[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6491289B2 - Method for producing metal product - Google Patents

Method for producing metal product Download PDF

Info

Publication number
JP6491289B2
JP6491289B2 JP2017171140A JP2017171140A JP6491289B2 JP 6491289 B2 JP6491289 B2 JP 6491289B2 JP 2017171140 A JP2017171140 A JP 2017171140A JP 2017171140 A JP2017171140 A JP 2017171140A JP 6491289 B2 JP6491289 B2 JP 6491289B2
Authority
JP
Japan
Prior art keywords
metal material
metal
layer
thickness
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017171140A
Other languages
Japanese (ja)
Other versions
JP2019044248A (en
Inventor
寿尚 今増
寿尚 今増
明 城所
明 城所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2017171140A priority Critical patent/JP6491289B2/en
Priority to CN201810910397.6A priority patent/CN109454233B/en
Publication of JP2019044248A publication Critical patent/JP2019044248A/en
Application granted granted Critical
Publication of JP6491289B2 publication Critical patent/JP6491289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Powder Metallurgy (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、金属作製物の製造方法に関し、特に、高周波電流を通電するための金属作製物の製造方法に関する。   The present invention relates to a method for manufacturing a metal product, and more particularly, to a method for manufacturing a metal product for applying a high-frequency current.

従来より、高周波の大電流を通電する金属作製物は、優れた導電性を有する素材を加工することにより作製されている。このような金属作製物は、3Dプリンタ等を用いた金属の付加製造技術(Additive Manufacturing Technology)を利用して作製されることが期待されている。   2. Description of the Related Art Conventionally, a metal product that conducts a high-frequency high current is manufactured by processing a material having excellent conductivity. Such a metal product is expected to be produced using additive manufacturing technology of metal using a 3D printer or the like.

このような金属作製物の製造方法としては、クロム(Cr)及び珪素(Si)の少なくともいずれかを0.10質量%以上1.00質量%以下含有し、クロム及び珪素の合計量が1.00質量%以下であり、残部が銅からなる銅合金粉末を用いた積層造形物の製造方法が知られている(例えば、特許文献1)。   As a method for producing such a metal product, at least one of chromium (Cr) and silicon (Si) is contained in an amount of 0.10% by mass to 1.00% by mass, and the total amount of chromium and silicon is 1. There is known a manufacturing method of a layered object using a copper alloy powder which is equal to or less than 00% by mass and the balance is made of copper (for example, Patent Document 1).

特許第6030186号公報Japanese Patent No. 6030186

しかしながら、前記した例では、銅合金等からなる金属作製物は、純銅等の金属素材と比較すると、高周波電流を通電する金属作製物として、その導電性が不十分である。また、純銅等の金属素材を素材として用いる場合、高密度化が困難であり、実用化に課題を残している。   However, in the above-described example, a metal product made of a copper alloy or the like is insufficient in electrical conductivity as a metal product that conducts a high-frequency current as compared with a metal material such as pure copper. Moreover, when using metal materials, such as pure copper, as a raw material, density increase is difficult and the subject remains in practical use.

本発明は、前記事情に照らして、純銅等の金属素材よりも導電性に劣る金属素材を用いても、純銅等の金属素材と同程度の高周波導電性を付与できる金属作製物の製造方法を提供することを目的とする。   In light of the above circumstances, the present invention provides a method for producing a metal product that can provide high-frequency conductivity equivalent to that of a metal material such as pure copper, even if a metal material that is less conductive than a metal material such as pure copper is used. The purpose is to provide.

本発明は、前記目的を達成するために、高周波電流を通電するための金属作製品の製造方法であって、第1金属素材の造形物を積層造形する積層造形工程と、前記造形物にメッキ処理を施すことにより第2金属素材の層を形成するメッキ工程とを少なくとも含み、前記第2金属素材の高周波電流に対する導電率が前記第1金属素材よりも高く、前記造形物が、前記第2金属素材の層の厚さによって前記金属作製品の寸法をなすように形成することを特徴としている。   In order to achieve the above object, the present invention is a method for manufacturing a metal product for energizing a high-frequency current, and includes a layered manufacturing process for layered modeling of a modeled product of a first metal material, and plating the modeled product At least a plating step of forming a layer of a second metal material by performing a treatment, wherein the second metal material has a higher conductivity with respect to a high-frequency current than the first metal material, and the modeled object is the second metal material. It is characterized in that the metal product is formed so as to have a dimension according to the thickness of the metal material layer.

また、前記第2金属素材の層の厚さ(d)は、下記式1)

Figure 0006491289
[式中、dは厚さ(mm)であり、fは高周波電流の周波数(MHz)であり、μは第2金属素材の透磁率(H/m)であり、σは第2金属素材の導電率(S/m)である。]を満たすことが好適である。 The thickness (d) of the second metal material layer is expressed by the following formula 1).
Figure 0006491289
[Where d is the thickness (mm), f is the frequency (MHz) of the high frequency current, μ is the permeability (H / m) of the second metal material, and σ is the second metal material. Conductivity (S / m). ] Is preferable.

また、本発明に係る金属作製物の製造方法は、前記メッキ工程前に、前記造形物の外表面を前記第2金属素材の層の厚さ分だけ切削する切削工程を更に含む形態とすることができる。   Moreover, the manufacturing method of the metal product which concerns on this invention shall be the form which further includes the cutting process which cuts the outer surface of the said molded object only the thickness of the layer of the said 2nd metal raw material before the said plating process. Can do.

また、前記メッキ工程では、前記造形物に、50〜80g/Lの硫酸銅と160〜250g/Lの硫酸を含有する硫酸銅浴中にて、浴温を20〜27℃とし、陰極電流密度を1〜3A/dmとした条件下で厚メッキを施すことにより、前記第2金属素材の層を形成することが好適である。 Moreover, in the said plating process, the bath temperature shall be 20-27 degreeC in the copper sulfate bath which contains 50-80 g / L copper sulfate and 160-250 g / L sulfuric acid in the said molded article, and cathode current density It is preferable to form the second metal material layer by performing thick plating under the condition of 1 to 3 A / dm 2 .

また、前記積層造形工程は、前記第1金属素材の粉末を含有する粉末層を形成する粉末層形成工程と、前記粉末層の所定の位置にレーザを照射して前記粉末を固化させることにより、造形層を形成する造形層形成工程とを含み、前記粉末層形成工程と前記造形層形成工程とを順次繰り返すことにより、前記第1金属素材の造形物を積層造形することが好ましい。   The additive manufacturing process includes a powder layer forming process for forming a powder layer containing the powder of the first metal material, and solidifying the powder by irradiating a laser at a predetermined position of the powder layer. It is preferable that the modeling object of a 1st metal raw material is laminate-modeled by repeating the said powder layer formation process and the said modeling layer formation process sequentially including the modeling layer formation process which forms a modeling layer.

また、前記高周波電流は、10kHz以上100kHz未満の周波数であり、前記第1金属素材は、銅、アルミニウム、チタン、鉄、炭素、珪素、燐、硫黄、クロム、ニッケル、モリブデン、タングステン、バナジウム、マンガン、ジルコニウム、錫、タンタル、ニオブ及びコバルトからなる群より選択される2種以上の金属元素からなる非磁性の合金であり、前記第2金属素材が、純銅であり、前記第2金属素材の層の厚さが、0.66mm以上であることが好適である。   The high-frequency current has a frequency of 10 kHz or more and less than 100 kHz, and the first metal material is copper, aluminum, titanium, iron, carbon, silicon, phosphorus, sulfur, chromium, nickel, molybdenum, tungsten, vanadium, manganese , Zirconium, tin, tantalum, niobium, and cobalt, a nonmagnetic alloy composed of two or more metal elements, wherein the second metal material is pure copper, and the second metal material layer The thickness is preferably 0.66 mm or more.

また、前記高周波電流は、100kHz以上の周波数であり、前記第1金属素材が、クロムを0.1質量%以上5質量%以下含有するクロム銅合金であり、前記第2金属素材が、純銅であり、前記第2金属素材の層の厚さが、0.2mm以上であることが好適である。   The high-frequency current is a frequency of 100 kHz or more, the first metal material is a chromium copper alloy containing 0.1 to 5% by mass of chromium, and the second metal material is pure copper. And the thickness of the second metal material layer is preferably 0.2 mm or more.

本発明によれば、純銅等の金属素材よりも導電性に劣る金属素材を用いても、純銅等の金属素材と同程度の高周波導電性を付与できる金属作製物の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses the metal raw material which is inferior to metal materials, such as pure copper, the manufacturing method of the metal preparation which can provide high frequency electroconductivity comparable as metal materials, such as pure copper, is provided.

図1は、本発明に係る金属作製物の製造方法の第一実施の形態にて製造した好適な金属作製物を示す概念図である。FIG. 1 is a conceptual diagram showing a preferred metal product manufactured in the first embodiment of the method for manufacturing a metal product according to the present invention. 図2は、本発明に金属作製物の製造方法の第一実施の形態を説明するために図1の断面を示す概念図である。FIG. 2 is a conceptual diagram showing a cross-section of FIG. 1 for explaining the first embodiment of the method for producing a metal product according to the present invention. 図3(A)及び図3(B)は、それぞれ、本発明に金属作製物の製造方法の一工程を説明するための模式図である。FIG. 3A and FIG. 3B are schematic views for explaining one step of the method for producing a metal product according to the present invention. 図4は、本発明に金属作製物の製造方法の第二実施の形態を説明するために金属作製物の断面を示す概念図である。FIG. 4 is a conceptual diagram showing a cross section of a metal product for explaining the second embodiment of the method of manufacturing the metal product according to the present invention.

以下、本発明に係る金属作製物の製造方法の実施の形態について、図を参照して詳細に説明する。なお、本発明は、以下に説明する実施の形態によって限定されない。   Hereinafter, an embodiment of a method for producing a metal product according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by embodiment described below.

1.第一実施の形態
1.1.金属作製物
先ず、図1に、本発明に係る金属作製物の製造方法により製造される金属作製物1を模式的に示す。図1に示すように、金属製作物1は、略リング形状を有し、その断面形状にて、第1金属素材からなる造形物3と、第2金属素材の層5とを備える。また、金属作製物1は、その使用中の発熱を除去するために、水等の冷媒を流通させるための中空部7を有する。金属作製物の大きさ及び形状は、高周波誘導加熱、高周波アンテナ等の高周波を利用した用途に用いることができる大きさ及び形状であればよい。金属作製物は、高周波誘導加熱用のコイルに好適に用いることができる。
1. First embodiment 1.1. Metal Product First, FIG. 1 schematically shows a metal product 1 manufactured by the method for manufacturing a metal product according to the present invention. As shown in FIG. 1, the metal product 1 has a substantially ring shape, and includes a shaped product 3 made of a first metal material and a layer 5 of a second metal material in its cross-sectional shape. In addition, the metal product 1 has a hollow portion 7 for circulating a coolant such as water in order to remove heat generated during use. The size and shape of the metal product may be any size and shape that can be used for high-frequency induction heating, high-frequency antennas, and other uses. The metal product can be suitably used for a coil for high-frequency induction heating.

第1金属素材は、付加製造技術により積層造形可能であり、非磁性及び導電性を有し、第2金属素材よりも高周波に対する導電率が低い金属である。第1金属素材は、例えば、銅(Cu)、アルミニウム(Al)、チタン(Ti)、鉄(Fe)、炭素(C)、珪素(Si)、燐(P)、硫黄(S)、クロム(Cr)、ニッケル(Ni)、モリブデン(Mо)、タングステン(W)、バナジウム(V)、マンガン(Mn)、ジルコニウム(Zr)、錫(Sn)、タンタル(Ta)、ニオブ(Nb)及びコバルト(Co)からなる群より選択される2種以上の金属元素からなる非磁性の合金である。   The first metal material is a metal that can be layered by an additive manufacturing technique, has non-magnetic properties and conductivity, and has a lower electrical conductivity for high frequencies than the second metal material. Examples of the first metal material include copper (Cu), aluminum (Al), titanium (Ti), iron (Fe), carbon (C), silicon (Si), phosphorus (P), sulfur (S), chromium ( Cr), nickel (Ni), molybdenum (Mо), tungsten (W), vanadium (V), manganese (Mn), zirconium (Zr), tin (Sn), tantalum (Ta), niobium (Nb) and cobalt ( It is a nonmagnetic alloy composed of two or more metal elements selected from the group consisting of Co).

具体的には、第1金属素材として、黄銅、燐青銅、クロム銅合金等の銅系合金、AlSi12(Al112)、AlSi10Mg等のアルミニウム系合金、Ti6Al4V(ASTM B348 Gr5)等のチタン系合金、インコネル618(登録商標)、インコネル625(登録商標)、インコネル718(登録商標)等のニッケル系合金、SUS304(X10CrNi18−9)、SUS316L(X2CrNiMо17−12−2、17−12−3、18−13−4、SUS630(X5CrNiCuNb16−4)、マルエージング鋼等の鉄系合金が挙げられる。クロム銅合金は、クロムを0.1質量%以上5質量%以下含有し、残部は主に銅からなる。これらのうち、実用的な観点より、第1金属素材は、クロム銅合金が好ましい。   Specifically, as the first metal material, copper-based alloys such as brass, phosphor bronze, and chromium-copper alloys, aluminum-based alloys such as AlSi12 (Al112) and AlSi10Mg, titanium-based alloys such as Ti6Al4V (ASTM B348 Gr5), Inconel Nickel alloys such as 618 (registered trademark), Inconel 625 (registered trademark), Inconel 718 (registered trademark), SUS304 (X10CrNi18-9), SUS316L (X2CrNiM 17-17-2, 17-12-3, 18-13) 4, ferrous alloys such as SUS630 (X5CrNiCuNb16-4), maraging steel, etc. The chromium-copper alloy contains 0.1 mass% to 5 mass% of chromium, and the balance is mainly made of copper. Among these, from a practical viewpoint, the first metal material is preferably a chromium copper alloy.

第2金属素材は、非磁性及び導電性を有し、第1金属素材よりも高周波に対して良好な導電率を有する金属であればよい。このような第2金属素材としては、例えば、純銅等の金属が挙げられる。これらのうち、第2金属素材は、実用的な観点より、純銅が好ましく、その純度が99.95%以上の純銅がより好ましく、99.99%以上の純銅が更に好ましい。   The second metal material may be any metal that has non-magnetic properties and conductivity and has a better conductivity with respect to high frequency than the first metal material. Examples of such second metal material include metals such as pure copper. Among these, from the practical viewpoint, the second metal material is preferably pure copper, more preferably 99.95% or more pure copper, and even more preferably 99.99% or more pure copper.

第1金属素材及び第2金属素材は、不可避的な不純物を含有することがある。このような不純物としては、前述の元素、酸素(O)等が挙げられる。第1金属素材及び/又は第2金属素材には、本明細書に記載の金属作製物の製造前、製造過程又は製造後に、不可避的な不純物が混入することが一般的であり、前記素材の残部の一部をなしている。   The first metal material and the second metal material may contain inevitable impurities. Examples of such impurities include the aforementioned elements, oxygen (O), and the like. In general, inevitable impurities are mixed in the first metal material and / or the second metal material before, during or after the production of the metal product described in the present specification. It is part of the rest.

1.2.積層造形工程及びメッキ工程
次いで、上記構成を有する金属作製物1の製造方法について、図2を参照して説明する。図2に示すように、本実施の形態に係る金属作製物の製造方法では、積層造形工程により造形物3を積層造形し、その後、メッキ工程により第2金属素材の層5を形成して、金属作製物1を製造する。
1.2. Laminated modeling process and plating process Next, the manufacturing method of the metal preparation 1 which has the said structure is demonstrated with reference to FIG. As shown in FIG. 2, in the manufacturing method of the metal product according to the present embodiment, the model 3 is layered by the layered modeling process, and then the second metal material layer 5 is formed by the plating process. A metal product 1 is produced.

先ず、付加製造技術を用いて、第1金属素材からなる造形物3を造形する。図2に示す例では、その断面形状において、造形物3の4つの外表面が、それぞれ、第2金属層の厚さ(d)分だけ小さくなるように形成されている。また、図中の造形物3は、高周波誘導加熱用のコイルとして、中空部7を有している。図中の造形物3の4つの外表面は、3次元形状の造形物3の外表面に相当する。すなわち、本工程では、所定の3次元形状を有する造形物3の外表面を、第2金属素材の層の厚さ(d)分だけ薄くなるように積層造形する。言い換えれば、本工程では、3次元形状の造形物3の寸法を、メッキ工程後の金属作製品の寸法(D)が所望の寸法となるように、第2金属素材の層の厚さ(d)分だけ予め小さくする。   First, the modeling object 3 which consists of a 1st metal raw material is modeled using an additional manufacturing technique. In the example shown in FIG. 2, in the cross-sectional shape, the four outer surfaces of the shaped article 3 are formed so as to be smaller by the thickness (d) of the second metal layer. Moreover, the molded article 3 in the figure has a hollow portion 7 as a coil for high-frequency induction heating. The four outer surfaces of the modeled object 3 in the figure correspond to the outer surfaces of the modeled object 3 having a three-dimensional shape. That is, in this step, the layered modeling is performed so that the outer surface of the modeled article 3 having a predetermined three-dimensional shape is thinned by the thickness (d) of the second metal material layer. In other words, in this process, the dimension of the three-dimensional shaped object 3 is set to the thickness (d) of the second metal material layer so that the dimension (D) of the metal product after the plating process becomes a desired dimension. ) Make it smaller in advance.

次いで、造形物3にメッキ処理を施すことにより、造形物3の外表面に略均一の厚さ(d)を有する第2金属素材の層(メッキ層)5を形成する。これにより、金属作製物1を作製する。図2に示す例では、その断面形状において、造形物3の4つの外表面に、それぞれ、厚さ(d)を有する第2金属素材の層5が形成されている。また、造形物3の寸法と第2金属素材の層の厚さ(d)によって、所望の寸法(D)をなす金属作製物1が作製されている。図中の第2金属素材の層5の4つの外表面は、3次元形状の金属作製物1の外表面に相当する。すなわち、本工程では、第2金属素材の層5が3次元形状の造形物3の外表面に亘って形成されるように、メッキ処理を施す。言い換えれば、本工程では、第2金属素材の層5は、3次元形状の造形物3を覆うように形成されている。なお、第2金属素材の層5は、造形物3の高周波電流が導通する部分のみ形成されていればよい。例えば、高周波誘導加熱に用いられる場合、図2中では、第2金属素材の層5は、造形物3の4つの外表面の少なくとも1面に形成されていればよく、図1中では、第2金属素材の層5は、少なくとも造形物3の径方向内方の表面に形成されていればよい。これにより、最小限のメッキ処理により、金属作製物1を効率よく製造することができる。   Next, a second metal material layer (plating layer) 5 having a substantially uniform thickness (d) is formed on the outer surface of the modeled object 3 by plating the modeled object 3. Thereby, the metal product 1 is produced. In the example shown in FIG. 2, in the cross-sectional shape, a second metal material layer 5 having a thickness (d) is formed on each of the four outer surfaces of the shaped article 3. Moreover, the metal preparation 1 which makes a desired dimension (D) is produced by the dimension of the molded article 3 and the thickness (d) of the layer of the second metal material. The four outer surfaces of the second metal material layer 5 in the figure correspond to the outer surfaces of the three-dimensionally shaped metal product 1. That is, in this step, the plating process is performed so that the second metal material layer 5 is formed over the outer surface of the three-dimensional shaped object 3. In other words, in this step, the layer 5 of the second metal material is formed so as to cover the three-dimensional shaped object 3. In addition, the layer 5 of the 2nd metal raw material should just be formed only in the part which the high frequency current of the molded article 3 conduct | electrically_connects. For example, when used for high-frequency induction heating, in FIG. 2, the layer 5 of the second metal material only needs to be formed on at least one of the four outer surfaces of the shaped article 3, and in FIG. The layer 5 of two metal materials should just be formed in the surface of the radial inside of the molded article 3 at least. Thereby, the metal product 1 can be efficiently manufactured by a minimum plating process.

メッキ工程には、電気メッキ、化学メッキ等のメッキ処理を採用することができる。これらのうち、実用的な観点より、電気メッキが好ましい。例えば、第2金属素材層として銅の層を形成するための銅メッキでは、硫酸銅浴、ホウフッ化銅浴、ピロリン酸銅浴、シアン化銅浴等のメッキ浴中に造形物を浸漬し、所定の条件下で通電を行う。これにより、造形物の表面上に銅が析出されて、第2金属素材の層を形成することができる。また、メッキ層の均一性を向上するために、メッキ処理中に、機械的撹拌、空気撹拌、振動、ジェット流等による撹拌を行うことができる。   A plating process such as electroplating or chemical plating can be employed for the plating process. Of these, electroplating is preferable from a practical viewpoint. For example, in copper plating for forming a copper layer as the second metal material layer, the shaped object is immersed in a plating bath such as a copper sulfate bath, a copper borofluoride bath, a copper pyrophosphate bath, a copper cyanide bath, Energize under specified conditions. Thereby, copper is deposited on the surface of the modeled object, and a layer of the second metal material can be formed. Further, in order to improve the uniformity of the plating layer, stirring by mechanical stirring, air stirring, vibration, jet flow or the like can be performed during the plating process.

メッキ処理の条件は、第1金属素材からなる造形物の表面上に第2金属素材の層を形成することができる条件であればよい。また、銅メッキを行うための条件も、第2金属素材層として銅の層を形成できる条件であればよい。例えば、銅メッキは、硫酸銅50〜80g/L、硫酸160〜250g/Lを含有する硫酸銅浴中に造形物を浸漬し、陰極電流密度を1〜3A/dmとし、浴温を20〜27℃とした条件下で実施することができる。 The conditions for the plating treatment may be any conditions as long as the second metal material layer can be formed on the surface of the modeled object made of the first metal material. Moreover, the conditions for performing copper plating should just be the conditions which can form a copper layer as a 2nd metal raw material layer. For example, in copper plating, a shaped article is immersed in a copper sulfate bath containing 50 to 80 g / L of copper sulfate and 160 to 250 g / L of sulfuric acid, the cathode current density is 1 to 3 A / dm 2 , and the bath temperature is 20 It can be carried out under a condition of ˜27 ° C.

以上のようにして得られた金属作製物1は、第1金属素材からなる造形物の導電性と比較して、優れた導電性を有することとなる。例えば、本明細書に記載の第1金属素材からなる造形物の導電性が30%LACS程度である場合、メッキ工程後を得た金属作製物の導電性は、100%LACSまで向上することができる。なお、本明細書に記載の導電性は、例えば、焼鈍標準軟銅(IACS:International Annealed Copper Standard)の導電率を100%IACSとして定義される単位を基準として計測できる。   The metal product 1 obtained as described above has excellent conductivity as compared with the conductivity of the shaped object made of the first metal material. For example, when the conductivity of a shaped object made of the first metal material described in this specification is about 30% LACS, the conductivity of the metal product obtained after the plating process can be improved to 100% LACS. it can. In addition, the electroconductivity described in the present specification can be measured, for example, based on a unit defined as 100% IACS for the conductivity of annealed standard annealed copper (IACS: International Annealed Copper Standard).

このような効果は、金属作製物1の表皮効果に起因することが推測できる。表皮効果を考慮すれば、高周波に対する良好な導電性を得るための第2金属素材の層の厚み(d)は、例えば下記式1)に示す表により定めることができる。   It can be estimated that such an effect is due to the skin effect of the metal product 1. In consideration of the skin effect, the thickness (d) of the layer of the second metal material for obtaining good conductivity with respect to the high frequency can be determined by a table shown in the following formula 1), for example.

Figure 0006491289
[式中、dは第2金属素材の層の厚み(mm)であり、fは周波数(MHz)であり、μは第2金属素材の透磁率(H/m)であり、σは、第2金属素材の導電率(S/m)である。]
Figure 0006491289
[Where d is the thickness (mm) of the layer of the second metal material, f is the frequency (MHz), μ is the permeability (H / m) of the second metal material, and σ is the first It is the electrical conductivity (S / m) of two metal materials. ]

式1)を考慮すると、第2金属素材の層の厚みの下限値について、例えば、第2金属素材を純銅とし、銅の導電率(σ)を5.82×107S/mとし、4π×10-7H/mと仮定した場合、1kHz以上の電流の通電するための層の厚みは2mm以上であり、10kHz以上の電流を通電するための層の厚みは、0.66mm以上であり、100kHz以上の電流を通電するための層の厚みは、0.209mm以上であり、400kHz以上の電流を通電するための層の厚みは、0.104mm以上である。言い換えれば、層の厚みが2mm以上であれば10kHz未満の電流を通電でき、層の厚みが0.66mm以上であれば100kHz未満の電流を通電でき、層の厚みが0.209mm以上であれば400kHz未満の電流を通電できる。なお、本明細書にて、「高周波電流」とは、1kHz以上の周波数の電流を意図している。高周波電流の周波数は、実用的な観点より、10kHz以上400kHz以下が好ましく、100kHz以上400kHz以下がより好ましい。 Considering equation (1), regarding the lower limit value of the thickness of the second metal material layer, for example, the second metal material is pure copper, and the copper conductivity (σ) is 5.82 × 10 7 S / m. Assuming × 10 −7 H / m, the thickness of the layer for supplying a current of 1 kHz or more is 2 mm or more, and the thickness of the layer for supplying a current of 10 kHz or more is 0.66 mm or more. The thickness of the layer for supplying a current of 100 kHz or more is 0.209 mm or more, and the thickness of the layer for supplying a current of 400 kHz or more is 0.104 mm or more. In other words, if the thickness of the layer is 2 mm or more, a current of less than 10 kHz can be passed, and if the thickness of the layer is 0.66 mm or more, a current of less than 100 kHz can be passed, and if the thickness of the layer is 0.209 mm or more. A current of less than 400 kHz can be applied. In this specification, “high-frequency current” intends a current having a frequency of 1 kHz or more. The frequency of the high-frequency current is preferably 10 kHz or more and 400 kHz or less, and more preferably 100 kHz or more and 400 kHz or less from a practical viewpoint.

また、第2金属素材の層の厚み(d)の上限値について、第2金属素材の層の厚みは、1mm以下が好ましく、0.2mm以下がより好ましい。第2金属素材の層の厚み(d)が1mmを超えると、メッキの性質性保持が困難となる虞がある。   In addition, regarding the upper limit of the thickness (d) of the second metal material layer, the thickness of the second metal material layer is preferably 1 mm or less, and more preferably 0.2 mm or less. If the thickness (d) of the second metal material layer exceeds 1 mm, it may be difficult to maintain the properties of plating.

続いて、図3(A)及び図3(B)を参照して、積層造形工程についてより詳細に説明する。積層造形工程では、付加製造技術を用いて、所望の3次元形状の造形物から算出された造形条件に基づき、粉末状の金属素材から3次元形状の造形物3を積層造形する。造形条件は、3D−CAD/CAM等のアプリケーションを利用して作成することができる。所望の3次元形状データを、STL形式のデータに変換し、さらにn個(nは整数)に分割したスライスデータに変換する。スライスデータに基づいて、n個の造形層をそれぞれ形成することにより、3次元形状の造形物3が積層造形される。付加製造技術には、粉末状の金属素材から所望の3次元形状の造形物を積層造形できる装置を採用することができ、例えば、レーザ焼結法(SLS)、直接金属レーザ焼結法(DMLS)、レーザ溶融法(SLM)、電子ビーム溶解法(EBM)等を利用した3Dプリンタを採用できる。   Next, the layered manufacturing process will be described in more detail with reference to FIGS. 3 (A) and 3 (B). In the additive manufacturing process, additive manufacturing technology is used to additively manufacture the three-dimensional shaped object 3 from a powder metal material based on the modeling conditions calculated from the desired three-dimensional shaped object. The modeling conditions can be created using an application such as 3D-CAD / CAM. The desired three-dimensional shape data is converted into STL format data, and further converted into slice data divided into n pieces (n is an integer). By forming n modeling layers based on the slice data, the three-dimensional model 3 is layered. For the additive manufacturing technology, an apparatus capable of layering a desired three-dimensional shaped object from a powdered metal material can be employed. For example, laser sintering (SLS), direct metal laser sintering (DMLS) ), A laser melting method (SLM), an electron beam melting method (EBM), or the like can be used.

図3(A)に示すように、粉末状の金属を配置するように構成され、昇降可能な昇降部122を備えた造形台120上に第1金属素材の粉末を敷き詰める。これにより、第1金属素材の粉末からなる第1金属粉末層L1を形成する。次いで、第1金属粉末層L1の所定の位置にレーザ照射部130からレーザを照射する。レーザの出力、走査速度、エネルギ密度等は、造形条件に基づいて、任意選択的に備えた図示しないレンズ、ミラー等の光学系と共に制御される。制御されたレーザを第1金属粉末層L1に照射することにより、第1金属粉末層L1を焼結又は溶融させて固化させる。固化した粉末層は、第1造形層M1を形成する。   As shown in FIG. 3A, the powder of the first metal material is spread on a modeling table 120 that is configured to dispose powdered metal and includes an elevating unit 122 that can be moved up and down. Thereby, the first metal powder layer L1 made of the powder of the first metal material is formed. Next, the laser irradiation unit 130 irradiates a predetermined position on the first metal powder layer L1. Laser output, scanning speed, energy density, and the like are controlled together with an optical system such as a lens and a mirror (not shown) that are optionally provided based on modeling conditions. By irradiating the controlled laser to the first metal powder layer L1, the first metal powder layer L1 is sintered or melted and solidified. The solidified powder layer forms the first modeling layer M1.

レーザは、第1金属素材からなる粉末層を固化できるレーザであればよく、例えば、CO2レーザ等のガスレーザ、イッテルビウム(Yb)レーザ、YAGレーザ等の固体レーザ、半導体レーザ、電子ビーム等である。レーザの出力、走査速度、エネルギ密度は、第1造形層を固化できる範囲であればよい。例えば、レーザの出力は、約100〜約1000Wであり、そのエネルギ密度は、約100〜約1000J/mm3であり、その走査速度は、約100〜約1000mm/sとすることができる。 The laser may be any laser that can solidify the powder layer made of the first metal material, such as a gas laser such as a CO 2 laser, a solid-state laser such as an ytterbium (Yb) laser, a YAG laser, a semiconductor laser, an electron beam, or the like. . The output of the laser, the scanning speed, and the energy density may be in a range where the first modeling layer can be solidified. For example, the power of the laser is about 100 to about 1000 W, its energy density is about 100 to about 1000 J / mm 3 , and its scanning speed can be about 100 to about 1000 mm / s.

次いで、図3(B)に示すように、第1造形層M1を形成した後、第2造形層を形成するために、昇降部122の降下と共に造形台120が降下する。降下した造形台120に、第1造形層M1上に粉末状の第1金属素材を敷き詰める。これにより、第1造形層M1上に、第2金属粉末層L2を形成する。第2金属粉末層L2の所定の位置にレーザ照射部130からレーザを照射することにより、第2造形層M2を形成する。このように、粉末層を形成する粉末層形成工程と造形層を形成する造形層形成工程とを順次n回繰り返すことにより、n個の造形層からなる3次元形状の造形物3を積層造形することができる。なお、第n番目の金属粉末層を形成するために、第1金属素材の粉末は、図示しないローラ等を用いて敷き拡げることができる。また、n個の造形層の各層の厚みは、造形条件に基づいて造形物を積層造形できる厚みであればよく、例えば約10〜約200μmである。   Next, as shown in FIG. 3B, after forming the first modeling layer M <b> 1, the modeling table 120 is lowered together with the lowering of the elevating part 122 to form the second modeling layer. The powdered first metal material is spread on the lowered modeling table 120 on the first modeling layer M1. Thereby, the 2nd metal powder layer L2 is formed on the 1st modeling layer M1. The second modeling layer M2 is formed by irradiating a predetermined position of the second metal powder layer L2 with a laser from the laser irradiation unit 130. In this way, by repeating the powder layer forming step of forming the powder layer and the modeling layer forming step of forming the modeling layer sequentially n times, the three-dimensional shaped object 3 composed of n modeling layers is layered. be able to. In order to form the nth metal powder layer, the powder of the first metal material can be spread using a roller or the like (not shown). Moreover, the thickness of each layer of n modeling layers should just be the thickness which can laminate-model a modeling thing based on modeling conditions, for example, is about 10-200 micrometers.

以上のような積層造形工程は、第1金属素材の酸化を防ぐために、不活性雰囲気下で行なうことが好ましい。本明細書にて、不活性雰囲気とは、例えば、アルゴン(Ar)、ヘリウム(He)、窒素(N2)等の不活性ガスの存在下、真空状態、減圧状態の雰囲気である。 The additive manufacturing process as described above is preferably performed in an inert atmosphere in order to prevent oxidation of the first metal material. In this specification, the inert atmosphere is an atmosphere in a vacuum state or a reduced pressure state in the presence of an inert gas such as argon (Ar), helium (He), or nitrogen (N 2 ).

また、本明細書に記載の造形物の密度は、機械強度の観点より、高いほどよい。例えば、造形物の相対密度は、95%以上とすることができる。造形物の相対密度は、例えば、JIS Z 2501(ISO/DIS 2738)に準拠したアルキメデス法等により測定することができる。   Moreover, the higher the density of the shaped object described in this specification, the better from the viewpoint of mechanical strength. For example, the relative density of the shaped object can be 95% or more. The relative density of the modeled object can be measured by, for example, the Archimedes method based on JIS Z 2501 (ISO / DIS 2738).

第1金属素材の粉末の形状及び大きさは、第1金属素材から造形物3を積層造形できる形状及び大きさであればよい。粉末の形状は、球状等の規則的形状でも、不規則形状でもよい。第1金属素材の粉末の大きさは、製造条件、分級等により、粒度分布として適宜調整できる。第1金属素材の粉末の平均粒径は、粉末の流動性を確保して層形成できる範囲であればよく、例えば、20〜200μm程度の範囲であり、100〜200μm、50〜100μm又は5〜50μm程度とすることができる。第1金属素材の粉末の平均粒径は、造形物3を造形する際に、n層目とn+1層目の間隔(積層ピッチ)に合わせて調整することもできる。本明細書にて、平均粒径は、レーザ回折・散乱法によって測定された粒度分布において、積算値50%での粒径(「d50」)を意図している。   The shape and size of the powder of the first metal material may be any shape and size that allows the modeling object 3 to be layered from the first metal material. The shape of the powder may be a regular shape such as a spherical shape or an irregular shape. The magnitude | size of the powder of a 1st metal raw material can be suitably adjusted as a particle size distribution by manufacturing conditions, classification, etc. The average particle diameter of the powder of the first metal material may be in a range where the fluidity of the powder can be secured and the layer can be formed, and is, for example, in the range of about 20 to 200 μm, 100 to 200 μm, 50 to 100 μm, or 5 to 5. It can be about 50 μm. The average particle diameter of the powder of the first metal material can be adjusted in accordance with the interval (lamination pitch) of the nth layer and the (n + 1) th layer when modeling the model 3. In this specification, the average particle size is intended to be the particle size (“d50”) at an integrated value of 50% in the particle size distribution measured by the laser diffraction / scattering method.

2.第二実施の形態
次いで、図4を参照して本発明に係る金属作製物の第二実施の形態について説明する。図4に示すように、本実施の形態に係る金属製作物10は、その断面形状にて、第1金属素材からなる造形物13Aと、第2金属素材の層15とを備える。また、金属作製物10は、その使用中の発熱を除去するために、水等の冷媒を流通させるための中空部17を有する。本実施の形態に係る金属作製物の製造方法は、積層造形工程後かつ研磨工程前に、切削工程を更に含む点において第一実施の形態と主に相違する。第1実施の形態と同様の構成については、説明を省略する。
2. Second Embodiment Next, a second embodiment of the metal product according to the present invention will be described with reference to FIG. As shown in FIG. 4, the metal workpiece 10 according to the present embodiment includes a shaped article 13 </ b> A made of the first metal material and a layer 15 of the second metal material in its cross-sectional shape. Moreover, the metal product 10 has a hollow portion 17 for circulating a refrigerant such as water in order to remove heat generated during use. The manufacturing method of the metal product according to the present embodiment is mainly different from the first embodiment in that it further includes a cutting process after the additive manufacturing process and before the polishing process. The description of the same configuration as in the first embodiment is omitted.

2.1.積層造形工程
積層造形工程では、付加製造技術を用いて、第1金属素材からなる造形物13を造形する。図中の造形物13の4つの外表面は、3次元形状の造形物13の外表面に相当する。本工程では、所定の3次元形状を有する造形物13の寸法を、所望の3次元形状の寸法(D)の金属作製品10となるように、造形条件を調整する。すなわち、本工程では、第一実施の形態にて説明した、メッキ工程後の金属作製品の寸法が所望の寸法となるように造形条件を調整することを省略する。造形物13の寸法は、少なくとも金属作製品10の寸法(D)であればよく、金属作製品10の寸法(D)以上としてもよい。
2.1. Layered modeling step In the layered modeling step, the shaped article 13 made of the first metal material is formed using an additive manufacturing technique. The four outer surfaces of the shaped article 13 in the figure correspond to the outer surfaces of the three-dimensional shaped article 13. In this step, the modeling conditions are adjusted so that the dimension of the modeled article 13 having a predetermined three-dimensional shape is the metal product 10 having a desired three-dimensional dimension (D). That is, in this step, adjusting the modeling conditions so that the dimension of the metal product after the plating process described in the first embodiment becomes a desired dimension is omitted. The dimension of the shaped article 13 may be at least the dimension (D) of the metal product 10 and may be equal to or greater than the dimension (D) of the metal product 10.

2.2.切削工程
切削工程では、積層造形工程後の造形物13の外表面を、第2金属素材の層の厚さ(d)分だけ薄くなるように切削する。図4に示す例では、断面形状において、造形物13の4つの外表面を、第2金属素材の層15の厚さ(d)分だけ薄くなるように切削する。これにより、造形物13Aが形成される。本工程での切削厚さは、第一実施の形態の積層造形工程と同様に、メッキ工程後の金属作製品の寸法が所望の寸法(D)となるような厚さであればよく、例えば、0.2mm以上とすることができる。切削工程は、バイト、フライス、砥粒を含むバフ等の工具や、それらを備えた旋盤、フライス盤等装置を用いて造形物の外表面を切削することにより、実施できる。切削工程は、旋盤を用いて、実施することが好ましい。
2.2. Cutting process In the cutting process, the outer surface of the modeled article 13 after the layered modeling process is cut so as to be thinned by the thickness (d) of the layer of the second metal material. In the example shown in FIG. 4, in the cross-sectional shape, the four outer surfaces of the shaped article 13 are cut so as to be thinned by the thickness (d) of the layer 15 of the second metal material. Thereby, the modeled product 13A is formed. The cutting thickness in this step may be a thickness such that the dimension of the metal product after the plating process becomes a desired dimension (D), as in the additive manufacturing process of the first embodiment. , 0.2 mm or more. The cutting process can be performed by cutting the outer surface of the modeled object using a tool such as a buff including a cutting tool, a milling cutter, and abrasive grains, or a lathe or a milling machine equipped with the tool. The cutting step is preferably performed using a lathe.

なお、前述の実施の形態では、粉末形状の第1金属素材から造形物を焼結又は溶融することにより、積層造形を行う積層造形工程を例示した。本発明は、これに限定されない。積層造形工程としては、第1金属素材から所望の造形物を造形できる方法であればよく、例えばASTMインターナショナル規格(ASTM F2792)に規定された造形方法を適宜採用することができる。例えば、非粉末又は粉末形状の第1金属素材をノズルから供給しながら、材料を選択的に結合して積層造形する指向性エネルギ堆積法(DMP)や非粉末形状の第1金属素材をシート状に切り出して積層造形するシート積層(SL:Sheet lamination)方を採用することにより、所望の3次元形状の造形物を造形することができる。   In the above-described embodiment, the additive manufacturing process for performing additive manufacturing is exemplified by sintering or melting the object from the powder-shaped first metal material. The present invention is not limited to this. The layered modeling process may be any method that can model a desired model from the first metal material. For example, a modeling method defined in ASTM International Standard (ASTM F2792) can be appropriately employed. For example, while supplying a non-powder or powder-shaped first metal material from a nozzle, a directional energy deposition method (DMP) in which materials are selectively combined and layered to form or a non-powder-shaped first metal material is formed into a sheet. By adopting a sheet lamination (SL) method that cuts out and laminates, a desired three-dimensional shaped object can be formed.

また、前述の実施の形態では、メッキ処理により第2金属素材の膜を形成するメッキ工程を例示した。本発明は、これに限定されない。メッキ処理の他に、第1金属素材からなる造形物に均一な膜厚を有する第2金属素材の層を形成できる処理を採用することができる。例えば、スパッタリング法、イオンプレーティング、真空蒸着法等の物理蒸着(PVD: Physical Vapor Deposition)、化学蒸着(CVD: Chemical Vapor Deposition)等の処理を採用することにより、第1金属素材からなる造形物に第2金属素材の層を形成することができる。   Moreover, in the above-mentioned embodiment, the plating process which forms the film | membrane of a 2nd metal raw material by plating process was illustrated. The present invention is not limited to this. In addition to the plating process, a process capable of forming a layer of the second metal material having a uniform film thickness on the molded object made of the first metal material can be employed. For example, by adopting processes such as physical vapor deposition (PVD) such as sputtering, ion plating, and vacuum vapor deposition, and chemical vapor deposition (CVD), a shaped article made of the first metal material A layer of the second metal material can be formed.

以下、実施例によって本発明をより具体的に説明する。本発明に係る金属作製物の製造方法は、以下の実施例によって限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples. The method for producing a metal product according to the present invention is not limited by the following examples.

1.金属作製物の製造
[試験例1]
試験例1の非磁性の第1金属素材として、5.0質量%のクロムを含有するクロム銅合金を準備した。試験例1の第1金属素材について、3Dプリンタ(EOS社製、型番:EOS M 290)を用いて積層造形し、リング形状(直径82mm×高さ10mm)を有する3次元形状の造形物を造形した。得られた造形物を、試験例1の金属作製物とした。
1. Manufacture of metal products [Test Example 1]
As a nonmagnetic first metal material of Test Example 1, a chromium copper alloy containing 5.0% by mass of chromium was prepared. The first metal material of Test Example 1 is layered using a 3D printer (manufactured by EOS, model number: EOS M 290) to form a three-dimensional shaped object having a ring shape (diameter 82 mm × height 10 mm). did. The obtained model was used as the metal product of Test Example 1.

[試験例2]
試験例2の非磁性の第1金属素材として、試験例1と同様のクロム銅合金を準備した。試験例2の第1金属素材について、3Dプリンタを用いて積層造形し、リング形状(直径82mm×高さ10mm)を有する3次元形状の造形物を造形した。次いで、メッキ処理として、3Dプリンタにより得られた造形物を、50〜80g/Lの硫酸銅と160〜250g/Lの硫酸を含有する硫酸銅浴中にて、浴温を20〜27℃とし、陰極電流密度を1〜3A/dmとした条件下でメッキすることにより、銅厚メッキを施した。これにより、造形物の外面に第2金属素材の層として純銅の層(メッキ層)を形成した。試験例2の金属作製物とした。試験例2の相対密度は95%であった。
[Test Example 2]
As the nonmagnetic first metal material of Test Example 2, the same chromium copper alloy as in Test Example 1 was prepared. The first metal material of Test Example 2 was layered using a 3D printer to form a three-dimensional shaped object having a ring shape (diameter 82 mm × height 10 mm). Next, as a plating treatment, the model obtained by the 3D printer is set to a bath temperature of 20 to 27 ° C. in a copper sulfate bath containing 50 to 80 g / L of copper sulfate and 160 to 250 g / L of sulfuric acid. Copper thick plating was performed by plating under conditions where the cathode current density was 1 to 3 A / dm 2 . Thus, a pure copper layer (plating layer) was formed as a second metal material layer on the outer surface of the modeled object. The metal product of Test Example 2 was obtained. The relative density of Test Example 2 was 95%.

2.導電率の計測
3Dプリンタにて造形した試験例1及び2の金属作製物ついて、それらの高周波導電性を、IACS単位を基準として計測した。導電率の計測には、過電流導電率計を用いた。
2. Measurement of Conductivity For the metal products of Test Examples 1 and 2 modeled with a 3D printer, their high-frequency conductivity was measured based on IACS units. An overcurrent conductivity meter was used to measure the conductivity.

試験例1の導電率は、30%IACSであった。一方、試験例2の導電率は、100%IACSであり、焼鈍標準軟銅と同程度であった。このことから、試験例2の金属作製物の導電性は、純銅とほぼ同程度であることがわかった。また、メッキ処理を施した試験例2の導電率は、メッキ処理を施さない試験例1と比較して、70%IACS改善することがわかった。   The conductivity of Test Example 1 was 30% IACS. On the other hand, the electrical conductivity of Test Example 2 was 100% IACS, which was the same as that of annealed standard annealed copper. From this, it was found that the conductivity of the metal product of Test Example 2 was almost the same as that of pure copper. Moreover, it turned out that the electrical conductivity of the test example 2 which performed the plating process improves 70% IACS compared with the test example 1 which does not perform a plating process.

本発明に係る金属作製物の製造方法によれば、純銅等の金属素材よりも導電性に劣る金属素材を用いても、純銅等の金属素材と同程度の高周波導電性を付与することができる。   According to the method for producing a metal product according to the present invention, even when a metal material that is inferior in conductivity to a metal material such as pure copper is used, high-frequency conductivity comparable to that of a metal material such as pure copper can be imparted. .

1、10 金属作製物
3、13、13A 造形物
5、15 第2金属素材の層(メッキ層)
7、17 中空部
1, 10 Metal product 3, 13, 13A Model 5, 15 Second metal material layer (plating layer)
7, 17 Hollow part

Claims (7)

高周波電流を通電するための金属作製品の製造方法であって、
第1金属素材であるクロム銅合金の造形物を積層造形する積層造形工程と、
前記積層造形工程後に、前記造形物にメッキ処理を施すことにより第2金属素材である純銅の層を形成するメッキ工程と
を少なくとも含み、
前記第2金属素材の高周波電流に対する導電率が、前記第1金属素材よりも高く、
前記造形物が、前記第2金属素材の層の厚さによって前記金属作製品の寸法をなすように形成されていることを特徴とする金属作製品の製造方法。
A method of manufacturing a metal product for energizing a high-frequency current,
Additive manufacturing process for additive manufacturing of a model of chromium copper alloy that is the first metal material;
After the additive manufacturing process, at least a plating process for forming a layer of pure copper , which is the second metal material , by plating the modeled object,
The conductivity of the second metal material with respect to the high-frequency current is higher than that of the first metal material,
The method of manufacturing a metal product, wherein the shaped article is formed so as to have a dimension of the metal product by the thickness of the layer of the second metal material.
前記第2金属素材の層の厚さ(d)が、下記式1)
Figure 0006491289
[式中、dは厚さ(mm)であり、fは高周波電流の周波数(MHz)であり、μは第2金属素材の透磁率(H/m)であり、σは第2金属素材の導電率(S/m)である。]
を満たすことを特徴とする請求項1に記載の金属作製品の製造方法。
The thickness (d) of the second metal material layer is represented by the following formula 1):
Figure 0006491289
[Where d is the thickness (mm), f is the frequency (MHz) of the high frequency current, μ is the permeability (H / m) of the second metal material, and σ is the second metal material. Conductivity (S / m). ]
The method for producing a metal product according to claim 1, wherein:
前記メッキ工程前に、前記造形物の外表面を前記第2金属素材の層の厚さ分だけ切削する切削工程を更に含むことを特徴とする請求項1又は2に記載の金属作製品の製造方法。   The metal product manufacturing method according to claim 1 or 2, further comprising a cutting step of cutting the outer surface of the shaped object by the thickness of the layer of the second metal material before the plating step. Method. 前記メッキ工程では、前記造形物に、50〜80g/Lの硫酸銅と160〜250g/Lの硫酸を含有する硫酸銅浴中にて、浴温を20〜27℃とし、陰極電流密度を1〜3A/dmとした条件下で厚メッキを施すことにより、前記第2金属素材の層を形成することを特徴とする請求項1〜3のいずれか一項に記載の金属作製品の製造方法。 In the plating step, in the copper sulfate bath containing 50 to 80 g / L copper sulfate and 160 to 250 g / L sulfuric acid, the bath temperature is set to 20 to 27 ° C., and the cathode current density is 1 in the plating step. The metal-made product according to any one of claims 1 to 3, wherein the second metal material layer is formed by performing thick plating under a condition of ~ 3 A / dm 2. Method. 前記積層造形工程が、前記第1金属素材の粉末を含有する粉末層を形成する粉末層形成工程と、
前記粉末層の所定の位置にレーザを照射して前記粉末を固化させることにより、造形層を形成する造形層形成工程と、
を含み、
前記粉末層形成工程と前記造形層形成工程とを順次繰り返すことにより、前記第1金属素材の造形物を積層造形することを特徴とする請求項1〜4のいずれか一項に記載の、金属作製品の製造方法。
The additive manufacturing process includes a powder layer forming process of forming a powder layer containing the powder of the first metal material,
A modeling layer forming step of forming a modeling layer by irradiating a laser on a predetermined position of the powder layer to solidify the powder; and
Including
The metal according to any one of claims 1 to 4, wherein the modeling object of the first metal material is layered and manufactured by sequentially repeating the powder layer forming step and the modeling layer forming step. Production method of product.
前記高周波電流が10kHz以上100kH未満の周波数であり、
記第2金属素材の層の厚さが、0.66mm以上であることを特徴とする請求項1〜5のいずれか一項に記載の金属作製品の製造方法。
The high-frequency current is frequencies below 10kHz or 100kH z,
Before Symbol thickness of the second metal material layers, the manufacturing method of the metal work product according to any one of claims 1-5, characterized in that at least 0.66 mm.
前記高周波電流が100kHz以上の周波数であり、
前記第1金属素材が、クロムを0.1質量%以上5質量%以下含有するクロム銅合金であり、
記第2金属素材の層の厚さが、0.2mm以上であることを特徴とする請求項1〜5のいずれか一項に記載の金属作製品の製造方法。
The high-frequency current has a frequency of 100 kHz or more;
The first metal material is a chromium copper alloy containing 0.1% by mass or more and 5% by mass or less of chromium,
Before Symbol thickness of the second metal material layers, the manufacturing method of the metal work product according to any one of claims 1 to 5, wherein the at 0.2mm or more.
JP2017171140A 2017-09-06 2017-09-06 Method for producing metal product Active JP6491289B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017171140A JP6491289B2 (en) 2017-09-06 2017-09-06 Method for producing metal product
CN201810910397.6A CN109454233B (en) 2017-09-06 2018-08-10 Method for producing metal product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017171140A JP6491289B2 (en) 2017-09-06 2017-09-06 Method for producing metal product

Publications (2)

Publication Number Publication Date
JP2019044248A JP2019044248A (en) 2019-03-22
JP6491289B2 true JP6491289B2 (en) 2019-03-27

Family

ID=65606341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171140A Active JP6491289B2 (en) 2017-09-06 2017-09-06 Method for producing metal product

Country Status (2)

Country Link
JP (1) JP6491289B2 (en)
CN (1) CN109454233B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174669B2 (en) * 2019-04-26 2022-11-17 三菱重工業株式会社 Regeneration monitoring test piece for reactor pressure vessel and its regeneration method
JP7550567B2 (en) 2020-08-26 2024-09-13 三菱電機株式会社 Waveguide Device
CN111926203B (en) * 2020-09-21 2020-12-29 陕西斯瑞新材料股份有限公司 Method for preparing pure copper and Cu-Cr-Zr alloy with laminated structure by using SLM laser printing technology
CN113275593B (en) * 2021-04-27 2022-06-14 中南大学 Method for preparing porous Ta/Ti-6Al-4V integrated piece through selective laser melting

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794600A (en) * 1980-12-03 1982-06-12 Anritsu Corp Method for replenishing anode material in copper sulfate plating bath
JPH08271497A (en) * 1995-03-29 1996-10-18 C Uyemura & Co Ltd Method for measuring concentration of electrolytic product in electric copper plating bath
JPH11292683A (en) * 1998-04-08 1999-10-26 Komatsu Electronic Metals Co Ltd Induction heating coil for single crystal growing
JP3496558B2 (en) * 1998-12-01 2004-02-16 住友電気工業株式会社 Composite materials for electromagnetic induction heating
JP2003152428A (en) * 2000-12-27 2003-05-23 Furukawa Electric Co Ltd:The Small antenna and its manufacturing method
JP2002299031A (en) * 2001-03-28 2002-10-11 Kobe Steel Ltd High-frequency induction heating coil, high-frequency induction heating device and method of manufacturing welded pipe
JP2002356714A (en) * 2001-05-31 2002-12-13 Denki Kogyo Co Ltd Induction heating coil exchanger, and induction hardening device
JP2003317926A (en) * 2002-04-26 2003-11-07 Harison Toshiba Lighting Corp Induction heating roller device, fixing device, and image formation device
CN103100578A (en) * 2012-12-12 2013-05-15 杨利云 Composite layer metal pipeline
JP5599921B1 (en) * 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
JP6194369B2 (en) * 2013-12-02 2017-09-06 株式会社フジクラ High frequency wires and coils
JP2016002201A (en) * 2014-06-16 2016-01-12 オリンパス株式会社 Medical instruments
JP2016132791A (en) * 2015-01-19 2016-07-25 帝人株式会社 Electronic/electrical component
JP6030186B1 (en) * 2015-05-13 2016-11-24 株式会社ダイヘン Copper alloy powder, manufacturing method of layered object, and layered object
JP6532396B2 (en) * 2015-12-25 2019-06-19 株式会社ダイヘン Copper alloy powder, method for producing laminate-molded article and laminate-molded article
JP6716410B2 (en) * 2016-09-23 2020-07-01 株式会社ダイヘン Copper alloy powder, manufacturing method of layered product and layered product

Also Published As

Publication number Publication date
JP2019044248A (en) 2019-03-22
CN109454233A (en) 2019-03-12
CN109454233B (en) 2020-03-31

Similar Documents

Publication Publication Date Title
CN107971489B (en) Copper alloy powder, method for producing layered product, and layered product
TWI624551B (en) Metal powder, method of producing additively-manufactured article, and additively-manufactured article
JP6803021B2 (en) Manufacturing method of laminated model and laminated model
TWI627294B (en) Metal powder, use of metal powder, method of producing additively-manufactured article, and additively-manufactured article
CN111051551B (en) Alloy material, product using the alloy material, and fluid machine having the product
JP6491289B2 (en) Method for producing metal product
KR102239261B1 (en) Copper alloy powder, manufacturing method of laminated moldings and laminated moldings
JP6716410B2 (en) Copper alloy powder, manufacturing method of layered product and layered product
TW201912421A (en) Copper alloy powder for laminated forming, manufacturing method of laminated product and laminated product
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article
CN113134627B (en) Selective laser melting processing method and application of high-nickel-rich NiTi alloy
JP7524547B2 (en) Cr-Ni alloy member and manufacturing method thereof
TWI532852B (en) Alloy powder and laser additive manufacturing process applying the same
JP2019099920A (en) Methods and compositions for making near net shape article
KR20180061699A (en) Method for laminating tungsten carbide and binder through laser cladding
Vanzetti Optimization of additive manufacturing processes for copper and its alloys
JP2023071110A (en) Fe-BASED ALLOY FOR MELT-SOLIDIFICATION-SHAPING AND METAL POWDER
JP2022042490A (en) Manufacturing method of cobalt base alloy structure and cobalt base alloy structure obtained with the manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6491289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250