JP6428678B2 - Additive manufacturing method, additive manufacturing method - Google Patents
Additive manufacturing method, additive manufacturing method Download PDFInfo
- Publication number
- JP6428678B2 JP6428678B2 JP2016032176A JP2016032176A JP6428678B2 JP 6428678 B2 JP6428678 B2 JP 6428678B2 JP 2016032176 A JP2016032176 A JP 2016032176A JP 2016032176 A JP2016032176 A JP 2016032176A JP 6428678 B2 JP6428678 B2 JP 6428678B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- powder
- metal powder
- magnetic metal
- additive manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 239000000654 additive Substances 0.000 title claims description 24
- 230000000996 additive effect Effects 0.000 title claims description 24
- 239000000843 powder Substances 0.000 claims description 75
- 239000002184 metal Substances 0.000 claims description 54
- 229910052751 metal Inorganic materials 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 38
- 239000002245 particle Substances 0.000 claims description 28
- 239000013078 crystal Substances 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 28
- 239000011230 binding agent Substances 0.000 description 17
- 229910052742 iron Inorganic materials 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000000428 dust Substances 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 239000006247 magnetic powder Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、磁性金属粉末を用いた積層造形方法に関するものであり、特に、優れた磁気特性を有する造形体を得ることが出来る積層造形方法に関するものである。また、本発明は、積層造形体製造方法および積層造形体に関するものである。 The present invention relates to a layered manufacturing method using a magnetic metal powder, and particularly to a layered manufacturing method capable of obtaining a shaped body having excellent magnetic properties. The present invention also relates to a method for manufacturing a layered object and a layered object.
近年、省エネルギーの観点から変圧器の小型化、電動機の小型化・高速化が求められている。変圧器や電動機を小型化する手段の一つとして、圧粉磁芯を使用することが提案されている。圧粉磁芯とは、絶縁被覆された磁性粉末を金型内で圧粉、接合、固化して得られる磁芯であり、電磁鋼板を積層して製造される磁芯に比べて形状の自由度が高い。そのため、3次元的に自由な形状とすることができる圧粉磁芯を用いることにより、空間を無駄なく使用して機器を小型化することが可能となる。 In recent years, miniaturization of transformers and miniaturization and high speed of electric motors are required from the viewpoint of energy saving. The use of a dust core has been proposed as one of the means for miniaturizing transformers and electric motors. A dust core is a magnetic core obtained by compacting, bonding, and solidifying magnetic powder coated with insulation in a mold, and its shape is free compared to a magnetic core manufactured by laminating electromagnetic steel sheets. High degree. Therefore, by using a dust core that can be three-dimensionally free, it is possible to use the space without waste and to reduce the size of the device.
しかしながら、圧粉磁芯は磁束密度が低い傾向にあり、変圧器の変換効率が低い、電動機のトルクが出ないなどの問題があった。そこで、製造時に磁場をかけることにより、圧粉磁芯の磁気特性を向上させる試みがなされている。 However, the dust core tends to have a low magnetic flux density, and there are problems such as low conversion efficiency of the transformer and no torque of the motor. Thus, attempts have been made to improve the magnetic properties of the dust core by applying a magnetic field during production.
例えば、特許文献1には、形状異方性を有する軟磁性粉末を磁場中で圧粉成形して磁芯とする方法が開示されている。また、特許文献2には、巻線コイルを設置した金型内に単結晶鉄粉を導入し、磁束分布を与えた状態で接合、固化する方法が開示されている。特許文献3には、軟磁性粒子を加圧成形して成形体とした後、超伝導コイルを用いて形成した磁場中で前記成形体を熱処理する方法が開示されている。
For example, Patent Document 1 discloses a method of forming a magnetic core by compacting soft magnetic powder having shape anisotropy in a magnetic field. Further,
特許文献1〜3に記載された方法で得られる圧粉磁芯では磁気特性の向上がみられるものの、その効果は十分といえず、さらなる磁気特性の向上が求められている。 Although the dust core obtained by the methods described in Patent Documents 1 to 3 shows an improvement in magnetic properties, the effect is not sufficient, and further improvement in magnetic properties is required.
本発明は、上記事情に鑑みてなされたものであり、優れた磁気特性を有する造形体を得ることが出来る積層造形方法および積層造形体製造方法を提供することを目的とする。また、本発明は、優れた磁気特性を有する積層造形体を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the additive manufacturing method and additive manufacturing method which can obtain the molded object which has the outstanding magnetic characteristic. Another object of the present invention is to provide a layered object having excellent magnetic properties.
発明者らは、検討の結果、以下の知見を得た。
(1)磁性粉末を構成する粒子、特に単結晶粒子は、磁場を印加することにより磁化容易方向に配向する傾向がある。
(2)しかし、磁性粉末を金型等の容器に導入する場合、個々の粒子は、粒子の形状等に中に応じた方向性を持つことになり、さらに、容器中に充填された状態における物理的な制約などにより、本来配向させたい方向に粉末を配向させることが困難である。
(3)さらに、金型等の容器を通して磁場を印加する方法では、磁束のほとんどが容器を流れるため、磁性粉末に十分な磁場を印加することができない。特に、金型は一般的に鉄製であるため、この問題が顕著となる。
(4)以上の理由から、特許文献1〜3に記載されているような従来の方法では、圧粉成形体の磁気特性を大きく向上させることができない。
(5)これに対し、単結晶粒子を含有する磁性金属粉末を、磁場中で配向させた状態で積層造形すれば、磁化容易軸を十分に配向させることができ、磁気特性が飛躍的に向上した造形体を得ることができる。
As a result of the study, the inventors have obtained the following knowledge.
(1) Particles constituting magnetic powder, particularly single crystal particles, tend to be oriented in the easy magnetization direction by applying a magnetic field.
(2) However, when the magnetic powder is introduced into a container such as a mold, the individual particles will have a direction corresponding to the shape of the particles and the like, and in a state filled in the container. Due to physical restrictions, it is difficult to orient the powder in the direction in which it is originally intended.
(3) Furthermore, in the method of applying a magnetic field through a container such as a mold, since most of the magnetic flux flows through the container, a sufficient magnetic field cannot be applied to the magnetic powder. In particular, since the mold is generally made of iron, this problem becomes significant.
(4) For the above reasons, the conventional methods as described in Patent Documents 1 to 3 cannot greatly improve the magnetic properties of the green compact.
(5) On the other hand, if a magnetic metal powder containing single crystal particles is layered in a state of being oriented in a magnetic field, the easy axis of magnetization can be sufficiently oriented, and the magnetic properties are dramatically improved. A shaped body can be obtained.
本発明は上記知見に基づいてなされたものであり、その要旨構成は以下のとおりである。
1.磁性金属粉末を積層造形する方法であって、
前記磁性金属粉末に占める単結晶粒子の個数割合が50%以上であり、
前記磁性金属粉末を磁場中で配向させた状態で積層造形する、積層造形方法。
This invention is made | formed based on the said knowledge, The summary structure is as follows.
1. It is a method for layered modeling of magnetic metal powder,
The number ratio of single crystal particles in the magnetic metal powder is 50% or more,
A layered manufacturing method in which the magnetic metal powder is layered in a state of being oriented in a magnetic field.
2.前記1に記載の積層造形方法であって、
積層造形後にさらに熱処理を行う、積層造形方法。
2. The additive manufacturing method according to 1 above,
An additive manufacturing method in which heat treatment is further performed after additive manufacturing.
3.前記1または2に記載の積層造形方法により、積層造形体を製造する積層造形体製造方法。 3. 3. A method for manufacturing a layered object by manufacturing a layered object by the method for layered manufacturing described in 1 or 2 above.
4.前記積層造形体が磁性体である、前記3に記載の積層造形体製造方法。 4). 4. The method for manufacturing a layered object according to 3 above, wherein the layered object is a magnetic body.
5.磁性金属粉末の積層造形体であって、
前記磁性金属粉末に占める単結晶粒子の個数割合が50%以上であり、
前記磁性金属粉末が配向している、積層造形体。
5. Laminated shaped body of magnetic metal powder,
The number ratio of single crystal particles in the magnetic metal powder is 50% or more,
Laminated shaped body in which the magnetic metal powder is oriented.
6.前記3または4に記載の積層造形体製造方法により製造された積層造形体。 6). A layered object manufactured by the method for manufacturing a layered object according to 3 or 4 above.
本発明によれば、簡便な方法で、優れた磁気特性を有する様々な形状の造形体を得ることが出来る According to the present invention, it is possible to obtain various shaped shaped bodies having excellent magnetic properties by a simple method.
次に、本発明を実施する方法について具体的に説明する。なお、以下の説明は本発明の一実施形態について説明したものであって、本発明は以下の説明に限定されるものではない。 Next, a method for carrying out the present invention will be specifically described. In addition, the following description demonstrated one Embodiment of this invention, Comprising: This invention is not limited to the following description.
[磁性金属粉末]
本発明の一実施形態においては、磁性金属粉末を磁場中で配向させた状態で積層造形が行われる。前記磁性金属粉末の材質としては、特に限定されることなく、磁性を有する金属であれば任意の物を用いることができる。前記磁性金属粉末としては、例えば、Fe、Co、およびNiからなる群より選択される少なくとも1つを含有する粉末を用いることが出来る。前記Fe、Co、およびNiからなる群より選択される少なくとも1つを含有する粉末としては、Fe、Co、Niのいずれか単体からなる粉末、すなわちFe粉末(純鉄粉)、Co粉末、Ni粉末を用いることもできるが、Fe、Co、およびNiからなる群より選択される少なくとも1つと、他の金属とからなる粉末を用いることもできる。磁気特性の観点からは、前記磁性金属粉末は、Fe、Co、およびNiからなる群より選択される少なくとも1つを、合計量で50質量%以上含有することが好ましく、70質量%以上含有することがより好ましい。一例としては、鉄基粉末を用いることができる。なお、ここで鉄基粉末とは、Feを50質量%以上含有する粉末を意味する。
[Magnetic metal powder]
In one embodiment of the present invention, additive manufacturing is performed in a state where magnetic metal powder is oriented in a magnetic field. The material of the magnetic metal powder is not particularly limited, and any material can be used as long as it is a metal having magnetism. As the magnetic metal powder, for example, a powder containing at least one selected from the group consisting of Fe, Co, and Ni can be used. The powder containing at least one selected from the group consisting of Fe, Co, and Ni is a powder composed of any one of Fe, Co, and Ni, that is, Fe powder (pure iron powder), Co powder, Ni Although powder can also be used, the powder which consists of at least 1 selected from the group which consists of Fe, Co, and Ni and another metal can also be used. From the viewpoint of magnetic properties, the magnetic metal powder preferably contains at least one selected from the group consisting of Fe, Co, and Ni in a total amount of 50% by mass or more, and 70% by mass or more. It is more preferable. As an example, iron-based powder can be used. Here, the iron-based powder means a powder containing Fe of 50% by mass or more.
[単結晶粒子]
上記磁性金属粉末を構成する磁性金属粒子は、一般的に多結晶であっても異方性を有するため、磁場によって配向するが、単結晶粒子に比べればその配向は限定的である。そのため、最終的に得られる積層造形体において十分な配向を達成するためには単結晶粒子を用いる必要があり、本発明の一実施形態においては、上記磁性金属粉末に占める単結晶粒子の個数割合を50%以上とする。これにより、磁場中で磁性金属粉末の結晶軸を高度に配向させ、優れた磁気特性を有する積層造形体を得ることが可能となる。なお、磁性金属粉末に占める単結晶粒子の個数割合は、実施例に記載する方法で測定することができる。また、結晶軸を高度に配向させるという観点からは、磁性金属粉末に占める単結晶粒子の個数割合を70%以上とすることが好ましく、90%以上とすることがより好ましい。
[Single crystal particles]
The magnetic metal particles constituting the magnetic metal powder generally have anisotropy even if they are polycrystalline, so that they are oriented by a magnetic field, but the orientation is limited compared to single crystal particles. Therefore, it is necessary to use single crystal particles in order to achieve sufficient orientation in the finally obtained layered object, and in one embodiment of the present invention, the number ratio of single crystal particles in the magnetic metal powder Is 50% or more. As a result, the crystallographic axis of the magnetic metal powder is highly oriented in a magnetic field, and a layered object having excellent magnetic properties can be obtained. The number ratio of single crystal particles in the magnetic metal powder can be measured by the method described in the examples. From the viewpoint of highly orienting the crystal axes, the number ratio of single crystal particles in the magnetic metal powder is preferably 70% or more, and more preferably 90% or more.
[粒径]
前記磁性金属粉末の粒径は、特に限定されず任意の値とすることができるが、全磁性金属粉末に占める、粒径500μm以下の粒子の割合を80質量%以上とすることが、積層造形体の密度向上の観点から好ましい。なお、磁性金属粉末の粒度分布は、JIS Z2510−2004に定められた方法を用いて、ふるい分けすることによって評価できる。
[Particle size]
The particle diameter of the magnetic metal powder is not particularly limited and may be any value. However, the ratio of particles having a particle diameter of 500 μm or less in the total magnetic metal powder is 80% by mass or more. It is preferable from the viewpoint of improving the density of the body. The particle size distribution of the magnetic metal powder can be evaluated by sieving using the method defined in JIS Z2510-2004.
[磁性金属粉末の製造方法]
上記磁性金属粉末としては、特に限定されることなく、任意の製造方法で得たものを用いることができる。例えば、水アトマイズ法やガスアトマイズ法等のアトマイズ法によって得られるアトマイズ粉(水アトマイズ粉、ガスアトマイズ粉等)を用いることができる。また、前記磁性金属粉末として鉄粉を用いる場合には、ミルスケールを還元する還元法で製造される還元鉄粉を用いることもできる。また、磁性金属粉末を構成する粒子を単結晶とする方法についても特に限定されることなく、熱処理を用いた方法等、任意の方法を用いることができる。
[Method for producing magnetic metal powder]
As said magnetic metal powder, what was obtained by arbitrary manufacturing methods can be used, without being specifically limited. For example, atomized powder (water atomized powder, gas atomized powder, etc.) obtained by an atomizing method such as a water atomizing method or a gas atomizing method can be used. Moreover, when using iron powder as said magnetic metal powder, the reduced iron powder manufactured by the reduction method which reduces a mill scale can also be used. Further, the method of making the particles constituting the magnetic metal powder into a single crystal is not particularly limited, and any method such as a method using heat treatment can be used.
上記磁性金属粉末は、その表面に絶縁被膜を有することが好ましい。絶縁被膜を有する磁性金属粉末を用いることにより、得られる積層造形体における粒子間の絶縁性を向上させ、磁芯として用いる際の鉄損をさらに低減することができる。前記絶縁被膜の材質としては、絶縁性材料であれば任意のものを用いることができ、具体的には、シリコーン樹脂などの絶縁性樹脂、リン酸金属塩やホウ酸金属塩を主成分としたガラス質の絶縁性アモルファス材料、MgO、フォルステライト、タルク、Al2O3などの金属酸化物、SiO2を主成分とした結晶質の絶縁性材料などが例示される。前記絶縁被膜の被覆量は、特に限定されないが、絶縁被膜を均一に形成して絶縁性を向上させるという観点からは、磁性金属粉末全体で0.01質量%以上とすることが好ましい。一方、被覆量が過剰であると積層造形体に占める磁性金属粉末の割合が低くなり、その結果として積層造形体の密度や磁気特性が低下する場合があるため、前記絶縁被膜の被覆量は、磁性金属粉末全体で5質量%以下とすることが好ましい。 The magnetic metal powder preferably has an insulating coating on its surface. By using a magnetic metal powder having an insulating coating, it is possible to improve the insulation between particles in the obtained layered structure and further reduce the iron loss when used as a magnetic core. As the material of the insulating coating, any material can be used as long as it is an insulating material. Specifically, an insulating resin such as a silicone resin, a metal phosphate or a metal borate is used as a main component. Examples thereof include glassy insulating amorphous materials, metal oxides such as MgO, forsterite, talc, and Al 2 O 3 , crystalline insulating materials mainly composed of SiO 2 , and the like. The coating amount of the insulating coating is not particularly limited, but is preferably 0.01% by mass or more based on the whole magnetic metal powder from the viewpoint of uniformly forming the insulating coating and improving the insulation. On the other hand, if the coating amount is excessive, the ratio of the magnetic metal powder occupying the layered object is low, and as a result the density and magnetic properties of the layered object may be reduced. The total amount of the magnetic metal powder is preferably 5% by mass or less.
[バインダ]
上記積層造形においては、上記磁性金属粉末に加え、任意にバインダを用いることができる。前記バインダとしては、積層造形において一般的に用いられているものをはじめ、任意のバインダを用いることができる。前記バインダの例としては、例えば、ポリエチレン、ポリプロピレン、ナイロン、ポイスチレン等の熱可塑樹脂、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂、メラミン樹脂等の熱硬化樹脂、UV硬化樹脂などの光硬化樹脂が挙げられる。
[Binder]
In the additive manufacturing, a binder can be arbitrarily used in addition to the magnetic metal powder. As the binder, any binder including those generally used in additive manufacturing can be used. Examples of the binder include, for example, thermoplastic resins such as polyethylene, polypropylene, nylon, and polystyrene, thermosetting resins such as epoxy resins, polyester resins, polyimide resins, phenol resins, and melamine resins, and photocurable resins such as UV curable resins. Is mentioned.
[積層造形法]
積層造形とは、薄層状の構造を積層していくことによって所望の3次元形状を有する造形物を作成する手法である。本発明における積層造形は、特に限定されることなく、磁性金属粉末を素材として使用できるものであれば任意の積層造形法を用いることができる。具体例としては、パウダーベッドフージョン法、メタルデポジション法、光造形法、インクジェット方式、粉末焼結造形法、熱溶融積層造形法などが挙げられる。また、いずれの方法においても、任意にバインダを用いることができる。
[Layered molding method]
Laminated modeling is a technique for creating a modeled object having a desired three-dimensional shape by laminating thin layered structures. The additive manufacturing in the present invention is not particularly limited, and any additive manufacturing method can be used as long as it can use magnetic metal powder as a material. Specific examples include a powder bed fusion method, a metal deposition method, an optical modeling method, an ink jet method, a powder sintering modeling method, and a hot melt layered modeling method. In any method, a binder can be arbitrarily used.
磁場の印加方法も特に限定されることなく、磁性金属粉末を所望の方向に配向させることができるものであれば任意の方法を用いることができる。例えば、パウダーベッド法により積層造形を行う場合には、パウダーベッド近傍に導線コイルを配置して磁場をかけ、磁性金属粉末を配向させた状態でレーザー照射等を行うことができる。その際、磁場はパウダーベッド全体に印加することもできるが、レーザー等を照射する地点の近傍のみに印加することが好ましい。磁性金属粉末をノズルから供給する場合には、例えば、図1に示すように、磁性金属粉末が進む経路(例えば、ノズル先端からステージまでの空間)と、磁性金属粉末の着地地点(ステージなど)の周囲の、少なくとも一方に導線コイルを配置させて磁場をかけることができる。このようにして磁性金属粉末を磁場中で配向させ、その状態で積層造形を行うことにより、磁性金属粉末を高度に配向させた積層造形体を得ることができる。 The method for applying the magnetic field is not particularly limited, and any method can be used as long as the magnetic metal powder can be oriented in a desired direction. For example, when layered modeling is performed by the powder bed method, laser irradiation or the like can be performed in a state in which a conductive coil is disposed near the powder bed, a magnetic field is applied, and the magnetic metal powder is oriented. At that time, the magnetic field can be applied to the entire powder bed, but it is preferably applied only in the vicinity of the point where the laser or the like is irradiated. When the magnetic metal powder is supplied from the nozzle, for example, as shown in FIG. 1, the path along which the magnetic metal powder travels (for example, the space from the nozzle tip to the stage) and the landing point of the magnetic metal powder (stage, etc.) It is possible to apply a magnetic field by arranging a conductive coil on at least one of the surroundings. In this way, by aligning the magnetic metal powder in a magnetic field and performing additive manufacturing in that state, an additive manufacturing body in which the magnetic metal powder is highly oriented can be obtained.
磁場の強さは特に限定されず、磁性金属粉末を配向させることができれば、任意の値とすることができる。好適な磁場の強さは、使用する磁性金属粉末や積層造形装置などにもよるが、例えば、1kA/m〜1000kA/mとすることができ、5kA/m〜500kA/mとすることが好ましい。 The strength of the magnetic field is not particularly limited and can be any value as long as the magnetic metal powder can be oriented. A suitable strength of the magnetic field depends on the magnetic metal powder to be used, an additive manufacturing apparatus, and the like, but can be, for example, 1 kA / m to 1000 kA / m, and preferably 5 kA / m to 500 kA / m. .
積層造形体の形状や寸法は特に限定されず、任意の物とすることができる。例えば、棒状、平板状などの形状とすることもできるが、積層造形体を磁芯等の磁性体として用いる場合には、磁芯等の形状に造形することもできる。また、配向の方向は、導線コイルの配置により任意に設定することができる。図2に例示するように、結晶軸を1方向に配向させるだけでなく、積層造形の途中段階で磁場の向きを変えることにより、造形体の位置によって異なる2以上の方向に配向させることもできる。また、造形体が平板状である場合には、面内無配向とすることも、Goss方位またはCube方位に配向させることもできる。 The shape and dimensions of the layered object are not particularly limited, and can be arbitrary. For example, the shape may be a rod shape, a flat plate shape, or the like, but when a layered shaped body is used as a magnetic body such as a magnetic core, it can also be shaped into a shape such as a magnetic core. Moreover, the direction of orientation can be arbitrarily set by arrangement | positioning of a conducting wire coil. As illustrated in FIG. 2, not only the crystal axis is oriented in one direction, but also the orientation of the magnetic field is changed in the middle of the layered modeling, so that it can be oriented in two or more directions depending on the position of the modeled body. . Moreover, when a molded object is flat form, it can be set as in-plane non-orientation, or can be orientated in Goss direction or Cube direction.
[熱処理]
本発明の一実施形態においては、積層造形を行った後に、さらに熱処理を行うことができる。積層造形体を熱処理することにより、例えば、積層造形体に残留する歪を除去し、磁気特性を向上させることができる。この場合、前記熱処理は歪取焼鈍とみなすことができる。また、積層造形においてバインダを使用した場合には、熱処理によって該バインダを熱分解して除去することもできる。熱処理条件については特に限定されず、使用した磁性金属粉末やバインダ等に応じて決定すればよいが、例えば、熱処理温度を400〜900℃程度、熱処理時間を1分〜10時間程度とすることができる。
[Heat treatment]
In one embodiment of the present invention, heat treatment can be further performed after layered modeling. By heat-treating the layered object, for example, strain remaining in the layered object can be removed and the magnetic properties can be improved. In this case, the heat treatment can be regarded as strain relief annealing. Further, when a binder is used in additive manufacturing, the binder can be thermally decomposed and removed by heat treatment. The heat treatment conditions are not particularly limited and may be determined according to the magnetic metal powder or binder used. For example, the heat treatment temperature is about 400 to 900 ° C. and the heat treatment time is about 1 minute to 10 hours. it can.
次に、実施例に基づいて本発明をさらに具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。 Next, the present invention will be described more specifically based on examples. The following examples show preferred examples of the present invention, and the present invention is not limited to the examples.
本発明の効果を確認するために、表1に示す各種条件で直径20mm、高さ50mmの丸棒状のサンプルを作製し、その結晶配向性を評価した。素材である磁性金属粉末としては、粒径200μm以下の純鉄粉を使用した。用いた純鉄粉に占める単結晶粒子の個数割合は表1に示した通りである。また、一部のサンプルの作成にいては、純鉄粉100質量部に対し2質量部のバインダを併用した。バインダとして使用した樹脂は表1に示した通りである。前記バインダは予め純鉄粉と混合し、純鉄粉の表面を該バインダで被覆した状態とした。 In order to confirm the effect of the present invention, a round bar-like sample having a diameter of 20 mm and a height of 50 mm was prepared under various conditions shown in Table 1, and the crystal orientation was evaluated. As the magnetic metal powder as the material, pure iron powder having a particle size of 200 μm or less was used. The ratio of the number of single crystal particles in the pure iron powder used is as shown in Table 1. Moreover, in preparation of some samples, 2 mass parts binder was used together with respect to 100 mass parts of pure iron powder. The resin used as the binder is as shown in Table 1. The binder was previously mixed with pure iron powder, and the surface of the pure iron powder was covered with the binder.
なお、磁性金属粉末に占める単結晶粒子の個数割合は、以下の方法で測定した。
まず、磁性金属粉末を樹脂に埋め込んだ後、断面を研磨、エッチングし、単結晶と多結晶を区別できるようにしたサンプルを用意した。次いで、前記サンプル表面の顕微鏡写真を撮り、単結晶と多結晶の粒子の数を数え、(単結晶の数)/{(単結晶の数)+(多結晶の数)}として定義される単結晶の個数割合を算出した。但し、埋め込み断面での顕微鏡写真で観察される粒子のうち半径25μm未満のものについてはノイズとしてカウントしない。
The number ratio of single crystal particles in the magnetic metal powder was measured by the following method.
First, after embedding a magnetic metal powder in a resin, a sample was prepared by polishing and etching a cross section so that single crystal and polycrystal could be distinguished. Next, a micrograph of the sample surface is taken, the number of single crystal and polycrystalline particles is counted, and a single crystal defined as (number of single crystals) / {(number of single crystals) + (number of polycrystals)}. The number ratio of crystals was calculated. However, particles having a radius of less than 25 μm among the particles observed in the micrograph in the embedded section are not counted as noise.
光造形による積層造形を用いた例においては、バインダとしてUV硬化樹脂を使用し、該バインダで被覆された純鉄粉をノズルから噴射し、ステージ状に堆積させるとともに、UV光線を照射して固化させた。その際、磁場を印加する場合には、ステージ周囲に設置した巻線コイルを用いて、ステージ上の空間に50kA/mの磁場を印加しながら積層造形を行った。 In an example using additive manufacturing by stereolithography, a UV curable resin is used as a binder, and pure iron powder coated with the binder is sprayed from a nozzle, deposited in a stage shape, and solidified by irradiation with UV light. I let you. At that time, when applying a magnetic field, layered modeling was performed using a coil wound around the stage while applying a magnetic field of 50 kA / m to the space on the stage.
レーザーによる積層造形を用いたNo.7の例においては、ポリプロピレンで被覆した純鉄粉をノズルから噴射し、ステージ状に堆積させるとともに、レーザーを照射してポリプロピレンを溶解し、冷却固化させた。その際、磁場を印加する場合には、ステージ周囲に設置した巻線コイルを用いて、ステージ上の空間に50kA/mの磁場を印加しながら積層造形を行った。その後、表1に示した条件で熱処理を行ってバインダを熱分解させて除去した。 No. using layered modeling by laser. In Example 7, pure iron powder coated with polypropylene was sprayed from a nozzle, deposited in a stage shape, and irradiated with a laser to melt the polypropylene and solidify by cooling. At that time, when applying a magnetic field, layered modeling was performed using a coil wound around the stage while applying a magnetic field of 50 kA / m to the space on the stage. Thereafter, heat treatment was performed under the conditions shown in Table 1 to thermally decompose and remove the binder.
また、No.8の例では、バインダを使用せず、ステージ上に堆積させた磁性金属粉末をレーザーで直接焼結させることにより積層造形を行った。その際には、ステージ周囲に設置した巻線コイルを用いて、ステージ上の空間に50kA/mの磁場を印加した。 No. In Example 8, additive manufacturing was performed by directly sintering a magnetic metal powder deposited on the stage with a laser without using a binder. At that time, a magnetic field of 50 kA / m was applied to the space on the stage using a winding coil installed around the stage.
さらに、比較のために従来の金型を用いた圧粉成形法による成形も行なった。その際、磁場を印加する場合には、金型周囲に設置した巻線コイルを用いて50kA/mの磁場を印加しながら圧粉成形を行った。 Furthermore, for comparison, molding by a compacting method using a conventional mold was also performed. At that time, in the case of applying a magnetic field, compacting was performed while applying a magnetic field of 50 kA / m using a winding coil installed around the mold.
得られたサンプルの結晶配向性を評価するために、1000A/mにおける丸棒の長手方向の磁束密度B10を測定した。その結果、表1に示すように本発明の条件を満たす例では優れた磁束密度が得られており、極めて高い結晶配向性が達成できていることが分かった。そのため、本発明の方法で得られる積層造形体は、磁芯(鉄心)等の磁性体材料として、極めて好適に用いることができる。 In order to evaluate the crystal orientation of the obtained sample, the magnetic flux density B 10 in the longitudinal direction of the round bar at 1000 A / m was measured. As a result, as shown in Table 1, in the example satisfying the conditions of the present invention, an excellent magnetic flux density was obtained, and it was found that extremely high crystal orientation was achieved. For this reason, the layered object obtained by the method of the present invention can be used very suitably as a magnetic material such as a magnetic core (iron core).
1 磁性金属粉末
2 ノズル
3 巻線コイル
4 ステージ
1
Claims (4)
前記磁性金属粉末に占める単結晶粒子の個数割合が50%以上であり、
前記磁性金属粉末が、Fe粉末、Co粉末、およびNi粉末から選択される少なくとも1つを含有する粉末であり、
前記磁性金属粉末を磁場中で配向させた状態で積層造形する、積層造形方法。 It is a method for layered modeling of magnetic metal powder,
The number ratio of single crystal particles in the magnetic metal powder is 50% or more,
The magnetic metal powder is a powder containing at least one selected from Fe powder, Co powder, and Ni powder;
A layered manufacturing method in which the magnetic metal powder is layered in a state of being oriented in a magnetic field.
積層造形後にさらに熱処理を行う、積層造形方法。 The additive manufacturing method according to claim 1,
An additive manufacturing method in which heat treatment is further performed after additive manufacturing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016032176A JP6428678B2 (en) | 2016-02-23 | 2016-02-23 | Additive manufacturing method, additive manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016032176A JP6428678B2 (en) | 2016-02-23 | 2016-02-23 | Additive manufacturing method, additive manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017150022A JP2017150022A (en) | 2017-08-31 |
JP6428678B2 true JP6428678B2 (en) | 2018-11-28 |
Family
ID=59738840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016032176A Active JP6428678B2 (en) | 2016-02-23 | 2016-02-23 | Additive manufacturing method, additive manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6428678B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102402081B1 (en) * | 2020-11-30 | 2022-05-26 | 한국생산기술연구원 | Method for manufacturing metal 3D printing powder with improved flowability and metal 3D printing powder manufactured thereby |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6962448B2 (en) * | 2018-03-05 | 2021-11-05 | 株式会社村田製作所 | Coil parts and their manufacturing methods |
KR102152465B1 (en) * | 2018-10-10 | 2020-09-07 | 한국기계연구원 | Apparatus and method for powder control of 3D printing system |
JP7574774B2 (en) | 2021-10-18 | 2024-10-29 | 株式会社デンソー | Magnet manufacturing equipment |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3405806B2 (en) * | 1994-04-05 | 2003-05-12 | ティーディーケイ株式会社 | Magnet and manufacturing method thereof |
JP2000021664A (en) * | 1998-06-26 | 2000-01-21 | Tokin Corp | Production of dust core |
JP2001307913A (en) * | 2000-04-20 | 2001-11-02 | Sumitomo Special Metals Co Ltd | Anisotropic iron-based alloy magnet and its manufacturing method |
JP2004282832A (en) * | 2003-03-13 | 2004-10-07 | Nippon Steel Corp | Stator for low iron loss motor, and manufacturing method thereof |
JP2004091928A (en) * | 2003-09-10 | 2004-03-25 | Tdk Corp | Magnetic metal powder |
US8123972B2 (en) * | 2006-10-31 | 2012-02-28 | Sony Corporation | Sheet-like soft-magnetic material and production method thereof |
JP2010222601A (en) * | 2009-03-19 | 2010-10-07 | Honda Motor Co Ltd | Rare earth permanent magnet and method for producing the same |
JP2012019030A (en) * | 2010-07-07 | 2012-01-26 | Toyota Motor Corp | Device and method for manufacturing sintered magnet |
JP2015133416A (en) * | 2014-01-14 | 2015-07-23 | 大同特殊鋼株式会社 | Electromagnetic wave absorber and method of manufacturing the same |
JP2015141964A (en) * | 2014-01-28 | 2015-08-03 | 英樹 原田 | Method for molding magnetically anisotropic laminate, magnetically anisotropic magnet manufactured thereby and method for manufacturing granules used for magnetically anisotropic magnet |
-
2016
- 2016-02-23 JP JP2016032176A patent/JP6428678B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102402081B1 (en) * | 2020-11-30 | 2022-05-26 | 한국생산기술연구원 | Method for manufacturing metal 3D printing powder with improved flowability and metal 3D printing powder manufactured thereby |
Also Published As
Publication number | Publication date |
---|---|
JP2017150022A (en) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Talaat et al. | Review on soft magnetic metal and inorganic oxide nanocomposites for power applications | |
JP6388709B2 (en) | Magnets having regions of different magnetic properties and methods for forming such magnets | |
CN101226802B (en) | Soft-magnetic powder core and method of preparing the same | |
KR102088534B1 (en) | Soft magnetic powder, dust core, and magnetic device | |
JP6651082B2 (en) | Method for manufacturing soft magnetic powder core | |
JP6428678B2 (en) | Additive manufacturing method, additive manufacturing method | |
CN102264938A (en) | Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy | |
JP2008063652A (en) | Dust core, and iron based powder for dust core | |
CN101752074A (en) | Preparation method of nanometer iron-based soft magnetic block | |
EP2767992B1 (en) | Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor | |
US20160372243A1 (en) | Anisotropic Rare Earths-Free Matrix-Bonded High-Performance Permanent Magnet Having A Nanocrystalline Structure, And Method For Production Thereof | |
CN110168674A (en) | Magnet powder containing Sm-Fe-N system crystal grain and the sintered magnet manufactured by the magnet powder and their manufacturing method | |
US20150147217A1 (en) | Nanocomposite permanent magnets and method of making | |
CN116114038B (en) | Method for customizing magnetism and structure obtained by same | |
WO2021035117A1 (en) | Indirect additive manufacturing process for fabricating bonded soft magnets | |
TW201817898A (en) | Fe-based amorphous soft magnetic bulk alloy method for fabricating the same and applications thereof | |
JP2009212466A (en) | Soft magnetic film, and method of manufacturing the same | |
CN113544800A (en) | Additive manufacturing magnet array | |
JP2008108760A (en) | Dust core, and manufacturing method of dust core | |
JP5498756B2 (en) | Ferrite powder and manufacturing method thereof | |
KR20210007923A (en) | Method for manufacturing Fe based soft magnetic alloy and Fe based soft magnetic alloy therefrom | |
Wang et al. | 3D printing of soft magnetic materials: From printing to applications | |
JP6597923B1 (en) | Magnetic core and coil parts | |
JP6042602B2 (en) | Method for producing α-Fe / R2TM14B nanocomposite magnet | |
KR101718591B1 (en) | 3d printer for fabricating permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181015 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6428678 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |