[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6409272B2 - Charge state estimation device - Google Patents

Charge state estimation device Download PDF

Info

Publication number
JP6409272B2
JP6409272B2 JP2013264890A JP2013264890A JP6409272B2 JP 6409272 B2 JP6409272 B2 JP 6409272B2 JP 2013264890 A JP2013264890 A JP 2013264890A JP 2013264890 A JP2013264890 A JP 2013264890A JP 6409272 B2 JP6409272 B2 JP 6409272B2
Authority
JP
Japan
Prior art keywords
battery
soc
lithium concentration
estimated
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013264890A
Other languages
Japanese (ja)
Other versions
JP2015121449A (en
Inventor
久 梅本
久 梅本
賢和 草野
賢和 草野
粟野 直実
直実 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013264890A priority Critical patent/JP6409272B2/en
Publication of JP2015121449A publication Critical patent/JP2015121449A/en
Application granted granted Critical
Publication of JP6409272B2 publication Critical patent/JP6409272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池の充電状態を推定する充電状態推定装置に関する。   The present invention relates to a charging state estimation device that estimates a charging state of a secondary battery.

近年、低コスト且つ安全性の高いオリビン系リチウムイオン二次電池が、電気自動車やハイブリッド自動車に搭載される大型蓄電池として注目されている。オリビン系リチウムイオン二次電池は、バッテリの充電状態SOC(State Of Charge)の変化量に対する開路電圧OCV(Open Circuit Voltage)の変化量が小さい領域、すなわちプラトー領域が広い。プラトー領域では、OCVからSOCを一意に決めることができない。   In recent years, low-cost and highly safe olivine lithium ion secondary batteries have attracted attention as large-scale storage batteries mounted on electric vehicles and hybrid vehicles. The olivine-type lithium ion secondary battery has a wide region where the change amount of the open circuit voltage OCV (Open Circuit Voltage) with respect to the change amount of the state of charge (SOC) of the battery is small, that is, a plateau region. In the plateau region, the SOC cannot be uniquely determined from the OCV.

そこで、特許文献1は、プラトー領域では、二次電池に流入及び流出する電流を積算してSOCを推定している。ただし、電流積算によるSOCの推定は、長時間行うと積算誤差が蓄積され、SOCの推定精度が低下する。そのため、特許文献1では、SOCの推定値がプラトー領域に属する期間が所定期間を超えた場合は、強制的に放電又は充電を行って、OCVに対してSOCが一意的に決まる領域に属するように、SOCを変化させている。これにより、SOCの推定誤差が連続的に増大していくことを防止している。   Therefore, Patent Document 1 estimates the SOC by integrating the current flowing into and out of the secondary battery in the plateau region. However, if SOC estimation by current integration is performed for a long time, an integration error accumulates, and the SOC estimation accuracy decreases. Therefore, in Patent Document 1, when the period during which the estimated value of the SOC belongs to the plateau region exceeds a predetermined period, the SOC is forcibly discharged or charged so that the SOC is uniquely determined with respect to the OCV. In addition, the SOC is changed. This prevents the SOC estimation error from increasing continuously.

特許第4772137号公報Japanese Patent No. 4772137

特許文献1では、プラトー領域におけるSOCの推定精度を低下させないために、電池の強制充放電を行っている。そのため、電池容量の利用効率が低下する問題がある。   In Patent Document 1, a battery is forcibly charged and discharged in order not to reduce the estimation accuracy of the SOC in the plateau region. Therefore, there is a problem that the utilization efficiency of the battery capacity is lowered.

本発明は、上記実情に鑑み、強制充放電を実施することなく、リチウムイオン二次電池の充電状態を高精度に推定可能な充電状態推定装置を提供することを主たる目的とする。   In view of the above circumstances, it is a main object of the present invention to provide a state of charge estimation device capable of estimating the state of charge of a lithium ion secondary battery with high accuracy without performing forced charge / discharge.

本発明は、上記課題を解決するために、リチウムイオン二次電池の充電状態を推定する充電状態推定装置であって、充電中又は放電中における前記電池の電圧又は前記電池に流れる電流に基づいて、前記電池の活物質の表面における表面リチウム濃度を算出し、算出した前記表面リチウム濃度に基づいて、前記電池の充電状態を推定する。   In order to solve the above-mentioned problem, the present invention is a state-of-charge estimation device that estimates the state of charge of a lithium ion secondary battery, and is based on the voltage of the battery or the current flowing in the battery during charging or discharging The surface lithium concentration on the surface of the active material of the battery is calculated, and the state of charge of the battery is estimated based on the calculated surface lithium concentration.

本発明によれば、充電中又は放電中における電池の電圧又は電池に流れる電流に基づいて、電池の活物質の表面における表面リチウム濃度が算出される。電池に電流が流れていない状態では、プラトー領域において、電池電圧からSOC及び表面リチウム濃度を一意に算出できない。しかしながら、充電中又は放電中に電池に電流が流れると、SOCは急激に変化しないのに対して、表面リチウム濃度は急激に変化する。これにより、SOCはプラトー領域内であっても、表面リチウム濃度は、電池電圧との相関関係から一意に算出できるようになる。また、表面リチウム濃度は、電池に流れる電流との相関関係からも一意に算出できる。   According to the present invention, the surface lithium concentration on the surface of the active material of the battery is calculated based on the voltage of the battery during charging or discharging or the current flowing through the battery. In a state where no current flows through the battery, the SOC and surface lithium concentration cannot be uniquely calculated from the battery voltage in the plateau region. However, when a current flows through the battery during charging or discharging, the SOC does not change abruptly, whereas the surface lithium concentration changes abruptly. As a result, even if the SOC is within the plateau region, the surface lithium concentration can be uniquely calculated from the correlation with the battery voltage. The surface lithium concentration can also be calculated uniquely from the correlation with the current flowing through the battery.

そして、表面リチウムイオン濃度とSOCとには相関があるため、表面リチウム濃度から電池のSOCが高精度に推定される。したがって、充放電中に電池の電圧又は電流に基づいて表面リチウム濃度を算出することにより、SOCを大きく変化させるような強制充放電を実施することなく、電池のSOCを高精度に算出することができる。   Since there is a correlation between the surface lithium ion concentration and the SOC, the SOC of the battery is estimated with high accuracy from the surface lithium concentration. Therefore, by calculating the surface lithium concentration based on the voltage or current of the battery during charging / discharging, it is possible to calculate the SOC of the battery with high accuracy without performing forced charging / discharging that greatly changes the SOC. it can.

ハイブリッド車両の構成を示すブロック図。The block diagram which shows the structure of a hybrid vehicle. SOCとOCVとの関係を示す図。The figure which shows the relationship between SOC and OCV. 放電前及び放電中の正極活物質に含まれるリチウム濃度を示す図。The figure which shows the lithium concentration contained in the positive electrode active material before discharge and during discharge. 電池反応モデルを示す図。The figure which shows a battery reaction model. SOCを補正する処理手順を示すフローチャート。The flowchart which shows the process sequence which correct | amends SOC.

以下、充電状態推定装置をハイブリッド車両に適用した実施形態について、図面を参照して説明する。   Hereinafter, an embodiment in which a charging state estimation device is applied to a hybrid vehicle will be described with reference to the drawings.

まず、図1を参照して、本実施形態に係るハイブリッド車両の概略構成について説明する。本実施形態に係るハイブリッド車両は、エンジン11(内燃機関)、MG1、MG2、インバータ21、昇圧コンバータ22、バッテリ23、電池ECU30(充電状態推定装置)、HVECU30、及びエンジンECU10を備える。   First, a schematic configuration of a hybrid vehicle according to the present embodiment will be described with reference to FIG. The hybrid vehicle according to the present embodiment includes an engine 11 (internal combustion engine), MG1, MG2, an inverter 21, a boost converter 22, a battery 23, a battery ECU 30 (charge state estimation device), an HVECU 30, and an engine ECU 10.

エンジン11は、車両の走行駆動力を発生する。MG1及びMG2は、モータジェネレータである。MG1は、エンジン始動時に、モータとして作動してエンジン11の始動をアシストする。また、MG1は、エンジン始動後に、エンジン11の駆動力により発電機として作動し、発電した交流電力をインバータ21へ供給する。MG2は、インバータ21から交流電力の供給を受けてモータとして作動し、車両の走行駆動力を発生する。また、MG2は、減速時に回生発電を行い、発電した交流電力をインバータ21へ供給する。   The engine 11 generates a driving force for driving the vehicle. MG1 and MG2 are motor generators. MG1 operates as a motor to assist the start of engine 11 when the engine is started. The MG 1 operates as a generator by the driving force of the engine 11 after the engine is started, and supplies the generated AC power to the inverter 21. MG2 is supplied with AC power from inverter 21 and operates as a motor to generate a driving force for the vehicle. The MG 2 performs regenerative power generation when decelerating and supplies the generated AC power to the inverter 21.

インバータ21は、昇圧コンバータ22から供給された直流電力を交流電力に変換する。そして、インバータ21は、エンジン始動時にMG1に交流電力を供給してMG1を駆動制御するとともに、エンジン始動後にMG2に交流電力を供給してMG2を駆動制御する。また、インバータ21は、MG1及びMG2から供給された交流電力を直流電力に変換し、直流電力を昇圧コンバータ22に供給する。   Inverter 21 converts the DC power supplied from boost converter 22 into AC power. Inverter 21 supplies AC power to MG1 when the engine is started to drive and control MG1, and supplies AC power to MG2 after the engine is started to drive and control MG2. Further, inverter 21 converts AC power supplied from MG1 and MG2 into DC power, and supplies DC power to boost converter 22.

昇圧コンバータ22は、バッテリ23から受ける直流電圧を昇圧し、昇圧した直流電圧をインバータ21に印加する。また、昇圧コンバータ22は、インバータ21から受ける直流電圧をバッテリ23の充電に適切な電圧に変換して、変換した電圧をバッテリ23に印加する。   Boost converter 22 boosts the DC voltage received from battery 23 and applies the boosted DC voltage to inverter 21. Boost converter 22 converts the DC voltage received from inverter 21 into a voltage suitable for charging battery 23, and applies the converted voltage to battery 23.

バッテリ23は、複数の電池セルが直列接続された組電池である。バッテリ23は、プラトー領域を有する電池であり、具体的には、正極がオリビン構造を有するリチウム金属リン酸塩の少なくとも1つを含むオリビン系リチウムイオン二次電池である。リチウム金属リン酸塩としては、例えば、LiMnPO4,LiFePO4,LiCoPO4,LiNiPO4が挙げられる。バッテリ23の負極には、例えばカーボンが用いられる。バッテリ23は、直流電力を昇圧コンバータ22に供給するとともに、昇圧コンバータ22から直流電力の供給を受けて充電される。   The battery 23 is an assembled battery in which a plurality of battery cells are connected in series. The battery 23 is a battery having a plateau region. Specifically, the battery 23 is an olivine-based lithium ion secondary battery in which the positive electrode includes at least one lithium metal phosphate having an olivine structure. Examples of the lithium metal phosphate include LiMnPO4, LiFePO4, LiCoPO4, and LiNiPO4. For example, carbon is used for the negative electrode of the battery 23. The battery 23 supplies DC power to the boost converter 22 and is charged by receiving DC power from the boost converter 22.

電池ECU30、HVECU20及びエンジンECU10は、それぞれ、CPU、メモリ、及びI/O等を備えたマイクロコンピュータとして構成されている。   The battery ECU 30, the HVECU 20, and the engine ECU 10 are each configured as a microcomputer including a CPU, a memory, an I / O, and the like.

電池ECU30は、電圧センサ31、電流センサ32、温度センサ33の検出値に基づいて、バッテリ23に含まれる各電池セルのSOC(充電状態)及びバッテリ23全体のSOCを推定する。電圧センサ31は、バッテリ23に含まれる各電池セルの電圧及びバッテリ23全体の電圧を測定する。電流センサ32は、バッテリ23を流れる電流を測定する。バッテリ23に含まれる電池セルは直列に接続されているので、各電池セルを流れる電流は等しい。温度センサ33は、各電池セルの温度及びバッテリ23全体の温度を測定する。また、電池ECU30は、推定した各電池セルのSOCのばらつきを所定範囲内とするための均等化処理を行う。さらに、電池ECU30は、バッテリ23全体のSOCの目標値であるSOC*を決定する。そして、電池ECU30は、推定したバッテリ全体のSOC、及び決定した目標値のSOC*をHVECU20へ送信する。   The battery ECU 30 estimates the SOC (charged state) of each battery cell included in the battery 23 and the SOC of the entire battery 23 based on the detection values of the voltage sensor 31, the current sensor 32, and the temperature sensor 33. The voltage sensor 31 measures the voltage of each battery cell included in the battery 23 and the voltage of the entire battery 23. The current sensor 32 measures the current flowing through the battery 23. Since the battery cells included in the battery 23 are connected in series, the currents flowing through the battery cells are equal. The temperature sensor 33 measures the temperature of each battery cell and the temperature of the entire battery 23. Further, the battery ECU 30 performs an equalization process for keeping the estimated variation in SOC of each battery cell within a predetermined range. Furthermore, battery ECU 30 determines SOC *, which is a target SOC value for battery 23 as a whole. Then, the battery ECU 30 transmits the estimated SOC of the entire battery and the determined target value SOC * to the HVECU 20.

HVECU20は、電池ECU30から送信された推定SOCが、目標SOC*に一致するように、主としてMG1の発電量を調整する。すなわち推定SOCが目標SOC*よりも大きい場合は、バッテリ23から放電されるように、MG1の発電量よりもMG2の電力消費量が多くなるように、インバータ21及び昇圧コンバータ22の制御を行う。また、推定SOCが目標SOC*よりも小さい場合は、バッテリ23が充電されるように、MG1の発電量がMG2の電力消費量よりも多くなるように、インバータ21及び昇圧コンバータ22の制御を行う。また、HVECU20は、各種線センサからの信号に基づいて、運転状態に応じたエンジン11の要求回転速度NE*及び要求トルクTRを算出する。そして、HVECU20は、算出したエンジン11の要求回転速度NE*及び要求トルクTRを、エンジンECU10へ送信する。   HVECU 20 mainly adjusts the power generation amount of MG1 so that the estimated SOC transmitted from battery ECU 30 matches the target SOC *. That is, when the estimated SOC is larger than the target SOC *, the inverter 21 and the boost converter 22 are controlled so that the power consumption of MG2 is larger than the power generation amount of MG1 so that the battery 23 is discharged. When the estimated SOC is smaller than the target SOC *, the inverter 21 and the boost converter 22 are controlled so that the power generation amount of MG1 is larger than the power consumption amount of MG2 so that the battery 23 is charged. . Further, the HVECU 20 calculates the required rotational speed NE * and the required torque TR of the engine 11 according to the operating state based on signals from various line sensors. Then, the HVECU 20 transmits the calculated required rotational speed NE * and required torque TR of the engine 11 to the engine ECU 10.

エンジンECU10は、HVECU20から受信した要求回転速度NE*及び要求トルクTRに従って、エンジン11を制御するとともに、クランク角センサにより検出されたエンジン11の回転速度NEをHVECU20へ送信する。   The engine ECU 10 controls the engine 11 according to the requested rotational speed NE * and the requested torque TR received from the HVECU 20 and transmits the rotational speed NE of the engine 11 detected by the crank angle sensor to the HVECU 20.

次に、電池ECU30によるバッテリ23に含まれる電池セルのSOCの推定方法について説明する。各電池セルのSOCは、それぞれ同様の推定方法で推定される。なお、バッテリ23全体のSOCは、各電池セルのSOCに基づいて均等化処理等を行った結果として、SOCの少ないセルに合わせた値となる。以下、バッテリ23に含まれる電池セルのSOC、開路電圧OCV及び閉路電圧CCV(Closed Circuit Voltage)を、それぞれバッテリ23のSOC、OCV及びCCVという。   Next, a method for estimating the SOC of the battery cell included in the battery 23 by the battery ECU 30 will be described. The SOC of each battery cell is estimated by the same estimation method. It should be noted that the SOC of the entire battery 23 is a value that is adjusted to a cell with a small SOC as a result of performing equalization processing or the like based on the SOC of each battery cell. Hereinafter, the SOC, open circuit voltage OCV, and closed circuit voltage (CCV) of the battery cells included in the battery 23 are referred to as the SOC, OCV, and CCV of the battery 23, respectively.

図2に、バッテリ23のSOCと開路電圧OCVとの関係を示す。バッテリ23は、オリビン系リチウムイオン二次電池であるため、SOCの変化量に対してOCVの変化量が非常に小さいプラトー領域(SOC30%〜95%)が広い。このプラトー領域では、電圧センサ31により検出されたOCVの値から、SOCを高精度に推定することは難しい。図2に示すように、例えば、電圧センサ31により検出されたOCVに基づいてSOCを40%と推定した場合に、実際のSOCは60%であることがある。SOC60%に対応するOCVと、SOC40%に対応するOCVとの差は微小であるため、一般的な検出精度の電圧センサ31によりその差を検出することは難しい。一方、プラトー領域よりもSOCが小さい領域A1(SOC30%以下)、及びプラトー領域よりもSOCが大きい領域A2(SOC95%以上)では、SOCの変化量に対してOCVの変化量が大きいため、電圧センサ31により検出されたOCVの値から、SOCを高精度に推定することができる。   FIG. 2 shows the relationship between the SOC of the battery 23 and the open circuit voltage OCV. Since the battery 23 is an olivine type lithium ion secondary battery, the plateau region (SOC 30% to 95%) in which the change amount of the OCV is very small with respect to the change amount of the SOC is wide. In this plateau region, it is difficult to estimate the SOC with high accuracy from the OCV value detected by the voltage sensor 31. As shown in FIG. 2, for example, when the SOC is estimated to be 40% based on the OCV detected by the voltage sensor 31, the actual SOC may be 60%. Since the difference between the OCV corresponding to the SOC of 60% and the OCV corresponding to the SOC of 40% is very small, it is difficult to detect the difference by the voltage sensor 31 having a general detection accuracy. On the other hand, in the region A1 (SOC 30% or less) where the SOC is smaller than the plateau region and the region A2 (SOC 95% or more) where the SOC is larger than the plateau region, the change amount of the OCV is larger than the change amount of the SOC. From the value of the OCV detected by the sensor 31, the SOC can be estimated with high accuracy.

ここで、SOCは、バッテリ23の活物質内の平均リチウム濃度を最大リチウム濃度で除したものになる。最大リチウム濃度は、活物質に理論上挿入することが可能なリチウムの最大濃度である。図3(a)に示すように、バッテリ23に電流が流れていない場合は、正極活物質内のリチウム濃度の分布は、平均リチウム濃度で均一に分布している。そのため、正極活物質内の平均リチウム濃度と正極活物質の表面における表面リチウム濃度は等しい。同様に、負極活物質内のリチウム濃度も、平均リチウム濃度で均一に分布している。   Here, the SOC is obtained by dividing the average lithium concentration in the active material of the battery 23 by the maximum lithium concentration. The maximum lithium concentration is the maximum concentration of lithium that can theoretically be inserted into the active material. As shown in FIG. 3A, when no current flows through the battery 23, the distribution of the lithium concentration in the positive electrode active material is uniformly distributed with the average lithium concentration. Therefore, the average lithium concentration in the positive electrode active material is equal to the surface lithium concentration on the surface of the positive electrode active material. Similarly, the lithium concentration in the negative electrode active material is also uniformly distributed with the average lithium concentration.

一方、図3(b)に示すように、バッテリ23から電流を流すと、すなわちバッテリ23を放電させると、リチウムイオンは正極活物質へ移動する。電池反応は正極活物質の表面から起こるため、放電直後(放電から数十秒以内)に正極活物質の表面における表面リチウム濃度は急激に増加する。これに対して、放電直後の正極活物質内の平均リチウム濃度は放電前と比べて変化が小さい。同様に、放電直後の負極活物質の表面における表面リチウム濃度は急激に減少するのに対して、放電直後の負極活物質内の平均リチウム濃度は放電前と比べて変化が小さい。すなわち、表面リチウム濃度は放電前の濃度から急激に変化するのに対して、バッテリ23のSOCは放電前からほとんど変化しない。なお、バッテリ23を充電する場合は、正極活物質と負極活物質との関係が放電する場合と逆になる。以下、活物質という場合は、正極活物質と負極活物質の両方を指す。   On the other hand, as shown in FIG. 3B, when a current is passed from the battery 23, that is, when the battery 23 is discharged, the lithium ions move to the positive electrode active material. Since the battery reaction occurs from the surface of the positive electrode active material, the surface lithium concentration on the surface of the positive electrode active material increases rapidly immediately after discharge (within several tens of seconds from discharge). On the other hand, the average lithium concentration in the positive electrode active material immediately after the discharge is smaller than that before the discharge. Similarly, the surface lithium concentration on the surface of the negative electrode active material immediately after the discharge decreases rapidly, whereas the average lithium concentration in the negative electrode active material immediately after the discharge is smaller than that before the discharge. That is, the surface lithium concentration changes abruptly from the concentration before discharging, whereas the SOC of the battery 23 hardly changes from before discharging. In addition, when charging the battery 23, the relationship between the positive electrode active material and the negative electrode active material is opposite to the case of discharging. Hereinafter, the term “active material” refers to both a positive electrode active material and a negative electrode active material.

放電中におけるバッテリ23の電圧、すなわちバッテリ23の閉路電圧CCVは、活物質の表面リチウム濃度に依存する。そのため、表面リチウム濃度が急激に変化すると、バッテリ23のCCVも大きく変化する。また、表面リチウム濃度の急激な変化に伴い、活物質表面における局所的なSOCも変化する。活物質表面における局所的なSOCは、表面リチウム濃度を最大リチウム濃度で除したものになる。   The voltage of the battery 23 during discharge, that is, the closed circuit voltage CCV of the battery 23 depends on the surface lithium concentration of the active material. Therefore, when the surface lithium concentration changes rapidly, the CCV of the battery 23 also changes greatly. Moreover, local SOC on the active material surface also changes with a rapid change in the surface lithium concentration. The local SOC on the active material surface is obtained by dividing the surface lithium concentration by the maximum lithium concentration.

バッテリ23のCCVと活物質表面における局所的なSOCとの関係は、図2に示すバッテリ23のSOCとOCVとの関係と同様になる。図2に矢印で示すように、バッテリ23のSOCがプラトー領域に属する場合に、バッテリ23を放電させると、放電直後の平均リチウム濃度の変化量は小さく、バッテリ23のSOCはプラトー領域に属するままである。これに対して、放電直後の表面リチウム濃度の変化量は大きく、活物質表面における局所的なSOCは、領域A1に属するようになる。よって、放電直後に電圧センサ31により検出されたCCVと表面リチウム濃度とは、一対一の相関を持つ。また、バッテリ23のSOCがプラトー領域に属する場合に、バッテリ23を充電させると、充電直後の活物質表面における局所的なSOCは、領域A2に属するようになる。   The relationship between the CCV of battery 23 and the local SOC on the active material surface is the same as the relationship between the SOC and OCV of battery 23 shown in FIG. As shown by the arrows in FIG. 2, when the SOC of the battery 23 belongs to the plateau region, when the battery 23 is discharged, the amount of change in the average lithium concentration immediately after the discharge is small, and the SOC of the battery 23 remains in the plateau region. It is. On the other hand, the amount of change in the surface lithium concentration immediately after the discharge is large, and the local SOC on the active material surface belongs to the region A1. Therefore, the CCV detected by the voltage sensor 31 immediately after the discharge and the surface lithium concentration have a one-to-one correlation. Further, when the SOC of the battery 23 belongs to the plateau region, when the battery 23 is charged, the local SOC on the active material surface immediately after charging belongs to the region A2.

放電前のSOC20%及び10%の場合、SOCが領域A1に属するため、OCVからSOCを一意に決定することができる。一方、放電前のSOC90%のバッテリ23におけるOCVと、放電前のSOC80%のバッテリ23におけるOCVとの差は小さいため、OCVからSOCを一意に決定することは難しい。しかしながら、バッテリ23を放電させると、時間の経過とともに、放電前のSOC90%のバッテリ23におけるCCVと、放電前のSOC80%のバッテリ23におけるCCVとの差が広がる。また、放電前のSOC60%のバッテリ23におけるOCVと、放電前のSOC40%のバッテリ23におけるOCVとの差も小さい。しかしながら、放電開始からの時間の経過とともに、放電前のSOC60%のバッテリ23におけるCCVと、放電前のSOC80%のバッテリ23におけるCCVとの差も広がる。そして、放電開始から所定時間(例えば、数秒〜数十秒)後には、放電前の各SOCのバッテリ23におけるCCVがそれぞれ異なる。   In the case of SOC 20% and 10% before discharge, since the SOC belongs to the region A1, the SOC can be uniquely determined from the OCV. On the other hand, since the difference between the OCV in the battery 23 of SOC 90% before discharge and the OCV in the battery 23 of SOC 80% before discharge is small, it is difficult to uniquely determine the SOC from the OCV. However, when the battery 23 is discharged, the difference between the CCV in the battery 23 of the SOC 90% before discharging and the CCV in the battery 23 of the SOC 80% before discharging widens with time. Further, the difference between the OCV in the battery 23 with SOC 60% before discharging and the OCV in the battery 23 with SOC 40% before discharging is small. However, as time elapses from the start of discharge, the difference between the CCV in the battery 23 with 60% SOC before discharging and the CCV in the battery 23 with 80% SOC before discharging also widens. Then, after a predetermined time (for example, several seconds to several tens of seconds) from the start of discharge, the CCV in each battery 23 of each SOC before discharge is different.

次に、図4を参照して、電池反応モデルの一例について簡単に説明する。図4(a)に、バッテリ23の内部構成の概略を示す。バッテリ23は、正極と、セパレータと、負極とを含む。セパレータは、正極と負極との間に設けられた樹脂に電解液を浸透させて構成される。正極及び負極のそれぞれは、球状の活物質の集合体で構成される。正極活物質の界面上では、放電時にはリチウムイオン及び電子を吸収する化学反応が行われ、充電時にはリチウムイオン及び電子を放出する化学反応が行われる。一方、負極活物質の界面上では、放電時にはリチウムイオン及び電子を放出する化学反応が行われ、充電時にはリチウムイオン及び電子を吸収する化学反応が行われる。セパレータを介したリチウムイオンの授受によって、充電電流又は放電電流が生じる。   Next, an example of the battery reaction model will be briefly described with reference to FIG. FIG. 4A shows an outline of the internal configuration of the battery 23. Battery 23 includes a positive electrode, a separator, and a negative electrode. The separator is configured by infiltrating an electrolytic solution into a resin provided between the positive electrode and the negative electrode. Each of the positive electrode and the negative electrode is composed of an aggregate of spherical active materials. On the interface of the positive electrode active material, a chemical reaction that absorbs lithium ions and electrons is performed during discharging, and a chemical reaction that releases lithium ions and electrons is performed during charging. On the other hand, on the interface of the negative electrode active material, a chemical reaction that releases lithium ions and electrons is performed during discharging, and a chemical reaction that absorbs lithium ions and electrons is performed during charging. Charging current or discharging current is generated by the exchange of lithium ions through the separator.

図4(b)に、実際にバッテリ23内部の挙動を計算するために用いる電池反応モデルを示す。この電池反応モデルでは、演算負荷軽減のため、正極及び負極を、それぞれ活物質の集合体を平均した特性を有する単一の球状活物質で表現している。図4(c)に、液相、固相、固相と液相間におけるそれぞれの支配方程式、及びバッテリ23の電圧と電流との関係式を示す。図4(d)に、図4(c)の各方程式で用いられる変数及び定数の一覧を示す。   FIG. 4B shows a battery reaction model used for actually calculating the behavior inside the battery 23. In this battery reaction model, the positive electrode and the negative electrode are each represented by a single spherical active material having characteristics obtained by averaging an aggregate of active materials in order to reduce the calculation load. FIG. 4C shows a governing equation between the liquid phase, the solid phase, the solid phase and the liquid phase, and a relational expression between the voltage and current of the battery 23. FIG. 4D shows a list of variables and constants used in each equation of FIG.

式(1)は液相部分を流れる電流を規定する式であり、式(2)は液相部分におけるリチウムイオンの収支を規定する式である。式(3)は固相部分を流れる電流を規定する式であり、式(4)は固相部分におけるリチウムの濃度分布を規定する拡散方程式である。式(5)は固相と液相間におけるファラデー電流を規定する式であり、式(6)は固相と液相間における電流収支を規定する式である。式(7)はバッテリ23の電圧とバッテリ23を流れる電流との関係式である。式(1)〜(6)に放電開始時の初期値を与え、所定時間ごとに式(1)〜(6)を一括で解き進めると、表面リチウム濃度を算出することができる。   Equation (1) is an equation that defines the current flowing through the liquid phase portion, and Equation (2) is an equation that defines the balance of lithium ions in the liquid phase portion. Equation (3) is an equation that defines the current flowing through the solid phase portion, and Equation (4) is a diffusion equation that defines the concentration distribution of lithium in the solid phase portion. Equation (5) is an equation that defines the Faraday current between the solid phase and the liquid phase, and Equation (6) is an equation that defines the current balance between the solid phase and the liquid phase. Expression (7) is a relational expression between the voltage of the battery 23 and the current flowing through the battery 23. When initial values at the start of discharge are given to Equations (1) to (6) and Equations (1) to (6) are solved collectively at predetermined time intervals, the surface lithium concentration can be calculated.

電池ECU30は、充電中又は放電中におけるバッテリ23のCCVに基づいて、表面リチウム濃度を算出し、算出した表面リチウム濃度に基づいて、バッテリ23のSOCを推定する。詳しくは、充電又は放電中におけるバッテリ23のCCVの変化と電池反応モデルとから、充電又は放電開始から所定時間(例えば4秒)経過した時点における表面リチウム濃度を算出する。さらに、その時点の表面リチウム濃度と電池反応モデルとから、充電又は放電開始時点の平均リチウム濃度を算出し、算出した平均リチウム濃度を最大リチウム濃度で除してバッテリ23のSOCを算出する。   The battery ECU 30 calculates the surface lithium concentration based on the CCV of the battery 23 during charging or discharging, and estimates the SOC of the battery 23 based on the calculated surface lithium concentration. Specifically, the surface lithium concentration at the time when a predetermined time (for example, 4 seconds) has elapsed from the start of charging or discharging is calculated from the change in the CCV of the battery 23 during charging or discharging and the battery reaction model. Further, the average lithium concentration at the start of charging or discharging is calculated from the surface lithium concentration at that time and the battery reaction model, and the SOC of the battery 23 is calculated by dividing the calculated average lithium concentration by the maximum lithium concentration.

特に、バッテリ23に流れる電流が所定値(例えばCレートで5C以上)を超える場合は、バッテリ23のCCVの変化も大きくなるので、電池ECU30は、バッテリ23に流れる電流が所定値を超える場合に、バッテリ23のCCVと電池反応モデルとから、バッテリ23のSOCを算出するとよい。   In particular, when the current flowing through the battery 23 exceeds a predetermined value (for example, 5C or more at the C rate), the change in the CCV of the battery 23 also increases. The SOC of the battery 23 may be calculated from the CCV of the battery 23 and the battery reaction model.

上記のように算出したSOCは、充電又は放電開始時点のSOCであるが、充電又は放電開始してから所定時間経過した時点のSOCとの差は小さい。なお、表面リチウム濃度と電池反応モデルとから、充電又は放電開始から所定時間経過した時点の平均リチウム濃度を算出すれば、充電又は放電開始から所定時間経過した時点のSOCが算出される。   The SOC calculated as described above is the SOC at the start of charging or discharging, but the difference from the SOC at the time when a predetermined time has elapsed after starting charging or discharging is small. If the average lithium concentration at the time when a predetermined time has elapsed from the start of charging or discharging is calculated from the surface lithium concentration and the battery reaction model, the SOC at the time when the predetermined time has elapsed from the start of charging or discharging is calculated.

本実施形態では、充電又は放電開始前に推定したSOCを、充電又は放電開始前の真のSOCに補正する。詳しくは、充電又は放電開始後に電圧センサ31により測定されたCCV、電流センサ32により測定されたバッテリ23を流れる電流、温度センサ33により測定されたバッテリ23の温度、及び電池反応モデルを用いて、SOCを補正する。   In the present embodiment, the SOC estimated before the start of charging or discharging is corrected to the true SOC before starting charging or discharging. Specifically, using the CCV measured by the voltage sensor 31 after the start of charging or discharging, the current flowing through the battery 23 measured by the current sensor 32, the temperature of the battery 23 measured by the temperature sensor 33, and the battery reaction model, Correct the SOC.

本実施形態におけるSOCの補正方法の概要を、放電開始前における真のSOCが60%で、放電開始前に推定したSOCが40%の場合を例として説明する。まず、放電開始前の推定SCO40%と電池反応モデルとから、放電を開始してから数秒経過した時点におけるバッテリ23のCCVを推定する。推定したCCVと電圧センサ31によりこの時点において測定されたCCVとを比較する。放電開始前の推定SOCと真のSOCが等しい場合は、放電を開始してから数秒経過した時点において、推定したCCVと測定したCCVとは等しくなる。しかしながら、放電開始前の推定SOCが40%で真のSOCが60%の場合、放電を開始してから数秒経過した時点において、推定したCCVは測定したCCVよりも小さくなる。   The outline of the SOC correction method in the present embodiment will be described by taking as an example a case where the true SOC before the start of discharge is 60% and the SOC estimated before the start of discharge is 40%. First, from the estimated SCO 40% before the start of discharge and the battery reaction model, the CCV of the battery 23 at the time when several seconds have elapsed after the start of discharge is estimated. The estimated CCV is compared with the CCV measured at this time by the voltage sensor 31. When the estimated SOC before the start of discharge is equal to the true SOC, the estimated CCV is equal to the measured CCV when a few seconds have elapsed after the start of discharge. However, when the estimated SOC before the start of discharge is 40% and the true SOC is 60%, the estimated CCV is smaller than the measured CCV when several seconds have elapsed after the start of discharge.

この場合、推定したSOC40%を所定量増加させるように補正する。そして、補正後のSOCと電池反応モデルとからCCVを推定し、推定したCCVと測定したCCVとを再度比較する。これを繰り返して、推定したCCVと測定したCCVとがほぼ一致するまで、推定したSOCを所定量ずつ増加させていく。このようにすると、推定SOCを真のSOCに補正したときに、推定したCCVと測定したCCVとがほぼ一致する。よって、放電後のCCVの挙動に基づいて、推定SOCを真のSOCに補正できる。   In this case, the estimated SOC 40% is corrected to increase by a predetermined amount. Then, the CCV is estimated from the corrected SOC and the battery reaction model, and the estimated CCV and the measured CCV are compared again. By repeating this, the estimated SOC is increased by a predetermined amount until the estimated CCV and the measured CCV substantially coincide. In this way, when the estimated SOC is corrected to a true SOC, the estimated CCV and the measured CCV substantially coincide. Therefore, the estimated SOC can be corrected to a true SOC based on the behavior of the CCV after discharge.

次に、SOCを補正する詳しい処理手順について、図5に示すフローチャートを参照して説明する。本処理手順は、電池ECU30が実行する。なお、推定SOCと真のSOCが異なる場合でも、充電又は放電を開始した時点では、推定したCCVと測定したCCVとの差が非常に小さく、SOCを正しく補正できないおそれがある。そのため、充電又は放電を開始してから数秒(例えば4秒)経過して電圧差が広がる時点で、本処理手順の実行を開始する。   Next, a detailed processing procedure for correcting the SOC will be described with reference to a flowchart shown in FIG. This processing procedure is executed by the battery ECU 30. Even when the estimated SOC and the true SOC are different, when charging or discharging is started, the difference between the estimated CCV and the measured CCV is very small, and the SOC may not be corrected correctly. For this reason, the execution of this processing procedure is started when the voltage difference widens after several seconds (for example, 4 seconds) have elapsed from the start of charging or discharging.

まず、充電又は放電開始時点の推定SOCから、充電又は放電開始時点の平均リチウム濃度を算出する。推定SOCは、充電又は放電開始前にバッテリ23のOCVから推定したSOCでもよいし、前回の充電又は放電終了時に推定したSOCでもよいし、電流を積算して推定したSOCでもよい。   First, the average lithium concentration at the start of charging or discharging is calculated from the estimated SOC at the start of charging or discharging. The estimated SOC may be the SOC estimated from the OCV of the battery 23 before the start of charging or discharging, the SOC estimated at the end of the previous charging or discharging, or the SOC estimated by integrating the current.

そして、算出した平均リチウム濃度、電流センサ32により測定された電流、温度センサ33により測定された温度、及び電池反応モデルから、この時点の表面リチウム濃度を算出する(S10)。続いて、算出した表面リチウム濃度と、電流センサ32により測定された電流、温度センサ33により測定された温度、及び電池反応モデルから、この時点の推定CCVを算出する(S11)。   Then, the surface lithium concentration at this time is calculated from the calculated average lithium concentration, the current measured by the current sensor 32, the temperature measured by the temperature sensor 33, and the battery reaction model (S10). Subsequently, the estimated CCV at this time is calculated from the calculated surface lithium concentration, the current measured by the current sensor 32, the temperature measured by the temperature sensor 33, and the battery reaction model (S11).

続いて、電圧センサ31により測定された測定CCVと、S11で推定した推定CCVとから、電圧誤差ΔVn(nは本フローチャートのループ回数)=測定CCV−推定CCVを算出する(S12)。   Subsequently, from the measured CCV measured by the voltage sensor 31 and the estimated CCV estimated in S11, the voltage error ΔVn (n is the number of loops in this flowchart) = measured CCV−estimated CCV is calculated (S12).

続いて、推定SOCの補正実施をするか否かを判定する。詳しくは、S12で算出した電圧誤差ΔVnの絶対値が閾値よりも大きいか否か判定する(S13)。電圧誤差ΔVnの絶対値が閾値よりも大きい場合は(S13:YES)、推定SOCと真のSOCとの誤差が大きいので、推定SOCを補正する。具体的には、推定SOCをαn=2%×n分増加又は減少させる。電圧誤差ΔVnが正の場合は、推定SOCが真のSOCよりも小さいので、推定SOCをαn分増加させるように補正し、電圧誤差ΔVnが負の場合は、推定SOCが真のSOCよりも大きいので、推定SOCをαn分減少させるように補正する(S14)。続いて、nを1つ増加させて、S10〜S13の処理を繰り返し実行する。   Subsequently, it is determined whether or not the estimated SOC is corrected. Specifically, it is determined whether or not the absolute value of the voltage error ΔVn calculated in S12 is larger than a threshold value (S13). When the absolute value of the voltage error ΔVn is larger than the threshold value (S13: YES), the estimated SOC is corrected because the error between the estimated SOC and the true SOC is large. Specifically, the estimated SOC is increased or decreased by αn = 2% × n. When the voltage error ΔVn is positive, the estimated SOC is smaller than the true SOC. Therefore, the estimated SOC is corrected to be increased by αn. When the voltage error ΔVn is negative, the estimated SOC is larger than the true SOC. Therefore, the estimated SOC is corrected to decrease by αn (S14). Subsequently, n is incremented by 1, and the processes of S10 to S13 are repeatedly executed.

一方、電圧誤差ΔVnの絶対値が閾値以下の場合は(S13:NO)、推定SOCと真のSOCとの誤差が十分に小さいので、推定SOCを充電又は放電開始時点の真のSOCと決定する(S15)。以上で本処理を終了する。   On the other hand, when the absolute value of the voltage error ΔVn is equal to or smaller than the threshold value (S13: NO), the error between the estimated SOC and the true SOC is sufficiently small, so the estimated SOC is determined as the true SOC at the start of charging or discharging. (S15). This process is complete | finished above.

上記フローチャートにおいて、SOCを決定したループと同じループで算出した表面リチウム濃度は、充電中又は放電中におけるバッテリ23のCCVの変化と電池反応モデルとから算出された、補正時点における表面リチウム濃度に相当する。また、SOCを決定したループと同じループで算出した平均リチウム濃度は、補正時点における表面リチウム濃度と電池反応モデルとから算出した、充電又は放電開始時点の平均リチウム濃度に相当する。また、真のSOCと決定した推定SOCは、充電又は放電開始時点の平均リチウム濃度から算出したSOCに相当する。   In the above flow chart, the surface lithium concentration calculated in the same loop as the SOC is determined corresponds to the surface lithium concentration at the time of correction calculated from the change in CCV of the battery 23 during charging or discharging and the battery reaction model. To do. Further, the average lithium concentration calculated in the same loop as the loop in which the SOC is determined corresponds to the average lithium concentration at the start of charging or discharging calculated from the surface lithium concentration at the correction time and the battery reaction model. The estimated SOC determined as the true SOC corresponds to the SOC calculated from the average lithium concentration at the start of charging or discharging.

なお、S10の処理において、充電又は放電開始時点の推定SOC、電流センサ32により測定された電流、温度センサ33により測定された温度、及び電池反応モデルから、この時点の平均リチウム濃度及び表面リチウム濃度を算出してもよい。   In the process of S10, the average lithium concentration and the surface lithium concentration at this time are estimated from the estimated SOC at the start of charging or discharging, the current measured by the current sensor 32, the temperature measured by the temperature sensor 33, and the battery reaction model. May be calculated.

充電又は放電開始直後に推定SOCを補正した後は、電流センサ32により測定された電流を積算してSOCを算出する。充電又は放電をする度に推定SOCを補正するため、充放電電流の積算による誤差が蓄積されない。   After correcting the estimated SOC immediately after the start of charging or discharging, the current measured by the current sensor 32 is integrated to calculate the SOC. Since the estimated SOC is corrected each time charging or discharging is performed, errors due to integration of charging / discharging current are not accumulated.

以上説明した本実施形態によれば、以下の効果を奏する。   According to this embodiment described above, the following effects are obtained.

・リチウムイオン二次電池のSOCは、活物質の平均リチウム濃度を最大リチウム濃度で除したものである。最大リチウム濃度は、活物質に挿入される理論上の最大リチウム濃度であり、予め決まっている。よって、充電中又は放電中におけるバッテリ23のCCVから表面リチウム濃度を算出し、電池反応モデルに基づいて表面リチウム濃度から平均リチウム濃度を算出することにより、電池のSOCを高精度に推定することができる。   The SOC of the lithium ion secondary battery is obtained by dividing the average lithium concentration of the active material by the maximum lithium concentration. The maximum lithium concentration is a theoretical maximum lithium concentration inserted into the active material, and is predetermined. Therefore, it is possible to estimate the SOC of the battery with high accuracy by calculating the surface lithium concentration from the CCV of the battery 23 during charging or discharging and calculating the average lithium concentration from the surface lithium concentration based on the battery reaction model. it can.

・バッテリ23に電流が流れると、電池のSOCすなわち平均リチウム濃度は急激に変化しないのに対して、表面リチウム濃度は急激に変化する。そして、表面リチウム濃度の急激な変化に伴いバッテリ23のCCVも変化する。このとき、バッテリ23のCCVは、電流が流れる前のSOCによって異なる変化をするため、電流が流れてから所定時間経過した時点では、バッテリ23のCCVから一意にその時点の表面リチウム濃度を算出できる。そして、電流が流れてから所定時間経過した時点の表面リチウム濃度から、平均リチウム濃度を算出できる。したがって、強制充放電させた場合のようにSOCを大きく変化させることなく、SOCを高精度に推定できる。   When the current flows through the battery 23, the SOC of the battery, that is, the average lithium concentration does not change abruptly, whereas the surface lithium concentration changes abruptly. The CCV of the battery 23 also changes with a rapid change in the surface lithium concentration. At this time, since the CCV of the battery 23 varies depending on the SOC before the current flows, the surface lithium concentration at that time can be uniquely calculated from the CCV of the battery 23 when a predetermined time elapses after the current flows. . Then, the average lithium concentration can be calculated from the surface lithium concentration at the time when a predetermined time has elapsed after the current flows. Therefore, the SOC can be estimated with high accuracy without greatly changing the SOC as in the case of forced charging / discharging.

・バッテリ23に所定値を超える電流が流れる際には、表面リチウム濃度の変化量が所定量よりも大きくなり、バッテリ23のCCVの変化量も大きくなる。そのため、バッテリ23の変化に基づいて、電池のSOCをより高精度に推定することができる。   When the current exceeding the predetermined value flows through the battery 23, the amount of change in the surface lithium concentration becomes larger than the predetermined amount, and the amount of change in the CCV of the battery 23 also increases. Therefore, based on the change of the battery 23, the SOC of the battery can be estimated with higher accuracy.

・電池反応モデルを用いることにより、バッテリ23のCCVから表面リチウム濃度算出するとともに、表面リチウム濃度から平均リチウム濃度を算出できる。   By using the battery reaction model, the surface lithium concentration can be calculated from the CCV of the battery 23 and the average lithium concentration can be calculated from the surface lithium concentration.

(他の実施形態)
・充電状態推定装置をPHVや電気自動車に適用してもよい。
(Other embodiments)
-You may apply a charge condition estimation apparatus to PHV and an electric vehicle.

・充電中又は放電中におけるバッテリ23に流れる電流に基づいて、表面リチウム濃度を算出するとともに、算出した表面リチウム濃度から平均リチウム濃度を算出し、算出した平均リチウム濃度からSOCを推定してもよい。   The surface lithium concentration may be calculated based on the current flowing through the battery 23 during charging or discharging, the average lithium concentration may be calculated from the calculated surface lithium concentration, and the SOC may be estimated from the calculated average lithium concentration .

23…バッテリ、30…電池ECU、31…電圧センサ、32…電流センサ。   23 ... Battery, 30 ... Battery ECU, 31 ... Voltage sensor, 32 ... Current sensor.

Claims (1)

リチウムイオン二次電池(23)の充電状態を推定する充電状態推定装置(30)であって、
充放電開始時の前記電池の充電状態を推定する開始時推定部と、
前記開始時推定部により推定された前記充電状態に基づき、前記充放電開始時における平均リチウム濃度を算出する平均リチウム濃度算出部と、
前記充放電開始から所定時間経過後、前記平均リチウム濃度、電流センサにより測定された電流、温度センサにより測定された温度及び電池反応モデルに基づき、前記電池の活物質の表面における表面リチウム濃度を算出する表面リチウム濃度算出部(S10)と、
前記充放電開始から所定時間経過後、前記表面リチウム濃度、前記電流センサにより測定された前記電流、前記温度センサにより測定された前記温度及び前記電池反応モデルに基づいて、前記充放電開始してから所定時間経過後における推定閉路電圧を算出する推定閉路電圧算出部(S11)と、
前記充放電開始してから所定時間経過後に電圧センサにより測定された測定閉路電圧と前記推定閉路電圧とを比較して、前記開始時推定部により推定された前記充電状態を補正する補正部(S12〜S14)とを備える充電状態推定装置。
A charging state estimation device (30) for estimating a charging state of a lithium ion secondary battery (23), comprising:
A start time estimation unit for estimating the state of charge of the battery at the start of charge and discharge;
Based on the state of charge estimated by the start time estimation unit, an average lithium concentration calculation unit that calculates an average lithium concentration at the start of charge and discharge;
After a predetermined time from the start of charge / discharge, the surface lithium concentration on the surface of the active material of the battery is calculated based on the average lithium concentration, the current measured by the current sensor, the temperature measured by the temperature sensor, and the battery reaction model. A surface lithium concentration calculation unit (S10),
After a predetermined time has elapsed from the start of charge / discharge, based on the surface lithium concentration , the current measured by the current sensor, the temperature measured by the temperature sensor, and the battery reaction model , from the start of charge / discharge An estimated closed circuit voltage calculation unit (S11) for calculating an estimated closed circuit voltage after a predetermined time has elapsed;
A correction unit (S12) that corrects the state of charge estimated by the start time estimation unit by comparing the measured closed circuit voltage measured by a voltage sensor after the lapse of a predetermined time from the start of charging and discharging with the estimated closed circuit voltage. To S14) .
JP2013264890A 2013-12-24 2013-12-24 Charge state estimation device Active JP6409272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264890A JP6409272B2 (en) 2013-12-24 2013-12-24 Charge state estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264890A JP6409272B2 (en) 2013-12-24 2013-12-24 Charge state estimation device

Publications (2)

Publication Number Publication Date
JP2015121449A JP2015121449A (en) 2015-07-02
JP6409272B2 true JP6409272B2 (en) 2018-10-24

Family

ID=53533188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264890A Active JP6409272B2 (en) 2013-12-24 2013-12-24 Charge state estimation device

Country Status (1)

Country Link
JP (1) JP6409272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065635A1 (en) * 2020-09-22 2022-03-31 주식회사 엘지에너지솔루션 Battery apparatus and method for estimating battery state

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834112B2 (en) * 2016-03-09 2017-12-05 Ford Global Technologies, Llc Battery state of charge estimation based on reduced order electrochemical models
WO2021192382A1 (en) * 2020-03-25 2021-09-30 日本碍子株式会社 Cell balancing method for storage cell system
JP7571720B2 (en) 2021-12-20 2024-10-23 トヨタ自動車株式会社 Battery system, vehicle equipped with same, and method for monitoring secondary battery
CN115236516B (en) * 2022-06-17 2023-04-18 上海玫克生储能科技有限公司 Early warning method of lithium battery based on electrochemical model

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204149A (en) * 1998-01-13 1999-07-30 Denso Corp Lithium battery remaining capacity measuring method
JP2000028689A (en) * 1998-07-15 2000-01-28 Denso Corp Estimation method for discharge capacity of
JP5849537B2 (en) * 2011-08-31 2016-01-27 トヨタ自動車株式会社 Estimation apparatus and estimation method
JP5783122B2 (en) * 2012-04-11 2015-09-24 トヨタ自動車株式会社 Battery state estimation device
JP5831631B2 (en) * 2012-05-15 2015-12-09 トヨタ自動車株式会社 Battery system and method for determining polarization of secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065635A1 (en) * 2020-09-22 2022-03-31 주식회사 엘지에너지솔루션 Battery apparatus and method for estimating battery state
JP2023525751A (en) * 2020-09-22 2023-06-19 エルジー エナジー ソリューション リミテッド BATTERY DEVICE AND BATTERY STATE ESTIMATION METHOD
JP7473250B2 (en) 2020-09-22 2024-04-23 エルジー エナジー ソリューション リミテッド Battery device and battery state estimation method

Also Published As

Publication number Publication date
JP2015121449A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
JP6822300B2 (en) Charge rate estimation method and in-vehicle battery system
US8102146B2 (en) Remaining-amount estimation device and method for secondary battery
JP5772965B2 (en) Non-aqueous secondary battery control device and control method
CN110873844B (en) Method for estimating deterioration state of secondary battery and secondary battery system
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
JP6409272B2 (en) Charge state estimation device
JP5720538B2 (en) Storage device control device
JP5470961B2 (en) Secondary battery control device
JP2012104239A (en) Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
JP2008151745A (en) Residual capacity computing device for charge accumulating device
WO2019184842A1 (en) Method and apparatus for calculating soc of power battery pack, and electric vehicle
US10892630B2 (en) Charge control device for in-vehicle battery
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
JP6927000B2 (en) Deterioration state estimation method for secondary batteries
JP7574836B2 (en) Battery management system and vehicle
JP5586114B2 (en) Battery state estimation device
JP6696460B2 (en) Battery system
JP5267875B2 (en) Vehicle control device
JP5310054B2 (en) Remaining capacity calculation device, vehicle equipped with the same, and remaining capacity calculation method
JP6627669B2 (en) Battery system
JP7040408B2 (en) Rechargeable battery system
JP2007171044A (en) Controller for battery, motor vehicle, and control method of secondary battery
JP2013108937A (en) Battery state estimation device
JP2022115363A (en) battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R151 Written notification of patent or utility model registration

Ref document number: 6409272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250