JP6418514B2 - Metal nano / micro-projection black body and manufacturing method thereof - Google Patents
Metal nano / micro-projection black body and manufacturing method thereof Download PDFInfo
- Publication number
- JP6418514B2 JP6418514B2 JP2012168117A JP2012168117A JP6418514B2 JP 6418514 B2 JP6418514 B2 JP 6418514B2 JP 2012168117 A JP2012168117 A JP 2012168117A JP 2012168117 A JP2012168117 A JP 2012168117A JP 6418514 B2 JP6418514 B2 JP 6418514B2
- Authority
- JP
- Japan
- Prior art keywords
- micro
- nano
- light
- black body
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 17
- 239000002184 metal Substances 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims description 40
- 239000011701 zinc Substances 0.000 claims description 23
- 229910052725 zinc Inorganic materials 0.000 claims description 18
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 17
- 238000010884 ion-beam technique Methods 0.000 description 24
- 239000000463 material Substances 0.000 description 12
- 230000031700 light absorption Effects 0.000 description 7
- 239000002041 carbon nanotube Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910001335 Galvanized steel Inorganic materials 0.000 description 4
- 241000135309 Processus Species 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 239000008397 galvanized steel Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
- C23C14/025—Metallic sublayers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/221—Ion beam deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/225—Oblique incidence of vaporised material on substrate
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/003—Light absorbing elements
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optical Elements Other Than Lenses (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
Description
本発明は、紫外〜可視〜赤外光を95%以上吸収可能な金属ナノ・マイクロ突起黒体及びその製造方法に関するものである。 The present invention relates to a metal nano / micro-projection black body capable of absorbing 95% or more of ultraviolet to visible to infrared light and a method for producing the same.
黒体は、あらゆる光を完全に吸収できる物質であるが、光をほぼ完全に吸収できる物質として非特許文献1に示したカーボンナノチューブ(CNT)黒体が知られている。このものは、紫外線(UV)から可視光(vis)、遠赤外線(F-IR)までの200nm-200μmの広い波長域で98%以上の光(電磁波)を吸収することができる。このカーボンナノチューブは、カメラや光学機器の遮光、赤外線吸収材や熱型赤外センサー、電子機器の冷却などに利用が可能である。しかしながら、CNTは微粉末でその製造、取り扱いに困難さが伴う。 A black body is a substance that can completely absorb all light, but a carbon nanotube (CNT) black body shown in Non-Patent Document 1 is known as a substance that can absorb light almost completely. This can absorb 98% or more of light (electromagnetic wave) in a wide wavelength range of 200 nm to 200 μm from ultraviolet (UV) to visible light (vis) and far infrared (F-IR). The carbon nanotubes can be used for light shielding of cameras and optical devices, infrared absorbers, thermal infrared sensors, and cooling of electronic devices. However, CNTs are fine powders and are difficult to manufacture and handle.
発明者らは、先に特許文献1として、マイクロ・ナノ突起構造体及びその製造方法を発明した。そして、この構造体からカーボンナノチューブに匹敵する性能を有する金属ナノ・マイクロ突起黒体を開発した。この金属ナノ・マイクロ突起黒体は、高エネルギービームの照射方向を調整することによって光の吸収方位を選択的に調整することができる。 The inventors previously invented a micro / nano-projection structure and a manufacturing method thereof as Patent Document 1. From this structure, we developed a metal nano / micro-projection black body with performance comparable to carbon nanotubes. This metal nano / micro-projection black body can selectively adjust the light absorption direction by adjusting the irradiation direction of the high energy beam.
本発明は、紫外光から、可視光、遠赤外光までの広い波長領域にわたって光を吸収可能で、かつ光の吸収方位を選択的に調整することができる金属ナノ・マイクロ突起黒体を提供することを目的とする。 The present invention provides a metal nano / microprojection black body capable of absorbing light over a wide wavelength range from ultraviolet light to visible light and far infrared light, and capable of selectively adjusting the light absorption direction. The purpose is to do.
上記の課題を解決するためになされた本発明に係る金属ナノ・マイクロ突起黒体は、亜鉛からなる基板又は亜鉛層を表面に有する基板と、この基板から斜めに成長・形成された亜鉛からなる多数のナノ・マイクロ突起とからなり、このナノ・マイクロ突起の形状が円錐体及び円柱体を含む横断面丸形であり、ナノ・マイクロ突起の底面の3μm以下の直径に対する高さの比であるアスペクト比が3以上であって、このナノ・マイクロ突起の成長方向に対して30°以内の角度で入射する紫外光又は可視光又は赤外光を95%以上吸収することを特徴とするものである。
The metal nano / micro-projection black body according to the present invention made to solve the above-mentioned problems is composed of a substrate made of zinc or a substrate having a zinc layer on the surface, and zinc grown and formed obliquely from this substrate. It consists of a large number of nano / micro protrusions, and the shape of the nano / micro protrusions is a round cross section including a cone and a cylindrical body, and the ratio of the height to the diameter of 3 μm or less of the bottom of the nano / micro protrusions. a an aspect ratio of 3 or more, those nano-micro outgrowth ultraviolet light or visible light or incident at an angle within 30 ° with respect to the direction of, characterized in that absorbs infrared light more than 95% It is.
上記した発明において、基板面に対して90°の角度で垂直に入射する光に対して、基板面上に基板面に対して60°〜90°未満の角度でナノ・マイクロ突起を成長・形成して、紫外光又は可視光又は赤外光を95%以上吸収するようにすることができるし、基板面に対して30°〜90°未満の角度で斜めに入射する光に対して、基板面上に基板面に対して30°〜60°未満の角度でナノ・マイクロ突起を斜めに成長・形成して、紫外光又は可視光又は赤外光を95%以上吸収するようにすることができる。
In the above-described invention, nano / micro protrusions are grown and formed on the substrate surface at an angle of 60 ° to less than 90 ° with respect to light incident perpendicularly to the substrate surface at an angle of 90 °. to, to the ultraviolet light or visible light or may be adapted to absorb infrared light of 95% or more, for light incident obliquely at an angle less than 30 ° to 90 ° with respect to the substrate surface, nano-micro protrusions at an angle less than 30 ° to 60 ° with respect to the substrate surface on the substrate surface to grow and formed obliquely, the ultraviolet light or visible light or so as to absorb infrared light of 95% or more be able to.
また、本発明の金属ナノ・マイクロ突起黒体の製造方法は、真空中で、基板面に対し30〜90°未満の照射角度で、加速電圧2〜20kVで高エネルギービームを照射して、亜鉛を主体とする多数のナノ・マイクロ突起を、高エネルギービームの入射方向に成長・形成させて、上記したような金属ナノ・マイクロ突起黒体を製造することを特徴とするものである。
Further, the method for producing a metal nano / micro-projection black body according to the present invention comprises irradiating a high energy beam at an accelerating voltage of 2 to 20 kV at an irradiation angle of 30 to less than 90 ° with respect to the substrate surface in a vacuum. The above-described metal nano / micro protrusion black body is produced by growing and forming a large number of nano / micro protrusions mainly composed of the above in the incident direction of the high energy beam.
本発明のナノ・マイクロ突起黒体は、基板の表面に亜鉛を主体とする多数のナノ・マイクロ突起が密集して形成されているので、この密集した構造が光を補足して逃がさず高い光吸収性を発揮することができる。亜鉛基板の表面にナノ・マイクロ突起が形成されているので、粉末と異なり製造、取り扱いが容易である。また、高エネルギービームの照射角度を調整することによってナノ・マイクロ突起の成長方向を決定することができるので、吸収される光の方位を適宜調整することができる。 Since the nano / micro protrusion black body of the present invention is formed by densely forming a large number of nano / micro protrusions mainly composed of zinc on the surface of the substrate, the dense structure captures light and does not escape. Absorbency can be demonstrated. Since nano- and micro-protrusions are formed on the surface of the zinc substrate, it is easy to manufacture and handle, unlike powder. Further, since the growth direction of the nano / micro protrusions can be determined by adjusting the irradiation angle of the high energy beam, the azimuth of the absorbed light can be appropriately adjusted.
また、本発明のナノ・マイクロ突起黒体の製造方法によれば、上記のような特徴のあるナノ・マイクロ突起黒体を容易に製造することができる。 Further, according to the method for producing a nano / micro-projection black body of the present invention, a nano / micro-projection black body having the above-described characteristics can be easily produced.
以下に、本発明の実施例について説明する。
本発明においては金属ナノ・マイクロ突起黒体を形成する試料として、亜鉛からなる基板又は亜鉛層を表面に有する基板(以下、基板という)を用いる。亜鉛層を表面に有する基板として、亜鉛メッキ鋼板、亜鉛を蒸着したプラスチックなどを用いることができる。後述するように他の金属では黒体としての機能を発揮することはできない。ここでは、試料として10×10mm,t=0.1mmの冷間圧延した亜鉛基板を用いた。これを濃度が2モルの塩酸水溶液にて酸洗したのち、真空室に導き真空度を10−2Paに保持した後Arガスを5〜10Pa導入し、Arイオンビームを基板面に対する照射角度5〜90°として、加速電圧7kV,電流0.5mA、照射時間30分の条件で照射した。
Examples of the present invention will be described below.
In the present invention, a substrate made of zinc or a substrate having a zinc layer on its surface (hereinafter referred to as a substrate) is used as a sample for forming a metal nano / micro-projection black body. As the substrate having a zinc layer on the surface, a galvanized steel plate, a plastic on which zinc is vapor-deposited, or the like can be used. As will be described later, other metals cannot function as a black body. Here, a cold-rolled zinc substrate of 10 × 10 mm and t = 0.1 mm was used as a sample. After pickling this with an aqueous hydrochloric acid solution having a concentration of 2 mol, it was introduced into a vacuum chamber, the degree of vacuum was maintained at 10 −2 Pa, Ar gas was introduced at 5 to 10 Pa, and an Ar ion beam was irradiated at an irradiation angle of 5 with respect to the substrate surface. Irradiation was performed under the conditions of ˜90 °, acceleration voltage 7 kV, current 0.5 mA, and
図1には照射角度30°、図2には照射角度60°、図3には照射角度90°における試料表面の走査電子顕微鏡写真を示す。Arイオンを照射するとナノ・マイクロ突起はArイオンの照射方向に指向して成長する。照射角度30°の試料ではマイクロ・ナノ突起が斜めに成長しているので、細く伸長して観察されるが、照射角度90°の試料ではナノ・マイクロ突起は観察方向に成長しているので、突起の先端部が観察される。ナノ・マイクロ突起は、Arイオン照射によって形成された突起の核が、Zn原子の表面拡散により成長しチャージアップすることで、Arイオンビームの照射方向に成長するものと考えられる。 FIG. 1 shows a scanning electron micrograph of the sample surface at an irradiation angle of 30 °, FIG. 2 at an irradiation angle of 60 °, and FIG. 3 at an irradiation angle of 90 °. When Ar ions are irradiated, the nano / micro protrusions grow in the direction of Ar ion irradiation. Since the micro / nano protrusions grow obliquely in the sample with an irradiation angle of 30 °, the sample is observed to be elongated thinly, but in the sample with an irradiation angle of 90 °, the nano / micro protrusions grow in the observation direction. The tip of the protrusion is observed. The nano / micro protrusions are thought to grow in the irradiation direction of the Ar ion beam by the nuclei of the protrusions formed by Ar ion irradiation growing and charging up by surface diffusion of Zn atoms.
形成されたナノ・マイクロ突起は、円錐体及び円柱体を含む横断面丸形の形状である。図13には、ナノ・マイクロ突起の直径、高さ、アスペクト比に及ぼす照射角度の影響を示す。ナノ・マイクロ突起は、平均で長さが5μm、底面の直径(等価直径)が0.5μm、長さ/直径の比であるアスペクト比は10であった。また、数密度は、結晶面の方位によって異なるが、0.06〜6本/μm2であった。 The formed nano / micro protrusion has a round cross-sectional shape including a cone and a cylinder. FIG. 13 shows the influence of the irradiation angle on the diameter, height, and aspect ratio of the nano / micro protrusions. The nano / micro protrusions had an average length of 5 μm, a bottom diameter (equivalent diameter) of 0.5 μm, and an aspect ratio of 10 (length / diameter ratio). The number density was 0.06 to 6 / μm 2 , although it varied depending on the crystal plane orientation.
マイクロナノ・マイクロ突起のX線回折(XRD)によるキャラクタリゼーションの結果を、図4、5に示す。キャラクタリゼーションは、Cu−kαX線入射角度α=0.5degとしたGlancing Angle XRD による。ZnとZnOのピークが認められるが、ZnOのピークは小さく、ナノ・マイクロ突起は、ごく一部に不純物としてZnOを含有するが亜鉛を主体とするものであることが確認された。 The result of the characterization by X-ray diffraction (XRD) of the micro / nano / micro protrusion is shown in FIGS. The characterization is based on the Granling Angle XRD with Cu-kα X-ray incident angle α = 0.5 deg. Although peaks of Zn and ZnO are observed, the peak of ZnO is small, and it was confirmed that the nano / micro protrusions contain ZnO as an impurity in a very small part but are mainly composed of zinc.
図6-8には、各ナノ・マイクロ突起黒体に対して90°方向から見た場合の外観写真を示す。90°照射材(基板面に対し90°の角度でArイオンビームを照射した材料、以下同様)、75°照射材においては、黒色を呈した。これはナノ・マイクロ突起の群が垂直方向に成長しているために、突起間に光が侵入しやすく、かつ侵入した光が吸収されて反射されないためであると考えられる。一方、45°照射材では灰色がかった銀色を呈したが、これは成長したナノ・マイクロ突起の側面に衝突する光の割合が多くなって一部が反射し一部が吸収されるためであると考えられる。この45°照射材を45°方向から観察すると、図9に示すように、黒色を呈した。これは、ナノ・マイクロ突起の成長方向と光の侵入方向が一線上になるために、光が侵入しやすくなったためであると考えられる。なお、90°照射材は基板法線に対し30°以内、75°照射材は、突起の成長方向に対し30°以内で黒色を呈した。 Fig. 6-8 shows a photograph of the appearance of each nano / micro-projection black body when viewed from the 90 ° direction. The 90 ° irradiated material (material irradiated with an Ar ion beam at an angle of 90 ° with respect to the substrate surface, the same applies hereinafter) and the 75 ° irradiated material exhibited black color. This is presumably because the group of nano / micro protrusions grows in the vertical direction, so that light easily enters between the protrusions and the light that has entered is not absorbed and reflected. On the other hand, the 45 ° irradiation material exhibited a grayish silver color because the ratio of light impinging on the side surface of the grown nano / micro protrusion increased and part of it was reflected and part of it was absorbed. it is conceivable that. When this 45 ° irradiated material was observed from the 45 ° direction, it was black as shown in FIG. This is thought to be because the growth direction of the nano / micro protrusions and the light intrusion direction are in one line, so that light easily enters. The 90 ° irradiated material was black within 30 ° with respect to the substrate normal, and the 75 ° irradiated material was black within 30 ° with respect to the growth direction of the protrusions.
図10には、各処理条件の亜鉛板について紫外可視赤外分光光度計により測定した反射率と波長の関係を示す。使用した機器は、日本分光株式会社製のV−670紫外可視近赤外分光光度計である。白色板の反射率を100%とし黒色板の反射率を0%として、測定結果を補正した。測定は試料面に対し垂直方向から光を照射したが、Arイオンビーム60°、75°、90°照射材は、紫外〜可視〜赤外光の広い波長領域にわたって98%以上の良好な光吸収性能(光の反射率2%以下)を示した。
FIG. 10 shows the relationship between the reflectance and wavelength measured with an ultraviolet-visible infrared spectrophotometer for the zinc plate under each processing condition. The instrument used is a V-670 ultraviolet visible near infrared spectrophotometer manufactured by JASCO Corporation. The measurement result was corrected by setting the reflectance of the white plate to 100% and the reflectance of the black plate to 0%. The measurement was performed by irradiating light from a direction perpendicular to the sample surface, but the
Arイオンビーム30°45°照射材においては、可視光領域で90%前後の光吸収性能である。以上のように、Arイオンビームの照射方向を調整することによって、光の反射率を調整することができる。図11には、Arイオンビームの照射角度と光の反射率の関係を示すが、60〜90°照射材においては突起の成長方向に対して入射光のなす見込角が30°以内で黒色を呈する完全黒体となる。
The
30〜60°未満の照射材では、試料面に対して垂直方向から入射する光の吸収率は90%前後に低下するが、これらは、基板面に対して30°〜90°未満の角度で斜めに入射し、かつ突起の成長方向に対し30°以内で入射する光を95%以上吸収する。また、30°未満では垂直入射光の吸収率は60%程度と低下して、黒体として使用することはできないが、突起の成長方向に30°以内の入射光は95%以上吸収する。 With an irradiation material of 30 to less than 60 °, the absorption rate of light incident from the direction perpendicular to the sample surface decreases to around 90%, but these are at an angle of 30 ° to less than 90 ° with respect to the substrate surface. It absorbs 95% or more of light incident obliquely and within 30 ° with respect to the growth direction of the protrusions. If the angle is less than 30 °, the absorptance of vertically incident light is reduced to about 60% and cannot be used as a black body, but incident light within 30 ° in the growth direction of the protrusion absorbs 95% or more.
図12には、Arイオンビームの照射角度75°で成長したAg,Au,Cu,Fe,Zr,Znの突起体における垂直入射光の反射率を示す。Znを除く全てのものは、可視光領域では30〜80%超の反射率を示すが、Znのみがほぼ完全に光を吸収する完全黒体であった。Znのみが光を吸収する理由については、現在検討中である。なお、本発明の完全黒体は、亜鉛メッキした金属やプラスチック、例えば亜鉛メッキ鋼板表面にも形成することができる。 FIG. 12 shows the reflectivity of perpendicular incident light on Ag, Au, Cu, Fe, Zr, and Zn protrusions grown at an Ar ion beam irradiation angle of 75 °. All except Zn showed a reflectivity of 30-80% in the visible light region, but only Zn was a perfect black body that almost completely absorbed light. The reason why only Zn absorbs light is currently under investigation. The complete black body of the present invention can also be formed on the surface of a galvanized metal or plastic, for example, a galvanized steel sheet.
図15には、亜鉛メッキ鋼板について75°の角度でArイオンビームを照射した材料の反射率の測定データを示す。表面を酸洗したものは、紫外〜可視〜赤外光領域に渡って95%以上の良好な光吸収を示す。 In FIG. 15, the measurement data of the reflectance of the material which irradiated the Ar ion beam at the angle of 75 degrees about the galvanized steel sheet are shown. What pickled the surface shows a good light absorption of 95% or more in the ultraviolet to visible to infrared light region.
さて以下に、本発明に係るナノ・マイクロ突起黒体及びその製造条件を数値的に限定する。 Now, the nano / micro-projection black body according to the present invention and the manufacturing conditions thereof are numerically limited.
本発明において照射せしめられるビームは、Arイオンビームに限定されるものではなく、ナノ・マイクロ突起を成長させうる高エネルギービームであればよく、Arイオンビームのほかに電子線、レーザービーム、X線、γ線、中性子線、粒子ビーム等を用いることができる。 The beam irradiated in the present invention is not limited to the Ar ion beam, but may be any high energy beam capable of growing nano / micro protrusions. In addition to the Ar ion beam, an electron beam, a laser beam, an X-ray beam may be used. , Γ rays, neutron rays, particle beams, and the like can be used.
高エネルギービームの照射角度は、板面に対して30〜90°未満、望ましくは60〜90°未満とし、加速電圧は、2−20kVとするのが望ましい。照射角度が30°未満では、板面に対して効率よくArイオンビームのエネルギーを供給するのが難しいからであり、また、90°未満を上限としたのは、それを超えて照射を行う必要がないからである。
The irradiation angle of the high energy beam is preferably 30 to less than 90 °, more preferably less than 60 to 90 ° with respect to the plate surface, and the acceleration voltage is preferably 2 to 20 kV. This is because if the irradiation angle is less than 30 °, it is difficult to efficiently supply the energy of the Ar ion beam to the plate surface, and the reason why the upper limit is less than 90 ° is that irradiation needs to be performed beyond that. Because there is no.
また、加速電圧を2−20kVとするのは、高エネルギービームであるArイオンビームを照射する場合には、点欠陥などの照射欠陥や注入イオンが導入されにくい20kV以下の低電圧とするのが望ましく、一方2kV未満では電圧が弱すぎるからである。ぺニング型イオン源を用いた場合には、加速電圧5−10kV、照射角度30〜90°未満、照射時間10〜90分が望ましい。また、Arイオンビームの電流は、0.5〜1.5mAが望ましい。
Further, the acceleration voltage is set to 2 to 20 kV when the Ar ion beam which is a high energy beam is irradiated, the irradiation voltage such as a point defect or a low voltage of 20 kV or less in which implanted ions are difficult to be introduced. On the other hand, if it is less than 2 kV, the voltage is too weak. When a Penning ion source is used, an acceleration voltage of 5 to 10 kV, an irradiation angle of 30 to less than 90 °, and an irradiation time of 10 to 90 minutes are desirable. The current of the Ar ion beam is preferably 0.5 to 1.5 mA.
好適なマイクロ突起の形状は、ほぼ円錐体で横断面丸形であるが、円柱体を含んでいてもよい。なお、外表面は外側に膨出していても、内側に湾曲していても構わない。横断面は、真円に限定されず楕円等の丸形のものであればよい。 A preferred microprojection shape is generally conical and round in cross section, but may include a cylinder. The outer surface may bulge outward or may be curved inward. The cross section is not limited to a perfect circle and may be a round shape such as an ellipse.
ナノ・マイクロ突起、基部底面の直径dが10μm以下であって、直径に対する突起長さhの比であるアスペクト比(=h/d)が3以上であるのが望ましい。基部直径が10μmを超えると、微細なナノ・マイクロ突起を得るのが困難となるからであり、アスペクト比を3以上とするのは、3未満では比表面積を大きくして光吸収能を高めることができないからである。一方アスペクト比に上限を設けないのはこれが大きいほど光吸収能を高めることができるからである。 It is desirable that the diameter d of the nano / micro protrusion and the bottom of the base is 10 μm or less, and the aspect ratio (= h / d), which is the ratio of the protrusion length h to the diameter, is 3 or more. If the base diameter exceeds 10 μm, it will be difficult to obtain fine nano / micro protrusions. The aspect ratio is set to 3 or more. If the base diameter is less than 3, the specific surface area is increased to increase the light absorption ability. It is because it is not possible. On the other hand, the upper limit of the aspect ratio is not set because the light absorption ability can be increased as the ratio is increased.
また、本発明のナノ・マイクロ突起黒体において、光の入射角は、突起の成長方向、即ち、高エネルギービームの照射方向に対して30°以内、即ち見込み角30°以内の円錐方向以内とする必要がある。入射角が30°を超えると、光がナノ・マイクロ突起の側面に衝突して吸収されにくくなって、黒体としての機能が低下するからである。図14には、ナノ・マイクロ突起の成長方向と、光の入射角度αを説明する2次元的な概念図を示す。この入射角度αが30°以内で入射光を95%以上吸収する。 In the nano / micro-projection blackbody of the present invention, the incident angle of light is within 30 ° with respect to the growth direction of the projection, that is, the irradiation direction of the high energy beam, that is, within the conical direction within the prospective angle of 30 °. There is a need to. This is because if the incident angle exceeds 30 °, the light collides with the side surfaces of the nano / micro protrusions and becomes difficult to be absorbed, and the function as a black body is deteriorated. FIG. 14 shows a two-dimensional conceptual diagram for explaining the growth direction of the nano / micro protrusions and the incident angle α of light. When the incident angle α is within 30 °, the incident light is absorbed by 95% or more.
また、本発明のナノ・マイクロ突起黒体の反射率は、95%以上必要である。95%未満では、黒体として十分な性能を発揮できないからである。なお、反射率は98%以上であるのが望ましい。 Further, the reflectance of the nano / micro protrusion black body of the present invention needs to be 95% or more. If it is less than 95%, sufficient performance as a black body cannot be exhibited. The reflectance is desirably 98% or more.
以上に説明した本発明のナノ・マイクロ突起黒体は、太陽光発電、太陽熱発電、光シャッター、光回路、ステルス基板、プラズモン励起基板等の多くの用途に用いることが期待される。 The nano / micro-projection black body of the present invention described above is expected to be used in many applications such as solar power generation, solar thermal power generation, optical shutter, optical circuit, stealth substrate, plasmon excitation substrate and the like.
Claims (4)
このナノ・マイクロ突起の形状が円錐体及び円柱体を含む横断面丸形であり、ナノ・マイクロ突起の底面の3μm以下の直径に対する高さの比であるアスペクト比が3以上であって、
このナノ・マイクロ突起の成長方向に対して30°以内の角度で入射する紫外光又は可視光又は赤外光を95%以上吸収することを特徴とする金属ナノ・マイクロ突起黒体。 It consists of a substrate made of zinc or a substrate having a zinc layer on its surface, and a large number of nano-micro protrusions mainly composed of zinc grown and formed obliquely from this substrate,
The shape of the nano / micro protrusion is a round cross section including a cone and a cylinder, and the aspect ratio, which is the ratio of the height to the diameter of 3 μm or less of the bottom of the nano / micro protrusion, is 3 or more,
Metal nano-micro-projections black body, characterized in that the ultraviolet light or visible light or incident that absorbs infrared light more than 95% at an angle within 30 ° to the growth direction of the nano-micro-projections.
In a vacuum, a high energy beam is irradiated at an accelerating voltage of 2 to 20 kV at an irradiation angle of 30 to less than 90 ° with respect to the substrate surface, and a large number of nano / micro protrusions mainly composed of zinc are incident on the high energy beam. A method for producing a metal nano / micro-projection black body according to claim 1, wherein the metal nano / micro-projection black body is produced by growing and forming in a direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012168117A JP6418514B2 (en) | 2012-07-30 | 2012-07-30 | Metal nano / micro-projection black body and manufacturing method thereof |
PCT/JP2013/068964 WO2014021072A1 (en) | 2012-07-30 | 2013-07-11 | Metal nano-micro-protrusion black body and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012168117A JP6418514B2 (en) | 2012-07-30 | 2012-07-30 | Metal nano / micro-projection black body and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014026197A JP2014026197A (en) | 2014-02-06 |
JP6418514B2 true JP6418514B2 (en) | 2018-11-07 |
Family
ID=50027756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012168117A Active JP6418514B2 (en) | 2012-07-30 | 2012-07-30 | Metal nano / micro-projection black body and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6418514B2 (en) |
WO (1) | WO2014021072A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6131437B2 (en) * | 2012-08-29 | 2017-05-24 | 国立大学法人東北大学 | Manufacturing method of nano / micro protrusions |
CN110031115A (en) * | 2018-01-11 | 2019-07-19 | 清华大学 | Face source black matrix |
JP7480939B2 (en) * | 2020-02-28 | 2024-05-10 | 国立大学法人東北大学 | Manufacturing method of Fe-based nano-micro protrusions |
JP7191137B2 (en) * | 2021-02-15 | 2022-12-16 | プライムプラネットエナジー&ソリューションズ株式会社 | Nanoprotrusion structure inspection device and nanoprotrusion structure inspection method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4457589B2 (en) * | 2003-04-07 | 2010-04-28 | コニカミノルタホールディングス株式会社 | Optical apparatus having a transmissive optical element |
JP4967124B2 (en) * | 2006-09-15 | 2012-07-04 | 国立大学法人東北大学 | Micro / nano protrusion structure and manufacturing method thereof |
JP5028620B2 (en) * | 2007-03-15 | 2012-09-19 | 国立大学法人東北大学 | Nanoprotrusion structure and manufacturing method thereof |
JP5299429B2 (en) * | 2008-09-05 | 2013-09-25 | 住友金属鉱山株式会社 | Black coating film and manufacturing method thereof, black light shielding plate, and diaphragm using the same, diaphragm device for adjusting light quantity, shutter, and heat-resistant light shielding tape |
BR112012002060A2 (en) * | 2009-07-28 | 2016-05-17 | Sharp Kk | optical film, method for its production and method for controlling its optical characteristics |
JP2011056638A (en) * | 2009-09-14 | 2011-03-24 | Tohoku Univ | Micronano-projection structure and method for producing the same |
-
2012
- 2012-07-30 JP JP2012168117A patent/JP6418514B2/en active Active
-
2013
- 2013-07-11 WO PCT/JP2013/068964 patent/WO2014021072A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2014021072A1 (en) | 2014-02-06 |
JP2014026197A (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8609205B2 (en) | Method for depositing crystalline titania nanoparticles and films | |
JP6418514B2 (en) | Metal nano / micro-projection black body and manufacturing method thereof | |
CN103769609B (en) | A kind of noble metal-semiconductors coupling structure micro-nano particle, preparation method, application | |
Singh et al. | Nanotechnology: The future engineering | |
CN106276870B (en) | The preparation method of the pure carbon compound film of graphene-carbon nano tube | |
EP3375912B1 (en) | Composite material device | |
Khashan et al. | Indium nitride nanoparticles prepared by laser ablation in liquid | |
Atwa et al. | Optical, structural and optoelectronic properties of pulsed laser deposition PbS thin film | |
Chang et al. | Light-trapping effects and dye adsorption of ZnO hemisphere-array surface containing growth-hindered nanorods | |
Chhikara et al. | On the synthesis of Zn/ZnO core–shell solid microspheres on quartz substrate by thermal evaporation technique | |
Barberio et al. | Carbon nanotubes/metal nanoparticle based nanocomposites: improvements in visible photoluminescence emission and hydrophobicity | |
Thirunaukkarasu et al. | Mechanically and thermally stable thin sheets of broadband antireflection surfaces fabricated by femtosecond lasers | |
Ghoranneviss et al. | Effects of laser fluence on the Cd (OH) 2/CdO nanostructures produced by pulsed laser ablation method | |
Albetran et al. | Parameters controlling the crystallization kinetics of nanostructured TiO2–An overview | |
JP2011056638A (en) | Micronano-projection structure and method for producing the same | |
Singh et al. | Carbon nanotubes based thin films as opto-electronic moisture sensor | |
Ugwu | The Effect of Annealing, Doping on the Properties and Functionality of Zinc Oxide Thin Film; Review | |
Suryawanshi et al. | Hydrothermal synthesis of zinc oxide and its photocatalytic effect | |
Kumpika et al. | Atomic force microscopy imaging of ZnO nanodots deposited on quartz by sparking off different tip shapes | |
Kumar et al. | Significant enhancement in the cold emission characteristics of chemically synthesized super-hydrophobic zinc oxide rods by nickel doping | |
Khorkov et al. | Femtosecond laser nanostructuring of a tungsten surface | |
Arularasu et al. | Structural, Optical, Morphological and Microbial Studies on SnO | |
KR101309664B1 (en) | Method of manufacturing a nano structure | |
Swarnkar et al. | Controlled synthesis of cuprous oxide nanorings by pulsed laser ablation of copper metal in aqueous media of sodium dodecyl sulfate | |
Kalia et al. | Recent Advances and Trends in ZnO Hybrid Nanostructures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160712 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170420 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20171023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6418514 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |