[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6413763B2 - Charge state detection device, charge state detection method, mobile object - Google Patents

Charge state detection device, charge state detection method, mobile object Download PDF

Info

Publication number
JP6413763B2
JP6413763B2 JP2014266029A JP2014266029A JP6413763B2 JP 6413763 B2 JP6413763 B2 JP 6413763B2 JP 2014266029 A JP2014266029 A JP 2014266029A JP 2014266029 A JP2014266029 A JP 2014266029A JP 6413763 B2 JP6413763 B2 JP 6413763B2
Authority
JP
Japan
Prior art keywords
voltage
storage device
charge
battery
charge state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014266029A
Other languages
Japanese (ja)
Other versions
JP2016125882A (en
Inventor
英雄 柳田
英雄 柳田
雅昭 吉田
雅昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014266029A priority Critical patent/JP6413763B2/en
Publication of JP2016125882A publication Critical patent/JP2016125882A/en
Application granted granted Critical
Publication of JP6413763B2 publication Critical patent/JP6413763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、充電状態検出装置、充電状態検出方法、移動体に関する。   The present invention relates to a charge state detection device, a charge state detection method, and a moving object.

リチウムイオン二次電池に代表される蓄電デバイスは様々な機器に使用されているが、充電状態によって入出力性能が異なる性質を有するため、より正確な充電状態の推定技術が必要である。そのため、様々な方法を用いて充電状態の推定を実施している。   An electricity storage device typified by a lithium ion secondary battery is used in various devices. However, since the input / output performance varies depending on the state of charge, a more accurate state of charge estimation technique is required. Therefore, the state of charge is estimated using various methods.

一例として、電池エネルギ残量を示す残容量が10%〜90%の間に、電池の電圧と残容量との相関関係が明確となる変化を示す変極点を複数有するリチウムイオン二次電池の電池容量検出装置を挙げることができる。   As an example, a battery of a lithium ion secondary battery having a plurality of inflection points showing a change in which the correlation between the battery voltage and the remaining capacity becomes clear between 10% to 90% of the remaining capacity indicating the remaining battery energy A capacity detection device can be mentioned.

この電池容量検出装置は、電池の電圧及び電圧変化率を検出する電圧検出手段と、電圧変化率が所定の閾値を超えた点を変極点と検出する変極点検出手段と、電池の充放電電流を電流積算値として積算する電流積算手段とを有している。そして、変極点が検出された時点で、電流積算手段により積算された電流積算値に基づいて複数の変極点の何れであるかを判定すると共に、変極点に対応する電池容量を、変極点と電池容量とが対応付けられたテーブルから検索して第1電池容量とする。   The battery capacity detecting device includes a voltage detecting means for detecting a voltage of the battery and a voltage change rate, an inflection point detecting means for detecting a point where the voltage change rate exceeds a predetermined threshold as an inflection point, and a charge / discharge current of the battery. Current integrating means for integrating as a current integrated value. Then, when the inflection point is detected, it is determined which of the plurality of inflection points is based on the current accumulated value accumulated by the current accumulating means, and the battery capacity corresponding to the inflection point is determined as the inflection point. It searches from the table | surface with which battery capacity was matched, and it is set as 1st battery capacity.

又、変極点の検出時点から、電圧検出手段で検出された電圧が満充電電圧となった時点までの電流積算手段での電流積算値を第2電池容量とし、第2電池容量と第1電池容量とを加算して満充電容量を求める。   Also, the current integrated value in the current integrating means from the time of detecting the inflection point to the time when the voltage detected by the voltage detecting means becomes the fully charged voltage is defined as the second battery capacity, and the second battery capacity and the first battery Add the capacity to get the full charge capacity.

しかしながら、上記の技術では、満充電容量を精度よく求めることができるとされているが、負荷が接続された状態での充電状態については考慮されていない。   However, in the above technique, it is said that the full charge capacity can be accurately obtained, but the state of charge in a state where a load is connected is not considered.

本発明は、上記に鑑みてなされたものであり、負荷が接続された状態での充電状態を測定可能とする充電状態検出装置を提供するものである。   The present invention has been made in view of the above, and provides a state-of-charge detection device capable of measuring a state of charge in a state where a load is connected.

本充電状態検出装置は、負荷が接続された状態で蓄電デバイスの充電状態を検出する充電状態検出装置であって、充電部から前記蓄電デバイスを定電流充電する電流の供給が開始された第1時点での前記蓄電デバイスの第1電圧と、前記電流の供給が停止された、満充電に至る前の第2時点での前記蓄電デバイスの第2電圧と、を検出する電圧検出部と、前記第2電圧から前記第1電圧を減算して電圧変化量を検出する電圧変化量検出部と、前記第1電圧及び前記電圧変化量に基づいて、前記蓄電デバイスの充電状態を検出する充電状態検出部と、を有することを要件とする。   The charge state detection device is a charge state detection device that detects a charge state of an electricity storage device in a state where a load is connected, and a first supply of current for constant current charging of the electricity storage device from a charging unit is started. A voltage detection unit that detects a first voltage of the power storage device at a time point and a second voltage of the power storage device at a second time point before the full charge is stopped when the supply of the current is stopped; A voltage change amount detection unit that detects a voltage change amount by subtracting the first voltage from a second voltage, and a charge state detection that detects a charge state of the power storage device based on the first voltage and the voltage change amount It is a requirement to have a part.

開示の技術によれば、負荷が接続された状態での充電状態を測定可能とする充電状態検出装置を提供できる。   According to the disclosed technology, it is possible to provide a charge state detection device that can measure a charge state in a state where a load is connected.

第1の実施の形態に係る充電状態検出装置が適用されるハイブリッド車両の概略構成図である。1 is a schematic configuration diagram of a hybrid vehicle to which a charging state detection device according to a first embodiment is applied. 第1の実施の形態に係る電池の充電率対電圧特性を例示する図である。It is a figure which illustrates the charging rate vs. voltage characteristic of the battery which concerns on 1st Embodiment. 第1の実施の形態に係るバッテリ制御ユニットの機能ブロックを例示する図である。It is a figure which illustrates the functional block of the battery control unit which concerns on 1st Embodiment. 第1の実施の形態に係る充電状態推定の方法を示すフローチャートの例である。It is an example of the flowchart which shows the method of the charge condition estimation which concerns on 1st Embodiment. 電池の劣化前後の充電率対電圧特性を例示する図である。It is a figure which illustrates the charging rate vs. voltage characteristic before and behind deterioration of a battery. 第2の実施の形態に係るバッテリ制御ユニットの機能ブロックを例示する図である。It is a figure which illustrates the functional block of the battery control unit which concerns on 2nd Embodiment. 第2の実施の形態に係る劣化推定の方法を示すフローチャートの例である。It is an example of the flowchart which shows the method of the deterioration estimation which concerns on 2nd Embodiment.

以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。なお、各実施の形態では、一例として、ハイブリッド車両に搭載された電池の充電状態を高精度で検出可能な充電状態検出装置について説明する。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted. In each embodiment, as an example, a charge state detection device capable of detecting the charge state of a battery mounted on a hybrid vehicle with high accuracy will be described.

〈第1の実施の形態〉
図1は、第1の実施の形態に係る充電状態検出装置が適用されるハイブリッド車両の概略構成図である。図1において、バッテリパック10は、電池11と、モニタユニット12とを有する。なお、バッテリパック10には、電池11が最低1つ含まれていればよいが、高出力化のために2つ以上の電池11を直列接続や並列接続しても構わない。
<First Embodiment>
FIG. 1 is a schematic configuration diagram of a hybrid vehicle to which a charging state detection apparatus according to a first embodiment is applied. In FIG. 1, the battery pack 10 includes a battery 11 and a monitor unit 12. Note that the battery pack 10 only needs to include at least one battery 11, but two or more batteries 11 may be connected in series or in parallel for higher output.

電池11は、充放電可能な電池である。電池11としては、例えば、リチウムイオン電池等を用いることができる。モニタユニット12は、電池11の状態をモニタする機能を有する。モニタユニット12は電圧センサ、電流センサ、温度センサ等を備えていてもよい。なお、電池11は、本発明に係る蓄電デバイスの代表的な一例である。   The battery 11 is a chargeable / dischargeable battery. As the battery 11, for example, a lithium ion battery or the like can be used. The monitor unit 12 has a function of monitoring the state of the battery 11. The monitor unit 12 may include a voltage sensor, a current sensor, a temperature sensor, and the like. The battery 11 is a typical example of the electricity storage device according to the present invention.

エンジン20は、ガソリンや軽油等を燃料とする周知の内燃機関である。モータ30は、電動機及び発電機として機能する周知の発電電動機である。なお、電池11はモータ30が電動機として機能する際に電力を供給する役割と、モータ30が発電機として機能する際に回生エネルギを蓄える役割を担っている。   The engine 20 is a well-known internal combustion engine that uses gasoline, light oil, or the like as fuel. The motor 30 is a known generator motor that functions as a motor and a generator. The battery 11 plays a role of supplying electric power when the motor 30 functions as an electric motor and a role of storing regenerative energy when the motor 30 functions as a generator.

PHEV(Plug-in Hybrid Electric Vehicle)やHEV(Hybrid Electric Vehicle)を含むハイブリッド車両では、エンジン20とモータ30とを併用している。そして、エンジン20から出力される動力と、モータ30から出力される動力の少なくとも一方の動力により走行する。   In hybrid vehicles including PHEV (Plug-in Hybrid Electric Vehicle) and HEV (Hybrid Electric Vehicle), the engine 20 and the motor 30 are used in combination. The vehicle travels with at least one of the power output from the engine 20 and the power output from the motor 30.

システム制御ユニット40は、モータ30の動力のみで動作するEVモード(第1モード)と、モータ30の動力とエンジン20の動力とを併用して動作するHEVモード(第2モード)との切り替えを制御可能に構成されたECU(Electronic Control Unit:電子制御ユニット)である。システム制御ユニット40は、電池11の充電の制御や回生動作の制御等の他の様々な制御を可能に構成されていても構わない。   The system control unit 40 switches between an EV mode (first mode) that operates only with the power of the motor 30 and an HEV mode (second mode) that operates using both the power of the motor 30 and the power of the engine 20. An ECU (Electronic Control Unit) configured to be controllable. The system control unit 40 may be configured to be able to perform various other controls such as control of charging the battery 11 and control of regenerative operation.

システム制御ユニット40は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メインメモリ等を含むように構成することができる。この場合、システム制御ユニット40の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。システム制御ユニット40のCPUは、必要に応じてRAMからデータを読み出したり、格納したりできる。システム制御ユニット40は、本発明に係る制御部の代表的な一例である。   The system control unit 40 can be configured to include, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), a main memory, and the like. In this case, various functions of the system control unit 40 can be realized by reading a program recorded in the ROM or the like into the main memory and executing it by the CPU. The CPU of the system control unit 40 can read and store data from the RAM as necessary. The system control unit 40 is a typical example of a control unit according to the present invention.

バッテリ制御ユニット50は、電池11の充放電状態を管理制御する機能を有し、充電部60を介して電池11を充電する。又、バッテリ制御ユニット50は、電池11の充電状態を検出する機能を有している。なお、ハイブリッド車両がPHEVである場合には、充電部60には外部電源用プラグ65が設けられており、外部電源用プラグ65をコンセントに差し込むことで直接充電可能である。   The battery control unit 50 has a function of managing and controlling the charge / discharge state of the battery 11 and charges the battery 11 via the charging unit 60. The battery control unit 50 has a function of detecting the state of charge of the battery 11. When the hybrid vehicle is a PHEV, the charging unit 60 is provided with an external power plug 65, and can be directly charged by inserting the external power plug 65 into an outlet.

バッテリ制御ユニット50は、例えば、CPU、ROM、RAM、メインメモリ等を含むように構成してもよい。この場合、バッテリ制御ユニット50の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。バッテリ制御ユニット50のCPUは、必要に応じてRAMからデータを読み出したり、格納したりできる。なお、システム制御ユニット40やバッテリ制御ユニット50は、CAN(Controller Area Network)等により相互にデータの送受信が可能に構成されている。   The battery control unit 50 may be configured to include, for example, a CPU, ROM, RAM, main memory, and the like. In this case, various functions of the battery control unit 50 can be realized by reading a program recorded in the ROM or the like into the main memory and executing it by the CPU. The CPU of the battery control unit 50 can read and store data from the RAM as necessary. The system control unit 40 and the battery control unit 50 are configured to be able to transmit and receive data to and from each other by a CAN (Controller Area Network) or the like.

但し、バッテリ制御ユニット50の一部の機能をシステム制御ユニット40が担ってもよいし、システム制御ユニット40の一部の機能をバッテリ制御ユニット50が担ってもよい。又、システム制御ユニット40及びバッテリ制御ユニット50を物理的に1つのECUとして実現してもよいし、3つ以上のECUとして実現してもよい。   However, a part of the functions of the battery control unit 50 may be performed by the system control unit 40, or a part of the functions of the system control unit 40 may be performed by the battery control unit 50. Further, the system control unit 40 and the battery control unit 50 may be physically realized as one ECU, or may be realized as three or more ECUs.

ここで、電池11の充電率と電圧との関係について説明する。本実施の形態に係る電池11において、正極又は負極に単一の活物質を使用してもよいが、正極又は負極に電池電圧に対して出力特性の異なる活物質を混ぜた電極を使用してもよい。以降の説明は、電池11において、正極又は負極に電池電圧に対して出力特性の異なる活物質を混ぜた電極を使用した例について説明する。   Here, the relationship between the charging rate and the voltage of the battery 11 will be described. In the battery 11 according to the present embodiment, a single active material may be used for the positive electrode or the negative electrode, but an electrode in which an active material having different output characteristics with respect to the battery voltage is used for the positive electrode or the negative electrode is used. Also good. In the following description, an example in which an electrode in which an active material having different output characteristics with respect to the battery voltage is mixed in the battery 11 is used in the battery 11 will be described.

図2は、第1の実施の形態に係る電池の充電率対電圧特性を例示する図である。図2に示す特性の電池11は、正極又は負極中に電圧勾配の大きい活物質と電圧勾配の小さい活物質が混合されている。この場合、異なる活物質は混ざるだけで、化学反応するものではないため、充放電時の各電圧におけるイオンの出し入れは、材料固有のものとして、充電特性に現れることになる。   FIG. 2 is a diagram illustrating the charging rate versus voltage characteristics of the battery according to the first embodiment. In the battery 11 having the characteristics shown in FIG. 2, an active material having a large voltage gradient and an active material having a small voltage gradient are mixed in a positive electrode or a negative electrode. In this case, since different active materials are only mixed and do not chemically react, the input / output of ions at each voltage during charge / discharge appears as a material-specific characteristic in the charge characteristics.

そのため、図2に示すように、充電状態(充電率)と電圧との関係を示す充電率対電圧曲線は、電圧変化量の異なる複数の領域を備えたものとなる。具体的には、図2の例では、比較的フラットなB領域及びD領域や、比較的傾斜の大きなA領域、C領域及びE領域が現れ、単純な減少特性等にはならない。   Therefore, as shown in FIG. 2, the charging rate versus voltage curve showing the relationship between the state of charge (charging rate) and the voltage includes a plurality of regions with different voltage changes. Specifically, in the example of FIG. 2, a relatively flat B region and D region, and a relatively large slope A region, C region, and E region appear, and a simple reduction characteristic or the like does not occur.

図2に示す特性の電池11は、例えば、正極又は負極中に、電圧勾配の異なるリチウムイオンを脱挿入可能な材料が2つ以上混合されている非水溶媒系蓄電素子により実現できる。この場合、正極の材料の1つは、例えば、Li(POを基本骨格とするリン酸バナジウムリチウム又は該リン酸バナジウムリチウムの構造の一部を変性した類似化合物(以下、リン酸バナジウムリチウムと呼ぶ)とすることができる。 The battery 11 having the characteristics shown in FIG. 2 can be realized by, for example, a non-aqueous solvent storage element in which two or more materials capable of inserting and removing lithium ions having different voltage gradients are mixed in the positive electrode or the negative electrode. In this case, one of the positive electrode materials is, for example, lithium vanadium phosphate having Li 3 V 2 (PO 4 ) 3 as a basic skeleton or a similar compound in which a part of the structure of the lithium vanadium phosphate is modified (hereinafter, Called lithium vanadium phosphate).

電池11において、電池の充電状態を精度よく検出すること、例えば、SOC(State Of Charge)を精度よく検出することは、極めて重要である。例えば、システム制御ユニット40がSOCの検出結果に基づいてEVモードからHEVモードに切り替えを行う場合、SOCを精度よく検出できないと、本来の仕様とは異なる間違ったSOCでモード切り替えが行われることになる。その結果、HEVモードでの出力特性を十分確保できなかったり、ハイブリッド車両としての走行性能を損なったりするおそれがある。   In the battery 11, it is extremely important to accurately detect the state of charge of the battery, for example, to accurately detect SOC (State Of Charge). For example, when the system control unit 40 switches from the EV mode to the HEV mode based on the detection result of the SOC, if the SOC cannot be detected accurately, the mode is switched with an incorrect SOC different from the original specification. Become. As a result, the output characteristics in the HEV mode may not be sufficiently ensured, or the running performance as a hybrid vehicle may be impaired.

そこで、本実施の形態では、以下の方法により、SOCを精度よく検出している。図3に示すバッテリ制御ユニットの機能ブロック図、図4に示すフローチャート等を参照しながら、本実施の形態に係るSOCの検出方法について説明する。なお、図3に示すバッテリ制御ユニット50は、本発明に係る充電状態検出装置の代表的な一例である。   Therefore, in the present embodiment, the SOC is accurately detected by the following method. The SOC detection method according to the present embodiment will be described with reference to the functional block diagram of the battery control unit shown in FIG. 3, the flowchart shown in FIG. Note that the battery control unit 50 shown in FIG. 3 is a typical example of the state-of-charge detection device according to the present invention.

まず、図4のステップS101では、バッテリ制御ユニット50の電圧検出部51は、電池11の電圧が予め決めていた電圧Vに達したか否かを判定し、達していないと判定した場合(Noの場合)には、ステップS101の処理を繰り返す。一方、達していたと判定した場合(Yesの場合)には、ステップS102に移行する。 First, in step S101 of FIG. 4, the voltage detection unit 51 of the battery control unit 50 determines whether or not the voltage of the battery 11 has reached the predetermined voltage V 0 and determines that it has not reached ( In the case of No), the process of step S101 is repeated. On the other hand, if it is determined that it has been reached (in the case of Yes), the process proceeds to step S102.

次に、ステップS102では、バッテリ制御ユニット50の充電状態推定部52は、電池11の現在のSOCを粗推定する。具体的には、充電状態推定部52は、例えば、記憶部56に記憶されている、電圧とSOCとの関係を示すテーブルを読み出し、読み出したテーブルに基づいて、電圧検出部51の検出した電池11の電圧に対応するSOCを推定する。   Next, in step S102, the charging state estimation unit 52 of the battery control unit 50 roughly estimates the current SOC of the battery 11. Specifically, the charge state estimation unit 52 reads, for example, a table indicating the relationship between the voltage and the SOC stored in the storage unit 56, and the battery detected by the voltage detection unit 51 based on the read table. An SOC corresponding to a voltage of 11 is estimated.

次に、ステップS103では、バッテリ制御ユニット50の通信部53は、SOCの精密な検出を開始するという情報をシステム制御ユニット40に送り、システム制御ユニット40に充電電流の供給の開始を要求する。そして、通信部53から要求を受けたシステム制御ユニット40は、充電部60を介して電池11の定電流充電を開始する。充電部60から供給される電流は、例えば、パルス電流とすることができる。そして、通信部53は、満充電に至る前の所定のタイミングで、システム制御ユニット40に充電電流の供給の停止を要求する。   Next, in step S103, the communication unit 53 of the battery control unit 50 sends information that the precise detection of the SOC is started to the system control unit 40, and requests the system control unit 40 to start supplying charging current. Then, the system control unit 40 that has received the request from the communication unit 53 starts constant current charging of the battery 11 via the charging unit 60. The current supplied from the charging unit 60 can be a pulse current, for example. Then, the communication unit 53 requests the system control unit 40 to stop supplying the charging current at a predetermined timing before reaching full charge.

なお、本実施の形態では、所定の時点における電池11の充電状態を検出することを目的としているので、ステップS103では電池11を満充電まで充電するのではなく、電池11の充電特性におけるごく限られた範囲のみを充電する。   In the present embodiment, since the purpose is to detect the state of charge of the battery 11 at a predetermined time point, in step S103, the battery 11 is not charged to full charge, but is limited to the charge characteristics of the battery 11. Charge only the specified range.

次に、ステップS104では、バッテリ制御ユニット50の電圧検出部51は、電池11の充電前後の電圧を検出する。具体的には、電池11の充電開始時(電流の供給が開始された第1時点)の電圧(第1電圧)がV、充電終了時(電流の供給が停止された第2時点)の電圧(第2電圧)がVであるとすれば、電圧検出部51は、電圧V及びVを検出する。又、電圧変化量検出部54は、電池11の定電流充電中の電圧変化量ΔV=V−Vを検出する。なお、電圧V及び電圧Vは、予め決めていた電圧Vよりも低い電圧である。 Next, in step S <b> 104, the voltage detection unit 51 of the battery control unit 50 detects the voltage before and after charging the battery 11. Specifically, the voltage (first voltage) at the start of charging of the battery 11 (first time point at which current supply is started) is V 1 , and at the end of charging (second time point at which current supply is stopped). If the voltage (second voltage) is V 2 , the voltage detection unit 51 detects the voltages V 1 and V 2 . The voltage change amount detection unit 54 detects the voltage change amount ΔV = V 2 −V 1 during constant current charging of the battery 11. The voltages V 1 and V 2 are lower than the predetermined voltage V 0 .

次に、ステップS105では、バッテリ制御ユニット50の充電状態検出部55は、ステップS104で検出した電圧V及び電圧変化量ΔVに基づいて、電池11のSOCを検出する。具体的には、例えば、記憶部56に電池11のSOCと電圧及び電圧変化量との関係を示すデータ(テーブル等)を記憶しておく。SOCと電圧及び電圧変化量との関係を示すデータは、例えば、SOCが2〜5%程度変化するごとのデータとすることができる。そして、充電状態検出部55は、検出された電圧V及び電圧変化量ΔVと、記憶部56に記憶していたデータとを比較することにより、電圧V及び電圧変化量ΔVに対応するSOCを検出する。これにより、電池11の現在の充電状態を検出できる。 Next, in step S105, the charging state detector 55 of the battery control unit 50, based on the voltage V 1 and the voltage change amount ΔV detected in step S104, detects the SOC of the battery 11. Specifically, for example, data (table or the like) indicating the relationship between the SOC of the battery 11 and the voltage and voltage change amount is stored in the storage unit 56. The data indicating the relationship between the SOC, the voltage, and the voltage change amount can be, for example, data every time the SOC changes by about 2 to 5%. The charging state detecting section 55, a voltage V 1 and the voltage change amount ΔV detected by comparing the data stored in the storage unit 56, SOC corresponding to the voltage V 1 and the voltage change amount ΔV Is detected. Thereby, the current charging state of the battery 11 can be detected.

Figure 0006413763
表1は、記憶部56に記憶するテーブルの一例である。例えば、ステップS104で検出した電圧Vが3.8(V)、電圧変化量ΔVが0.03(V)であれば、表1より、SOC=80%と検出することができる。この方法では、電圧Vがほぼフラットな領域(例えば、電圧V=3.8(V)近傍の領域)でもSOCを正確に測定することができる。なお、表1の1つのΔVを測定するための充電時間(第1時点から第2時点までの時間)は任意に設定できるが、例えば、0.1s〜30秒程度とすることができる。
Figure 0006413763
Table 1 is an example of a table stored in the storage unit 56. For example, voltages V 1 detected in step S104 is 3.8 (V), if the voltage change amount [Delta] V 0.03 (V), can be seen from Table 1, to detect the SOC = 80%. In this method, the SOC can be accurately measured even in a region where the voltage V 1 is substantially flat (for example, a region in the vicinity of the voltage V 1 = 3.8 (V)). Note that the charging time (time from the first time point to the second time point) for measuring one ΔV in Table 1 can be arbitrarily set, and can be set to about 0.1 s to 30 seconds, for example.

この時、電池11の温度に対応した、SOCと電圧及び電圧変化量との関係を示す複数のデータ(例えば、複数のテーブル等)を記憶部56に記憶しておくことが好ましい。これにより、充電状態検出部55は、モニタユニット12がモニタリングした情報に基づいて電池11の温度を検出し、現在の温度に対応したデータを記憶部56から読み出すことで、SOCの検出精度を向上できる。   At this time, it is preferable to store a plurality of data (for example, a plurality of tables) corresponding to the temperature of the battery 11 and indicating the relationship between the SOC, the voltage, and the voltage change amount in the storage unit 56. Thereby, the charging state detection unit 55 detects the temperature of the battery 11 based on the information monitored by the monitor unit 12, and reads the data corresponding to the current temperature from the storage unit 56, thereby improving the SOC detection accuracy. it can.

ここで、ステップS101の電圧Vは、図2のB領域又はD領域であることが好ましが、A領域、C領域、E領域であってもよい。特に、図4の方法は、比較的フラットなB領域又はD領域において精度よくSOCを検出するのに有効だからである。 Here, the voltage V 0 in step S101 is preferably the B region or the D region in FIG. 2, but may be the A region, the C region, or the E region. In particular, the method of FIG. 4 is effective for accurately detecting the SOC in the relatively flat B region or D region.

又、A領域からE領域の同一領域内で複数の電圧を設定してもよい。つまり、電圧変化量ΔVを複数回測定してもよい。例えば、電圧検出部51が同一領域又は異なる領域の電圧V、V、Vを検出し、電圧変化量検出部54がΔV=V−V、ΔV=V−Vを検出し、電圧V及びV、並びに電圧変化量ΔV及びΔVに基づいて、電池11のSOCを検出することができる。 A plurality of voltages may be set in the same area from the A area to the E area. That is, the voltage change amount ΔV may be measured a plurality of times. For example, the voltage detection unit 51 detects voltages V 1 , V 2 , V 3 in the same region or different regions, and the voltage change amount detection unit 54 ΔV 1 = V 2 −V 1 , ΔV 2 = V 3 −V 2. , And the SOC of the battery 11 can be detected based on the voltages V 1 and V 2 and the voltage changes ΔV 1 and ΔV 2 .

又、異なる領域にわたって複数の電圧を設定してもよい。この場合には、ステップS103では、図2の各領域の境界である何れかの変極点よりも低充電率側の所定電圧で電流の供給が開始され、この変極点よりも高充電率側の所定電圧まで充電されたときに、電流の供給を停止する。これにより、何れかの変極点を跨いで充電が行われるため、電圧変化量が大きく変わる点を検出することができる。その結果、電池11の現在の充電状態を精度よく検出できる。   A plurality of voltages may be set over different regions. In this case, in step S103, the current supply is started at a predetermined voltage on the low charge rate side from any inflection point that is the boundary between the regions in FIG. 2, and the high charge rate side from this inflection point is started. When charged to a predetermined voltage, supply of current is stopped. Thereby, since charging is performed across any inflection point, it is possible to detect a point where the amount of voltage change greatly changes. As a result, the current state of charge of the battery 11 can be accurately detected.

このように、第1の実施の形態では、ごく限られた所定時間、電池11を充電して充電前後の電圧、及び充電前後の電圧変化量を測定する。この際、従来の充電状態検出方法のように、ランダムな電流により充電するのではなく、定電流充電するため、負荷が接続された状態でも、精度よく電圧及び電圧変化量を測定できる。その結果、負荷が接続された状態でも、測定した電圧及び電圧変化量に基づいて、精度よく充電状態(SOC)を検出できる。   As described above, in the first embodiment, the battery 11 is charged for a very limited predetermined time, and the voltage before and after charging and the voltage change amount before and after charging are measured. At this time, as in the conventional charge state detection method, charging is not performed with a random current but constant current charging, so that the voltage and the amount of voltage change can be accurately measured even when a load is connected. As a result, even when the load is connected, the state of charge (SOC) can be accurately detected based on the measured voltage and the amount of voltage change.

〈第2の実施の形態〉
第2の実施の形態では、充電状態検出装置が電池の劣化推定機能を備えている例を示す。なお、第2の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
<Second Embodiment>
In the second embodiment, an example in which the state of charge detection device has a battery deterioration estimation function is shown. In the second embodiment, description of the same components as those of the already described embodiments may be omitted.

電池11が電池電圧に対して出力特性の異なる活物質を混ぜた電極を使用している場合、
活物質の種類による劣化速度の違いにより、本実施の形態に係る電池11の初期と劣化後の充電率対電圧特性は、例えば、図5のようになる。図5の実線(A領域、B領域、C領域、D領域、E領域)は、電池11の初期(劣化前)の充電率対電圧特性を例示している。
又、図5の破線(A'領域、B'領域、C'領域、D'領域、E'領域)は電池11の劣化後の充電率対電圧特性を例示している。
When the battery 11 uses an electrode mixed with active materials having different output characteristics with respect to the battery voltage,
Due to the difference in the deterioration rate depending on the type of the active material, the charging rate versus voltage characteristics of the battery 11 according to the present embodiment and the initial state after deterioration are, for example, as shown in FIG. The solid lines (A region, B region, C region, D region, and E region) in FIG. 5 illustrate the initial charging rate (before deterioration) of the battery 11 versus voltage characteristics.
Also, the broken lines (A ′ region, B ′ region, C ′ region, D ′ region, E ′ region) in FIG. 5 illustrate the charge rate versus voltage characteristics after the battery 11 is deteriorated.

図5の例では、比較的劣化し難い活物質の特性が現れているB領域とD領域では、劣化前後で充電率(フラットな領域の幅)がほとんど変化していない。これに対して、比較的劣化し易い活物質の特性が現れているA領域とC領域とE領域では、劣化に伴い充電率が減っている(内部抵抗の上昇により、傾斜が大きくなり幅が減っている)。   In the example of FIG. 5, in the B region and the D region where the characteristics of the active material that is relatively difficult to deteriorate appear, the charging rate (width of the flat region) hardly changes before and after the deterioration. On the other hand, in the A region, the C region, and the E region in which the characteristics of the active material that is relatively easily deteriorated, the charging rate decreases with the deterioration (the increase in internal resistance increases the slope and the width). decreasing).

このように、劣化速度の異なる複数の活物質を含む電極を備えた電池11は、充電率対電圧曲線において劣化速度の速い活物質の特性に依存する領域と、劣化速度の遅い活物質の特性に依存する領域とを有する。そのため、劣化が進行した場合、比較的劣化し易い活物質が先に劣化し、その活物質の特性に依存する領域の容量が初期より少なくなる。そして、各活物質の特性への寄与度は、電池電圧によって異なる。   As described above, the battery 11 including the electrodes including a plurality of active materials having different deterioration rates has a region depending on the characteristics of the active material having a high deterioration rate in the charging rate versus voltage curve, and the characteristics of the active material having a low deterioration rate. Depending on the area. Therefore, when deterioration progresses, the active material that is relatively easy to deteriorate deteriorates first, and the capacity of the region depending on the characteristics of the active material becomes smaller than the initial capacity. And the contribution to the characteristic of each active material changes with battery voltages.

そこで、電池11の充電率対電圧曲線の劣化前後での特性変化により、電池11の劣化状態を推定することができる。具体的には、以下の方法により、電池11の劣化状態を推定することができる。   Therefore, the deterioration state of the battery 11 can be estimated from the characteristic change before and after the deterioration of the charging rate versus voltage curve of the battery 11. Specifically, the deterioration state of the battery 11 can be estimated by the following method.

図6に示すバッテリ制御ユニットの機能ブロック図、図7に示すフローチャート等を参照しながら、本実施の形態に係る電池11の劣化状態の推定方法について説明する。なお、図6に示すバッテリ制御ユニット50は、本発明に係る充電状態検出装置の代表的な一例である。   With reference to the functional block diagram of the battery control unit shown in FIG. 6, the flowchart shown in FIG. 7, and the like, a method for estimating the deterioration state of the battery 11 according to the present embodiment will be described. In addition, the battery control unit 50 shown in FIG. 6 is a typical example of the charge state detection apparatus according to the present invention.

まず、第1の実施の形態のステップS101からS104と同様にして、バッテリ制御ユニット50の電圧検出部51は、電池11の充電前後の電圧V及びVを検出する。又、電圧変化量検出部54は、電池11の定電流充電中の電圧変化量ΔV=V−Vを検出する。 First, similarly to steps S101 to S104 of the first embodiment, the voltage detection unit 51 of the battery control unit 50 detects the voltages V 1 and V 2 before and after the battery 11 is charged. The voltage change amount detection unit 54 detects the voltage change amount ΔV = V 2 −V 1 during constant current charging of the battery 11.

次に、ステップS205では、バッテリ制御ユニット50の劣化状態検出部57は、ステップS104で検出した電圧V及び電圧変化量ΔVに基づいて、電池11の劣化状態を検出(推定)する。具体的には、記憶部56に、劣化前(初期)の電池11のSOCと電圧及び電圧変化量との関係を示すデータ(テーブル等)と、劣化後の電池11のSOCと電圧及び電圧変化量との関係を示すデータ(テーブル等)を記憶しておく。そして、劣化状態検出部57は、検出された電圧V及び電圧変化量ΔVと、記憶部56に記憶していた劣化前後のデータとを比較することにより、現在の電池11の劣化状態を検出することができる。 Next, in step S205, the deterioration state detecting unit 57 of the battery control unit 50, based on the voltage V 1 and the voltage change amount ΔV detected in step S104, detects (estimates) the deterioration state of the battery 11. Specifically, the storage unit 56 stores data (table or the like) indicating the relationship between the SOC of the battery 11 before deterioration (initial), the voltage and the voltage change amount, and the SOC, voltage, and voltage change of the battery 11 after deterioration. Data (table or the like) indicating the relationship with the quantity is stored. Then, the deterioration state detecting unit 57 includes a voltage V 1 and the voltage change amount ΔV detected, and by comparing the before and after degradation which has been stored in the storage unit 56 data, detecting the deterioration state of the current of the battery 11 can do.

このように、第2の実施の形態では、電池の劣化状態を検出することができる。この際、第1の実施の形態と同様に、定電流充電後に電圧及び電圧変化量を測定するため、負荷が接続された状態でも、精度よく電圧及び電圧変化量を測定できる。その結果、負荷が接続された状態でも、測定した電圧及び電圧変化量に基づいて、精度よく劣化状態を検出できる。   Thus, in the second embodiment, the deterioration state of the battery can be detected. At this time, as in the first embodiment, the voltage and the voltage change amount are measured after the constant current charging, and therefore the voltage and the voltage change amount can be accurately measured even when the load is connected. As a result, even when the load is connected, it is possible to accurately detect the deterioration state based on the measured voltage and the amount of voltage change.

以上、好ましい実施の形態について詳説したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。   The preferred embodiment has been described in detail above. However, the present invention is not limited to the above-described embodiment, and various modifications and replacements are made to the above-described embodiment without departing from the scope described in the claims. Can be added.

例えば、上記の実施の形態では、本発明に係る充電状態検出装置を電池(特に、リチウムイオン電池)に適用する例を示した。しかし、本発明に係る充電状態検出装置は、リチウムイオン電池以外の充電可能な電池、電気二重層コンデンサ等のキャパシタ等を含む様々な蓄電デバイスに適用することができる。   For example, in the above-described embodiment, an example in which the charge state detection device according to the present invention is applied to a battery (particularly, a lithium ion battery) has been described. However, the charging state detection apparatus according to the present invention can be applied to various power storage devices including rechargeable batteries other than lithium ion batteries, capacitors such as electric double layer capacitors, and the like.

又、上記の実施の形態では、本発明に係る充電状態検出装置を搭載可能な移動体の一例としてPHEVやHEVを用いて説明を行った。しかし、移動体は、PHEVやHEVには限られず、例えば、蓄電デバイスを使用して走行可能な機関車やバイクであってもよい。又、移動体は、蓄電デバイスを使用して走行可能な、工場等で使用される搬送用ロボットであってもよい。又、移動体は、その物体全体が移動せず、一部のみが移動するもの、例えば、工場の製造ラインに配される、蓄電デバイスを使用してアーム等が動作可能な組立ロボットであってもよい。   In the above embodiment, the description has been given using PHEV or HEV as an example of a moving body on which the charging state detection device according to the present invention can be mounted. However, the moving body is not limited to PHEV or HEV, and may be a locomotive or a motorcycle that can travel using an electricity storage device, for example. In addition, the moving body may be a transport robot used in a factory or the like that can travel using the power storage device. In addition, the moving object is an assembly robot in which the entire object does not move but only a part moves, for example, an assembly robot arranged on a production line in a factory and capable of operating an arm or the like using a power storage device. Also good.

10 バッテリパック
11 電池
12 モニタユニット
20 エンジン
30 モータ
40 システム制御ユニット
50 バッテリ制御ユニット
51 電圧検出部
52 充電状態推定部
53 通信部
54 電圧変化量検出部
55 充電状態検出部
56 記憶部
57 劣化状態検出部
60 充電部
65 外部電源用プラグ
DESCRIPTION OF SYMBOLS 10 Battery pack 11 Battery 12 Monitor unit 20 Engine 30 Motor 40 System control unit 50 Battery control unit 51 Voltage detection part 52 Charging state estimation part 53 Communication part 54 Voltage change amount detection part 55 Charging state detection part 56 Storage part 57 Deterioration state detection 60 Charger 65 External power plug

特許5282789号Japanese Patent No. 5282789

Claims (10)

負荷が接続された状態で蓄電デバイスの充電状態を検出する充電状態検出装置であって、
充電部から前記蓄電デバイスを定電流充電する電流の供給が開始された第1時点での前記蓄電デバイスの第1電圧と、前記電流の供給が停止された、満充電に至る前の第2時点での前記蓄電デバイスの第2電圧と、を検出する電圧検出部と、
前記第2電圧から前記第1電圧を減算して電圧変化量を検出する電圧変化量検出部と、
前記第1電圧及び前記電圧変化量に基づいて、前記蓄電デバイスの充電状態を検出する充電状態検出部と、を有することを特徴とする充電状態検出装置。
A charge state detection device for detecting a charge state of an electricity storage device in a state where a load is connected,
A first voltage of the electricity storage device at a first time when supply of a current for constant current charging of the electricity storage device from the charging unit is started, and a second time before reaching full charge when the supply of the current is stopped. A voltage detector for detecting the second voltage of the electricity storage device at
A voltage change amount detection unit for detecting a voltage change amount by subtracting the first voltage from the second voltage;
A charge state detection unit configured to detect a charge state of the power storage device based on the first voltage and the voltage change amount;
前記蓄電デバイスの充電状態と電圧との関係を示すデータを記憶する記憶部を有し、
前記充電状態検出部は、前記第1電圧及び前記電圧変化量と前記データとを比較することにより前記蓄電デバイスの充電状態を検出することを特徴とする請求項1記載の充電状態検出装置。
A storage unit for storing data indicating a relationship between a charge state of the power storage device and a voltage;
The charge state detection device according to claim 1, wherein the charge state detection unit detects the charge state of the power storage device by comparing the first voltage and the voltage change amount with the data.
前記蓄電デバイスの充電率と電圧との関係を示す充電率対電圧曲線は、電圧変化量の異なる複数の領域を備えていることを特徴とする請求項1又は2記載の充電状態検出装置。   The charge state detection apparatus according to claim 1 or 2, wherein a charge rate vs. voltage curve indicating a relationship between a charge rate and a voltage of the power storage device includes a plurality of regions having different voltage changes. 前記電流の供給の開始及び停止を要求する通信部を有し、
前記蓄電デバイスの電圧が、前記領域の境界である変極点よりも低充電率側の所定電圧の時に、前記通信部が前記電流の供給の開始を要求し、前記要求に基づいて、前記第1時点で前記電流の供給が開始され、
前記蓄電デバイスの電圧が、前記変極点よりも高充電率側の前記第2電圧まで充電されたときに、前記通信部が前記電流の供給の停止を要求し、前記要求に基づいて、前記第2時点で前記電流の供給が停止されることを特徴とする請求項3記載の充電状態検出装置。
A communication unit that requests start and stop of the supply of the current;
When the voltage of the power storage device is a predetermined voltage on a lower charging rate side than the inflection point that is a boundary of the region, the communication unit requests the start of the supply of the current, and based on the request, the first At that time, the supply of current starts,
When the voltage of the power storage device is charged up to the second voltage on the higher charging rate side than the inflection point, the communication unit requests to stop the supply of the current, and based on the request, the first The charging state detection device according to claim 3, wherein the supply of the current is stopped at two time points.
前記蓄電デバイスの正極又は負極中に、電圧勾配の異なるリチウムイオンを脱挿入可能な材料が2つ以上混合されていることを特徴とする請求項3又は4記載の充電状態検出装置。   5. The charge state detection device according to claim 3, wherein two or more materials capable of removing and inserting lithium ions having different voltage gradients are mixed in the positive electrode or the negative electrode of the electricity storage device. 前記蓄電デバイスの正極の材料は、Li(POを基本骨格とするリン酸バナジウムリチウム又は該リン酸バナジウムリチウムの構造の一部を変性した類似化合物を含んでいることを特徴とする請求項5記載の充電状態検出装置。 The positive electrode material of the electricity storage device includes lithium vanadium phosphate having Li 3 V 2 (PO 4 ) 3 as a basic skeleton or a similar compound obtained by modifying a part of the structure of the lithium vanadium phosphate. The charging state detection device according to claim 5. 前記第1電圧及び前記電圧変化量に基づいて、前記蓄電デバイスの劣化状態を推定する劣化状態検出部を有することを特徴とする請求項1乃至6の何れか一項記載の充電状態検出装置。   The charge state detection device according to claim 1, further comprising a deterioration state detection unit that estimates a deterioration state of the power storage device based on the first voltage and the voltage change amount. 前記蓄電デバイスと、前記充電部と、前記蓄電デバイスから供給される電力により動作するモータと、エンジンと、請求項1乃至7の何れか一項記載の充電状態検出装置と、を有する移動体。   A mobile unit comprising: the power storage device; the charging unit; a motor that operates with electric power supplied from the power storage device; an engine; and a charge state detection device according to any one of claims 1 to 7. 前記充電状態検出装置の検出結果に基づいて、前記モータの動力のみで動作する第1モードと、前記モータの動力と前記エンジンの動力とを併用して動作する第2モードと、の切り替えを制御する制御部を有する請求項8記載の移動体。   Based on the detection result of the state-of-charge detection device, switching between a first mode that operates only with the power of the motor and a second mode that operates using both the power of the motor and the power of the engine is controlled. The mobile body according to claim 8, further comprising a control unit that performs the control. 負荷が接続された状態で蓄電デバイスの充電状態を検出する充電状態検出方法であって、
充電部から前記蓄電デバイスを定電流充電する電流の供給が開始された第1時点での前記蓄電デバイスの第1電圧と、前記電流の供給が停止された、満充電に至る前の第2時点での前記蓄電デバイスの第2電圧と、を検出するステップと、
前記第2電圧から前記第1電圧を減算して電圧変化量を検出するステップと、
前記第1電圧及び前記電圧変化量に基づいて、前記蓄電デバイスの充電状態を検出するステップと、を有することを特徴とする充電状態検出方法。
A charge state detection method for detecting a charge state of an electricity storage device in a state where a load is connected,
A first voltage of the electricity storage device at a first time when supply of a current for constant current charging of the electricity storage device from the charging unit is started, and a second time before reaching full charge when the supply of the current is stopped. Detecting a second voltage of the electricity storage device at:
Subtracting the first voltage from the second voltage to detect a voltage change amount;
Detecting the state of charge of the electricity storage device based on the first voltage and the amount of voltage change.
JP2014266029A 2014-12-26 2014-12-26 Charge state detection device, charge state detection method, mobile object Active JP6413763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266029A JP6413763B2 (en) 2014-12-26 2014-12-26 Charge state detection device, charge state detection method, mobile object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266029A JP6413763B2 (en) 2014-12-26 2014-12-26 Charge state detection device, charge state detection method, mobile object

Publications (2)

Publication Number Publication Date
JP2016125882A JP2016125882A (en) 2016-07-11
JP6413763B2 true JP6413763B2 (en) 2018-10-31

Family

ID=56356977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266029A Active JP6413763B2 (en) 2014-12-26 2014-12-26 Charge state detection device, charge state detection method, mobile object

Country Status (1)

Country Link
JP (1) JP6413763B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6758947B2 (en) 2016-06-24 2020-09-23 キヤノン株式会社 Color separation processing device, color separation processing method, color separation LUT creation method and program
JP2021083137A (en) * 2018-03-14 2021-05-27 日立Astemo株式会社 Charge control device
KR102561574B1 (en) * 2018-06-11 2023-07-31 삼성전자주식회사 Method for acquiring information on state of battery based on amount of change of battery while charging battery and electronic device for supporting the same
JP7214993B2 (en) * 2018-06-29 2023-01-31 株式会社リコー storage system
CN109444606B (en) * 2018-12-17 2020-06-16 深圳市华星光电半导体显示技术有限公司 Charging test method and charging test device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081392B2 (en) * 1992-10-27 2000-08-28 三洋電機株式会社 How to display the battery charge capacity during charging
JP3346003B2 (en) * 1993-12-21 2002-11-18 日産自動車株式会社 Method for detecting capacity of ion secondary battery
JPH11355969A (en) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd Charging equipment
JP2009195081A (en) * 2008-02-18 2009-08-27 Panasonic Corp Charging control circuit, charger device equipped with circuit, and battery pack
WO2011074169A1 (en) * 2009-12-14 2011-06-23 パナソニック株式会社 Method for determining completion of charging and discharging of lithium-ion secondary battery, charge control circuit, discharge control circuit, and power supply
JP5282789B2 (en) * 2011-01-11 2013-09-04 株式会社デンソー Battery capacity detection device for lithium ion secondary battery
JP2013148452A (en) * 2012-01-19 2013-08-01 Toyota Industries Corp Soh estimation device

Also Published As

Publication number Publication date
JP2016125882A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6485041B2 (en) Electric storage device deterioration estimation device, electric storage device deterioration estimation method, mobile object
US9354277B2 (en) Apparatus of SOC estimation during plug-in charge mode
CN107817450B (en) Storage element pack, management device, SOC estimation method, medium, and panel system
RU2564102C1 (en) Control device and control method for anhydrous accumulator battery
JP6160473B2 (en) Power storage system
JP6183663B2 (en) Secondary battery control device
JP5621818B2 (en) Power storage system and equalization method
WO2010058839A1 (en) Charge control device
JP6250164B2 (en) Method and apparatus for balancing an energy storage system
CN110957544B (en) Control device for lithium ion battery, control method for lithium ion battery and storage medium
JP6413763B2 (en) Charge state detection device, charge state detection method, mobile object
US10971767B2 (en) Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device
US11411421B2 (en) Control device and method for charging a rechargeable battery
KR20130083220A (en) Apparatus and method of estimating state of charging for battery, and battery management system using the same
JP2009071986A (en) Calculation device for deterioration degree of in-vehicle battery
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
JP5862478B2 (en) Power storage system and control method
JP6135898B2 (en) Charge control device for power storage element, power storage device, and charge control method
JP2017129400A (en) Battery state estimation device
JP6631155B2 (en) Operation mode control device, operation mode control method, moving object
KR101460560B1 (en) SOC management apparatus of ultra-capacitor pack for hybrid energy storage devices, and control method of the same
JP5772615B2 (en) Power storage system
JP2018085278A (en) Control system
KR102512981B1 (en) Vehicle, apparatus for measuring of deterioration of battery and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6413763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151