JP6419282B2 - Method for recovering metal from powdered scrap - Google Patents
Method for recovering metal from powdered scrap Download PDFInfo
- Publication number
- JP6419282B2 JP6419282B2 JP2017186996A JP2017186996A JP6419282B2 JP 6419282 B2 JP6419282 B2 JP 6419282B2 JP 2017186996 A JP2017186996 A JP 2017186996A JP 2017186996 A JP2017186996 A JP 2017186996A JP 6419282 B2 JP6419282 B2 JP 6419282B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- scrap
- powdered
- electrolytic solution
- electrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 33
- 239000002184 metal Substances 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 23
- 239000008151 electrolyte solution Substances 0.000 claims description 31
- 238000005868 electrolysis reaction Methods 0.000 claims description 29
- -1 alcohol amine Chemical class 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 14
- 150000004706 metal oxides Chemical class 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 239000012255 powdered metal Substances 0.000 claims description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 7
- 239000007774 positive electrode material Substances 0.000 claims description 7
- 239000007772 electrode material Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical group NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000003923 scrap metal Substances 0.000 claims 1
- 239000000725 suspension Substances 0.000 description 16
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 229910000000 metal hydroxide Inorganic materials 0.000 description 4
- 150000004692 metal hydroxides Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910006164 NiV Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- MXZROAOUCUVNHX-UHFFFAOYSA-N 2-Aminopropanol Chemical compound CCC(N)O MXZROAOUCUVNHX-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910019222 CoCrPt Inorganic materials 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910019974 CrSi Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- 229910003266 NiCo Inorganic materials 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910002844 PtNi Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910004490 TaAl Inorganic materials 0.000 description 1
- 229910001117 Tb alloy Inorganic materials 0.000 description 1
- 229910001215 Te alloy Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
本発明は、粉状スクラップからの金属の回収方法に関する。 The present invention relates to a method for recovering metal from powdery scrap.
スクラップからの金属回収は、通常、酸アルカリ等での湿式処理が用いられ、さらに湿式処理の中には懸濁電解を用いる手法がある。当該懸濁電解には、通常、アルカリ溶融塩等が用いられている。このような技術として、例えば、特許文献1に、金属酸化物粉末の電解還元による金属の製造方法であって、該金属酸化物粉末を塩化カルシウム等の溶融塩中に懸濁させ陰極表面で還元することを特徴とする製造方法が開示されている(特許文献1の請求項1、実施例等)。また、特許文献1に記載されているように、電解還元を行う温度は、500℃以上という非常に特殊な高温での電解条件が採用されている(特許文献1の段落0043等)。 For metal recovery from scrap, wet processing with an acid alkali or the like is usually used, and there is a technique using suspension electrolysis in wet processing. Usually, an alkali molten salt or the like is used for the suspension electrolysis. As such a technique, for example, Patent Document 1 discloses a method for producing a metal by electrolytic reduction of a metal oxide powder, wherein the metal oxide powder is suspended in a molten salt such as calcium chloride and reduced on the cathode surface. The manufacturing method characterized by doing is disclosed (Claim 1, Example, etc. of Patent Document 1). Further, as described in Patent Document 1, a very special high temperature electrolysis condition of 500 ° C. or higher is adopted as the temperature for performing the electrolytic reduction (paragraph 0043 of Patent Document 1).
しかしながら、従来の粉状スクラップからの金属の回収方法によれば、電解液が高温状態で不安定になる、電解電極部材が電解液の作用により腐食する、電解により生成した金属水酸化物や金属酸化物が溶解できずに析出してしまい、安定的に継続して電気分解を行うことが困難となるという問題が生じている。 However, according to the conventional method for recovering metal from powdered scrap, the electrolytic solution becomes unstable at high temperature, the electrolytic electrode member is corroded by the action of the electrolytic solution, the metal hydroxide or metal generated by electrolysis There is a problem that the oxide cannot be dissolved but is deposited, making it difficult to perform electrolysis stably and continuously.
そこで、本発明は、電解電極材の種類の制限が緩和され、且つ、安定的に継続して懸濁電解を行うことが可能な粉状スクラップからの金属の回収方法を提供することを課題とする。 Then, this invention makes it a subject to provide the recovery method of the metal from the powdery scrap in which the restriction | limiting of the kind of electrolytic electrode material is eased, and suspension electrolysis can be performed stably continuously. To do.
本発明者は、上記課題を解決するために鋭意検討し、懸濁電解の電解液として、アルコールアミンに着目した。アルコールアミンは、沸点が高く高温で安定である等の種々の懸濁電解に有用な特性を有している。そのため、アルコールアミンを懸濁電解液として用いることで、上記課題を解決することが可能となる。 The present inventor diligently studied to solve the above-described problems, and focused attention on alcoholamine as an electrolytic solution for suspension electrolysis. Alcoholamines have useful properties for various types of suspension electrolysis, such as high boiling point and stable at high temperatures. Therefore, the above problem can be solved by using alcoholamine as the suspension electrolyte.
以上の知見を基礎として完成した本発明は一側面において、粉状の金属又は粉状の導電性金属酸化物からなるスクラップに対して、アルコールアミンを含有する電解液で懸濁して電気分解を行う工程を含む粉状スクラップからの金属の回収方法である。 In one aspect, the present invention completed on the basis of the above knowledge performs electrolysis by suspending a scrap made of powdered metal or powdered conductive metal oxide with an electrolyte containing alcohol amine. A method for recovering metal from powdery scrap including a process.
本発明に係る粉状スクラップからの金属の回収方法は一実施形態において、前記アルコールアミンが、モノエタノールアミン及び/又はトリエタノールアミンである。 In one embodiment of the method for recovering metal from powdered scrap according to the present invention, the alcohol amine is monoethanolamine and / or triethanolamine.
本発明に係る粉状スクラップからの金属の回収方法は別の一実施形態において、前記電解液中のアルコールアミンの濃度が1〜40mass%である。 In another embodiment of the method for recovering metal from powdery scraps according to the present invention, the concentration of alcoholamine in the electrolytic solution is 1 to 40 mass%.
本発明に係る粉状スクラップからの金属の回収方法は更に別の一実施形態において、前記電解液の温度を50℃以上に調整して電気分解を行う。 In still another embodiment of the method for recovering metal from powdered scrap according to the present invention, the temperature of the electrolytic solution is adjusted to 50 ° C. or higher for electrolysis.
本発明に係る粉状スクラップからの金属の回収方法は更に別の一実施形態において、前記電解液のpHが7超である。 In another embodiment of the method for recovering metal from powdered scrap according to the present invention, the pH of the electrolytic solution is more than 7.
本発明に係る粉状スクラップからの金属の回収方法は更に別の一実施形態において、電気分解で用いる電解電極材が、ステンレスで形成されている。 In another embodiment of the method for recovering metal from powdered scrap according to the present invention, the electrolytic electrode material used for electrolysis is formed of stainless steel.
本発明に係る粉状スクラップからの金属の回収方法は更に別の一実施形態において、前記粉状スクラップが、Li、Ni、Co及びMnからなる群から選択された1種又は2種以上を含むリチウムイオン2次電池用正極材である。 In still another embodiment of the method for recovering metal from powdered scrap according to the present invention, the powdered scrap contains one or more selected from the group consisting of Li, Ni, Co, and Mn. It is a positive electrode material for a lithium ion secondary battery.
本発明では、アルコールアミンを電解液として用いることで粉状スクラップの懸濁電解を行う。アルコールアミンは、沸点が高く高温で安定である。また、電解電極部材に対して腐食作用も無い。さらに、アルコールアミンは、懸濁電解で生成した金属水酸化物や金属酸化物を良好に溶解させて懸濁させることができる。このため、本発明によれば、電解電極材の種類の制限が緩和され、且つ、安定的に継続して懸濁電解を行うことが可能な粉状スクラップからの金属の回収方法を提供することができる。 In the present invention, suspension electrolysis of powdery scrap is performed by using alcoholamine as an electrolytic solution. Alcoholamine has a high boiling point and is stable at high temperatures. Further, there is no corrosive action on the electrolytic electrode member. Furthermore, the alcohol amine can be suspended by dissolving the metal hydroxide or metal oxide produced by suspension electrolysis well. For this reason, according to the present invention, there is provided a method for recovering metal from powdery scrap, in which restrictions on the type of electrolytic electrode material are alleviated and suspension electrolysis can be performed stably and continuously. Can do.
以下に、本発明に係る粉状スクラップからの金属の回収方法の実施形態を詳細に説明する。 Below, embodiment of the recovery method of the metal from the powdery scrap which concerns on this invention is described in detail.
本発明において、粉状の金属又は粉状の導電性金属酸化物からなるスクラップは、半導体及び電子部品、液晶ディスプレイ、工具コーティング、ガラスコーディング、光ディスク、ハードディスク、太陽電池、リチウムイオン2次電池用正極材等に用いるスパッタリングターゲット材を粉砕して作製した粉状スクラップが挙げられる。このため、これらの構成材料に含まれている金属(例えば、Ag、Au、Co、Cr、Cu、Ga、Ge、In、Mn、Mo、Ni、Pd、Pt、Rh、Ru、Sn、Ta、Ti、W、それらの合金、それらの導電性酸化物等)が、本発明に係る回収対象となる金属である。具体的な金属の種類を、各種用途とともに以下に列挙する:
・半導体及び電子部品:Ag, Al, Au, AuAs, AuSb, AuSi, AuSn, Al2O3, Cr, Cu, CuCr, CrNiAl, CrSi, GeS2, Hf, Ir, Mo, Ni, NiV, OsRu, Pd, Pt, PtNi, Rh, Ru, Si, Ta, TaAl, Ti, WTi, WTiなど
・液晶ディスプレイ:Ag, Ag合金, Al, AlNd, Cr, InSn, ITO, Mo, MoW, Si, SiO2, Ta, Ti, W, ZnAl, ZAO(ZnO+Al2O3)など
・工具コーティング:Cr, CrAl, Ti, TiAlなど
・ガラスコーティング:Ag, Ag合金, Al, Bi, Cr, InSn, ITO, Nb, Nb2O5, NiCr, Si, SiO2, Sn, Ta2O5, Ti, W, ZAO(ZnO+Al2O3), Znなど
・光ディスク:Al2O3, C, Co合金, Cr, Fe合金, Ta, Tb合金, Te合金, Pt, Pt合金など
・ハードディスク:Al2O3, C, CoCr, CoCrTa, CoCrPt, Cr, Cr合金, Cr酸化物, MgO, Mo, NiAl, NiSi, SiC, Ta, Ta2O5, Ti酸化物, V, Wなど
・太陽電池:Ag, Al, CIG(Cu+In+Ga), CuGa, ITO, Mo, Ni/NiV, Sn, ZAO(ZnO+Al2O3)など
・リチウムイオン2次電池用正極材:正極材としてLiCoO2、LiNiO2、LiMn2O4、Li(CoxNiyMnz)O2 〔x+y+z=1〕など、金属としてNi、Co、Mnなど、合金としてNiCoなど
In the present invention, scraps made of powdered metal or powdered conductive metal oxide are semiconductors and electronic parts, liquid crystal displays, tool coatings, glass coatings, optical disks, hard disks, solar cells, positive electrodes for lithium ion secondary batteries. Examples thereof include powdery scrap produced by pulverizing a sputtering target material used for a material. For this reason, metals contained in these constituent materials (for example, Ag, Au, Co, Cr, Cu, Ga, Ge, In, Mn, Mo, Ni, Pd, Pt, Rh, Ru, Sn, Ta, Ti, W, alloys thereof, conductive oxides thereof, and the like) are metals to be collected according to the present invention. Specific metal types are listed below along with various applications:
, Semiconductor and electronic components: Ag, Al, Au, AuAs , AuSb, AuSi, AuSn, Al 2 O 3, Cr, Cu, CuCr, CrNiAl, CrSi, GeS 2, Hf, Ir, Mo, Ni, NiV, OsRu, Pd, Pt, PtNi, Rh, Ru, Si, Ta, TaAl, Ti, WTi, WTi, etc. ・ Liquid crystal display: Ag, Ag alloy, Al, AlNd, Cr, InSn, ITO, Mo, MoW, Si, SiO 2 , Ta, Ti, W, ZnAl, ZAO (ZnO + Al 2 O 3 ), etc. Tool coating: Cr, CrAl, Ti, TiAl, etc. Glass coating: Ag, Ag alloy, Al, Bi, Cr, InSn, ITO, Nb , Nb 2 O 5 , NiCr, Si, SiO 2 , Sn, Ta 2 O 5 , Ti, W, ZAO (ZnO + Al 2 O 3 ), Zn, etc. Optical disc: Al 2 O 3 , C, Co alloy, Cr , Fe alloy, Ta, Tb alloy, Te alloy, Pt, Pt alloy etc. Hard disk: Al 2 O 3 , C, CoCr, CoCrTa, CoCrPt, Cr, Cr alloy, Cr oxide, MgO, Mo, NiAl, NiSi, SiC, Ta, Ta 2 O 5 , Ti oxide, V, W, etc. Solar cells: Ag, Al, CIG (Cu + In + Ga), CuGa, ITO, Mo, Ni / NiV, Sn, ZAO (ZnO + Al 2 O 3 ), etc. Positive electrode materials for lithium ion secondary batteries: LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li (CoxNiyMn) as positive electrode materials z) Ni, Co, Mn, etc. as metals, NiCo, etc. as alloys, such as O 2 [x + y + z = 1]
本発明に係る粉状スクラップからの金属の回収方法は、まず、処理対象となる粉状の金属又は粉状の導電性金属酸化物を含有する原料混合物を準備する。当該原料混合物としては、金属又は導電性金属酸化物のスクラップを粉砕した、いわゆるリサイクル材等が挙げられる。 In the method for recovering metal from powdered scrap according to the present invention, first, a raw material mixture containing powdered metal or powdered conductive metal oxide to be treated is prepared. Examples of the raw material mixture include so-called recycled materials obtained by pulverizing scraps of metals or conductive metal oxides.
次に、アノード及びカソード、電解液を備えた電解槽を準備し、電解液に上記粉状の金属又は粉状の導電性金属酸化物を含有する原料混合物を投入して懸濁させて、電解液を攪拌しながら電気分解を行う。電気分解を行うと、電解液中で懸濁している粉状の金属又は粉状の導電性金属酸化物が、カソードから供給された電子により還元されてカソード表面に析出する。次に、カソード表面に析出した金属を回収する。本発明では電解液にアルコールアミンを用いているため、懸濁電解で生成した金属水酸化物や金属酸化物を良好に溶溶解させて懸濁させることができる。このため、安定的に継続して懸濁電解を行うことができる。 Next, an anode and a cathode and an electrolytic cell equipped with an electrolytic solution are prepared. The raw material mixture containing the powdered metal or the powdered conductive metal oxide is put into the electrolytic solution to be suspended, and electrolysis is performed. Electrolysis is performed while stirring the liquid. When electrolysis is performed, powdered metal or powdered conductive metal oxide suspended in the electrolyte is reduced by electrons supplied from the cathode and deposited on the cathode surface. Next, the metal deposited on the cathode surface is collected. In this invention, since alcohol amine is used for electrolyte solution, the metal hydroxide and metal oxide which were produced | generated by suspension electrolysis can be dissolved and dissolved satisfactorily. For this reason, suspension electrolysis can be performed stably continuously.
本発明で用いる電解液が電解電極部材に対して腐食作用も無いアルコールアミンであるため、電解槽のアノード及びカソードとしては、特に限定されず、ステンレス、Pbアノード、その他、通常の電極材に用いられる材料を用いることができる。 Since the electrolytic solution used in the present invention is an alcohol amine that has no corrosive action on the electrolytic electrode member, the anode and cathode of the electrolytic cell are not particularly limited, and are used for stainless steel, Pb anode, and other ordinary electrode materials. Can be used.
本発明において、電解液としてアルコールアミンを用いる。アルコールアミンとしては、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、アミノプロパノール、メチルエタノールアミン等が挙げられる。特に、モノエタノールアミン、トリエタノールアミンは安価である点で好ましい。 In the present invention, alcohol amine is used as the electrolytic solution. Examples of the alcohol amine include triethanolamine, diethanolamine, monoethanolamine, aminopropanol, and methylethanolamine. In particular, monoethanolamine and triethanolamine are preferable in that they are inexpensive.
電解液中のアルコールアミンの濃度は、1〜40mass%であるのが好ましい。電解液中のアルコールアミンの濃度が1mass%未満であると、導電性が低くなり過ぎて電気分解が不安定になる。電解液中のアルコールアミンの濃度が40mass%超であると、電解液の種類によっては水への溶解度を超えてしまうし、必要以上に濃度が高くなり、コストの面で不利となる。電解液中のアルコールアミンの濃度は、より好ましくは2〜10mass%である。 The concentration of alcohol amine in the electrolytic solution is preferably 1 to 40 mass%. If the concentration of alcoholamine in the electrolytic solution is less than 1 mass%, the conductivity becomes too low and electrolysis becomes unstable. If the concentration of alcoholamine in the electrolytic solution exceeds 40 mass%, the solubility in water may be exceeded depending on the type of the electrolytic solution, and the concentration becomes higher than necessary, which is disadvantageous in terms of cost. The concentration of alcoholamine in the electrolytic solution is more preferably 2 to 10 mass%.
電気分解の際の電解液の温度は室温でもかまわないが、高温の方が良く、特に50℃以上に調整するのが好ましい。高温である方が電解液の導電性が大きくなるためである。 The temperature of the electrolytic solution at the time of electrolysis may be room temperature, but higher temperature is better, and it is particularly preferable to adjust to 50 ° C. or higher. This is because the conductivity of the electrolytic solution increases at higher temperatures.
電解液のpHは、電解液がアルカリ性(pH=7超)となるように調整され、好ましくは9以上、より好ましくは10以上である。pHが9未満であると、生成した金属又は合金に係るイオンが溶解していられなくなり、化合物を形成して析出し、結果として電解溶解を阻害してしまう可能性がある。 The pH of the electrolytic solution is adjusted so that the electrolytic solution is alkaline (pH = greater than 7), and is preferably 9 or more, more preferably 10 or more. When the pH is less than 9, ions relating to the generated metal or alloy cannot be dissolved, and a compound is formed and deposited, and as a result, electrolytic dissolution may be hindered.
電解液中に分散させる粉状の金属又は粉状の導電性金属酸化物の粒径は、0.01〜1000μmが好ましく、0.1〜100μmがより好ましく、0.1〜10μmがさらに好ましい。粉状の金属又は粉状の導電性金属酸化物の粒径が0.01μm未満であると体積が大きくなって取り扱いが困難となるおそれがあり、粒径が1000μm超であると電解液に懸濁し難くなるおそれがある。 The particle size of the powdered metal or powdered conductive metal oxide dispersed in the electrolytic solution is preferably 0.01 to 1000 μm, more preferably 0.1 to 100 μm, and still more preferably 0.1 to 10 μm. If the particle size of the powdered metal or powdered conductive metal oxide is less than 0.01 μm, the volume may increase and handling may be difficult, and if the particle size exceeds 1000 μm, the electrolyte solution may be suspended. There is a risk of becoming cloudy.
本発明では、上述のように、アルコールアミンを電解液として用いることで粉状スクラップの懸濁電解を行う。アルコールアミンは、沸点が高く高温で安定である。また、電解電極部材に対して腐食作用も無い。さらに、アルコールアミンは、懸濁電解で生成した金属水酸化物や金属酸化物を良好に溶解させて懸濁させることができる。明確な理由は不明であるが、おそらく溶解した金属がアルコールアミンと配位することで、安定化することが起因していると考えられる。このため、本発明によれば、電解電極材の種類の制限が緩和され、且つ、安定的に継続して懸濁電解を行うことが可能な粉状スクラップからの金属の回収方法を提供することができる。 In the present invention, as described above, suspension electrolysis of powdery scrap is performed by using alcoholamine as an electrolytic solution. Alcoholamine has a high boiling point and is stable at high temperatures. Further, there is no corrosive action on the electrolytic electrode member. Furthermore, the alcohol amine can be suspended by dissolving the metal hydroxide or metal oxide produced by suspension electrolysis well. The clear reason is unknown, but it is probably due to the stabilization of the dissolved metal by coordination with the alcohol amine. For this reason, according to the present invention, there is provided a method for recovering metal from powdery scrap, in which restrictions on the type of electrolytic electrode material are alleviated and suspension electrolysis can be performed stably and continuously. Can do.
以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。 Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.
(実施例1)
Li、Ni、Co及びMnの酸化物からなるリチウムイオン2次電池用正極材のスクラップ粉をアルコールアミン20mass%のpH12の水溶液に懸濁させた。その懸濁液を電解液として、両極にSUS電極を用いて、設定電圧10V、電流密度を5A/dm2とし、1Aの定電流で60℃で電解を行った。10時間後、カソード側の電極表面に、Ni及びCoの合金が析出し、Li及びMnは電解液に溶解した。電流効率は30%であった。析出した合金を回収して品位を測定したところ、4Nと高かった。
Example 1
A scrap powder of a positive electrode material for a lithium ion secondary battery composed of oxides of Li, Ni, Co, and Mn was suspended in an aqueous solution of alcohol amine 20 mass% and pH 12. Electrolysis was performed at 60 ° C. with a constant current of 1 A, using the suspension as an electrolytic solution, using SUS electrodes on both electrodes, setting voltage 10 V, current density 5 A / dm 2 . After 10 hours, an alloy of Ni and Co was deposited on the electrode surface on the cathode side, and Li and Mn were dissolved in the electrolytic solution. The current efficiency was 30%. The deposited alloy was recovered and the quality was measured.
(実施例2)
Li、Ni、Co及びMnの酸化物からなるリチウムイオン2次電池用正極材のスクラップ粉をアルコールアミン5mass%のpH11の水溶液に懸濁させた。その懸濁液を電解液として、両極にSUS電極を用いて、設定電圧10V、電流密度を5A/dm2とし、1Aの定電流で60℃で電解を行った。10時間後、カソード側の電極表面に、Ni及びCoの合金が析出し、Li及びMnは電解液に溶解した。電流効率は25%であった。析出した合金を回収して品位を測定したところ、4Nと高かった。
(Example 2)
A scrap powder of a positive electrode material for a lithium ion secondary battery made of oxides of Li, Ni, Co, and Mn was suspended in an aqueous solution of alcohol amine 5 mass% and pH 11. Electrolysis was performed at 60 ° C. with a constant current of 1 A, using the suspension as an electrolytic solution, using SUS electrodes on both electrodes, setting voltage 10 V, current density 5 A / dm 2 . After 10 hours, an alloy of Ni and Co was deposited on the electrode surface on the cathode side, and Li and Mn were dissolved in the electrolytic solution. The current efficiency was 25%. The deposited alloy was recovered and the quality was measured.
(比較例1)
亜硫酸ナトリウム10mass%の水溶液に懸濁させた以外は実施例1と同様の条件にてLi、Ni、Co及びMnの酸化物からなるリチウムイオン2次電池用正極材のスクラップ粉に対して電気分解を行ったが、電解溶解しなかった。
(Comparative Example 1)
Electrolysis of scrap powder of a positive electrode material for a lithium ion secondary battery composed of oxides of Li, Ni, Co, and Mn under the same conditions as in Example 1 except that it was suspended in an aqueous solution of 10% sodium sulfite. However, electrolytic dissolution did not occur.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186996A JP6419282B2 (en) | 2017-09-27 | 2017-09-27 | Method for recovering metal from powdered scrap |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186996A JP6419282B2 (en) | 2017-09-27 | 2017-09-27 | Method for recovering metal from powdered scrap |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013048151A Division JP6243614B2 (en) | 2013-03-11 | 2013-03-11 | Method for recovering metal from powdered scrap |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017222933A JP2017222933A (en) | 2017-12-21 |
JP6419282B2 true JP6419282B2 (en) | 2018-11-07 |
Family
ID=60686793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017186996A Active JP6419282B2 (en) | 2017-09-27 | 2017-09-27 | Method for recovering metal from powdered scrap |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6419282B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5395804A (en) * | 1977-02-01 | 1978-08-22 | Nippon Tungsten | Separating and recovering of valuable metal |
JPS5418418A (en) * | 1977-07-07 | 1979-02-10 | Council Scient Ind Res | Recovery of zinc from zinc containing material |
JP2520674B2 (en) * | 1987-12-17 | 1996-07-31 | 神岡鉱業株式会社 | Method and device for recovering metal supported on carrier |
TW511306B (en) * | 2001-08-20 | 2002-11-21 | Ind Tech Res Inst | Clean process of recovering metals from waste lithium ion batteries |
JP5329615B2 (en) * | 2011-08-10 | 2013-10-30 | Jx日鉱日石金属株式会社 | Tungsten recovery method |
-
2017
- 2017-09-27 JP JP2017186996A patent/JP6419282B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017222933A (en) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6243614B2 (en) | Method for recovering metal from powdered scrap | |
US8734633B2 (en) | Method of recovering valuable metal from scrap containing conductive oxide | |
JP4745400B2 (en) | Recovery method of valuable metals from ITO scrap | |
JP5043029B2 (en) | Recovery method of valuable metals from ITO scrap | |
JP5043028B2 (en) | Recovery method of valuable metals from ITO scrap | |
TW202028539A (en) | Battery recycling with electrolysis of the leach to remove copper impurities | |
TW200846503A (en) | Methods of recovering valuable metal from scrap containing electrically conductive oxide | |
TW200946691A (en) | Method of recovering valuable metals from izo scrap | |
Joseph et al. | A study of graphite as anode in the electro-deoxidation of solid UO2 in LiCl-Li2O melt | |
JPWO2014112198A1 (en) | Method for producing indium oxide-tin oxide powder, method for producing ITO target, and method for producing indium hydroxide-metastannic acid mixture | |
JP6100525B2 (en) | Method for recovering metal or alloy from scrap of high purity metal or alloy | |
JP6419282B2 (en) | Method for recovering metal from powdered scrap | |
JP6228879B2 (en) | Metal recovery from scrap | |
KR102211986B1 (en) | Method for recovering metal from scrap | |
Liu et al. | Preparation and electrochemical performance of the stainless steel/α-PbO2-ZrO2/β-PbO2-ZrO2-CNT composite anode | |
JP2014122369A (en) | Method for recovering metal from composite metal oxide | |
CN108441892B (en) | Method for refining high-purity titanium through metastable state high-temperature molten salt electrolysis based on complex ions | |
CN106574384B (en) | The method for manufacturing titanium using strike | |
JP2018003164A (en) | Metal recovery method from scrap | |
CN102560562A (en) | Manufacturing method and application method of nickel-based intermetallic compound inert anode | |
JP6222067B2 (en) | Method for regenerating anode, method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target | |
CN111979563A (en) | Electrochemical recycling method of indium gallium zinc oxide target material | |
CN105220182A (en) | A kind of method preparing porous titanium valve | |
KR102537715B1 (en) | Metal stripping agent composition and the metal stripping method by using the same | |
JP2013117065A (en) | Method of producing lithium by molten salt electrolysis, and device for use in the production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180911 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181009 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6419282 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |