[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6429020B2 - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet Download PDF

Info

Publication number
JP6429020B2
JP6429020B2 JP2015027369A JP2015027369A JP6429020B2 JP 6429020 B2 JP6429020 B2 JP 6429020B2 JP 2015027369 A JP2015027369 A JP 2015027369A JP 2015027369 A JP2015027369 A JP 2015027369A JP 6429020 B2 JP6429020 B2 JP 6429020B2
Authority
JP
Japan
Prior art keywords
phase
grain boundary
alloy
rare earth
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015027369A
Other languages
Japanese (ja)
Other versions
JP2016152247A (en
Inventor
明弘 大澤
明弘 大澤
田中 大介
大介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015027369A priority Critical patent/JP6429020B2/en
Publication of JP2016152247A publication Critical patent/JP2016152247A/en
Application granted granted Critical
Publication of JP6429020B2 publication Critical patent/JP6429020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

本発明は、希土類系永久磁石に関し、特にR−T−B系焼結磁石においてRの一部を重希土類元素で置換した希土類系永久磁石に関する。 The present invention relates to a rare earth permanent magnet, and more particularly to a rare earth permanent magnet in which a part of R is replaced with a heavy rare earth element in an RTB based sintered magnet.

正方晶R14B化合物を主相とするR−T−B系焼結磁石(Rは希土類元素、TはFeまたはその一部がCoによって置換されたFe、Bはホウ素)は優れた磁気特性を有することが知られており、1982年の発明(特許文献1)以来、代表的な高性能永久磁石である。 An R-T-B sintered magnet (R is a rare earth element, T is Fe or Fe partially substituted by Co, and B is boron) having a tetragonal R 2 T 14 B compound as a main phase is excellent. It is known to have magnetic properties and has been a typical high-performance permanent magnet since the invention in 1982 (Patent Document 1).

希土類元素RがNd、Pr、Dy、Tb、HoからなるR−T−B系焼結磁石は異方性磁界Haが大きく永久磁石材料として好ましい。中でも希土類元素RをNdとしたNd−Fe−B系永久磁石は、飽和磁化Is、キュリー温度Tc、異方性磁界Haのバランスが良く、資源量、耐食性において他の希土類元素Rを用いたR−T−B系焼結磁石よりも優れているために民生、産業、輸送機器などに広く用いられている。 An R-T-B type sintered magnet in which the rare earth element R is made of Nd, Pr, Dy, Tb, and Ho has a large anisotropic magnetic field Ha and is preferable as a permanent magnet material. Among these, Nd-Fe-B permanent magnets with rare earth element R as Nd have a good balance of saturation magnetization Is, Curie temperature Tc, and anisotropic magnetic field Ha, and R using other rare earth elements R in terms of resource and corrosion resistance. -It is widely used in consumer, industrial, transportation equipment and the like because it is superior to TB sintered magnets.

現在R−T−B系焼結磁石について磁気特性の向上が望まれており、特に残留磁束密度Brと保磁力HcJを上昇させる工夫は数多くなされている。 At present, it is desired to improve the magnetic characteristics of the RTB-based sintered magnet, and in particular, many ideas have been made to increase the residual magnetic flux density Br and the coercive force HcJ.

特開昭59−46008号公報JP 59-46008 A

近年希土類磁石の用途は多岐にわたっており、従来に比してより高い磁気特性が求められている。特に、ハイブリッド自動車等へのR−T−B系焼結磁石の適用においては、磁石は比較的高温に晒されることになるため、熱による高温減磁を抑制することが重要となる。この高温減磁を抑制するには、R−T−B系焼結磁石の室温における保磁力を高めておく必要がある。 In recent years, rare earth magnets have a wide variety of uses, and higher magnetic properties are required than ever before. In particular, in the application of an R-T-B system sintered magnet to a hybrid vehicle or the like, the magnet is exposed to a relatively high temperature, so it is important to suppress high temperature demagnetization due to heat. In order to suppress this high temperature demagnetization, it is necessary to increase the coercivity of the RTB-based sintered magnet at room temperature.

本発明はこうした状況を認識してなされたものであり、R−T−B系焼結磁石に対して、従来よりも高い保磁力を持たせることができる永久磁石を提供することを目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a permanent magnet capable of giving a coercive force higher than that of conventional magnets to an RTB-based sintered magnet. .

上述した課題を解決し、目的を達成するために、本発明の希土類系永久磁石は、R14B構造の主相(ただし、RはYを含めた希土類元素の少なくとも1種で、TはFeまたはその一部がCoによって置換されたFe、Bはホウ素)と、Ho−Y−N相を含む粒界相を有する焼結体からなり、前記焼結体において単位断面積あたりの全粒界相に対するHo−Y−N相の断面積割合が2.0%以上60%以下であり、前記Ho−Y−N相中のHoが5.0at%以上80at%以下、Yが5.0at%以上80at%以下であることを特徴とする。 In order to solve the above-described problems and achieve the object, the rare earth-based permanent magnet of the present invention has a main phase of R 2 T 14 B structure (where R is at least one rare earth element including Y, and T And Fe or B partially substituted by Co, and B is boron) and a sintered body having a grain boundary phase including a Ho—Y—N phase. The cross-sectional area ratio of the Ho—Y—N phase with respect to the grain boundary phase is 2.0% or more and 60% or less, Ho in the Ho—Y—N phase is 5.0 at% or more and 80 at% or less, and Y is 5. It is 0 at% or more and 80 at% or less.

本発明において、焼結体断面の単位断面は50μm角の領域とする。 In the present invention, the unit cross section of the sintered body cross section is a 50 μm square region.

本発明者らはR−T−B系焼結磁石において保磁力を大きく向上させる方法はないか鋭意研究を行った。その結果、粒界相としてHo−Y−N相を導入することによって、高い保磁力を得られることを見出した。その理由は明らかではないが、本発明者らは以下のように推察する。第一には、Ho−Y−N相はエネルギー的に安定で主相や他の粒界相と接しても固溶しにくく、粒界相に存在するだけで焼結時の主相の粒成長を抑制する効果があると考えられる。第二には、Ho−Y−N相は窒化物としてエネルギー的に安定であり、その安定性はHo−Y−O相よりも高いため酸化しにくく、焼結体の含有酸素量を低く抑えることが可能である。それにより酸素が希土類元素と酸化物を形成するために、磁性に大きく寄与している希土類元素の濃度が減少し、磁気特性が低下するという影響を減らすことができると考えられる。また希土類酸化物が低減できることで、加工性や耐食性が改善される。粒界相に占めるHo−Y−N相の断面積割合が2.0%以上60%以下であることにより、主相粒子の粒成長抑制効果が表れ、保磁力が向上する。 The present inventors diligently studied whether there is a method for greatly improving the coercive force in the RTB-based sintered magnet. As a result, it was found that a high coercive force can be obtained by introducing a Ho—Y—N phase as a grain boundary phase. Although the reason is not clear, the present inventors infer as follows. First, the Ho—Y—N phase is stable in energy, hardly dissolves in contact with the main phase or other grain boundary phases, and the grains of the main phase during sintering are only present in the grain boundary phase. It is thought that it has the effect of suppressing growth. Second, the Ho—Y—N phase is energetically stable as a nitride, and its stability is higher than that of the Ho—Y—O phase, so that it is difficult to oxidize, and the amount of oxygen contained in the sintered body is kept low. It is possible. As a result, since oxygen forms an oxide with rare earth elements, it is considered that the concentration of rare earth elements that greatly contribute to magnetism is reduced and the influence of deterioration of magnetic properties can be reduced. Moreover, workability and corrosion resistance are improved because the rare earth oxide can be reduced. When the cross-sectional area ratio of the Ho—Y—N phase in the grain boundary phase is 2.0% or more and 60% or less, the effect of suppressing the grain growth of the main phase particles appears and the coercive force is improved.

またHo−Y−N相の組成が、Hoが5.0at%〜80at%、Yが5.0at%〜80at%であることにより、希土類元素の酸化物を低減することができ、磁気特性を向上させることができる。 Moreover, the composition of the Ho—Y—N phase is such that Ho is 5.0 at% to 80 at% and Y is 5.0 at% to 80 at%, so that rare earth element oxides can be reduced, and magnetic characteristics can be reduced. Can be improved.

以上のように本発明によれば、R−T−B系焼結磁石に対して、従来よりも高い保磁力を持たせることができる。 As described above, according to the present invention, the RTB-based sintered magnet can have a higher coercive force than before.

以下、実施の形態に基づいてこの発明を詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。また、以下に記載した実施形態及び実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせても良いし、適宜選択して用いてもよい。 Hereinafter, the present invention will be described in detail based on embodiments. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.

本実施形態に係るR−T−B系焼結磁石は、希土類元素(R)を11〜18at%含有する。Rの濃度が11at%未満であると、R−T−B系焼結磁石の主相となるR14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが18at%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。 The RTB-based sintered magnet according to the present embodiment contains 11 to 18 at% of rare earth element (R). If the concentration of R is less than 11 at%, the R 2 T 14 B phase, which is the main phase of the R-T-B sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. The magnetic force is significantly reduced. On the other hand, when R exceeds 18 at%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases.

本実施形態に係るR−T−B系焼結磁石は、ホウ素(B)を5〜8at%含有する。Bが5at%未満の場合には高い保磁力を得ることができない。一方で、Bが8at%を超えると残留磁束密度が低下する傾向がある。したがって、Bの上限を8at%とする。 The RTB-based sintered magnet according to the present embodiment contains 5 to 8 at% of boron (B). When B is less than 5 at%, a high coercive force cannot be obtained. On the other hand, when B exceeds 8 at%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of B is 8 at%.

本実施形態に係るR−T−B系焼結磁石は、遷移金属元素Tを74〜83at%含有し、本発明におけるTはFeを必須とするが、この中でCoを4.0at%以下含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。また、本発明が適用されるR−T−B系焼結磁石は、Al及びCuの1種又は2種を0.01〜1.2at%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られる焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。 The RTB-based sintered magnet according to the present embodiment contains 74 to 83 at% of the transition metal element T, and T in the present invention requires Fe, and among these, Co is 4.0 at% or less. Can be contained. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase. Moreover, the RTB-based sintered magnet to which the present invention is applied can contain one or two of Al and Cu in a range of 0.01 to 1.2 at%. By containing one or two of Al and Cu in this range, it is possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained sintered magnet.

本実施形態に係るR−T−B系焼結磁石は、他の元素の含有を許容する。例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。 The RTB-based sintered magnet according to this embodiment allows the inclusion of other elements. For example, elements such as Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained.

本実施形態に係るR−T−B系焼結磁石は、R14B結晶粒(主相粒子)を有しており、前記主相粒子の大きさは1〜10μm程度である。 The RTB-based sintered magnet according to this embodiment has R 2 T 14 B crystal grains (main phase particles), and the size of the main phase particles is about 1 to 10 μm.

前記焼結磁石は、隣り合う2つ以上の前記主相粒子によって形成された粒界に、前記R14B結晶粒よりもRが濃縮したRリッチ相(粒界相)を有している。Rリッチ相はR種がHo及びYであり窒素を含有したHo−Y−N相、R種がNdであるNdリッチ相含み、希土類窒化物相、希土類酸化物相、ホウ素(B)原子の濃度が高いBリッチ相を含んでも良い。 The sintered magnet has an R-rich phase (grain boundary phase) in which R is more concentrated than the R 2 T 14 B crystal grains at a grain boundary formed by two or more adjacent main phase particles. Yes. The R-rich phase includes a Ho—Y—N phase in which R species are Ho and Y and contains nitrogen, a Nd-rich phase in which R species is Nd, a rare earth nitride phase, a rare earth oxide phase, and a boron (B) atom. A B-rich phase having a high concentration may be included.

以下、本件発明の製造方法の好適な例について説明する。本実施形態のR−T−B系焼結磁石の製造においては、まず、所望の組成を有するR−T−B系焼結磁石が得られるような原料合金を準備する。原料合金は、真空又は不活性ガス、望ましくはAr雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をArガス雰囲気などの非酸化雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板または薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。なお、溶解後の偏析を防止するため、例えば水冷銅板に傾注して凝固させることができる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。 Hereinafter, preferred examples of the production method of the present invention will be described. In the manufacture of the RTB-based sintered magnet of this embodiment, first, a raw material alloy is prepared so that an RTB-based sintered magnet having a desired composition can be obtained. The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably in an Ar atmosphere. In the strip casting method, a molten metal obtained by melting a raw metal in a non-oxidizing atmosphere such as an Ar gas atmosphere is ejected onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In order to prevent segregation after dissolution, for example, it can be solidified by pouring into a water-cooled copper plate. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.

本発明においてR−T−B系焼結磁石を得る場合、原料合金として、主相組成合金と、粒界相組成合金の2種類の合金から焼結磁石を作成するいわゆる二合金法の適用を基本とする。 In the case of obtaining an RTB-based sintered magnet in the present invention, the so-called two-alloy method of creating a sintered magnet from two types of alloys, a main phase composition alloy and a grain boundary phase composition alloy, is used as a raw material alloy. Basic.

本発明においては、粒界にHo−Y−N相を析出させることが重要となる。そのため二合金法として主相組成合金と供する粒界相組成合金にはHo,Yが含まれていなければならない。 In the present invention, it is important to precipitate the Ho—Y—N phase at the grain boundary. Therefore, the grain boundary phase composition alloy used as the main phase composition alloy as a two-alloy method must contain Ho and Y.

原料合金は粉砕工程に供される。主相組成合金及び粒界相組成合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用いる。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行なうことが効果的である。水素放出処理は、希土類焼結磁石として不純物となる水素を減少させることを目的として行われる。水素吸蔵のための加熱保持の温度は、200℃以上、望ましくは350℃以上とする。保持時間は、保持温度との関係、原料合金の厚さ等によって変わるが、少なくとも30分以上、望ましくは1時間以上とする。水素放出処理は、窒素ガスフローにて行う。これによりHo−Y−N相を生成させることができる。 The raw material alloy is subjected to a grinding process. The main phase composition alloy and the grain boundary phase composition alloy are ground separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the raw material alloy is coarsely pulverized until the particle size becomes about several hundred μm. For coarse pulverization, a stamp mill, jaw crusher, brown mill or the like is used. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be stored in the raw material alloy and then releasing it. The hydrogen releasing treatment is performed for the purpose of reducing hydrogen as an impurity as a rare earth sintered magnet. The heating and holding temperature for storing hydrogen is 200 ° C. or higher, preferably 350 ° C. or higher. The holding time varies depending on the relationship with the holding temperature, the thickness of the raw material alloy, etc., but is at least 30 minutes or longer, preferably 1 hour or longer. The hydrogen release process is performed with a nitrogen gas flow. Thereby, a Ho-YN phase can be generated.

粗粉砕工程後、微粉砕工程に移る。微粉砕には主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末を、平均粒径2.5〜6μm、望ましくは3〜5μmとする。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。 After the coarse pulverization process, the process proceeds to the fine pulverization process. A jet mill is mainly used for fine pulverization, and a coarsely pulverized powder having a particle size of about several hundreds of μm has an average particle size of 2.5 to 6 μm, preferably 3 to 5 μm. The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or the container wall. It is a method of generating a collision and crushing.

成形時の潤滑及び配向性の向上を目的とした脂肪酸又は脂肪酸の誘導体や炭化水素、例えばステアリン酸系やオレイン酸系であるステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸アミド、オレイン酸アミド、エチレンビスイソステアリン酸アミド、炭化水素であるパラフィン、ナフタレン等を微粉砕時に0.01〜0.3wt%程度添加することができる。 Fatty acids or fatty acid derivatives and hydrocarbons for the purpose of improving lubrication and orientation during molding, such as zinc stearate, calcium stearate, aluminum stearate, stearamide, oleamide, stearic acid or oleic acid Ethylene bisisostearic amide, hydrocarbon paraffin, naphthalene and the like can be added in an amount of about 0.01 to 0.3 wt% during pulverization.

上記微粉は磁場中成形に供される。磁場中成形における成形圧力は0.3〜3ton/cm2(30〜300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増または漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、40〜60%である。 The fine powder is subjected to molding in a magnetic field. What is necessary is just to let the shaping | molding pressure in shaping | molding in a magnetic field be the range of 0.3-3 ton / cm <2> (30-300 Mpa). The molding pressure may be constant from the beginning to the end of molding, may be gradually increased or gradually decreased, or may vary irregularly. The lower the molding pressure is, the better the orientation is. However, if the molding pressure is too low, the strength of the molded body is insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point. The final relative density of the molded body obtained by molding in a magnetic field is usually 40 to 60%.

印加する磁場は、10〜20kOe(960〜1600kA/m)程度とすればよい。印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。 The applied magnetic field may be about 10 to 20 kOe (960 to 1600 kA / m). The applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

次いで、成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1200℃で 4時間〜48時間焼結する。焼結時間が4時間未満であると、粒界相組成合金が溶けて全体に完全に行きわたることができず、主相粒子を包むことができなくなり、特に保磁力に悪影響を与えるからである。また、48時間以上焼成すると、Ho−Y−N相による粒成長抑制効果が薄れ、粒成長が著しく進行し、特に保磁力に悪影響を与えるからである。 Next, the molded body is sintered in a vacuum or an inert gas atmosphere. The sintering temperature needs to be adjusted according to various conditions such as composition, pulverization method, difference in average particle size and particle size distribution, but is sintered at 1000 to 1200 ° C. for 4 to 48 hours. When the sintering time is less than 4 hours, the grain boundary phase composition alloy is melted and cannot be completely spread out, and the main phase particles cannot be wrapped, and particularly the coercive force is adversely affected. . Further, when firing for 48 hours or more, the effect of suppressing grain growth by the Ho—Y—N phase is diminished, the grain growth is remarkably advanced, and particularly the coercive force is adversely affected.

焼結後、得られた焼結体に時効処理を施す。この工程は、保磁力を制御する重要な工程である。通常、時効処理は真空中又はArガス中で行われる。時効処理を2段に分けて行なう場合には、800℃近傍、600℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行なうと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には、600℃近傍の時効処理を施すとよい。 After sintering, the obtained sintered body is subjected to an aging treatment. This process is an important process for controlling the coercive force. Usually, the aging treatment is performed in a vacuum or Ar gas. In the case where the aging treatment is performed in two stages, holding for a predetermined time at around 800 ° C. and around 600 ° C. is effective. When the heat treatment at around 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by the heat treatment at around 600 ° C., the aging treatment at around 600 ° C. is preferably performed when the aging treatment is performed in one stage.

以下、本発明の内容を実施例及び比較例を用いて詳細に説明するが、本発明は以下の実施例に限定されるものではない。また、本発明において製造工程はすべて酸素量が50ppm以下に抑えられた低酸素雰囲気中で行っている。 Hereinafter, although the content of the present invention is explained in detail using an example and a comparative example, the present invention is not limited to the following examples. In the present invention, all the production steps are performed in a low oxygen atmosphere in which the oxygen amount is suppressed to 50 ppm or less.

(実施例1)
12.2at%Nd−5.9at%B−81.9at%Feの主相組成合金と、6.0at%Nd−20.0at%Y−20.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alの粒界相組成合金を作製するために、それぞれ原料となる金属あるいは合金を配合し、ストリップキャスト法により原料合金薄板を溶解、鋳造した。粒界相組成合金については表1にも組成をまとめている。また表1においてTREは焼結体全体の総希土類濃度を表している。
(Example 1)
Main phase composition alloy of 12.2 at% Nd-5.9 at% B-81.9 at% Fe, 6.0 at% Nd-20.0 at% Y-20.0 at% Ho-50.0 at% Fe-2. In order to prepare a grain boundary phase composition alloy of 0 at% Co-1.0 at% Cu-1.0 at% Al, a raw material alloy or thin plate was melted and cast by a strip casting method, each containing a raw material metal or alloy. . Table 1 also summarizes the composition of the grain boundary phase composition alloy. In Table 1, TRE represents the total rare earth concentration of the entire sintered body.

得られた原料合金薄板をそれぞれ水素粉砕し、粗粉砕粉末を得た。この粗粉砕粉末に潤滑剤として、オレイン酸アミドを添加した。次いで、気流式粉砕機(ジェットミル)を使用し、高圧窒素ガス雰囲気中で微粉砕を行い、微粉砕粉末を得た。この時雰囲気中の窒素は3000ppm±100ppmとしている。 The obtained raw material alloy thin plates were each pulverized with hydrogen to obtain coarsely pulverized powder. Oleic acid amide was added as a lubricant to the coarsely pulverized powder. Subsequently, using an airflow pulverizer (jet mill), fine pulverization was performed in a high-pressure nitrogen gas atmosphere to obtain finely pulverized powder. At this time, nitrogen in the atmosphere is set to 3000 ppm ± 100 ppm.

続いて、主相組成合金微粉と隆起相組成合金微粉を9:1の割合で混合し、磁場中成形した。具体的には、15kOeの磁場中で140MPaの圧力で成形を行い、20mm×18mm×13mmの成形体を得た。磁場方向はプレス方向と垂直な方向である。得られた成形体を1000〜1200℃で4〜48時間焼成した。その後、窒素量が1000ppmに保たれた雰囲気中で900℃で1時間、620℃で1時間の時効処理を行い、焼結体を得て、不活性ガス融解−非分散型赤外線吸収法を用いて含有酸素量及び含有窒素量を測定した。 Subsequently, the main phase composition alloy fine powder and the raised phase composition alloy fine powder were mixed at a ratio of 9: 1 and molded in a magnetic field. Specifically, molding was performed at a pressure of 140 MPa in a magnetic field of 15 kOe to obtain a molded body of 20 mm × 18 mm × 13 mm. The magnetic field direction is a direction perpendicular to the pressing direction. The obtained molded body was fired at 1000 to 1200 ° C. for 4 to 48 hours. Thereafter, an aging treatment is performed at 900 ° C. for 1 hour and at 620 ° C. for 1 hour in an atmosphere in which the nitrogen amount is maintained at 1000 ppm to obtain a sintered body, and an inert gas melting-non-dispersion type infrared absorption method is used. The oxygen content and nitrogen content were measured.

得られた焼結体について、BHトレーサーを用いて残留磁束密度(Br)及び保磁力(HcJ)を測定した。その結果は表2に示す通りであった。 About the obtained sintered compact, the residual magnetic flux density (Br) and the coercive force (HcJ) were measured using the BH tracer. The results were as shown in Table 2.

得られた焼結体を磁化容易軸に対して平行に切断した後、エポキシ系樹脂に樹脂埋めし、その断面を研磨した。研磨には市販の研磨紙を使い、番手の低い研磨紙から高い研磨紙へ変えながら研磨した。最後にバフとダイヤモンド砥粒を用いて研磨した。この際、水などをつけずに研磨を行った。水を用いると粒界相成分が腐食してしまう。 The obtained sintered body was cut in parallel to the easy axis of magnetization, then embedded in an epoxy resin, and the cross section was polished. For polishing, a commercially available abrasive paper was used, and polishing was performed while changing from a low-grade abrasive paper to a high-grade abrasive paper. Finally, polishing was performed using buffs and diamond abrasive grains. At this time, polishing was performed without adding water or the like. When water is used, the grain boundary phase components are corroded.

得られた焼結体断面にイオンミリング処理を行い、最表面の酸化膜や窒化膜等の影響を除いた後、R−T−B系焼結磁石の断面をEPMA(電子マイクロプローブアナライザー:Electron Probe Micro Analyzer)で観察し、分析した。50μm角の領域を単位断面とし、EPMAによる元素マッピング(256点×256点)を行った。断面における観察位置は任意とする。これにより主相粒子と粒界を判別した。粒界には少なくとも2種類の粒界相が存在した。定量分析により、前記2種類の粒界相はNdリッチ相とHo−Y−N相であることを確認した。そして粒界相に占めるHo−Y−N相の面積率と、主相粒子の平均粒子径を求めて表2に示した。 After performing the ion milling process on the cross section of the obtained sintered body and removing the influence of the oxide film or nitride film on the outermost surface, the cross section of the R-T-B system sintered magnet is changed to EPMA (Electron Microprobe Analyzer: Electron). Observation and analysis with a Probe Micro Analyzer). Elemental mapping (256 points × 256 points) by EPMA was performed using a 50 μm square region as a unit cross section. The observation position in the cross section is arbitrary. As a result, main phase particles and grain boundaries were distinguished. At least two types of grain boundary phases existed at the grain boundaries. By quantitative analysis, it was confirmed that the two kinds of grain boundary phases were an Nd-rich phase and a Ho-YN phase. Then, the area ratio of the Ho—Y—N phase in the grain boundary phase and the average particle diameter of the main phase particles were determined and shown in Table 2.

粒界相に占めるHo−Y−N相の面積率の算出方法について以下記述する。
(1)単位断面で観察した反射電子像から画像解析法を用いて、主相粒子部分と粒界部分を特定し、粒界部分の面積(B)を算出した。
(2)EPMAで得られたHo、Y、Nの特性X線強度のマッピングデータから元素濃度を算出し、上記(1)で特定された主相粒子部分におけるHo、Y、Nの各元素の濃度の平均値と標準偏差を算出した。
(3)粒界において、EPMAで得られた特性X線強度のマッピングデータから元素濃度を算出し、上記(2)で求めた主相粒子部分における元素濃度の(平均値+3×標準偏差)の値よりも元素濃度の値の大きい部分を、Ho、Y、Nについて特定した。そして特定した部分をHo,Y,Nの濃度が主相粒子よりも濃く分布する部分と定義した。
(4)上記(1)で特定された粒界と、上記(3)で特定されたHo、Y、Nの各元素の濃度が主相粒子内よりも濃く分布する部分がすべて重なり合う部分を、粒界におけるHo−Y−N相として特定し、その部分の面積(A)を算出した。
(5)上記(4)で算出したHo−Y−N相の面積(A)を、上記(1)で算出した粒界の面積(B)で割ることにより、粒界に占めるHo−Y−N相の面積率(A/B)を算出した。
A method for calculating the area ratio of the Ho-YN phase in the grain boundary phase will be described below.
(1) The main phase particle part and the grain boundary part were specified from the reflected electron image observed in the unit cross section using an image analysis method, and the area (B) of the grain boundary part was calculated.
(2) The element concentration is calculated from the mapping data of the characteristic X-ray intensities of Ho, Y, and N obtained by EPMA, and each element of Ho, Y, and N in the main phase particle portion specified in (1) above is calculated. The average concentration and standard deviation were calculated.
(3) At the grain boundary, the element concentration is calculated from the mapping data of the characteristic X-ray intensity obtained by EPMA, and the (average value + 3 × standard deviation) of the element concentration in the main phase particle portion obtained in the above (2) The portion where the element concentration value was larger than the value was specified for Ho, Y, and N. And the specified part was defined as a part in which the concentrations of Ho, Y, and N were distributed deeper than the main phase particles.
(4) The part where the grain boundary specified in (1) above and the part in which the concentration of each element of Ho, Y, N specified in (3) above is more densely distributed than in the main phase particle overlaps, It specified as the Ho-YN phase in a grain boundary, and calculated the area (A) of the part.
(5) By dividing the area (A) of the Ho—Y—N phase calculated in (4) above by the area (B) of the grain boundary calculated in (1) above, Ho—Y— occupying the grain boundary. The area ratio (A / B) of the N phase was calculated.

反射電子像の画像から主相粒子部分と粒界部分を特定し、50μm角の視野内で確認されたすべての主相粒子の面積をそれぞれ1つずつ算出した。算出した面積を円相当径に換算して、すべての主相粒子の主相粒子径を得た。この一連の作業を20個の視野で行い、得られたすべての主相粒子径の平均値を、平均粒子径とした。 The main phase particle part and the grain boundary part were specified from the backscattered electron image, and the areas of all main phase particles confirmed within a 50 μm square field were calculated one by one. The calculated area was converted into an equivalent circle diameter to obtain main phase particle diameters of all main phase particles. This series of operations was performed with 20 fields of view, and the average value of all the main phase particle diameters obtained was defined as the average particle diameter.

(実施例2)
粒界相合金の組成が12.0at%Nd−17.0at%Y−17.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Example 2)
The composition of the grain boundary phase alloy is 12.0 at% Nd-17.0 at% Y-17.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(実施例3)
粒界相合金の組成が20.0at%Nd−13.0at%Y−13.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
Example 3
The composition of the grain boundary phase alloy is 20.0 at% Nd-13.0 at% Y-13.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(比較例1)
粒界相合金の組成が46.0at%Nd−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 1)
Prepared in the same manner as in Example 1 except that the composition of the grain boundary phase alloy is 46.0 at% Nd-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. And evaluated.

(比較例2)
粒界相合金の組成が2.0at%Nd−22.0at%Y−22.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 2)
The composition of the grain boundary phase alloy is 2.0 at% Nd-22.0 at% Y-22.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(比較例3)
粒界相合金の組成が4.0at%Nd21.0at%Y−21.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 3)
Except that the composition of the grain boundary phase alloy is 4.0 at% Nd 21.0 at% Y-21.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al Were prepared and evaluated in the same manner as in Example 1.

(比較例4)
粒界相合金の組成が22.0at%Nd−12.0at%Y−12.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 4)
The composition of the grain boundary phase alloy is 22.0 at% Nd-12.0 at% Y-12.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(比較例5)
粒界相合金の組成が24.0at%Nd−11.0at%Y−11.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 5)
The composition of the grain boundary phase alloy is 24.0 at% Nd-11.0 at% Y-11.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

Figure 0006429020
Figure 0006429020

表1は使用した粒界相合金の組成を示している。比較例1〜5及び実施例1〜3を見ると、用いる粒界相合金の組成におけるNdの元素比率を下げることにより、Ho−Y−N相面積率を上昇させることができた。そしてHo−Y−N相の面積率の上昇に伴い、酸素含有量は減少し、窒素含有量は上昇した。窒素含有量が増加していることはHo−Y−N相の焼結体を占める比率が上昇していることに起因する。酸素量の低下は、先述の通りHo−Y−N相がエネルギー的に安定で、酸化しにくい材料であることに起因すると考えられる。なお、比較例1〜5及び実施例1〜3について、生成したHo−Y−N相におけるHo、Yの元素比率は共に41at%であった。Ho−Y−N相の面積率が2.0%以上60%以下の実施例1〜3では、高い保磁力を得ることができた。これはHo−Y−N相による粒成長抑制効果、及び含有酸素量の低下に起因するものと考えられる。Ho−Y−N相の面積率が62%以上の比較例2〜3では、Br、HcJ共に低下している。これはHo、Yの濃度が高すぎために、主相にHo,Yが取り込まれたことによるものと考えられる。Hoは主相に入ると、異方性磁界を下げることは無いが飽和磁化を大きく低下させ、Yは主相に入ると、異方性磁界と飽和磁化の両方を大きく低下させる。一方でHo−Y−N相の面積率が1.0%以下の比較例4〜5では、保磁力が十分に上昇していない。これはHo−Y−N相のもつ粒成長抑制効果を発現するには面積率が不十分だったことが原因と考えられる。
Figure 0006429020
Figure 0006429020

Table 1 shows the composition of the grain boundary phase alloy used. In Comparative Examples 1 to 5 and Examples 1 to 3, the Ho—Y—N phase area ratio could be increased by lowering the elemental ratio of Nd in the composition of the grain boundary phase alloy used. And with the increase in the area ratio of the Ho-Y-N phase, the oxygen content decreased and the nitrogen content increased. The increase in the nitrogen content is attributed to an increase in the proportion of the Ho—Y—N phase sintered body. The decrease in the oxygen amount is considered to be caused by the fact that the Ho—Y—N phase is energetically stable and hardly oxidized as described above. In Comparative Examples 1 to 5 and Examples 1 to 3, the element ratios of Ho and Y in the generated Ho—Y—N phase were both 41 at%. In Examples 1 to 3 in which the area ratio of the Ho—Y—N phase was 2.0% to 60%, a high coercive force could be obtained. This is considered to be caused by the grain growth suppressing effect by the Ho—Y—N phase and the decrease in the oxygen content. In Comparative Examples 2 to 3 in which the area ratio of the Ho—Y—N phase is 62% or more, both Br and HcJ are lowered. This is considered to be because Ho and Y were taken into the main phase because the Ho and Y concentrations were too high. When entering the main phase, Ho does not lower the anisotropic magnetic field, but greatly reduces the saturation magnetization. When entering the main phase, Y greatly reduces both the anisotropic magnetic field and the saturation magnetization. On the other hand, in Comparative Examples 4 to 5 in which the area ratio of the Ho—Y—N phase is 1.0% or less, the coercive force is not sufficiently increased. This is presumably because the area ratio was insufficient to exhibit the grain growth inhibitory effect of the Ho-YN phase.

(比較例6)
粒界相合金の組成が12.0at%Nd−2.0at%Y−32.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 6)
The composition of the grain boundary phase alloy is 12.0 at% Nd-2.0 at% Y-32.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(比較例7)
粒界相合金の組成が12.0at%Nd−4.0at%Y−30.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 7)
The composition of the grain boundary phase alloy is 12.0 at% Nd-4.0 at% Y-30.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(実施例4)
粒界相合金の組成が12.0at%Nd−6.0at%Y−28.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Example 4)
The composition of the grain boundary phase alloy is 12.0 at% Nd-6.0 at% Y-28.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(実施例5)
粒界相合金の組成が12.0at%Nd−17.0at%Y−17.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Example 5)
The composition of the grain boundary phase alloy is 12.0 at% Nd-17.0 at% Y-17.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(実施例6)
粒界相合金の組成が12.0at%Nd−28.0at%Y−6.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Example 6)
The composition of the grain boundary phase alloy is 12.0 at% Nd-28.0 at% Y-6.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(比較例8)
粒界相合金の組成が12.0at%Nd−30.0at%Y−4.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 8)
The composition of the grain boundary phase alloy is 12.0 at% Nd-30.0 at% Y-4.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

(比較例9)
粒界相合金の組成が12.0at%Nd−32.0at%Y−2.0at%Ho−50.0at%Fe−2.0at%Co−1.0at%Cu−1.0at%Alであること以外は、実施例1と同様に作製して評価した。
(Comparative Example 9)
The composition of the grain boundary phase alloy is 12.0 at% Nd-32.0 at% Y-2.0 at% Ho-50.0 at% Fe-2.0 at% Co-1.0 at% Cu-1.0 at% Al. Except for this, it was produced and evaluated in the same manner as in Example 1.

Figure 0006429020
Figure 0006429020
比較例6〜9及び実施例4〜6で、粒界相合金におけるHoとYの濃度を変えることにより、Ho−Y−N相におけるHoとYの濃度が変化した。そして粒界相全体でHo−Y−N相が占める面積率はいずれも30%であった。また、Ho−Y−N相におけるYの比率が上がると、酸素含有量が増加した。これは、Y−N相はHo−Y−N相に比べて酸化しやすく、潤滑剤由来の炭素とも結びついてY−CON相を形成しやすいことが原因として考えられる。Hoが十分な濃度であることにより、Ho−Y−N相の安定性が保たれる。実施例4〜6を見ると、Ho、Yの濃度はともに5〜80at%であり、高いBr、HcJを得られている。これはHo−Y−N相による粒成長抑制効果、酸素量低減の効果によるものと考えられる。比較例6〜7を見ると、BrとHcJ共に低い値である。これは酸素含有量増加が原因と考えられる。比較例8〜9もまたBrとHcJが低い値となっている。Ho−Y−N相においてYの濃度が減少すると、Yの代わりにNdを取り込みやすくなる。そのために磁性に寄与するNdがHo−Y−N相に奪われ、特性が悪化することが原因と考えられる。
Figure 0006429020
Figure 0006429020
In Comparative Examples 6 to 9 and Examples 4 to 6, the Ho and Y concentrations in the Ho-YN phase were changed by changing the Ho and Y concentrations in the grain boundary phase alloy. The area ratio occupied by the Ho-YN phase in the entire grain boundary phase was 30%. Moreover, the oxygen content increased as the Y ratio in the Ho—Y—N phase increased. This is presumably because the YN phase is more easily oxidized than the Ho-YN phase, and is easily combined with the lubricant-derived carbon to form the Y-CON phase. When the Ho concentration is sufficient, the stability of the Ho-YN phase is maintained. Looking at Examples 4 to 6, the concentrations of Ho and Y are both 5 to 80 at%, and high Br and HcJ are obtained. This is considered to be due to the effect of suppressing grain growth and the effect of reducing the amount of oxygen by the Ho—Y—N phase. Looking at Comparative Examples 6 to 7, both Br and HcJ are low values. This is thought to be due to an increase in oxygen content. In Comparative Examples 8 to 9, Br and HcJ are low values. If the concentration of Y decreases in the Ho-YN phase, it becomes easier to incorporate Nd instead of Y. Therefore, it is considered that Nd contributing to magnetism is lost to the Ho—Y—N phase and the characteristics deteriorate.

(比較例10)
微粉砕工程をArガス雰囲気中で、窒素が50ppm以下の低窒素雰囲気下で行ったこと以外は実施例5と同様に作製して評価した。
(Comparative Example 10)
It was produced and evaluated in the same manner as in Example 5 except that the pulverization step was performed in an Ar gas atmosphere in a low nitrogen atmosphere with nitrogen of 50 ppm or less.

Figure 0006429020
比較例10ではHo−Y−N相が確認できなかった。Ho−Y−N相の存在により主相粒子の粒成長を抑えられた実施例2と比べると、比較例10の粒子径は大きくなっており、主相粒子が粒成長し、それに伴い保磁力は低下している。以上から、窒素雰囲気による微粉砕及び時効熱処理工程を経ることによりHo−Y−N相を生成し、粒成長抑制効果が発現し、磁気特性が向上した。
Figure 0006429020
In Comparative Example 10, the Ho—Y—N phase could not be confirmed. Compared with Example 2 in which the grain growth of the main phase particles was suppressed due to the presence of the Ho—Y—N phase, the particle diameter of Comparative Example 10 was larger, and the main phase particles grew, and the coercive force accordingly. Is falling. From the above, the Ho—Y—N phase was generated through the fine pulverization in the nitrogen atmosphere and the aging heat treatment step, the effect of suppressing grain growth was exhibited, and the magnetic properties were improved.

以上のように本発明に係るR−T−B系焼結磁石は、高い残留磁束密度及び高い保磁力を有しており、高出力や高効率が求められる民生・産業・輸送機器等に使われる永久磁石として好適である。 As described above, the RTB-based sintered magnet according to the present invention has a high residual magnetic flux density and a high coercive force, and is used for consumer, industrial, transportation equipment, etc. that require high output and high efficiency. It is suitable as a permanent magnet.

Claims (1)

14B構造の主相(ただし、RはYを含めた希土類元素の少なくとも1種で、TはFeまたはその一部がCoによって置換されたFe、Bはホウ素)と、Ho−Y−N相を含む粒界相を有する焼結体からなり、前記焼結体において単位断面積あたりの全粒界相に対するHo−Y−N相の断面積割合が2.0%以上60%以下であり、前記Ho−Y−N相中のHoが5.0at%以上80at%以下、Yが5.0at%以上80at%以下であることを特徴とする希土類系永久磁石。 The main phase of the R 2 T 14 B structure (where R is at least one rare earth element including Y, T is Fe or Fe partially substituted by Co, and B is boron), Ho-Y A sintered body having a grain boundary phase including -N phase, and the cross-sectional area ratio of the Ho-YN phase to the total grain boundary phase per unit sectional area in the sintered body is 2.0% or more and 60% or less. A rare earth-based permanent magnet, wherein Ho in the Ho-Y-N phase is 5.0 at% to 80 at% and Y is 5.0 at% to 80 at%.
JP2015027369A 2015-02-16 2015-02-16 Rare earth permanent magnet Active JP6429020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015027369A JP6429020B2 (en) 2015-02-16 2015-02-16 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027369A JP6429020B2 (en) 2015-02-16 2015-02-16 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2016152247A JP2016152247A (en) 2016-08-22
JP6429020B2 true JP6429020B2 (en) 2018-11-28

Family

ID=56695478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027369A Active JP6429020B2 (en) 2015-02-16 2015-02-16 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP6429020B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7567558B2 (en) 2021-03-02 2024-10-16 株式会社プロテリアル Manufacturing method of RTB based sintered magnet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940623B2 (en) * 1989-05-12 1999-08-25 三菱マテリアル株式会社 Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
JPH11251125A (en) * 1997-12-19 1999-09-17 Shin Etsu Chem Co Ltd Rare-earth-iron-boron sintered magnet and its manufacture
JP3489741B2 (en) * 2000-10-04 2004-01-26 住友特殊金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP4374962B2 (en) * 2003-03-28 2009-12-02 日産自動車株式会社 Rare earth magnet and manufacturing method thereof, and motor using rare earth magnet
JP6330254B2 (en) * 2013-04-22 2018-05-30 Tdk株式会社 R-T-B sintered magnet

Also Published As

Publication number Publication date
JP2016152247A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6424664B2 (en) Rare earth permanent magnet
JP6504044B2 (en) Rare earth permanent magnet
JP6269279B2 (en) Permanent magnet and motor
EP3076406B1 (en) Making method of a r-fe-b sintered magnet
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP2011258935A (en) R-t-b-based rare earth sintered magnet
JP6536816B2 (en) RTB based sintered magnet and motor
JP5464289B1 (en) R-T-B sintered magnet
JP4433282B2 (en) Rare earth magnet manufacturing method and manufacturing apparatus
JP6380738B2 (en) R-T-B permanent magnet, raw alloy for R-T-B permanent magnet
JP6468435B2 (en) R-T-B sintered magnet
JP6429020B2 (en) Rare earth permanent magnet
US10256017B2 (en) Rare earth based permanent magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP6488743B2 (en) R-T-B sintered magnet
JP2020155657A (en) Method for manufacturing r-t-b based sintered magnet
JP6488744B2 (en) R-T-B sintered magnet
JP2014225645A (en) R-t-b based sintered magnet
JP2006100434A (en) Method of manufacturing r-t-b based rare earth permanent magnet
JP2005286175A (en) R-t-b-based sintered magnet and its manufacturing method
JP2017098537A (en) R-T-B based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JP2005286174A (en) R-t-b-based sintered magnet
US20240212896A1 (en) R-t-b based permanent magnet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6429020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250