[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6497565B2 - DCDC converter - Google Patents

DCDC converter Download PDF

Info

Publication number
JP6497565B2
JP6497565B2 JP2018008562A JP2018008562A JP6497565B2 JP 6497565 B2 JP6497565 B2 JP 6497565B2 JP 2018008562 A JP2018008562 A JP 2018008562A JP 2018008562 A JP2018008562 A JP 2018008562A JP 6497565 B2 JP6497565 B2 JP 6497565B2
Authority
JP
Japan
Prior art keywords
voltage
unit
voltage conversion
output
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018008562A
Other languages
Japanese (ja)
Other versions
JP2018061438A (en
Inventor
信介 筒井
信介 筒井
成治 高橋
成治 高橋
伊藤 貴則
貴則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2018008562A priority Critical patent/JP6497565B2/en
Publication of JP2018061438A publication Critical patent/JP2018061438A/en
Application granted granted Critical
Publication of JP6497565B2 publication Critical patent/JP6497565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、DCDCコンバータに関するものである。   The present invention relates to a DCDC converter.

スイッチ素子の駆動によって直流電圧を昇圧又は降圧するDCDCコンバータでは、複数の電圧変換部を並列に接続した構成の多相DCDCコンバータが知られている。この種の多相DCDCコンバータの例としては、例えば特許文献1のような技術が存在する。   As a DCDC converter that boosts or lowers a DC voltage by driving a switch element, a multiphase DCDC converter having a configuration in which a plurality of voltage conversion units are connected in parallel is known. As an example of this type of multi-phase DCDC converter, for example, there is a technique as disclosed in Patent Document 1.

特開2013−46541号公報JP 2013-46541 A

ところで、多相式のDCDCコンバータでは、いずれかの相のみが故障する場合も想定され、いずれかの相が故障した場合、DCDCコンバータの動作を全て中止するのではなく、故障が発生していない相を利用して動作を継続することが望ましい場合もあり得る。特許文献1の電源装置は、このような要求に応えるものであり、各相チョッパ部のスイッチ素子に対する制御信号の立下りのエッジタイミングで、電流検出器により検出された電流値を取得し、取得した各電流値が異なればいずれかの各相チョッパ部の故障と判定している。そして、いずれかの各相チョッパ部で故障が発生していることが検出された場合でも、故障していない各相チョッパ部の動作を継続させ、故障していない各相チョッパ部の耐電流を超えないように発電機の出力を制限している。   By the way, in the multi-phase DCDC converter, it is assumed that only one of the phases may fail. If any one of the phases fails, the operation of the DCDC converter is not stopped, and no failure has occurred. It may be desirable to continue operation using phases. The power supply device of Patent Document 1 meets such a requirement, and acquires and acquires the current value detected by the current detector at the edge timing of the falling edge of the control signal for the switching element of each phase chopper unit. If each current value is different, it is determined that one of the phases of the chopper section has failed. Even when it is detected that a failure has occurred in any of the phase chopper parts, the operation of each phase chopper part that has not failed is continued, and the current resistance of each phase chopper part that has not failed is determined. The output of the generator is limited so as not to exceed.

しかしながら、特許文献1の電源装置は、単に各相チョッパ部のスイッチ素子がオープン故障になった場合に全体の出力を制限しているだけである。   However, the power supply device of Patent Document 1 merely restricts the entire output when the switch element of each phase chopper section becomes an open failure.

本発明は上述した事情に基づいてなされたものであり、複数の電圧変換部を備えた多相式のDCDCコンバータにおいて、多相変換部に異常が発生した場合に、保護を図りつつ、電圧変換部毎に行われる動作又は電圧変換部の組毎に行われる動作の中から異常動作を特定しうる構成を提供することを目的とするものである。   The present invention has been made based on the above-described circumstances, and in a multi-phase DCDC converter having a plurality of voltage conversion units, voltage conversion is performed while providing protection when an abnormality occurs in the multi-phase conversion unit. It is an object of the present invention to provide a configuration capable of specifying an abnormal operation from among operations performed for each unit or operations performed for each set of voltage conversion units.

本発明のDCDCコンバータは、
入力側導電路と出力側導電路との間に配置される複数の電圧変換部を備え、各々の前記電圧変換部が、前記入力側導電路に接続される個別入力路と、駆動用のスイッチ素子のオンオフ動作により前記個別入力路に入力された電圧を変換する変換動作部と、前記変換動作部によって変換された電圧の出力経路となる個別出力路とを有し、且つ各々の前記電圧変換部において前記個別入力路又は前記個別出力路の少なくともいずれかの個別導電路に、当該個別導電路を通電状態と非通電状態とに切り替える保護用のスイッチ素子が設けられた構成をなす多相変換部と、
前記電圧変換部毎又は前記電圧変換部の組毎に、前記保護用のスイッチ素子をオフ動作させた状態で電圧変換動作を行わせる制御部と、
前記制御部が前記電圧変換部毎又は前記電圧変換部の組毎に前記保護用のスイッチ素子をオフ動作させた状態で行わせる電圧変換動作に基づいて、前記多相変換部を構成する複数の前記電圧変換部の中から前記保護用のスイッチ素子が異常である変換部又は前記保護用のスイッチ素子が異常である変換部を含む組を特定する異常特定部と、
を含む。
The DCDC converter of the present invention
A plurality of voltage converters disposed between the input-side conductive path and the output-side conductive path, wherein each of the voltage converters is connected to the input-side conductive path; and a drive switch A conversion operation unit that converts a voltage input to the individual input path by an on / off operation of an element; and an individual output path that is an output path of a voltage converted by the conversion operation unit, and each of the voltage conversions The multi-phase conversion has a configuration in which at least one of the individual input path or the individual output path is provided with a protective switch element for switching the individual conductive path between an energized state and a non-energized state. And
A control unit that performs a voltage conversion operation in a state in which the protection switch element is turned off for each voltage conversion unit or for each set of the voltage conversion unit,
The control unit configures the polyphase conversion unit based on a voltage conversion operation that is performed in a state where the protection switch element is turned off for each voltage conversion unit or for each set of the voltage conversion units. An abnormality identifying unit that identifies a conversion unit including the conversion unit in which the protection switch element is abnormal from the voltage conversion unit or a set including the conversion unit in which the protection switch element is abnormal, and
including.

本発明に係るDCDCコンバータは、多相変換部を構成する複数の電圧変換部において個別入力路又は個別出力路の少なくともいずれかの個別導電路に、当該個別導電路を通電状態と非通電状態とに切り替える保護用のスイッチ素子が設けられている。このように各相に個別に保護用のスイッチ素子が設けられているため、各相の異常時には、保護用のスイッチ素子によって適正に保護が図られやすくなる。   The DCDC converter according to the present invention includes a plurality of voltage conversion units constituting a multiphase conversion unit, and the individual conductive paths are connected to at least one of the individual input paths or the individual output paths with an energized state and a non-energized state. A protective switch element for switching to is provided. As described above, since the protective switch elements are individually provided for each phase, it is easy to appropriately protect the protective switch elements when each phase is abnormal.

更に、本発明に係るDCDCコンバータは、少なくとも多相変換部の動作中に多相変換部での異常発生を検出する検出部と、多相変換部の動作中に検出部によって多相変換部での異常発生が検出された場合に多相変換部における全ての電圧変換部の動作を停止させる停止制御部とを備えていてもよい。このように構成されていれば、多相変換部の動作中に異常が発生した場合、一旦、全ての電圧変換部の動作を停止させて早急な保護を図ることができる。 Furthermore, the DCDC converter according to the present invention includes at least a detection unit that detects occurrence of an abnormality in the polyphase conversion unit during the operation of the polyphase conversion unit, and a multiphase conversion unit that operates during the operation of the polyphase conversion unit. And a stop controller that stops the operation of all the voltage converters in the polyphase converter when the occurrence of the abnormality is detected . With this configuration, when an abnormality occurs during the operation of the multiphase converter, the operation of all the voltage converters can be temporarily stopped to achieve immediate protection.

そして、本発明に係るDCDCコンバータは、停止制御部が全ての電圧変換部の動作を停止させた後に、駆動異常特定部により、電圧変換部毎に行われる動作又は電圧変換部の組毎に行われる動作の中から異常動作を特定する構成としてもよく、特に、一旦全ての電圧変換部の動作を停止させた後に、多相変換部がより保護された状態で異常動作を特定するようにしてもよい。
In the DCDC converter according to the present invention, after the stop control unit stops the operation of all the voltage conversion units, the drive abnormality specifying unit performs the operation performed for each voltage conversion unit or the set of voltage conversion units. may be configured to identify an abnormal operation from the operation dividing, in particular, once all the operation of the voltage converting unit after stopping, so as multiphase conversion unit identifies an abnormal operation in a more protected state Also good.

実施例1のDCDCコンバータを概略的に例示する回路図である。1 is a circuit diagram schematically illustrating a DCDC converter of Example 1. FIG. 実施例1のDCDCコンバータで行われる検査処理の流れを例示するフローチャートである。3 is a flowchart illustrating a flow of inspection processing performed by the DCDC converter according to the first embodiment. 他の実施例のDCDCコンバータを概略的に例示する回路図である。It is a circuit diagram which illustrates schematically the DCDC converter of other examples.

<実施例1>
以下、本発明を具体化した実施例1について説明する。
図1で示すDCDCコンバータ1は、例えば、車載用の降圧型DCDCコンバータとして構成されており、入力側導電路71に印加された直流電圧を降圧して出力側導電路72に出力する構成をなすものである。
<Example 1>
Embodiment 1 of the present invention will be described below.
The DCDC converter 1 shown in FIG. 1 is configured, for example, as a step-down DCDC converter for in-vehicle use, and has a configuration in which a DC voltage applied to the input side conductive path 71 is stepped down and output to the output side conductive path 72. Is.

図1のDCDCコンバータ1には、入力側導電路71及び出力側導電路72を備えるとともに電源ラインとして機能する電源導電路70と、電源導電路70の電位よりも低い一定の基準電位(グラウンド電位)に保たれる基準導電路78とが設けられている。そして、入力側導電路71と出力側導電路72との間には、入力側導電路71に印加された入力電圧を降圧して出力電圧を生成する複数の電圧変換部4A,4Bが並列に設けられている。   The DCDC converter 1 shown in FIG. 1 includes an input-side conductive path 71 and an output-side conductive path 72 and functions as a power supply line, and a constant reference potential (ground potential) lower than the potential of the power-supply conductive path 70. ) And a reference conductive path 78 which is maintained. Between the input side conductive path 71 and the output side conductive path 72, a plurality of voltage conversion units 4A and 4B that generate an output voltage by stepping down the input voltage applied to the input side conductive path 71 are arranged in parallel. Is provided.

入力側導電路71は、相対的に高い電圧が印加される一次側(高圧側)の電源ラインとして構成され、一次側電源部61の高電位側の端子に導通するとともに、その一次側電源部61から所定の直流電圧(例えば、48V)が印加される構成をなす。この入力側導電路71は、後述する複数の個別入力路42A,42Bにそれぞれ接続されている。   The input-side conductive path 71 is configured as a primary (high-voltage side) power supply line to which a relatively high voltage is applied, and is connected to a high-potential-side terminal of the primary-side power supply unit 61, and the primary-side power supply unit A predetermined DC voltage (for example, 48 V) is applied from 61. The input side conductive path 71 is connected to a plurality of individual input paths 42A and 42B, which will be described later.

一次側電源部61は、例えば、リチウムイオン電池、或いは電気二重層キャパシタ等の蓄電手段によって構成され、第1の所定電圧を発生させるものである。一次側電源部61の高電位側の端子は例えば48Vに保たれ、低電位側の端子はグラウンド電位(0V)に保たれている。   The primary-side power supply unit 61 is configured by power storage means such as a lithium ion battery or an electric double layer capacitor, for example, and generates a first predetermined voltage. The high potential side terminal of the primary power supply 61 is maintained at 48V, for example, and the low potential side terminal is maintained at the ground potential (0V).

出力側導電路72は、相対的に低い電圧が印加される二次側(低圧側)の電源ラインとして構成されている。この出力側導電路72は、例えば、二次側電源部62の高電位側の端子に導通するとともに、その二次側電源部62から一次側電源部61の出力電圧よりも小さい直流電圧(例えば12V)が印加される構成をなす。   The output side conductive path 72 is configured as a secondary (low voltage side) power supply line to which a relatively low voltage is applied. The output-side conductive path 72 is connected to, for example, a high-potential-side terminal of the secondary-side power supply unit 62 and has a DC voltage (for example, lower than the output voltage of the primary-side power supply unit 61 from the secondary-side power supply unit 62. 12V) is applied.

二次側電源部62は、例えば、鉛蓄電池等の蓄電手段によって構成され、一次側電源部61で発生する第1の所定電圧よりも低い第2の所定電圧を発生させるものである。例えば、二次側電源部62の高電位側の端子は12Vに保たれ、低電位側の端子はグラウンド電位(0V)に保たれている。なお、図1の例では、出力側導電路72に設けられた端子64が二次側電源部62の正極側の端子に接続される状態が、二次側電源部62の正規の接続状態である。   The secondary power supply unit 62 is configured by power storage means such as a lead storage battery, for example, and generates a second predetermined voltage lower than the first predetermined voltage generated by the primary power supply unit 61. For example, the terminal on the high potential side of the secondary power supply unit 62 is maintained at 12V, and the terminal on the low potential side is maintained at the ground potential (0V). In the example of FIG. 1, the state in which the terminal 64 provided on the output-side conductive path 72 is connected to the positive-side terminal of the secondary-side power supply unit 62 is the normal connection state of the secondary-side power supply unit 62. is there.

基準導電路78は、グラウンドとして構成され、一定のグラウンド電位(0V)に保たれている。この基準導電路78には、一次側電源部61の低電位側の端子と二次側電源部62の低電位側の端子とが導通し、更に、後述するスイッチ素子32A,32Bのドレインが接続されている。   The reference conductive path 78 is configured as a ground, and is maintained at a constant ground potential (0 V). The reference conductive path 78 is electrically connected to the low potential side terminal of the primary power source 61 and the low potential side terminal of the secondary power source 62, and is connected to drains of switch elements 32A and 32B, which will be described later. Has been.

入力側導電路71と出力側導電路72との間には、多相変換部4が設けられている。この多相変換部4は、入力側導電路71と出力側導電路72との間に並列に配置される複数の電圧変換部4A,4Bを備える。これら電圧変換部4A,4Bは、同期整流方式の降圧型コンバータとして機能する。   A multiphase converter 4 is provided between the input side conductive path 71 and the output side conductive path 72. The polyphase converter 4 includes a plurality of voltage converters 4A and 4B arranged in parallel between the input-side conductive path 71 and the output-side conductive path 72. These voltage converters 4A and 4B function as a synchronous rectification step-down converter.

電圧変換部4Aは、入力側導電路71に接続される個別入力路42A(個別導電路)と、駆動用のスイッチ素子5A,6Aのオンオフ動作により個別入力路42Aに入力された電圧を変換する変換動作部19Aと、変換動作部19Aによって変換された電圧の出力経路となる個別出力路52A(個別導電路)とを有する。そして、個別入力路42Aには、個別入力路42Aを通電状態と非通電状態とに切り替える保護用のスイッチ素子20Aが設けられている。また、個別出力路52Aには、逆流時に個別出力路52Aを通電状態と非通電状態とに切り替える保護用のスイッチ素子24Aが設けられている。   The voltage converter 4A converts the individual input path 42A (individual conductive path) connected to the input side conductive path 71 and the voltage input to the individual input path 42A by the on / off operation of the drive switch elements 5A and 6A. The conversion operation unit 19A and an individual output path 52A (individual conductive path) serving as an output path for the voltage converted by the conversion operation unit 19A. The individual input path 42A is provided with a protective switch element 20A for switching the individual input path 42A between an energized state and a non-energized state. The individual output path 52A is provided with a protective switch element 24A that switches the individual output path 52A between the energized state and the non-energized state during reverse flow.

電圧変換部4Aにおいて、ハイサイド側のスイッチ素子5Aのドレインには、入力側導電路71から分岐した個別入力路42Aが接続されている。このスイッチ素子5Aのドレインは、入力側コンデンサ8Aの一方側の電極に導通し、個別入力路42Aに介在するスイッチ素子20Aがオン状態のときには一次側電源部61の高電位側端子にも導通する。また、スイッチ素子5Aのソースには、ローサイド側のスイッチ素子6Aのドレイン及びコイル12Aの一端が接続されている。ローサイド側のスイッチ素子6Aのソースには、入力側コンデンサ8A及び出力側コンデンサ10Aの各電極が接続されている。また、コイル12Aの他端は、出力側コンデンサ10Aの一方の電極、及びスイッチ素子24Aのソースに接続されている。そして、スイッチ素子5Aのゲートには、駆動部3からの駆動信号及び非駆動信号が入力されるようになっており、駆動部3からの信号に応じてスイッチ素子5Aがオン状態とオフ状態とに切り替わるようになっている。ローサイド側のスイッチ素子6Aのゲートにも、駆動部3からの駆動信号及び非駆動信号が入力されるようになっており、駆動部3からの信号に応じてスイッチ素子6Aがオン状態とオフ状態とに切り替わるようになっている。   In the voltage converter 4A, the individual input path 42A branched from the input side conductive path 71 is connected to the drain of the high-side switch element 5A. The drain of the switch element 5A is conducted to one electrode of the input side capacitor 8A, and is also conducted to the high potential side terminal of the primary side power supply unit 61 when the switch element 20A interposed in the individual input path 42A is in an ON state. . The source of the switch element 5A is connected to the drain of the low-side switch element 6A and one end of the coil 12A. The electrodes of the input-side capacitor 8A and the output-side capacitor 10A are connected to the source of the low-side switch element 6A. The other end of the coil 12A is connected to one electrode of the output-side capacitor 10A and the source of the switch element 24A. A drive signal and a non-drive signal from the drive unit 3 are input to the gate of the switch element 5A, and the switch element 5A is turned on and off according to the signal from the drive unit 3. It is supposed to switch to. A drive signal and a non-drive signal from the drive unit 3 are also input to the gate of the low-side switch element 6A, and the switch element 6A is turned on and off according to the signal from the drive unit 3 It has come to switch to.

電圧変換部4Bは、電圧変換部4Aと同様に構成されている。この電圧変換部4Bは、入力側導電路71に接続される個別入力路42B(個別導電路)と、駆動用のスイッチ素子5B,6Bのオンオフ動作により個別入力路42Bに入力された電圧を変換する変換動作部19Bと、変換動作部19Aによって変換された電圧の出力経路となる個別出力路52B(個別導電路)とを有する。そして、個別入力路42Bには、個別入力路42Bを通電状態と非通電状態とに切り替える保護用のスイッチ素子20Bが設けられている。また、個別出力路52Bには、逆流時に個別出力路52Bを通電状態と非通電状態とに切り替える保護用のスイッチ素子24Bが設けられている。   The voltage conversion unit 4B is configured in the same manner as the voltage conversion unit 4A. The voltage converter 4B converts the individual input path 42B (individual conductive path) connected to the input side conductive path 71 and the voltage input to the individual input path 42B by the on / off operation of the driving switch elements 5B and 6B. A conversion operation unit 19B, and an individual output path 52B (individual conductive path) serving as an output path of the voltage converted by the conversion operation unit 19A. The individual input path 42B is provided with a protection switch element 20B that switches the individual input path 42B between the energized state and the non-energized state. The individual output path 52B is provided with a protective switch element 24B that switches the individual output path 52B between the energized state and the non-energized state during reverse flow.

電圧変換部4Bにおいて、ハイサイド側のスイッチ素子5Bのドレインには、入力側導電路71から分岐した個別入力路42Bが接続されている。このスイッチ素子5Bのドレインは、入力側コンデンサ8Bの一方側の電極に導通し、個別入力路42Bに介在するスイッチ素子20Bがオン状態のときには一次側電源部61の高電位側端子にも導通する。また、スイッチ素子5Bのソースには、ローサイド側のスイッチ素子6Bのドレイン及びコイル12Bの一端が接続されている。ローサイド側のスイッチ素子6Bのソースには、入力側コンデンサ8B及び出力側コンデンサ10Bの各電極が接続されている。また、コイル12Bの他端は、出力側コンデンサ10Bの一方の電極、及びスイッチ素子24Bのソースに接続されている。そして、スイッチ素子5Bのゲートには、駆動部3からの駆動信号及び非駆動信号が入力されるようになっており、駆動部3からの信号に応じてスイッチ素子5Bがオン状態とオフ状態とに切り替わるようになっている。ローサイド側のスイッチ素子6Bのゲートにも、駆動部3からの駆動信号及び非駆動信号が入力されるようになっており、駆動部3からの信号に応じてスイッチ素子6Bがオン状態とオフ状態とに切り替わるようになっている。   In the voltage converter 4B, the individual input path 42B branched from the input side conductive path 71 is connected to the drain of the high-side switch element 5B. The drain of the switch element 5B is conducted to one electrode of the input side capacitor 8B, and is also conducted to the high potential side terminal of the primary side power supply unit 61 when the switch element 20B interposed in the individual input path 42B is in the ON state. . The source of the switch element 5B is connected to the drain of the low-side switch element 6B and one end of the coil 12B. The electrodes of the input-side capacitor 8B and the output-side capacitor 10B are connected to the source of the low-side switch element 6B. The other end of the coil 12B is connected to one electrode of the output-side capacitor 10B and the source of the switch element 24B. A drive signal and a non-drive signal from the drive unit 3 are input to the gate of the switch element 5B, and the switch element 5B is turned on and off according to the signal from the drive unit 3. It is supposed to switch to. A drive signal and a non-drive signal from the drive unit 3 are also input to the gate of the low-side switch element 6B, and the switch element 6B is turned on and off according to the signal from the drive unit 3 It has come to switch to.

そして、スイッチ素子6A,6Bのソース、入力側コンデンサ8A,8Bの片側の各電極、出力側コンデンサ10A,10Bの片側の各電極は互いに導通しており、導電路76を介してスイッチ素子32A,32Bの各ソースに接続されている。スイッチ素子24A,24Bのドレインは互いに導通し、出力側導電路72に接続されている。   The sources of the switch elements 6A and 6B, the electrodes on one side of the input side capacitors 8A and 8B, and the electrodes on one side of the output side capacitors 10A and 10B are electrically connected to each other. 32B is connected to each source. The drains of the switch elements 24A and 24B are electrically connected to each other and connected to the output side conductive path 72.

このように構成される電圧変換部4A,4Bの各々は、同期整流方式の降圧型コンバータとして機能する。電圧変換部4Aは、ハイサイド側のスイッチ素子5Aのオン動作とオフ動作との切り替えを、ローサイド側のスイッチ素子6Aのオフ動作とオン動作との切替と同期させて行うことで、個別入力路42Aに印加された直流電圧を降圧し、個別出力路52Aに出力する。具体的には、駆動部3により、スイッチ素子5A,6AのそれぞれのゲートにPWM信号が与えられ、スイッチ素子5Aをオン状態とし、スイッチ素子6Aをオフ状態とした第1状態と、スイッチ素子5Aをオフ状態とし、スイッチ素子6Aをオン状態とした第2状態とが交互に切り替えられる。そして、このような第1状態と第2状態との切り替えを繰り返すことで、個別入力路42Aに印加された直流電圧を降圧し、個別出力路52Aに出力する。個別出力路52Aの出力電圧は、スイッチ素子5A,6Aのゲートに与えるPWM信号のデューティ比に応じて定まる。   Each of the voltage converters 4A and 4B configured as described above functions as a synchronous rectification step-down converter. The voltage conversion unit 4A performs switching between the ON operation and the OFF operation of the high-side switch element 5A in synchronization with the switching between the OFF operation and the ON operation of the low-side switch element 6A. The DC voltage applied to 42A is stepped down and output to the individual output path 52A. Specifically, the drive unit 3 applies PWM signals to the gates of the switch elements 5A and 6A to turn on the switch element 5A and turn off the switch element 6A, and the switch element 5A. Is switched off and the second state in which the switch element 6A is turned on is alternately switched. Then, by repeatedly switching between the first state and the second state, the DC voltage applied to the individual input path 42A is stepped down and output to the individual output path 52A. The output voltage of the individual output path 52A is determined according to the duty ratio of the PWM signal applied to the gates of the switch elements 5A and 6A.

電圧変換部4Bも同様であり、ハイサイド側のスイッチ素子5Bのオン動作とオフ動作との切り替えを、ローサイド側のスイッチ素子6Bのオフ動作とオン動作との切替と同期させて行うことで、個別入力路42Bに印加された直流電圧を降圧し、個別出力路52Bに出力する。具体的には、駆動部3により、スイッチ素子5B,6BのそれぞれのゲートにPWM信号が与えられ、スイッチ素子5Bをオン状態とし、スイッチ素子6Bをオフ状態とした第1状態と、スイッチ素子5Bをオフ状態とし、スイッチ素子6Bをオン状態とした第2状態とが交互に切り替えられる。そして、このような第1状態と第2状態との切り替えを繰り返すことで、個別入力路42Bに印加された直流電圧を降圧し、個別出力路52Bに出力する。個別出力路52Bの出力電圧は、スイッチ素子5B,6Bのゲートに与えるPWM信号のデューティ比に応じて定まる。なお、両電圧変換部4A,4Bに与える駆動信号のタイミングは特に限定されず、例えば、電圧変換部4Aの動作と、電圧変換部4Bの動作とを、公知の制御方法によって位相をずらして行えばよい。   The voltage conversion unit 4B is the same, and the switching between the ON operation and the OFF operation of the high-side switch element 5B is performed in synchronization with the switching between the OFF operation and the ON operation of the low-side switch element 6B. The DC voltage applied to the individual input path 42B is stepped down and output to the individual output path 52B. Specifically, the drive unit 3 applies PWM signals to the gates of the switch elements 5B and 6B to turn on the switch element 5B and turn off the switch element 6B, and the switch element 5B. Is switched off and the second state in which the switch element 6B is turned on is alternately switched. The DC voltage applied to the individual input path 42B is stepped down and output to the individual output path 52B by repeating the switching between the first state and the second state. The output voltage of the individual output path 52B is determined according to the duty ratio of the PWM signal applied to the gates of the switch elements 5B and 6B. The timing of the drive signal applied to both voltage converters 4A and 4B is not particularly limited. For example, the operation of the voltage converter 4A and the operation of the voltage converter 4B are performed with a phase shifted by a known control method. Just do it.

更に、図1のDCDCコンバータ1は、逆接続保護回路部30を備えており、二次側電源部62が逆接続された場合に導電路76の導通が遮断される構成とし、逆接続時の二次側への電流の流れ込みを防いでいる。この逆接続保護回路部30は、両電圧変換部4A,4Bと基準導電路78との間の導電路76に並列に配置される逆接続保護用のスイッチ素子32A,32Bと、スイッチ素子32A,32Bのゲート電位を出力側導電路72の電位に保つ導電路34とを備えている。スイッチ素子32A,32Bは、導電路76の導通を遮断するオフ状態と、その遮断を解除するオン状態とに切り替わる構成となっている。   Further, the DCDC converter 1 of FIG. 1 includes the reverse connection protection circuit unit 30 and is configured such that the conduction of the conductive path 76 is interrupted when the secondary power supply unit 62 is reversely connected. This prevents current from flowing into the secondary side. The reverse connection protection circuit unit 30 includes reverse connection protection switch elements 32A and 32B arranged in parallel to the conductive path 76 between the voltage converters 4A and 4B and the reference conductive path 78, and the switch elements 32A and 32A. And a conductive path 34 for maintaining the gate potential of 32B at the potential of the output-side conductive path 72. The switch elements 32A and 32B are configured to switch between an off state in which conduction of the conductive path 76 is interrupted and an on state in which the interruption is released.

逆接続保護回路部30では、少なくとも二次側電源部62(低圧側の電源部)の端子が図1のように正規の接続状態であることを条件としてスイッチ素子32A,32Bがオン状態になる。この場合、多相変換部4が動作していない状態では、スイッチ素子32A,32Bのゲート電位が二次側電源部62の正極電位(例えば12V)と略同電位になり、ゲート電位がソース電位よりも高い状態で維持されるため、スイッチ素子32A,32Bはオン状態で維持される。そして、ローサイド側のスイッチ素子6A,6Bのソース、入力側コンデンサ8A,8B、出力側コンデンサ10A,10Bは、いずれも基準導電路78と導通した状態で維持される。一方、二次側電源部62(低圧側の電源部)の端子が正負を逆にした逆接続状態である場合、スイッチ素子32A,32Bのゲート電位が二次側電源部62の負極の電位(例えば−12V)と略同電位になり、ゲート電位がソース電位よりも低い状態で維持される。このため、スイッチ素子32A,32Bはオフ状態で維持される。スイッチ素子32A,32Bがオフ状態であるときには、スイッチ素子6A,6Bのソース、入力側コンデンサ8A,8B、出力側コンデンサ10A,10Bは、いずれも基準導電路78と導通しない状態となる。更に、図1の構成では、二次側電源部62と出力側導電路72との間がオープン状態になった場合でも、スイッチ素子32A,32Bはオフ状態で維持されることになる。   In the reverse connection protection circuit unit 30, the switch elements 32A and 32B are turned on on condition that at least the terminals of the secondary power supply unit 62 (low voltage side power supply unit) are in a normal connection state as shown in FIG. . In this case, when the multiphase converter 4 is not operating, the gate potentials of the switch elements 32A and 32B are substantially the same as the positive potential (for example, 12V) of the secondary power supply unit 62, and the gate potential is the source potential. Therefore, the switch elements 32A and 32B are maintained in the ON state. The sources of the low-side switch elements 6A and 6B, the input-side capacitors 8A and 8B, and the output-side capacitors 10A and 10B are all maintained in conduction with the reference conductive path 78. On the other hand, when the terminal of the secondary side power supply unit 62 (low voltage side power supply unit) is in a reverse connection state in which the polarity is reversed, the gate potential of the switch elements 32A and 32B is the potential of the negative electrode of the secondary side power supply unit 62 ( For example, the potential is substantially the same as −12 V), and the gate potential is maintained lower than the source potential. For this reason, the switch elements 32A and 32B are maintained in the off state. When the switch elements 32A and 32B are in the OFF state, the sources of the switch elements 6A and 6B, the input-side capacitors 8A and 8B, and the output-side capacitors 10A and 10B are all not connected to the reference conductive path 78. Further, in the configuration of FIG. 1, even when the space between the secondary-side power supply unit 62 and the output-side conductive path 72 is in an open state, the switch elements 32A and 32B are maintained in an off state.

次に、通常動作中の異常検出について説明する。
DCDCコンバータ1には、出力側導電路72を流れる電流を検出するための電流検出経路80が構成されている。この電流検出経路80は、出力側導電路72を流れる電流を公知の方法で検出する経路であり、制御部2は、この電流検出経路80を介して入力された値によって出力側導電路72を流れる電流の値を把握している。なお、図1では、電流検出経路80を簡略的に示しているが、電流検出経路80における具体的な電流検出回路は、公知の様々な電流検出回路を用いることができ、出力側導電路72を流れる電流の値Ioを制御部2が把握できる構成であればよい。
Next, abnormality detection during normal operation will be described.
The DCDC converter 1 includes a current detection path 80 for detecting a current flowing through the output side conductive path 72. The current detection path 80 is a path for detecting a current flowing through the output-side conductive path 72 by a known method, and the control unit 2 determines the output-side conductive path 72 according to a value input via the current detection path 80. Know the value of the current that flows. In FIG. 1, the current detection path 80 is illustrated in a simplified manner. However, as the specific current detection circuit in the current detection path 80, various known current detection circuits can be used. Any configuration is possible as long as the control unit 2 can grasp the value Io of the current flowing through the control unit 2.

そして、制御部2は、出力側導電路72に過電流が生じているか否かを判断している。具体的には、制御部2は、出力側導電路72を流れる電流値Ioを予め定められた閾値Itと比較し、Io≦Itであれば過電流状態ではないと判断し、Io>Itであれば過電流状態であると判断する。   Then, the control unit 2 determines whether or not an overcurrent is generated in the output side conductive path 72. Specifically, the control unit 2 compares the current value Io flowing through the output-side conductive path 72 with a predetermined threshold It, and determines that it is not an overcurrent state if Io ≦ It, and Io> It If there is, it is judged as an overcurrent state.

また、制御部2には、出力側導電路72の電圧が入力され、出力側導電路72に過電圧が生じているか否かをも判断している。具体的には、制御部2が検出した出力側導電路72の電圧値Voを予め定められた閾値Vtと比較し、Vo≦Vtであれば過電圧状態ではないと判断し、Vo>Vtであれば過電圧状態であると判断する。   Further, the voltage of the output side conductive path 72 is input to the control unit 2, and it is also determined whether or not an overvoltage is generated in the output side conductive path 72. Specifically, the voltage value Vo of the output-side conductive path 72 detected by the control unit 2 is compared with a predetermined threshold value Vt, and if Vo ≦ Vt, it is determined that there is no overvoltage state, and Vo> Vt. Is determined to be in an overvoltage state.

本構成では、制御部2が検出部の一例に相当し、少なくとも多相変換部4の動作中にIo>It又はVo>Vtのいずれかの状態を検出することで、多相変換部4での異常発生を検出する。   In this configuration, the control unit 2 corresponds to an example of a detection unit, and at least the state of either Io> It or Vo> Vt is detected during the operation of the polyphase conversion unit 4. Detects abnormal occurrences.

制御部2は、過電流又は過電圧のいずれかの異常を検出した場合、即ち、Io>It又はVo>Vtのいずれかの状態が生じていると判断した場合、複数の電圧変換部4A,4Bの全ての電圧変換動作を停止させる。具体的には、制御部2から駆動部3に対してPWM信号の出力停止の指示が与えられ、駆動部3は、スイッチ素子5A,6A,5B,6BへのPWM信号の出力を停止する。更に、制御部2からスイッチ素子20A,20B、24A,24Bの全てのゲートに対しオフ信号が出力される。これにより、スイッチ素子20A,20B,24A,24Bが全てオフ状態に切り替わる。   When the control unit 2 detects any abnormality of overcurrent or overvoltage, that is, when it is determined that any state of Io> It or Vo> Vt occurs, the plurality of voltage conversion units 4A, 4B All voltage conversion operations are stopped. Specifically, the control unit 2 gives an instruction to stop the output of the PWM signal to the drive unit 3, and the drive unit 3 stops the output of the PWM signal to the switch elements 5A, 6A, 5B, and 6B. Furthermore, an off signal is output from the control unit 2 to all the gates of the switch elements 20A, 20B, 24A, and 24B. Thereby, all the switch elements 20A, 20B, 24A, and 24B are switched to the off state.

本構成では、制御部2が停止制御部の一例に相当し、多相変換部4の動作中に検出部によって多相変換部4での異常発生が検出された場合に多相変換部4における複数の電圧変換部4A,4Bの全ての動作を停止させるように機能する。   In this configuration, the control unit 2 corresponds to an example of a stop control unit, and when the occurrence of an abnormality in the polyphase conversion unit 4 is detected by the detection unit during the operation of the polyphase conversion unit 4, It functions to stop all operations of the plurality of voltage converters 4A, 4B.

このように、多相変換部4を構成する複数の電圧変換部4A,4Bの全ての動作を停止させた後、これら複数の電圧変換部4A,4Bの中から、電流及び電圧の少なくともいずれかが異常となる変換部を特定する。   As described above, after all the operations of the plurality of voltage conversion units 4A and 4B constituting the multiphase conversion unit 4 are stopped, at least one of current and voltage is selected from the plurality of voltage conversion units 4A and 4B. Identify the converter that becomes abnormal.

まず、制御部2は、一方の電圧変換部4Aのみを動作させ、他方の電圧変換部4Bの動作を停止させた状態で、電源導電路70に過電流又は過電圧のいずれかが生じているか否かを判断する。具体的には、電圧変換部4Aの保護用のスイッチ素子20A,24Aをオン状態に切り替え、駆動用のスイッチ素子5A,6Aのそれぞれに対し、上述した第1状態と第2状態とを切り替えるようにPWM信号を出力する。このような制御により、電圧変換部4Aは、個別入力路42Aに印加された直流電圧を降圧し、個別出力路52Aに出力する電圧変換動作を行う。電圧変換部4Aが電圧変換動作を行っている間は、他方の電圧変換部4Bの駆動を停止させ、スイッチ素子5B,6Bをオフ状態で維持するとともに、保護用のスイッチ素子20B,24Bをオフ状態で維持する。制御部2は、このように電圧変換部4Aのみを駆動する制御を所定時間行い、この所定時間の間、出力側導電路72を流れる電流値Ioを閾値Itと比較するとともに、出力側導電路72の電圧値Voを閾値Vtと比較する。そして、Io>It又はVo>Vtのいずれかの状態が生じた場合には、電圧変換部4Aを異常であると判定する。逆に、電圧変換部4Aのみが駆動される所定時間の間、Io≦It及びVo≦Vtで維持された場合には電圧変換部4Aが正常であると判定する。   First, the control unit 2 operates only one voltage conversion unit 4A and stops the operation of the other voltage conversion unit 4B. Whether or not an overcurrent or an overvoltage has occurred in the power supply conductive path 70. Determine whether. Specifically, the switch elements 20A and 24A for protection of the voltage conversion unit 4A are switched to the ON state, and the first state and the second state described above are switched for each of the switch elements 5A and 6A for driving. Output a PWM signal. By such control, the voltage conversion unit 4A performs a voltage conversion operation for stepping down the DC voltage applied to the individual input path 42A and outputting it to the individual output path 52A. While the voltage conversion unit 4A is performing the voltage conversion operation, the driving of the other voltage conversion unit 4B is stopped, the switch elements 5B and 6B are maintained in the off state, and the protective switch elements 20B and 24B are turned off. Keep in state. In this way, the control unit 2 performs control for driving only the voltage conversion unit 4A for a predetermined time, and compares the current value Io flowing through the output-side conductive path 72 with the threshold value It during this predetermined time, and outputs the output-side conductive path. The voltage value Vo of 72 is compared with the threshold value Vt. And when either state of Io> It or Vo> Vt arises, it determines with the voltage conversion part 4A being abnormal. Conversely, when the voltage conversion unit 4A is maintained at Io ≦ It and Vo ≦ Vt for a predetermined time during which only the voltage conversion unit 4A is driven, it is determined that the voltage conversion unit 4A is normal.

次に、制御部2は、他方の電圧変換部4Bのみを動作させ、電圧変換部4Aの動作を停止させた状態で、電源導電路70に過電流又は過電圧のいずれかが生じているか否かを判断する。具体的には、電圧変換部4Bの保護用のスイッチ素子20B,24Bをオン状態に切り替え、駆動用のスイッチ素子5B,6Bのそれぞれに対し、上述した第1状態と第2状態とを切り替えるようにPWM信号を出力する。このような制御により、電圧変換部4Bは、個別入力路42Bに印加された直流電圧を降圧し、個別出力路52Bに出力する電圧変換動作を行う。電圧変換部4Bが電圧変換動作を行っている間は、電圧変換部4Aの駆動を停止させ、スイッチ素子5A,6Aをオフ状態で維持するとともに、保護用のスイッチ素子20A,24Aをオフ状態で維持する。制御部2は、このように電圧変換部4Bのみを駆動する制御を所定時間行い、この所定時間の間、出力側導電路72を流れる電流値Ioを閾値Itと比較するとともに、出力側導電路72の電圧値Voを閾値Vtと比較する。そして、Io>It又はVo>Vtのいずれかの状態が生じた場合には、電圧変換部4Bを異常であると判定する。逆に、電圧変換部4Bのみが駆動される所定時間の間、Io≦It及びVo≦Vtで維持された場合には電圧変換部4Bが正常であると判定する。   Next, the control unit 2 operates whether only the other voltage conversion unit 4B is operated and the operation of the voltage conversion unit 4A is stopped. Whether or not an overcurrent or an overvoltage is generated in the power supply conductive path 70. Judging. Specifically, the switch elements 20B and 24B for protection of the voltage conversion unit 4B are switched to the ON state, and the first state and the second state described above are switched for each of the switch elements 5B and 6B for driving. Output a PWM signal. By such control, the voltage conversion unit 4B performs a voltage conversion operation for stepping down the DC voltage applied to the individual input path 42B and outputting it to the individual output path 52B. While the voltage conversion unit 4B is performing the voltage conversion operation, the drive of the voltage conversion unit 4A is stopped, the switch elements 5A and 6A are maintained in the off state, and the protective switch elements 20A and 24A are in the off state. maintain. In this way, the control unit 2 performs control for driving only the voltage conversion unit 4B for a predetermined time, and compares the current value Io flowing through the output side conductive path 72 with the threshold value It during this predetermined time, and outputs the output side conductive path. The voltage value Vo of 72 is compared with the threshold value Vt. And when either state of Io> It or Vo> Vt arises, it determines with the voltage conversion part 4B being abnormal. Conversely, when the voltage conversion unit 4B is maintained at Io ≦ It and Vo ≦ Vt for a predetermined time during which only the voltage conversion unit 4B is driven, it is determined that the voltage conversion unit 4B is normal.

本構成では、制御部2が駆動異常特定部の一例に相当し、少なくとも停止制御部によって全ての電圧変換部4A,4Bの動作が停止された後、多相変換部4を構成する複数の電圧変換部4A,4Bの中から、電流及び電圧の少なくともいずれかが異常となる変換部を特定するように機能する。   In this configuration, the control unit 2 corresponds to an example of a drive abnormality specifying unit, and at least the operation of all the voltage conversion units 4A and 4B is stopped by the stop control unit, and then a plurality of voltages constituting the polyphase conversion unit 4 It functions to identify a conversion unit in which at least one of current and voltage is abnormal from the conversion units 4A and 4B.

このような制御により、電圧変換部4A,4Bのいずれかが異常である判定された場合、制御部2は、その異常と判定された変換部の動作を中止し、所定の異常情報を、通信インタフェース90を介して上位システムに通知する。そして、制御部2は、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、異常と判定された変換部を除いた残余の変換部に電圧変換動作を行わせる。例えば、電圧変換部4Aが異常と判定され、電圧変換部4Bが正常と判定された場合、制御部2は、電圧変換部4Aが異常であることを示す情報を、通信インタフェース90を介して上位システムに通知する。そして、異常と判定された電圧変換部4Aの動作を中止し、電圧変換部4Aを除いた残余の電圧変換部4Bのみに電圧変換動作を行わせるように、多相変換部4の動作を再開する。なお、全ての電圧変換部4A,4Bが異常と判定された場合、多相変換部4自体の動作を停止する。   When it is determined that one of the voltage conversion units 4A and 4B is abnormal by such control, the control unit 2 stops the operation of the conversion unit determined to be abnormal, and transmits predetermined abnormality information to the communication unit. Notification is made to the host system via the interface 90. Then, the control unit 2 causes the remaining conversion units excluding the conversion units determined to be abnormal among the plurality of voltage conversion units 4A and 4B constituting the multiphase conversion unit 4 to perform a voltage conversion operation. For example, when the voltage conversion unit 4A is determined to be abnormal and the voltage conversion unit 4B is determined to be normal, the control unit 2 displays information indicating that the voltage conversion unit 4A is abnormal via the communication interface 90. Notify the system. Then, the operation of the voltage conversion unit 4A determined to be abnormal is stopped, and the operation of the polyphase conversion unit 4 is restarted so that only the remaining voltage conversion unit 4B excluding the voltage conversion unit 4A performs the voltage conversion operation. To do. If all the voltage conversion units 4A and 4B are determined to be abnormal, the operation of the multiphase conversion unit 4 itself is stopped.

本構成では、制御部2が動作制御部の一例に相当し、駆動異常特定部によって電流及び電圧の少なくともいずれかが異常となる変換部が特定された場合に、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、駆動異常特定部によって特定された変換部を除いた残余の変換部に電圧変換動作を行わせるように機能する。また、制御部2は、通知部の一例に相当し、動作制御部が複数の電圧変換部4A,4Bの一部の電圧変換動作を制限する場合に外部に通知を行うように機能する。   In this configuration, the control unit 2 corresponds to an example of an operation control unit, and the polyphase conversion unit 4 is configured when a conversion unit in which at least one of current and voltage is abnormal is specified by the drive abnormality specifying unit. Of the plurality of voltage conversion units 4A and 4B, the remaining conversion units excluding the conversion unit specified by the drive abnormality specifying unit function to perform the voltage conversion operation. The control unit 2 corresponds to an example of a notification unit, and functions to notify the outside when the operation control unit restricts some voltage conversion operations of the plurality of voltage conversion units 4A and 4B.

次に、保護用のスイッチング素子の検査処理について説明する。
図1で示すように、制御部2には、図示しないイグニッションスイッチからのイグニッション信号が入力されるようになっている。イグニッションスイッチがオン状態であるときにはオン状態を示すイグニッション信号(オン信号)が制御部2に入力され、イグニッションスイッチがオフ状態であるときにはオフ状態を示すイグニッション信号(オフ信号)が制御部2に入力されるようになっている。そして、制御部2は、イグニッション信号がオフ信号からオン信号に切り替わる毎に図2で示す検査処理を行う。具体的には、イグニッション信号がオフ信号からオン信号に切り替わった後、入力側導電路71に接続された図示しない発電機が動作する前に、一次側電源部61から供給される電力を利用して図2の検査処理を行うようにしてもよい。或いは、イグニッション信号がオフ信号からオン信号に切り替わった後、入力側導電路71に接続された図示しない発電機が動作した後に、図2の検査処理を行うようにしてもよい。
Next, the inspection process for the protective switching element will be described.
As shown in FIG. 1, an ignition signal from an ignition switch (not shown) is input to the control unit 2. When the ignition switch is in the on state, an ignition signal (on signal) indicating the on state is input to the control unit 2, and when the ignition switch is in the off state, an ignition signal (off signal) indicating the off state is input to the control unit 2. It has come to be. Then, the control unit 2 performs the inspection process shown in FIG. 2 every time the ignition signal is switched from the off signal to the on signal. Specifically, after the ignition signal is switched from the off signal to the on signal, before the generator (not shown) connected to the input side conductive path 71 operates, the power supplied from the primary side power supply unit 61 is used. 2 may be performed. Alternatively, after the ignition signal is switched from the off signal to the on signal, a generator (not shown) connected to the input-side conductive path 71 is operated, and the inspection process of FIG. 2 may be performed.

図2で示す検査処理では、最大相数Nmax(図1の例ではNmax=2)の多相変換部4において、相毎に保護用のスイッチ素子の検査を行う。まず、S1にてN=1とする。なお、Nは、S2〜S12の処理で検査対象となっている相を示す値である。図1の構成では、N=1のときには、検査対象が第1相である電圧変換部4Aとなる。   In the inspection process shown in FIG. 2, the protection switch element is inspected for each phase in the multiphase converter 4 having the maximum number of phases Nmax (Nmax = 2 in the example of FIG. 1). First, N = 1 is set at S1. Note that N is a value indicating the phase to be inspected in the processes of S2 to S12. In the configuration of FIG. 1, when N = 1, the voltage conversion unit 4A whose inspection target is the first phase is used.

S2では、第N相の電圧変換部において、入力側の保護用のスイッチ素子(第1スイッチ素子)をオフ動作させ、出力側の保護用のスイッチ素子(第2スイッチ素子)をオン動作させた状態で、第N相のみの電圧変換動作を行う。例えば、N=1である初回では、第1相の電圧変換部4Aにおいて、入力側の保護用のスイッチ素子20Aをオフ動作させ、出力側の保護用のスイッチ素子24Aをオン動作させた状態で、電圧変換部4Aの電圧変換動作を行い、電圧変換部4Bは動作を停止させておく。このときの電圧変換部4Aの電圧変換動作は、仮にスイッチ素子20A,24Aがいずれも導通していた場合に、個別出力路52Aに対して二次側電源部62の出力電圧(例えば12V)よりも高い電圧V1(例えば14V)が出力されるデューティ比で行う。   In S2, in the N-phase voltage converter, the input-side protection switch element (first switch element) is turned off, and the output-side protection switch element (second switch element) is turned on. In this state, the voltage conversion operation for only the Nth phase is performed. For example, in the first time when N = 1, in the first-phase voltage converter 4A, the input-side protection switch element 20A is turned off, and the output-side protection switch element 24A is turned on. Then, the voltage conversion operation of the voltage conversion unit 4A is performed, and the voltage conversion unit 4B stops the operation. The voltage conversion operation of the voltage conversion unit 4A at this time is based on the output voltage (for example, 12V) of the secondary-side power supply unit 62 with respect to the individual output path 52A if both the switch elements 20A and 24A are conductive. The duty ratio is such that a higher voltage V1 (for example, 14V) is output.

そして、S2の電圧変換動作中に出力側導電路72に印加される電圧が、閾値電圧V2以上であるか否かを判断する(S3)。この閾値電圧V2は、二次側電源部62からの出力電圧(例えば12V)よりも大きく、上述の電圧V1(仮にスイッチ素子20A,24Aがいずれも導通していた場合に、S2の電圧変換動作において個別出力路52Aに対して出力されるべき電圧)よりも小さい値である。このように閾値電圧V2が設定され、S2での電圧変換動作中には、N相の入力側の保護用のスイッチ素子(第1スイッチ素子)をオフ動作させているため、このスイッチ素子が正常にオフされていれば出力側導電路72に印加される電圧は二次側電源部62からの出力電圧程度となり、閾値電圧V2未満となるはずである。従って、S2での電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2以上となった場合、S3にてYesに進み、N相の入力側の保護用スイッチ素子(第1スイッチ素子)がショート故障していると判定する(S4)。例えば、N=1のときには、電圧変換部4Aの入力側のスイッチ素子20Aがショート故障していると判定する。   Then, it is determined whether or not the voltage applied to the output side conductive path 72 during the voltage conversion operation of S2 is equal to or higher than the threshold voltage V2 (S3). This threshold voltage V2 is larger than the output voltage (for example, 12V) from the secondary power supply 62, and the voltage conversion operation of S2 is performed when the above-described voltage V1 (if the switch elements 20A and 24A are both conductive). The voltage to be output to the individual output path 52A in FIG. The threshold voltage V2 is set in this way, and during the voltage conversion operation in S2, the switch element for protection on the N-phase input side (first switch element) is turned off, so that this switch element is normal. If it is turned off, the voltage applied to the output-side conductive path 72 is about the output voltage from the secondary-side power supply unit 62 and should be less than the threshold voltage V2. Accordingly, when the voltage applied to the output-side conductive path 72 becomes equal to or higher than the threshold voltage V2 during the voltage conversion operation in S2, the process proceeds to Yes in S3, and the N-phase input-side protection switch element (first It is determined that the switch element is short-circuited (S4). For example, when N = 1, it is determined that the switch element 20A on the input side of the voltage converter 4A has a short circuit failure.

S2の電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2未満である場合、S3にてNoに進みS5の処理を行う。S5では、第N相の電圧変換部において、入力側の保護用のスイッチ素子(第1スイッチ素子)をオン動作させ、出力側の保護用のスイッチ素子(第2スイッチ素子)をオン動作させた状態で、第N相のみの電圧変換動作を行う。例えば、N=1である初回では、スイッチ素子20Aをオン動作させ、スイッチ素子24Aをオン動作させた状態で、電圧変換部4Aの電圧変換動作を行い、電圧変換部4Bは動作を停止させておく。このときの電圧変換部4Aの電圧変換動作も、仮にスイッチ素子20A,24Aがいずれも導通していた場合に、個別出力路52Aに対して二次側電源部62の出力電圧(例えば12V)よりも高い電圧V1(例えば14V)が出力されるデューティ比で行う。   If the voltage applied to the output-side conductive path 72 during the voltage conversion operation in S2 is less than the threshold voltage V2, the process proceeds to No in S3 and performs the process in S5. In S5, in the N-phase voltage converter, the input-side protection switch element (first switch element) is turned on, and the output-side protection switch element (second switch element) is turned on. In this state, the voltage conversion operation for only the Nth phase is performed. For example, in the first time when N = 1, the voltage conversion unit 4A performs the voltage conversion operation while the switch element 20A is turned on and the switch element 24A is turned on, and the voltage conversion unit 4B stops the operation. deep. The voltage conversion operation of the voltage conversion unit 4A at this time is also based on the output voltage (for example, 12V) of the secondary power supply unit 62 with respect to the individual output path 52A, if both the switch elements 20A and 24A are conductive. The duty ratio is such that a higher voltage V1 (for example, 14V) is output.

そして、S5の電圧変換動作中に出力側導電路72に印加される電圧が、閾値電圧V2以上であるか否かを判断する(S6)。S5の電圧変換動作は、仮にスイッチ素子20A,24Aがいずれも導通していた場合に個別出力路52Aに対して閾値電圧V2よりも高い電圧V1が出力されるデューティ比で行われる。そして、S5では、N相の入力側及び出力側の保護用のスイッチ素子(第1、第2スイッチ素子)をいずれもオン動作させているため、これらスイッチ素子が正常にオン状態となれば出力側導電路72に印加される電圧は閾値電圧V2以上となるはずである。従って、S5での電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2未満であった場合、S6にてNoに進み、N相の入力側の保護用スイッチ素子(第1スイッチ素子)又は出力側の保護用スイッチ素子(第2スイッチ素子)のいずれかがオープン故障していると判定する(S7)。例えば、N=1のときには、電圧変換部4Aのスイッチ素子20A,24Aのいずれかがオープン故障していると判定する。   Then, it is determined whether or not the voltage applied to the output-side conductive path 72 during the voltage conversion operation in S5 is equal to or higher than the threshold voltage V2 (S6). The voltage conversion operation in S5 is performed at a duty ratio at which a voltage V1 higher than the threshold voltage V2 is output to the individual output path 52A if both the switch elements 20A and 24A are conductive. In S5, since both N-phase input side and output side protection switch elements (first and second switch elements) are turned on, if these switch elements are normally turned on, the output is performed. The voltage applied to the side conductive path 72 should be equal to or higher than the threshold voltage V2. Accordingly, when the voltage applied to the output side conductive path 72 is less than the threshold voltage V2 during the voltage conversion operation in S5, the process proceeds to No in S6, and the N-phase input side protection switch element (first It is determined that either the switch element) or the protective switch element on the output side (second switch element) has an open failure (S7). For example, when N = 1, it is determined that one of the switch elements 20A and 24A of the voltage conversion unit 4A has an open failure.

S5の電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2以上である場合、S6にてYesに進みS8の処理を行う。S8では、第N相の電圧変換部において、入力側の保護用のスイッチ素子(第1スイッチ素子)をオン動作させ、出力側の保護用のスイッチ素子(第2スイッチ素子)をオフ動作させた状態で、第N相のみの電圧変換動作を行う。例えば、N=1である初回では、スイッチ素子20Aをオン動作させ、スイッチ素子24Aをオフ動作させた状態で、電圧変換部4Aの電圧変換動作を行い、電圧変換部4Bは動作を停止させておく。このときの電圧変換部4Aの電圧変換動作も、仮にスイッチ素子20A,24Aがいずれも導通していた場合に、個別出力路52Aに対して二次側電源部62の出力電圧(例えば12V)よりも高い電圧V1(例えば14V)が出力されるデューティ比で行う。   When the voltage applied to the output-side conductive path 72 during the voltage conversion operation in S5 is equal to or higher than the threshold voltage V2, the process proceeds to Yes in S6 and performs the process in S8. In S8, the input-side protection switch element (first switch element) is turned on and the output-side protection switch element (second switch element) is turned off in the N-phase voltage converter. In this state, the voltage conversion operation for only the Nth phase is performed. For example, in the first time when N = 1, the voltage conversion unit 4A performs the voltage conversion operation while the switch element 20A is turned on and the switch element 24A is turned off, and the voltage conversion unit 4B stops the operation. deep. The voltage conversion operation of the voltage conversion unit 4A at this time is also based on the output voltage (for example, 12V) of the secondary power supply unit 62 with respect to the individual output path 52A, if both the switch elements 20A and 24A are conductive. The duty ratio is such that a higher voltage V1 (for example, 14V) is output.

そして、S8の電圧変換動作中に出力側導電路72に印加される電圧が、閾値電圧V2以上であるか否かを判断する(S9)。S8での電圧変換動作中には、N相の出力側の保護用のスイッチ素子(第2スイッチ素子)をオフ動作させているため、このスイッチ素子が正常にオフされていれば出力側導電路72に印加される電圧は二次側電源部62からの出力電圧程度となり、閾値電圧V2未満となるはずである。従って、S8での電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2以上となった場合、S9にてYesに進み、N相の出力側の保護用スイッチ素子(第2スイッチ素子)がショート故障していると判定する(S10)。例えば、N=1のときには、電圧変換部4Aの出力側のスイッチ素子24Aがショート故障していると判定する。   Then, it is determined whether or not the voltage applied to the output-side conductive path 72 during the voltage conversion operation in S8 is equal to or higher than the threshold voltage V2 (S9). During the voltage conversion operation in S8, the protection switching element (second switching element) on the N-phase output side is turned off. Therefore, if this switching element is normally turned off, the output side conductive path The voltage applied to 72 is about the output voltage from the secondary power supply 62 and should be less than the threshold voltage V2. Accordingly, when the voltage applied to the output-side conductive path 72 becomes equal to or higher than the threshold voltage V2 during the voltage conversion operation in S8, the process proceeds to Yes in S9, and the N-phase output-side protective switch element (second It is determined that the switch element is short-circuited (S10). For example, when N = 1, it is determined that the switch element 24A on the output side of the voltage converter 4A has a short circuit failure.

S8の電圧変換動作中に出力側導電路72に印加される電圧が閾値電圧V2未満である場合、S9にてNoに進み、N相の電圧変換部における入力側及び出力側の両保護用スイッチ素子が正常であると判定する(S11)。例えば、N=1である場合、スイッチ素子20A、24Aがいずれも正常であると判定する。   If the voltage applied to the output-side conductive path 72 during the voltage conversion operation in S8 is less than the threshold voltage V2, the process proceeds to No in S9, and both the input-side and output-side protection switches in the N-phase voltage conversion unit It is determined that the element is normal (S11). For example, when N = 1, it is determined that both switch elements 20A and 24A are normal.

S11の後には、Nが最大相数Nmax(図1の例では2)に達しているか否かを判断し(S12)、達していない場合には、S12にてNoに進んでNに1を加算し(S13)、新たなNでS2以降の処理を再び行う。例えば、S13でNが2となった場合、S2に戻り、第2相の電圧変換部4Bを対象としてS2〜S12の処理を行う。そして、全ての相に対してS2〜S12の処理が終了し、最終的にS12においてNがNmaxに達したと判断された場合には、図2の検査処理を終了する。   After S11, it is determined whether or not N has reached the maximum number of phases Nmax (2 in the example of FIG. 1) (S12). If not, the process proceeds to No in S12 and N is set to 1. Addition is performed (S13), and processing after S2 is performed again with a new N. For example, when N becomes 2 in S13, the process returns to S2, and the processes of S2 to S12 are performed for the voltage converter 4B of the second phase. Then, the processes of S2 to S12 are completed for all phases, and if it is finally determined in S12 that N has reached Nmax, the inspection process of FIG. 2 is terminated.

本構成では、図2の処理を実行する制御部2が保護異常特定部の一例に相当し、多相変換部4を構成する複数の電圧変換部4A,4Bの中から、少なくとも、保護用のスイッチ素子が異常である変換部を特定するように機能する。   In the present configuration, the control unit 2 that executes the processing of FIG. 2 corresponds to an example of a protection abnormality specifying unit, and at least a protection unit is selected from the plurality of voltage conversion units 4A and 4B constituting the polyphase conversion unit 4. It functions to identify the conversion unit in which the switch element is abnormal.

図2で示す検査処理において、いずれかの変換部の保護用スイッチ素子が異常であると判定された場合には、制御部2は、その異常と判定された変換部の動作を中止し、所定の異常情報を、通信インタフェース90を介して上位システムに通知する。そして、制御部2は、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、異常と判定された変換部を除いた残余の変換部に電圧変換動作を行わせる。例えば、図2の検査処理において電圧変換部4Bを構成するスイッチ素子20B,24Bのいずれかが異常と判定され、電圧変換部4Aを構成するスイッチ素子20A,24Aが正常と判定された場合、制御部2は、電圧変換部4Bが異常であることを示す情報を、通信インタフェース90を介して上位システムに通知する。そして、異常と判定された電圧変換部4Bの動作を中止し、電圧変換部4Bを除いた残余の電圧変換部4Aのみに電圧変換動作を行わせるように、多相変換部4の動作を開始する。なお、全ての電圧変換部4A,4Bが異常と判定された場合、多相変換部4自体の動作を停止する。   In the inspection process shown in FIG. 2, when it is determined that the protective switch element of any of the conversion units is abnormal, the control unit 2 stops the operation of the conversion unit determined to be abnormal, Is notified to the host system via the communication interface 90. Then, the control unit 2 causes the remaining conversion units excluding the conversion units determined to be abnormal among the plurality of voltage conversion units 4A and 4B constituting the multiphase conversion unit 4 to perform a voltage conversion operation. For example, when one of the switch elements 20B and 24B constituting the voltage conversion unit 4B is determined to be abnormal and the switch elements 20A and 24A constituting the voltage conversion unit 4A are determined to be normal in the inspection process of FIG. The unit 2 notifies the host system of information indicating that the voltage conversion unit 4B is abnormal via the communication interface 90. Then, the operation of the voltage conversion unit 4B determined to be abnormal is stopped, and the operation of the polyphase conversion unit 4 is started so that only the remaining voltage conversion unit 4A excluding the voltage conversion unit 4B performs the voltage conversion operation. To do. If all the voltage conversion units 4A and 4B are determined to be abnormal, the operation of the multiphase conversion unit 4 itself is stopped.

本構成では、制御部2が動作制御部の一例に相当し、保護異常特定部によって保護用のスイッチ素子が異常である変換部が特定された場合に、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、保護異常特定部によって特定された変換部を除いた残余の変換部に電圧変換動作を行わせるように機能する。そして、制御部2は、通知部の一例に相当し、動作制御部が複数の電圧変換部4A,4Bの一部の電圧変換動作を制限する場合に外部に通知を行うように機能する。   In this configuration, the control unit 2 corresponds to an example of an operation control unit, and when a conversion unit in which the protection switch element is abnormal is specified by the protection abnormality specifying unit, a plurality of components constituting the polyphase conversion unit 4 are configured. Of the voltage conversion units 4A and 4B, the remaining conversion units excluding the conversion unit specified by the protection abnormality specifying unit function to perform the voltage conversion operation. The control unit 2 corresponds to an example of a notification unit, and functions to perform notification to the outside when the operation control unit restricts some voltage conversion operations of the plurality of voltage conversion units 4A and 4B.

以上のように、本構成に係るDCDCコンバータ1は、各相に個別に保護用のスイッチ素子が設けられているため、各相の異常時には、保護用のスイッチ素子によって適正に保護が図られやすくなる。特に、電圧変換部4A,4Bの各々において、入力側と出力側のいずれにも保護用のスイッチ素子が設けられているため、各電圧変換部を保護する際に、入力側の個別入力路と出力側の個別出力路をそれぞれオフ状態に切り替えることができる。これにより、入力側から電圧変換部へ電流が流入することを防ぐ保護動作と、出力側から電圧変換部へ電流が逆流することを防ぐ保護動作とを行い得る構成となる。   As described above, since the DCDC converter 1 according to this configuration is provided with the protection switch element for each phase individually, it is easy to appropriately protect the protection switch element when each phase is abnormal. Become. In particular, since each of the voltage conversion units 4A and 4B is provided with a protective switch element on both the input side and the output side, when protecting each voltage conversion unit, the individual input path on the input side Each individual output path on the output side can be switched to the off state. Thereby, it becomes a structure which can perform the protection operation which prevents that an electric current flows into a voltage converter from an input side, and the protective operation which prevents an electric current from flowing backward from an output side to a voltage converter.

更に、本構成のDCDCコンバータ1は、多相変換部4を構成する複数の電圧変換部4A,4Bの中から、保護用のスイッチ素子が異常である変換部を特定する保護異常特定部が設けられている。よって、保護用のスイッチ素子に異常が生じている変換部を特定することができる。そして、動作制御部は、保護用のスイッチ素子が異常である変換部が特定された場合、特定された変換部除いた残余の変換部に電圧変換動作を行わせる構成となっている。よって、保護用のスイッチ素子に異常が生じている範囲の動作を停止して保護を図りつつ、残余の変換部によって動作を継続することができる。特に、異常状態の保護用のスイッチ素子が継続して使用されることを防ぐことができるため、多相変換部4での電圧変換動作時にいずれかの相の保護用のスイッチ素子をオフ動作させることが必要となった時に、その保護用のスイッチ素子が故障によってオフ動作できなくなる事態を防ぐことができる。   Further, the DCDC converter 1 of this configuration is provided with a protection abnormality specifying unit that specifies a conversion unit in which the protection switch element is abnormal from the plurality of voltage conversion units 4A and 4B constituting the polyphase conversion unit 4. It has been. Therefore, it is possible to identify a conversion unit in which an abnormality has occurred in the protective switch element. The operation control unit is configured to cause the remaining conversion units excluding the specified conversion unit to perform a voltage conversion operation when a conversion unit having an abnormal protective switch element is specified. Therefore, it is possible to continue the operation by the remaining conversion unit while stopping the operation in a range where the abnormality occurs in the protection switch element and achieving protection. In particular, since it is possible to prevent the switch element for protection in an abnormal state from being used continuously, the switch element for protection of any phase is turned off during the voltage conversion operation in the multiphase converter 4. When this becomes necessary, it is possible to prevent a situation where the protective switch element cannot be turned off due to a failure.

特に、入力側及び出力側の少なくともいずれかの保護用のスイッチ素子に異常が生じている変換部が特定された場合に、その特定された範囲の動作を停止させ、残余の変化部によって動作を継続する構成となっている。このようにすれば、多相変換部4を構成する複数の電圧変換部4A,4Bにおいて、入力側及び出力側のいずれにも異常が生じていな変換部のみが使用されることになり、使用される変換部は、入力側及び出力側のいずれについても、保護が必要な局面で確実に保護動作がなされ易くなる。   In particular, when a conversion unit in which an abnormality has occurred in at least one of the protective switch elements on the input side and output side is specified, the operation in the specified range is stopped, and the operation is performed by the remaining change unit. It is a structure that continues. In this way, in the plurality of voltage conversion units 4A and 4B constituting the polyphase conversion unit 4, only the conversion unit in which no abnormality occurs on either the input side or the output side is used. The conversion unit to be performed is easily and reliably protected on the input side and the output side in a situation where protection is required.

また、保護異常特定部は、少なくともイグニッションスイッチがオフからオンに切り替わった場合に、多相変換部4を構成する複数の電圧変換部4A,4Bを検出対象として保護用のスイッチ素子が異常である変換部を特定する構成となっている。この構成によれば、イグニッションスイッチがオフからオンに切り替わった後、始動後の初期段階でより速やかに保護用のスイッチ素子に異常が生じている範囲を特定することができる。   Further, the protection abnormality specifying unit detects the plurality of voltage conversion units 4A and 4B constituting the multiphase conversion unit 4 as an object to be detected at least when the ignition switch is switched from OFF to ON. The conversion unit is specified. According to this configuration, after the ignition switch is switched from OFF to ON, it is possible to identify a range in which an abnormality has occurred in the protective switch element at an early stage after starting.

また、本構成のDCDCコンバータ1は停止制御部が設けられているため、多相変換部4の動作中に異常が発生した場合、一旦、全ての電圧変換部の動作を停止させて早急な保護を図ることができる。特に、停止制御部は、多相変換部4の動作中に検出部によって多相変換部4での異常発生が検出された場合に、全ての電圧変換部4A,4Bにそれぞれ設けられた保護用のスイッチ素子をオフ状態に切り替える制御を行う構成となっている。この構成によれば、いずれかの電圧変換部の駆動用のスイッチ素子に短絡等の故障が生じている場合であっても、各々の電圧変換部にそれぞれ設けられた保護用のスイッチ素子のオフ動作によって各電圧変換部を確実に停止させることができる。   In addition, since the DCDC converter 1 of this configuration is provided with a stop control unit, when an abnormality occurs during the operation of the polyphase conversion unit 4, the operation of all the voltage conversion units is temporarily stopped to provide immediate protection. Can be achieved. In particular, the stop control unit is provided for protection provided in each of the voltage conversion units 4A and 4B when the detection unit detects an abnormality in the multi-phase conversion unit 4 during the operation of the multi-phase conversion unit 4. The switching element is controlled to be switched off. According to this configuration, even when a failure such as a short circuit occurs in the drive switch element of any voltage conversion unit, the protection switch element provided in each voltage conversion unit is turned off. Each voltage converter can be reliably stopped by the operation.

本構成では、多相変換部4の動作中に異常が発生した場合、停止制御部が全ての電圧変換部の動作を停止させた後に、駆動異常特定部が異常範囲の特定を行うようになっているため、多相変換部4がより保護された状態で異常範囲の特定がなされる。そして、動作制御部は、駆動異常特定部によって異常範囲の特定がなされた場合、多相変換部4を構成する複数の電圧変換部4A,4Bのうち、駆動異常特定部によって特定された変換部を除いた残余の変換部に電圧変換動作を行わせる構成となっている。よって、異常範囲の動作を確実に停止し続けて保護を図りつつ、残余の変換部によって動作を継続することができる。   In this configuration, when an abnormality occurs during the operation of the multiphase converter 4, the drive abnormality specifying unit specifies the abnormal range after the stop control unit stops the operation of all the voltage conversion units. Therefore, the abnormal range is specified in a state where the polyphase converter 4 is further protected. When the abnormal range is specified by the drive abnormality specifying unit, the operation control unit is the conversion unit specified by the drive abnormality specifying unit among the plurality of voltage conversion units 4A and 4B constituting the multiphase conversion unit 4. This is a configuration in which a voltage conversion operation is performed by the remaining conversion unit excluding. Therefore, it is possible to continue the operation by the remaining conversion unit while reliably stopping the operation in the abnormal range and protecting it.

本構成のDCDCコンバータ1は、出力側導電路72に二次側電源部62(蓄電部)が接続されている。この構成によれば、多相変換部4の動作中に異常が発生し、一旦、全ての電圧変換部4A,4Bの動作を停止させても、出力側導電路72には、二次側電源部62(蓄電部)から電圧が継続的に出力されることになる。よって、多相変換部4の動作中に異常が発生した場合に全ての電圧変換部4A,4Bを停止可能としつつ、その停止中であっても出力側導電路72への電力供給を継続し得る構成となる。   In the DCDC converter 1 of this configuration, the secondary side power supply unit 62 (power storage unit) is connected to the output side conductive path 72. According to this configuration, an abnormality occurs during the operation of the multiphase converter 4, and even if all the voltage converters 4 </ b> A and 4 </ b> B are once stopped, the output-side conductive path 72 has no secondary power supply. The voltage is continuously output from the unit 62 (power storage unit). Therefore, when an abnormality occurs during the operation of the multiphase converter 4, all the voltage converters 4 </ b> A and 4 </ b> B can be stopped, and power supply to the output side conductive path 72 is continued even during the stop. It becomes the composition to obtain.

本構成のDCDCコンバータ1は、動作制御部が複数の電圧変換部4A,4Bの一部の電圧変換動作を制限する場合に外部に通知を行う通知部を有する。この構成によれば、複数の電圧変換部4A,4Bの一部の電圧変換動作が制限される場合に、外部装置がその状態を把握することができ、外部装置において、そのような制限に応じた処理を行うことが可能となる。   The DCDC converter 1 having this configuration includes a notification unit that notifies the outside when the operation control unit restricts some voltage conversion operations of the plurality of voltage conversion units 4A and 4B. According to this configuration, when some voltage conversion operations of the plurality of voltage conversion units 4A and 4B are restricted, the external device can grasp the state, and the external device responds to such restriction. Can be performed.

<他の実施例>
本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)上述した実施例における一次側電源部61や二次側電源部62の具体例はあくまで一例であり、蓄電手段の種類や発生電圧は上述した例に限定されず、様々に変更することができる。
(2)図1の例では、入力側導電路や出力側導電路に接続される発電機や負荷などは省略して示したが、様々な装置や電子部品を入力側導電路や出力側導電路に接続することができる。
(3)実施例1では、ローサイド側にスイッチ素子6A,6Bを設けた構成を例示したが、これらの素子をダイオードに変更した構成であってもよい。
(4)図1で示す制御部2は、出力側導電路72を流れる電流の向きが多相変換部4側から二次側電源部62側に向かう第1の向きであるか、二次側電源部62側から多相変換部4側へ向かう第2の向きであるかを判定し得る構成であってもよい。そして、制御部2は、出力側導電路72を流れる電流の向きが上述した「第2の向き」であることを検出した場合(即ち、電流方向が逆流状態であると判定した場合)に、保護用のスイッチ素子24A,24Bをいずれもオフ状態に切り替える構成であってもよい。或いは、制御部2は、出力側導電路72を流れる電流の向きが上述した「第2の向き」であることを検出した場合、全ての電圧変換部4A,4Bの動作を一旦停止させた後、各々の変換部を個別に動作させて異常が生じている変換部を特定する構成であってもよい。そして、異常が生じている変換部が特定された場合、その変換部を除いた残余の変換部のみに電圧変換動作を行わせるように動作を再開する構成であってもよい。
(5)実施例1では、2つの電圧変換部4A,4Bが並列に接続された2相構造のDCDCコンバータ1を例示したが、3以上の電圧変換部が並列に接続された3相以上の構造であってもよい。例えば、図3のような4層構造のDCDCコンバータ201であってもよい。図3のDCDCコンバータ201は、電圧変換部4A,4Bに加えて、電圧変換部4C,4Dを並列に設けた点が図1のDCDCコンバータ1と異なっており、それ以外は、図1のDCDCコンバータ1と同様である。電圧変換部4C,4Dの各々は、電圧変換部4A,4Bの各々と同一の構成となっている。
(6)実施例1では、多相変換部4の動作中に異常が発生した場合、停止制御部に相当する制御部2が全ての電圧変換部の動作を停止した後、駆動異常特定部に相当する制御部2が多相変換部4を構成する複数の電圧変換部の中から、異常である変換部を特定していたが、駆動異常特定部に相当する制御部2は、異常である変換部を含む組を特定する構成であってもよい。以下では、その一例を示す。
例えば、図3のようなDCDCコンバータ201では、出力側導電路72に上述した過電流又は過電圧のいずれかが生じた場合、即ち、上述したように、Io>It又はVo>Vtのいずれかの状態が生じている場合、停止制御部に相当する制御部2が、一旦全ての電圧変換部4A,4B,4C,4Dの動作を停止し、その後、制御部2によって異常範囲の特定処理を行うことになる。制御部2は、この特定処理の際に、まず、電圧変換部4A,4Bの組に電圧変換動作を行わせるとともに電圧変換部4C,4Dの組の電圧変換動作を停止させる第1制御を行う。この第1制御の際に、出力側導電路72において過電流又は過電圧が発生した場合、即ち、Io>It又はVo>Vtのいずれかの状態が生じている場合、電圧変換部4A,4Bの組が、「異常である変換部を含む組」として特定される。逆に、第1制御の際に、出力側導電路72において過電流及び過電圧が発生しなかった場合、電圧変換部4A,4Bの組が、「正常である変換部のみの組」として特定される。
そして、第1制御の後には、電圧変換部4A,4Bの組の電圧変換動作を停止させるとともに電圧変換部4C,4Dの組の電圧変換動作を行わせる第2制御を行う。この第2制御の際に、出力側導電路72において過電流又は過電圧が発生した場合、即ち、Io>It又はVo>Vtのいずれかの状態が生じている場合、電圧変換部4C,4Dの組が、「異常である変換部を含む組」として特定される。逆に、第2制御の際に、出力側導電路72において過電流及び過電圧が発生しなかった場合、電圧変換部4C,4Dの組が、「正常である変換部のみの組」として特定される。制御部2は、このようにして「異常である変換部を含む組」を特定した後、「異常である変換部を含む組」を除いた残余の変換部に電圧変換動作を行わせるように多相変換部4の電圧変換動作を再開する。
この構成では、制御部2が駆動異常特定部の一例に相当し、停止制御部によって全ての電圧変換部の動作が停止された後、多相変換部4を構成する複数の電圧変換部4A,4B,4C,4Dの中から、「異常である変換部を含む組」を特定するように機能する。そして、制御部2は、動作制御部の一例に相当し、駆動異常特定部によって「異常である変換部を含む組」が特定された場合に、多相変換部4を構成する複数の電圧変換部4A,4B,4C,4Dのうち、駆動異常特定部によって特定された「異常である変換部を含む組」を除いた残余の変換部に電圧変換動作を行わせるように機能する。
(7)実施例1では、図2の検査処理において「保護用のスイッチ素子が異常である変換部」を特定していたが、「保護用のスイッチ素子が異常である変換部を含む組」を特定するようにしてもよい。具体的には、以下のように検査処理を行うことができる。
例えば、図3のようなDCDCコンバータ201の検査処理を行う場合、まず、第1の検査動作を行う。この第1の検査動作では、1相目と2相目の電圧変換部4A,4Bにおいて入力側の保護用のスイッチ素子(図1で示すスイッチ素子20A,20Bと同様の素子)をいずれもオフ動作させ、出力側の保護用のスイッチ素子(図1で示すスイッチ素子24A,24Bと同様の素子)をいずれもオン動作させた状態で電圧変換部4A,4Bの電圧変換動作を行う。このときの電圧変換部4A,4Bの電圧変換動作は、仮に全ての保護用のスイッチ素子(図1で示すスイッチ素子20A,20B,24A,24Bと同様の素子)がいずれも導通していた場合に、出力側導電路72に対して二次側電源部62の出力電圧(例えば12V)よりも高い電圧V1(例えば14V)が出力されるデューティ比で行う。なお、3相目、4相目の電圧変換部4C,4Dは、動作を停止させておき、これらの保護用のスイッチ素子も全てオフ状態としておく。このように電圧変換動作を行っている最中に出力側導電路72の電圧が閾値電圧V2以上となる場合、電圧変換部4A,4Bのいずれかの入力側の保護用のスイッチ素子がショート故障であると判定する。なお、閾値電圧V2は、二次側電源部62からの出力電圧(例えば12V)よりも大きく、上述の電圧V1(仮に電圧変換部4A,4Bの保護用のスイッチ素子がいずれも導通していた場合に、上述の電圧変換動作において出力側導電路72に対して出力されるべき電圧)よりも小さい値である。
次いで、第2の検査動作を行う。この第2の検査動作では、1相目と2相目の電圧変換部4A,4Bにおいて入力側の保護用のスイッチ素子をいずれもオン動作させ、出力側の保護用のスイッチ素子をいずれもオフ動作させた状態で電圧変換部4A,4Bの電圧変換動作を行う。なお、3相目、4相目の電圧変換部4C,4Dは、動作を停止させておき、これらの保護用のスイッチ素子も全てオフ状態としておく。第2の検査動作でのデューティ比の設定は第1の検査動作と同様であり、閾値電圧も第1の検査動作と同様である。このように電圧変換動作を行っている最中に出力側導電路72の電圧が閾値電圧V2以上となる場合、電圧変換部4A,4Bのいずれかの出力側の保護用のスイッチ素子がショート故障であると判定する。
次いで、第3の検査動作を行う。この第3の検査動作では、1相目と2相目の電圧変換部4A,4Bにおいて入力側及び出力側の保護用のスイッチ素子を全てオン動作させた状態で電圧変換部4A,4Bの電圧変換動作を行う。なお、3相目、4相目の電圧変換部4C,4Dは、動作を停止させておき、これらの保護用のスイッチ素子も全てオフ状態としておく。第3の検査動作でのデューティ比の設定は第1の検査動作と同様であり、閾値電圧も第1の検査動作と同様である。このように電圧変換動作を行っている最中に出力側導電路72の電圧が閾値電圧未満となる場合、電圧変換部4A,4Bのいずれかの保護用のスイッチ素子がオープン故障であると判定する。
このような判定を行った結果、ショート故障及びオープン故障のいずれかが検出された場合には、1相目と2相目の電圧変換部4A,4Bを「保護用のスイッチ素子が異常である変換部を含む組」と判定し、ショート故障及びオープン故障のいずれも検出されなかった場合には、1相目と2相目の電圧変換部4A,4Bを「正常である変換部の組」と判定する。このような方法により、1相目と2相目の電圧変換部4A,4Bの組が、「保護用のスイッチ素子が異常である変換部を含む組」であるのか、そうでないのかを特定することができる。そして、同様の方法で、3相目と4相目の電圧変換部4C,4Dに対して上述した第1〜第3の検査動作を行えば、3相目と4相目の電圧変換部4C,4Dの組が、「保護用のスイッチ素子が異常である変換部を含む組」であるのか、そうでないのかを特定することができる。この例では、制御部2が、保護異常特定部の一例に相当し、「保護用のスイッチ素子が異常である変換部を含む組」を特定するように機能する。
そして、制御部2は、動作制御部の一例に相当し、保護異常特定部によって「保護用のスイッチ素子が異常である変換部を含む組」が特定された場合に、多相変換部4を構成する複数の電圧変換部4A,4B,4C,4Dのうち、駆動異常特定部によって特定された「保護用のスイッチ素子が異常である変換部を含む組」を除いた残余の変換部に電圧変換動作を行わせるように、多相変換部4を動作させる。
(8)実施例1では、イグニッション信号がオフ信号からオン信号に切り替わる毎に、図2で示す検査処理を行う構成であったが、これ以外のタイミングで検査処理を行ってもよい。例えば、多相変換部4の通常動作中に、多相変換部4において過電流、過電圧、逆流、過熱等の異常が発生したタイミングで、図2の検査処理を行ってもよい。
(9)実施例1では、イグニッションスイッチがオフからオンに切り替わった場合に、多相変換部4を構成する複数の電圧変換部4A,4Bの全てを検出対象とし、図2のような流れで「保護用のスイッチ素子が異常である変換部」を検出したが、イグニッションスイッチがオフからオンに切り替わる毎に、検出対象の変換部又は検出対象の変換部の組を切り替える構成であってもよい。例えば、イグニッションスイッチがオフからオンに切り替わったある時期では、一方の電圧変換部4Aのみを検査対象として、図2のS2〜S11の処理を行い、S4,S7,S10にて異常と判定された場合には、電圧変換部4Aの動作を中止して電圧変換部4Bのみを動作させ、S11にて正常と判定された場合には、電圧変換部4A,4Bの両方を動作させるようにする。
その次に、イグニッションスイッチがオフからオンに切り替わった時期では、前回検査を行った電圧変換部4Aを検査対象とせずに電圧変換部4Bのみを検査対象とし、図2のS2〜S11の処理を行うようにする。そして、S4,S7,S10にて異常と判定された場合には、電圧変換部4Bの動作を中止し、前回の検査で電圧変換部4Aが正常であると判定されている場合には電圧変換部4Aを動作させて電圧変換を行う。前回の検査で電圧変換部4Aが異常であると判定されている場合には多相変換部4自体の動作を中止する。逆に、S11にて正常と判定された場合、前回の検査で電圧変換部4Aが正常であると判定されている場合には電圧変換部4A,4Bの両方を動作させる。前回の検査で電圧変換部4Aが異常であると判定されている場合には、電圧変換部4Aの動作の中止を継続して電圧変換部4Bのみを動作させる。
そして、その次に、イグニッションスイッチがオフからオンに切り替わった時期では、前回検査を行った電圧変換部4Bを検査対象とせずに電圧変換部4Aのみを検査対象として、図2のS2〜S11の処理を行うようにする。このように、イグニッションスイッチがオフからオンに切り替わる毎に、検査対象となる変換部を代えて「保護用のスイッチ素子が異常である変換部」であるか否かを検査する。
このようにすれば、イグニッションスイッチの1回のオン動作に伴うチェック時間を抑えることができる。また、複数回のイグニッションスイッチのオン動作によって複数の電圧変換部を網羅的にチェックすることができるため、いずれかの電圧変換部が長期間チェックされないような事態を防ぐことができる。
(10)実施例1の構成において、二次側電源部62(蓄電部)が所定の正常状態であることを検出する蓄電状態検出部が設けられていてもよい。蓄電状態検出部は、制御部2によって実現されてもよく、別途バッテリセンサなどを設けてもよい。
例えば、制御部2が蓄電状態検出部として機能する場合、多相変換部4が動作していない時期の出力側導電路72の電圧が所定電圧以上である場合に、二次側電源部62(蓄電部)が所定の正常状態であると判定し、そうでない場合に二次側電源部62(蓄電部)が異常状態であると判定するように構成されていればよい。このような構成では、多相変換部4の通常動作中に過電流又は過電圧が検出された場合、即ち、Io>It又はVo>Vtとなった場合、二次側電源部62(蓄電部)が所定の正常状態であると判定されている場合に限って、多相変換部4における全ての電圧変換部4A,4Bの動作を停止させ、その後に、上述した「異常である変換部」の特定処理を行うようにすればよい。
このように、蓄電部が所定の正常状態であることを条件として多相変換部の全ての電圧変換部の動作を停止させる構成とすれば、多相変換部の動作停止時に蓄電部の異常によって出力側導電路への電力供給が途絶えてしまう事態をより確実に防ぐことができる。
或いは、二次側電源部62(蓄電部)が上述した「所定の正常状態」であると判定された場合に限って、多相変換部4の通常動作が行われるようにしてもよい。このような構成では、多相変換部4の通常動作中に過電流又は過電圧が検出された場合に、多相変換部4における全ての電圧変換部4A,4Bの動作を停止させても、蓄電部から出力側導電路へと電力供給がなされる可能性が高くなる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) The specific examples of the primary side power supply unit 61 and the secondary side power supply unit 62 in the above-described embodiment are merely examples, and the type and generated voltage of the power storage means are not limited to the above-described examples, and may be changed variously. Can do.
(2) In the example of FIG. 1, the generator and the load connected to the input side conductive path and the output side conductive path are omitted, but various devices and electronic components are connected to the input side conductive path and the output side conductive path. Can be connected to the road.
(3) In the first embodiment, the configuration in which the switch elements 6A and 6B are provided on the low side is illustrated, but a configuration in which these elements are changed to diodes may be used.
(4) The control unit 2 shown in FIG. 1 determines whether the direction of the current flowing through the output-side conductive path 72 is the first direction from the multiphase conversion unit 4 side to the secondary power supply unit 62 side, or the secondary side The structure which can determine whether it is the 2nd direction which goes to the polyphase conversion part 4 side from the power supply part 62 side may be sufficient. When the control unit 2 detects that the direction of the current flowing through the output-side conductive path 72 is the above-described “second direction” (that is, when the current direction is determined to be in the backflow state), The protection switch elements 24A and 24B may both be switched to the off state. Alternatively, after detecting that the direction of the current flowing through the output-side conductive path 72 is the “second direction” described above, the control unit 2 temporarily stops the operations of all the voltage conversion units 4A and 4B. The configuration may be such that each conversion unit is individually operated to identify a conversion unit in which an abnormality has occurred. And when the converter which the abnormality has produced is specified, the structure which restarts operation | movement so that only the remaining converters except the converter may perform voltage conversion operation | movement may be sufficient.
(5) In the first embodiment, the DCDC converter 1 having the two-phase structure in which the two voltage conversion units 4A and 4B are connected in parallel is illustrated, but the three or more phase conversion units in which three or more voltage conversion units are connected in parallel are illustrated. It may be a structure. For example, a DC / DC converter 201 having a four-layer structure as shown in FIG. 3 may be used. 3 is different from the DCDC converter 1 of FIG. 1 in that the voltage converters 4C and 4D are provided in parallel in addition to the voltage converters 4A and 4B. Otherwise, the DCDC converter 201 of FIG. This is similar to the converter 1. Each of voltage converters 4C and 4D has the same configuration as each of voltage converters 4A and 4B.
(6) In the first embodiment, when an abnormality occurs during the operation of the polyphase conversion unit 4, the control unit 2 corresponding to the stop control unit stops the operation of all the voltage conversion units, and then the drive abnormality specifying unit The corresponding control unit 2 has identified an abnormal conversion unit from among a plurality of voltage conversion units constituting the polyphase conversion unit 4, but the control unit 2 corresponding to the drive abnormality identification unit is abnormal. The structure which identifies the group containing a conversion part may be sufficient. Below, an example is shown.
For example, in the DCDC converter 201 as shown in FIG. 3, when either the above-described overcurrent or overvoltage occurs in the output-side conductive path 72, that is, as described above, either Io> It or Vo> Vt When the state has occurred, the control unit 2 corresponding to the stop control unit temporarily stops the operation of all the voltage conversion units 4A, 4B, 4C, and 4D, and thereafter performs the abnormal range specifying process by the control unit 2. It will be. In this specific process, the control unit 2 first performs first control for causing the set of voltage conversion units 4A and 4B to perform a voltage conversion operation and stopping the voltage conversion operation of the set of voltage conversion units 4C and 4D. . During the first control, if an overcurrent or overvoltage occurs in the output-side conductive path 72, that is, if any state of Io> It or Vo> Vt occurs, the voltage converters 4A and 4B The set is identified as “a set including an abnormal conversion unit”. On the contrary, in the first control, when no overcurrent or overvoltage occurs in the output-side conductive path 72, the set of voltage conversion units 4A and 4B is specified as “a set of only normal conversion units”. The
Then, after the first control, a second control is performed in which the voltage conversion operation of the set of voltage conversion units 4A and 4B is stopped and the voltage conversion operation of the set of voltage conversion units 4C and 4D is performed. During the second control, if an overcurrent or overvoltage occurs in the output-side conductive path 72, that is, if any state of Io> It or Vo> Vt occurs, the voltage converters 4C and 4D The set is identified as “a set including an abnormal conversion unit”. Conversely, in the second control, when no overcurrent or overvoltage occurs in the output-side conductive path 72, the set of voltage conversion units 4C and 4D is specified as “a set of only normal conversion units”. The In this way, the control unit 2 specifies the “group including the abnormal conversion unit” in this way, and then causes the remaining conversion units excluding “the group including the abnormal conversion unit” to perform the voltage conversion operation. The voltage conversion operation of the polyphase converter 4 is resumed.
In this configuration, the control unit 2 corresponds to an example of a drive abnormality specifying unit, and after the operation of all the voltage conversion units is stopped by the stop control unit, a plurality of voltage conversion units 4A, 4A constituting the multiphase conversion unit 4 are provided. It functions to identify “a group including an abnormal conversion unit” from 4B, 4C, and 4D. The control unit 2 corresponds to an example of an operation control unit, and a plurality of voltage conversions constituting the polyphase conversion unit 4 are specified when the “set including an abnormal conversion unit” is specified by the drive abnormality specifying unit. Among the units 4A, 4B, 4C, and 4D, the remaining conversion units excluding the “set including the conversion unit that is abnormal” identified by the drive abnormality identification unit function to perform the voltage conversion operation.
(7) In the first embodiment, the “conversion unit in which the protection switch element is abnormal” is specified in the inspection process of FIG. 2, but “the set including the conversion unit in which the protection switch element is abnormal”. May be specified. Specifically, the inspection process can be performed as follows.
For example, when the inspection process of the DCDC converter 201 as shown in FIG. 3 is performed, first, the first inspection operation is performed. In the first inspection operation, the input-side protection switch elements (elements similar to the switch elements 20A and 20B shown in FIG. 1) are turned off in the voltage converters 4A and 4B for the first phase and the second phase. The voltage converters 4A and 4B perform the voltage conversion operation in a state in which the output switching switches (elements similar to the switch elements 24A and 24B shown in FIG. 1) are turned on. In this case, the voltage conversion operation of the voltage conversion units 4A and 4B is performed when all the protection switch elements (elements similar to the switch elements 20A, 20B, 24A, and 24B shown in FIG. 1) are all conductive. In addition, the duty ratio is such that a voltage V1 (for example, 14V) higher than the output voltage (for example, 12V) of the secondary power supply unit 62 is output to the output-side conductive path 72. Note that the operation of the voltage converters 4C and 4D for the third phase and the fourth phase are stopped, and all of these protective switch elements are also turned off. When the voltage of the output-side conductive path 72 becomes equal to or higher than the threshold voltage V2 during the voltage conversion operation in this way, the protective switch element on the input side of the voltage conversion units 4A and 4B is short-circuited. It is determined that Note that the threshold voltage V2 is larger than the output voltage (for example, 12V) from the secondary power supply unit 62, and the above-described voltage V1 (assuming that the protection switch elements of the voltage conversion units 4A and 4B are both conductive). In this case, the value is smaller than the voltage to be output to the output-side conductive path 72 in the above-described voltage conversion operation.
Next, a second inspection operation is performed. In the second inspection operation, both the input-side protection switch elements are turned on and the output-side protection switch elements are turned off in the voltage converters 4A and 4B for the first phase and the second phase. The voltage conversion operation of the voltage conversion units 4A and 4B is performed in the operated state. Note that the operation of the voltage converters 4C and 4D for the third phase and the fourth phase are stopped, and all of these protective switch elements are also turned off. The setting of the duty ratio in the second inspection operation is the same as that in the first inspection operation, and the threshold voltage is the same as that in the first inspection operation. When the voltage of the output side conductive path 72 becomes equal to or higher than the threshold voltage V2 during the voltage conversion operation in this way, the protective switch element on the output side of the voltage conversion units 4A and 4B is short-circuited. It is determined that
Next, a third inspection operation is performed. In the third inspection operation, the voltage of the voltage conversion units 4A and 4B is turned on in the state where all the input side and output side protection switch elements are turned on in the voltage conversion units 4A and 4B of the first phase and the second phase. Perform the conversion operation. Note that the operation of the voltage converters 4C and 4D for the third phase and the fourth phase are stopped, and all of these protective switch elements are also turned off. The setting of the duty ratio in the third inspection operation is the same as that in the first inspection operation, and the threshold voltage is the same as that in the first inspection operation. When the voltage of the output-side conductive path 72 becomes lower than the threshold voltage during the voltage conversion operation in this way, it is determined that one of the protection switch elements of the voltage conversion units 4A and 4B has an open failure. To do.
As a result of such determination, if either a short circuit failure or an open circuit failure is detected, the voltage converters 4A and 4B for the first phase and the second phase are indicated as “the protection switch element is abnormal. When it is determined that the set includes a conversion unit "and neither a short-circuit failure nor an open failure is detected, the first-phase and second-phase voltage conversion units 4A and 4B are referred to as" normal conversion unit sets ". Is determined. By such a method, it is specified whether the pair of voltage converters 4A and 4B in the first phase and the second phase is “a group including a converter having an abnormal protection switch element” or not. be able to. And if the 1st-3rd test | inspection operation | movement mentioned above is performed with respect to the voltage converters 4C and 4D of the 3rd phase and the 4th phase by the same method, the voltage converter 4C of the 3rd phase and the 4th phase. , 4D can be identified as “a group including a conversion unit in which the protection switch element is abnormal” or not. In this example, the control unit 2 corresponds to an example of a protection abnormality specifying unit and functions to specify “a set including a conversion unit in which the protection switch element is abnormal”.
The control unit 2 corresponds to an example of an operation control unit, and when the “protection switch element including the conversion unit in which the protection switch element is abnormal” is specified by the protection abnormality specifying unit, the polyphase conversion unit 4 is Among the plurality of voltage conversion units 4A, 4B, 4C, and 4D that constitute, a voltage is applied to the remaining conversion units excluding “a set including a conversion unit in which the protective switch element is abnormal” specified by the drive abnormality specifying unit. The polyphase converter 4 is operated so as to perform the conversion operation.
(8) In the first embodiment, the inspection process illustrated in FIG. 2 is performed every time the ignition signal is switched from the off signal to the on signal. However, the inspection process may be performed at a timing other than this. For example, the inspection process of FIG. 2 may be performed at a timing when an abnormality such as overcurrent, overvoltage, backflow, overheating, or the like occurs in the multiphase converter 4 during normal operation of the multiphase converter 4.
(9) In the first embodiment, when the ignition switch is switched from OFF to ON, all of the voltage conversion units 4A and 4B constituting the multiphase conversion unit 4 are to be detected, and the flow shown in FIG. Although the “conversion unit in which the protection switch element is abnormal” is detected, the conversion unit to be detected or the set of conversion units to be detected may be switched each time the ignition switch is switched from OFF to ON. . For example, at a certain time when the ignition switch is switched from OFF to ON, only one voltage conversion unit 4A is subjected to the inspection, and the processes of S2 to S11 in FIG. 2 are performed, and it is determined that there is an abnormality in S4, S7, and S10. In this case, the operation of the voltage conversion unit 4A is stopped and only the voltage conversion unit 4B is operated. When it is determined that the operation is normal in S11, both the voltage conversion units 4A and 4B are operated.
Next, when the ignition switch is switched from OFF to ON, only the voltage conversion unit 4B is set as the inspection target instead of the voltage conversion unit 4A that has been subjected to the previous inspection, and the processes of S2 to S11 in FIG. 2 are performed. To do. Then, when it is determined as abnormal in S4, S7, S10, the operation of the voltage converter 4B is stopped, and when it is determined that the voltage converter 4A is normal in the previous inspection, the voltage conversion is performed. The unit 4A is operated to perform voltage conversion. If it is determined in the previous inspection that the voltage conversion unit 4A is abnormal, the operation of the multiphase conversion unit 4 itself is stopped. On the other hand, if it is determined in S11 that the voltage conversion unit 4A is normal in the previous inspection, both voltage conversion units 4A and 4B are operated. When it is determined that the voltage conversion unit 4A is abnormal in the previous inspection, the operation of the voltage conversion unit 4A is continuously stopped and only the voltage conversion unit 4B is operated.
Then, at the time when the ignition switch is switched from OFF to ON, the voltage conversion unit 4B that has been inspected last time is not subject to inspection, and only the voltage conversion unit 4A is subject to inspection, and S2 to S11 in FIG. Do processing. In this way, each time the ignition switch is switched from OFF to ON, the conversion unit to be inspected is replaced to check whether or not the “conversion unit in which the protective switch element is abnormal”.
In this way, it is possible to reduce the check time associated with one ON operation of the ignition switch. In addition, since the plurality of voltage conversion units can be comprehensively checked by turning on the ignition switch a plurality of times, it is possible to prevent a situation in which any voltage conversion unit is not checked for a long period of time.
(10) In the configuration of the first embodiment, a power storage state detection unit that detects that the secondary power source unit 62 (power storage unit) is in a predetermined normal state may be provided. The storage state detection unit may be realized by the control unit 2 or may be separately provided with a battery sensor or the like.
For example, when the control unit 2 functions as a storage state detection unit, when the voltage of the output-side conductive path 72 when the multiphase conversion unit 4 is not operating is equal to or higher than a predetermined voltage, the secondary-side power supply unit 62 ( The power storage unit) may be determined to be in a predetermined normal state, and if not, the secondary power supply unit 62 (power storage unit) may be determined to be in an abnormal state. In such a configuration, when an overcurrent or an overvoltage is detected during the normal operation of the multiphase conversion unit 4, that is, when Io> It or Vo> Vt, the secondary power supply unit 62 (power storage unit) Only when it is determined that is in a predetermined normal state, the operation of all the voltage conversion units 4A and 4B in the polyphase conversion unit 4 is stopped, and then the above-described "abnormal conversion unit" A specific process may be performed.
As described above, if the power storage unit is configured to stop the operation of all the voltage conversion units of the multiphase conversion unit on condition that the power storage unit is in a predetermined normal state, an abnormality of the power storage unit may occur when the operation of the multiphase conversion unit is stopped. It is possible to more reliably prevent a situation where power supply to the output side conductive path is interrupted.
Alternatively, the normal operation of the polyphase converter 4 may be performed only when the secondary power supply unit 62 (power storage unit) is determined to be in the “predetermined normal state” described above. In such a configuration, when an overcurrent or an overvoltage is detected during the normal operation of the multiphase converter 4, even if the operation of all the voltage converters 4A and 4B in the multiphase converter 4 is stopped, There is a high possibility that power is supplied from the section to the output-side conductive path.

1,201…DCDCコンバータ
2…制御部(保護異常特定部、動作制御部、検出部、停止制御部、駆動異常特定部、蓄電状態検出部、通知部)
4…多相変換部
4A,4B,4C,4D…電圧変換部
5A,5B,6A,6B…駆動用のスイッチ素子
19A,19B…変換動作部
20A,20B…スイッチ素子(保護用のスイッチ素子)
24A,24B…スイッチ素子(保護用のスイッチ素子)
42A,42B,42C,42D…個別入力路(個別導電路)
52A,52B,52C,52D…個別出力路(個別導電路)
62…二次側電源部(蓄電部)
71…入力側導電路
72…出力側導電路
DESCRIPTION OF SYMBOLS 1,201 ... DCDC converter 2 ... Control part (Protection abnormality specific | specification part, operation control part, detection part, stop control part, drive abnormality specific part, electrical storage state detection part, notification part)
DESCRIPTION OF SYMBOLS 4 ... Polyphase conversion part 4A, 4B, 4C, 4D ... Voltage conversion part 5A, 5B, 6A, 6B ... Switch element for drive 19A, 19B ... Conversion operation part 20A, 20B ... Switch element (switch element for protection)
24A, 24B ... Switch elements (switch elements for protection)
42A, 42B, 42C, 42D ... Individual input path (individual conductive path)
52A, 52B, 52C, 52D ... Individual output path (individual conductive path)
62 ... Secondary power supply unit (power storage unit)
71 ... Input side conductive path 72 ... Output side conductive path

Claims (2)

入力側導電路と出力側導電路との間に配置される複数の電圧変換部を備え、各々の前記電圧変換部が、前記入力側導電路に接続される個別入力路と、駆動用のスイッチ素子のオンオフ動作により前記個別入力路に入力された電圧を変換する変換動作部と、前記変換動作部によって変換された電圧の出力経路となる個別出力路とを有し、且つ各々の前記電圧変換部において前記個別入力路又は前記個別出力路の少なくともいずれかの個別導電路に、当該個別導電路を通電状態と非通電状態とに切り替える保護用のスイッチ素子が設けられた構成をなす多相変換部と、
前記電圧変換部毎又は前記電圧変換部の組毎に、前記保護用のスイッチ素子をオフ動作させた状態で電圧変換動作を行わせる制御部と、
前記制御部が前記電圧変換部毎又は前記電圧変換部の組毎に前記保護用のスイッチ素子をオフ動作させた状態で行わせる電圧変換動作に基づいて、前記多相変換部を構成する複数の前記電圧変換部の中から前記保護用のスイッチ素子が異常である変換部又は前記保護用のスイッチ素子が異常である変換部を含む組を特定する異常特定部と、
を含むDCDCコンバータ。
A plurality of voltage converters disposed between the input-side conductive path and the output-side conductive path, wherein each of the voltage converters is connected to the input-side conductive path; and a drive switch A conversion operation unit that converts a voltage input to the individual input path by an on / off operation of an element; and an individual output path that is an output path of a voltage converted by the conversion operation unit, and each of the voltage conversions The multi-phase conversion has a configuration in which at least one of the individual input path or the individual output path is provided with a protective switch element for switching the individual conductive path between an energized state and a non-energized state. And
A control unit that performs a voltage conversion operation in a state in which the protection switch element is turned off for each voltage conversion unit or for each set of the voltage conversion unit,
The control unit configures the polyphase conversion unit based on a voltage conversion operation that is performed in a state where the protection switch element is turned off for each voltage conversion unit or for each set of the voltage conversion units. An abnormality identifying unit that identifies a conversion unit including the conversion unit in which the protection switch element is abnormal from the voltage conversion unit or a set including the conversion unit in which the protection switch element is abnormal, and
DCDC converter including
前記多相変換部は、各々の前記電圧変換部において前記個別入力路及び前記個別出力路のそれぞれに前記保護用のスイッチ素子が設けられている請求項1に記載のDCDCコンバータ。  2. The DCDC converter according to claim 1, wherein the polyphase converter is provided with the protection switch element in each of the individual input path and the individual output path in each of the voltage converters.
JP2018008562A 2018-01-23 2018-01-23 DCDC converter Active JP6497565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018008562A JP6497565B2 (en) 2018-01-23 2018-01-23 DCDC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008562A JP6497565B2 (en) 2018-01-23 2018-01-23 DCDC converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015202646A Division JP6281553B2 (en) 2015-10-14 2015-10-14 DCDC converter

Publications (2)

Publication Number Publication Date
JP2018061438A JP2018061438A (en) 2018-04-12
JP6497565B2 true JP6497565B2 (en) 2019-04-10

Family

ID=61907847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008562A Active JP6497565B2 (en) 2018-01-23 2018-01-23 DCDC converter

Country Status (1)

Country Link
JP (1) JP6497565B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010124B2 (en) * 2018-04-17 2022-01-26 株式会社デンソー Multi-phase switching power supply
WO2020246415A1 (en) * 2019-06-07 2020-12-10 パナソニックIpマネジメント株式会社 In-vehicle power supply system
WO2023228522A1 (en) * 2022-05-27 2023-11-30 パナソニックIpマネジメント株式会社 Power supply, and diagnostic method for power supply

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582358B2 (en) * 1998-05-18 2004-10-27 トヨタ自動車株式会社 DC / DC converter abnormality detection device, abnormality detection method, and vehicle drive system having the abnormality detection function
JP2001078441A (en) * 1999-09-07 2001-03-23 Tdk Corp Switching power supply device
JP2011087444A (en) * 2009-10-19 2011-04-28 Toyota Motor Corp Power device
JP6232935B2 (en) * 2013-10-31 2017-11-22 株式会社オートネットワーク技術研究所 Power supply apparatus and abnormality determination method for power supply apparatus

Also Published As

Publication number Publication date
JP2018061438A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6281553B2 (en) DCDC converter
JP6414533B2 (en) Multiphase converter
US10601301B2 (en) Abnormality detection device and vehicle-mounted power supply device
JP6341334B2 (en) DCDC converter
JP6358304B2 (en) Vehicle power supply
CN108432111B (en) DCDC converter
JP2013110960A (en) Converter operating method, switching cell and converter
US10148184B2 (en) Multiphase converter
CN108141132B (en) Multi-phase converter
JP6497565B2 (en) DCDC converter
JP5228886B2 (en) Snubber circuit
US20200336077A1 (en) Power conversion system
JP2010252536A (en) Inverter device and fault diagnosis method for the same
JP4617977B2 (en) Voltage converter
JP6677905B2 (en) Abnormality detection device and power supply device
WO2018225235A1 (en) Control device for dc-dc converter
JP2018129951A (en) Abnormality detector of on-vehicle power supply device, and on-vehicle power supply device
JP2007151358A (en) Dc voltage step-down circuit and electric power conversion system
JP2021057948A (en) Power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190227

R150 Certificate of patent or registration of utility model

Ref document number: 6497565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150