR20210085522A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 표시장치
US12026016B2 (en) * 2020-01-15 2024-07-02 Sharp Kabushiki Kaisha Display device
CN114930556A (zh) 2020-01-16 2022-08-19 富士胶片株式会社 高分子复合压电薄膜
JP7457790B2 (ja) 2020-03-19 2024-03-28 富士フイルム株式会社 積層圧電素子および電気音響変換器
TWI751524B (zh) * 2020-04-10 2022-01-01 馗鼎奈米科技股份有限公司 壓電薄膜之電極化方法
JPWO2022190729A1 (ja) * 2021-03-12 2022-09-15
WO2022248114A1 (en) 2021-05-25 2022-12-01 Itt Italia S.R.L. A method and a device for estimating residual torque between the braked and braking elements of a vehicle
CN117643204A (zh) * 2021-07-12 2024-03-01 富士胶片株式会社 压电膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838251B1 (ko) * 2006-11-29 2008-06-17 충주대학교 산학협력단 굴곡부를 가지는 필름 스피커 및 그 제조 방법
JP5716263B2 (ja) 2008-06-30 2015-05-13 日立金属株式会社 セラミックス焼結体および圧電素子
KR101628584B1 (ko) 2011-09-30 2016-06-08 후지필름 가부시키가이샤 전기 음향 변환 필름, 플렉시블 디스플레이, 성대 마이크로폰 및 악기용 센서
KR101442632B1 (ko) * 2013-04-03 2014-09-22 한국세라믹기술원 압전 복합 필름 및 이를 포함하는 압전 장치
JP6431984B2 (ja) * 2015-07-27 2018-11-28 富士フイルム株式会社 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220146106A (ko) * 2021-04-23 2022-11-01 한국세라믹기술원 단위 압전 구조체 및 단위 커버 필름을 이용한 압전 스택 구조체 및 이를 이용한 발판형 압전 발전 모듈
KR102644834B1 (ko) 2021-04-23 2024-03-06 한국세라믹기술원 단위 압전 구조체 및 단위 커버 필름을 이용한 압전 스택 구조체 및 이를 이용한 발판형 압전 발전 모듈

Also Published As

Publication number Publication date
JPWO2017018313A1 (ja) 2018-06-28
WO2017018313A1 (ja) 2017-02-02
US11540074B2 (en) 2022-12-27
US20180160248A1 (en) 2018-06-07
US11140500B2 (en) 2021-10-05
US20210392453A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6431984B2 (ja) 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP5970033B2 (ja) 電気音響変換フィルム、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP6297204B2 (ja) 高分子複合圧電体、電気音響変換フィルムおよび電気音響変換器
JP6071932B2 (ja) 電気音響変換フィルム
JP6196400B2 (ja) 電気音響変換フィルム
JP6199245B2 (ja) 電気音響変換フィルムおよび電気音響変換フィルムの導通方法
JP5993772B2 (ja) 電気音響変換フィルム、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP7245905B2 (ja) 高分子複合圧電体、圧電フィルム、圧電スピーカー、フレキシブルディスプレイ
WO2020261822A1 (ja) 圧電フィルム
JP6505845B2 (ja) 電気音響変換フィルム
JP6193194B2 (ja) 電気音響変換フィルムおよび電気音響変換器
JP7155427B2 (ja) 高分子複合圧電体、圧電フィルム、圧電スピーカー、フレキシブルディスプレイ
JP7217807B2 (ja) 圧電フィルム
WO2016136522A1 (ja) 構造体および電気音響変換器
JP7155426B2 (ja) 高分子複合圧電体、圧電フィルム、圧電スピーカー、フレキシブルディスプレイ
JP6297223B2 (ja) 電気音響変換フィルムおよび電気音響変換器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6431984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250