[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6486336B2 - Method and fuel cell gas circuit for maintaining fuel cell system performance - Google Patents

Method and fuel cell gas circuit for maintaining fuel cell system performance Download PDF

Info

Publication number
JP6486336B2
JP6486336B2 JP2016516116A JP2016516116A JP6486336B2 JP 6486336 B2 JP6486336 B2 JP 6486336B2 JP 2016516116 A JP2016516116 A JP 2016516116A JP 2016516116 A JP2016516116 A JP 2016516116A JP 6486336 B2 JP6486336 B2 JP 6486336B2
Authority
JP
Japan
Prior art keywords
fuel cell
oxidant gas
circuit
cathode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016516116A
Other languages
Japanese (ja)
Other versions
JP2016522974A (en
Inventor
ヴァンサン ブライラール
ヴァンサン ブライラール
ジーノ パガネリ
ジーノ パガネリ
リオネル フラニエール
リオネル フラニエール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Publication of JP2016522974A publication Critical patent/JP2016522974A/en
Application granted granted Critical
Publication of JP6486336B2 publication Critical patent/JP6486336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04238Depolarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池、特に、高分子膜の形態をした電解質を有する形式(即ち、PEFC(固体高分子型燃料電池)型)の燃料電池に関するが、これらには限定されない。   The present invention relates to, but is not limited to, a fuel cell, in particular, a fuel cell of the type having an electrolyte in the form of a polymer membrane (ie, PEFC (solid polymer fuel cell) type).

燃料電池は、機械エネルギー変換ステップに通さないで燃料ガス及びオキシダントガスを用いた電気化学酸化還元(レドックス)反応により電気エネルギーを直接発生させることが知られている。この技術は、特に自動車用途に関して大いに期待できるように思われる。燃料電池は、一般に、各々が本質的にアノード及びカソードから成る単位要素の直列組み合わせを有し、アノードとカソードは、イオンがアノードからカソードに移ることができるようにする高分子膜によって隔てられている。   It is known that a fuel cell directly generates electric energy by an electrochemical redox reaction using fuel gas and oxidant gas without passing through a mechanical energy conversion step. This technology seems highly promising, especially for automotive applications. Fuel cells generally have a series combination of unit elements each consisting essentially of an anode and a cathode, the anode and cathode being separated by a polymer membrane that allows ions to move from the anode to the cathode. Yes.

かくして、燃料、例えば水素が供給されるアノードは、酸化半反応の場所である。それと同時に、オキシダント、例えば純粋酸素又は空気中に含まれている酸素が供給されるカソードは、還元半反応の場所である。これら2つの半反応が可能にあるようにするためには、アノード及びカソードに触媒、即ち、反応速度を増大させることができる化合物を装填することが必要であり、しかしながら、触媒は、それ自体消費されない。   Thus, the anode supplied with fuel, for example hydrogen, is the site of the oxidation half-reaction. At the same time, the cathode supplied with an oxidant, such as pure oxygen or oxygen contained in the air, is the site of the reduction half reaction. In order for these two half-reactions to be possible, it is necessary to load the anode and cathode with a catalyst, ie a compound that can increase the reaction rate, however, the catalyst itself consumes. Not.

最適性能は用いられている種々の触媒のうちで白金だけを用い又は白金を合金として用いて得られるということが観察された。しかしながら、白金の使用は、これが酸素の存在下にあるときにこれが次第に酸化されることによる相当大きな欠点を有する。かくして、カソードの触媒に用いられる白金の漸次酸化の結果として、性能が低下し、これは、電圧の降下によって表され、燃料電池のたった数十分の動作後にこれが生じることが観察された。   It has been observed that optimal performance is obtained using only platinum or using platinum as an alloy among the various catalysts used. However, the use of platinum has considerable disadvantages due to its progressive oxidation when it is in the presence of oxygen. Thus, as a result of the gradual oxidation of platinum used in the catalysis of the cathode, performance was reduced, which was represented by a voltage drop, which was observed to occur after only a few tens of minutes of operation of the fuel cell.

米国特許第6,635,369号明細書から、カソードのところの酸素の定期的な不足又は欠乏状態を計画し、その結果として白金の漸次劣化を遅らせ、かくして、それにより燃料電池の性能を長い持続時間にわたって維持することができる対策が知られている。   From US Pat. No. 6,635,369, a periodic shortage or depletion of oxygen at the cathode is planned, thereby delaying the gradual degradation of platinum, thus lengthening the performance of the fuel cell. Measures that can be maintained over the duration are known.

この特許では、酸素の欠乏状態は、燃料電池を極めて短い期間にわたり短絡させることによって生じ、その結果として電流ピークが生じる。その結果、カソードの電気化学ポテンシャルが急に低下し、白金の酸化がもはや起こらなくなる。と言うのは、この反応では、酸素の存在及び高い電気化学ポテンシャルが必要だからである。かくして、性能の向上は、各短絡を生じさせた後に観察可能であった。   In this patent, the oxygen deficiency condition is caused by shorting the fuel cell for a very short period of time, resulting in a current peak. As a result, the electrochemical potential of the cathode suddenly drops and platinum oxidation no longer occurs. This is because this reaction requires the presence of oxygen and a high electrochemical potential. Thus, the performance improvement was observable after each short circuit occurred.

しかしながら、かかる対策は、幾つかの大きな欠点を有する。具体的に述べると、生じる短絡は、例えばキロワットオーダの小型燃料電池の場合にのみ可能である。例えば50kWオーダの大型の燃料電池が用いられる場合、短絡により生じる電流の増大は極めて大きく、これは、システムを劣化させる恐れをもたらす。さらに、短絡の結果として、カソードのところの白金の還元が生じるだけでなくアノードの腐食が生じ、かくして劣化の恐れが生じることが観察された。最後に、短絡を使用しても何ら制御可能なパラメータが提供されない。と言うのは、引き起こされる電圧の降下が燃料電池及び短絡時におけるその動作にのみ依存しているからである。   However, such measures have some major drawbacks. Specifically, the short circuit that occurs is only possible in the case of small fuel cells, for example on the order of kilowatts. For example, when a large fuel cell on the order of 50 kW is used, the increase in current caused by a short circuit is very large, which can lead to system degradation. Furthermore, it has been observed that as a result of the short circuit, not only the reduction of platinum at the cathode occurs, but also the corrosion of the anode occurs and thus the possibility of degradation. Finally, using a short circuit does not provide any controllable parameters. This is because the induced voltage drop depends only on the fuel cell and its operation during a short circuit.

また、別の対策では、欧州特許第2,494,642号明細書で提案されているように燃料電池に消弧/再開サイクルを定期的に適用することが計画されたが、この対策では、酸素の欠乏により燃料電池を消弧させるというものである。確かに、この場合、各サイクルは、白金の還元を可能にし、かくして燃料電池性能の維持を可能にする。しかしながら、この対策は、燃料電池が連続的に使用されているとき及び電気の発生を中断させることができない場合には採用できない。   As another measure, it was planned to apply the arc extinguishing / restarting cycle periodically to the fuel cell as proposed in European Patent No. 2,494,642, The fuel cell is extinguished due to lack of oxygen. Indeed, in this case, each cycle allows the reduction of platinum, thus allowing the maintenance of fuel cell performance. However, this measure cannot be adopted when the fuel cell is continuously used and when the generation of electricity cannot be interrupted.

米国特許第6,635,369号明細書US Pat. No. 6,635,369 欧州特許第2,494,642号明細書European Patent 2,494,642

したがって、本発明の目的は、燃料電池の動作を妨げず、しかも追加の劣化を生じさせないで燃料電池の性能を維持することができるようにする方法を提案することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to propose a method capable of maintaining the performance of a fuel cell without impeding the operation of the fuel cell and without causing additional deterioration.

本発明は、固体高分子電解質膜型燃料電池の性能を維持する方法であって、燃料電池は、燃料ガスリザーバを燃料電池のアノードに連結する燃料ガス供給回路及びオキシダントガスリザーバ又は大気を燃料電池のカソードに連結するオキシダントガス供給回路を含むシステム内に設置され、この方法は、
‐燃料電池に燃料ガス及びオキシダントガスを供給するステップと、
‐燃料電池が電流を生じさせる動作体制に達すると、カソード側での燃料電池の入口へのオキシダントガスの供給を中断するステップと、
‐所与の時間後及び/又は燃料電池の端子のところの電圧が所定レベルに達したとき、オキシダントガス供給を再開するステップと、
‐燃料電池が動作している間は先行する2つのステップを定期的に繰り返すステップと、を含むことを特徴とする方法を提案する。
The present invention relates to a method for maintaining the performance of a solid polymer electrolyte membrane fuel cell. The fuel cell includes a fuel gas supply circuit that connects a fuel gas reservoir to an anode of the fuel cell, an oxidant gas reservoir, or the atmosphere of the fuel cell. Installed in a system that includes an oxidant gas supply circuit connected to the cathode, the method comprises:
-Supplying fuel gas and oxidant gas to the fuel cell;
-Interrupting the supply of oxidant gas to the inlet of the fuel cell on the cathode side when the fuel cell has reached an operating regime to generate current;
Restarting the oxidant gas supply after a given time and / or when the voltage at the terminal of the fuel cell reaches a predetermined level;
-Proposing a method characterized by comprising periodically repeating the preceding two steps while the fuel cell is in operation.

本発明の有利な一実施形態では、ガス供給を3秒間の中断後に再開する。別の実施形態では、ガス供給を燃料電池の端子のところの電圧が500ミリボルト未満になったときに再開する。   In an advantageous embodiment of the invention, the gas supply is resumed after a 3 second interruption. In another embodiment, the gas supply is resumed when the voltage at the fuel cell terminal is less than 500 millivolts.

比較的短い弁開放により、この一時的な供給不足中における電圧降下を制限することができる。確かに、燃料電池には瞬間的にもはや空気が供給されないが、燃料電池の高い容量効果は、電気の発生を妨げないで電圧を許容可能レベルに維持するのを助ける。   A relatively short valve opening can limit the voltage drop during this temporary supply shortage. Certainly, the fuel cell is no longer instantaneously supplied with air, but the high capacity effect of the fuel cell helps maintain the voltage at an acceptable level without disturbing the generation of electricity.

本発明の有利な別の実施形態では、ステップの繰り返し周期は、5分に設定される。   In another advantageous embodiment of the invention, the repetition period of the steps is set to 5 minutes.

オキシダントガスの供給を中断するステップに関し、次の幾つかの実施形態の採用が可能である。
‐第1の実施形態では、この中断ステップは、燃料電池のカソードの上流側に配置されていてオキシダントガス供給回路を周囲空気に連結している弁を開くステップから成る。
‐第2の実施形態では、この中断ステップは、オキシダントガス供給回路内に配置された空気圧縮機の作動を瞬間的に中断するステップから成る。
‐第3の実施形態では、この中断ステップは、オキシダントガス供給回路内に配置された弁を閉じるステップから成る。
Regarding the step of interrupting the supply of oxidant gas, the following several embodiments can be adopted.
In the first embodiment, this interruption step consists of opening a valve arranged upstream of the cathode of the fuel cell and connecting the oxidant gas supply circuit to the ambient air.
-In the second embodiment, this interruption step consists of instantaneously interrupting the operation of the air compressor located in the oxidant gas supply circuit.
-In a third embodiment, this interrupting step consists of closing a valve located in the oxidant gas supply circuit.

本発明は又、固体高分子イオン交換膜型燃料電池のガス回路であって、
‐燃料ガスリザーバを燃料電池のアノードに連結する燃料ガス供給回路と、
‐オキシダントガスリザーバ又は周囲空気を燃料電池のカソードに連結するオキシダントガス供給回路と、を有するガス回路において、
ガス回路は、オキシダントガス供給回路内に設置されていて、燃料電池のカソードへの酸素の供給を定期的に且つ瞬間的に中断するのに適した手段を更に有することをガス回路に関する。
The present invention is also a gas circuit of a solid polymer ion exchange membrane fuel cell,
A fuel gas supply circuit connecting the fuel gas reservoir to the anode of the fuel cell;
An oxidant gas reservoir or an oxidant gas supply circuit connecting ambient air to the cathode of the fuel cell;
The gas circuit relates to the gas circuit further comprising means suitable for interrupting the supply of oxygen to the cathode of the fuel cell periodically and instantaneously, installed in the oxidant gas supply circuit.

本発明の種々の実施形態によれば、上記中断手段は、
‐オキシダントガス供給回路内でカソードの上流側に配置されていてガス回路を周囲空気に連結するソレノイド弁と、
‐周囲空気入口とカソードとの間に配置された圧縮機と、
‐オキシダントガス供給回路内に配置された弁を含む。
According to various embodiments of the invention, the interruption means is
A solenoid valve located upstream of the cathode in the oxidant gas supply circuit and connecting the gas circuit to the ambient air;
-A compressor arranged between the ambient air inlet and the cathode;
-Including a valve located in the oxidant gas supply circuit.

本明細書の以下の説明により、添付の図面によって本発明の観点の全てを明確に理解することができる。   The following description of the specification provides a clear understanding of all aspects of the invention with reference to the accompanying drawings.

純粋酸素が供給される本発明の燃料電池の略図である。1 is a schematic illustration of a fuel cell of the present invention supplied with pure oxygen. 本発明を具体化した燃料電池又は本発明を具体化しなかった燃料電池の経時的な性能を示すグラフ図である。It is a graph which shows the performance with time of the fuel cell which materialized this invention, or the fuel cell which did not materialize this invention.

図1は、固体高分子膜の形態をした電解質を有する形式(即ち、PEFC(固体高分子型燃料電池)又はPEM(プロトン交換膜)型)の燃料電池1bを示している。燃料電池1bには2種類のガス、即ち、燃料(車両上に蓄えられ又は車両上で発生させる水素)及びオキシダント(空気又は純粋酸素)が供給され、これらガスは、電気化学セルの電極に供給される。電気負荷14が電気ライン10を経て燃料電池1bに接続されている。図1は、本発明の理解に有用なアノード回路の要素を示しているが、本願の要旨は、本質的に、燃料電池のカソード回路に関する。   FIG. 1 shows a fuel cell 1b of a type having an electrolyte in the form of a solid polymer membrane (that is, a PEFC (solid polymer fuel cell) or PEM (proton exchange membrane) type). The fuel cell 1b is supplied with two types of gas, namely fuel (hydrogen stored on the vehicle or generated on the vehicle) and oxidant (air or pure oxygen), and these gases are supplied to the electrodes of the electrochemical cell. Is done. An electric load 14 is connected to the fuel cell 1b through the electric line 10. Although FIG. 1 illustrates elements of an anode circuit useful for understanding the present invention, the subject matter of this application essentially relates to the cathode circuit of a fuel cell.

アノード回路の説明Anode circuit description

この装置は、アノード側に燃料ガス供給回路11を有している。純粋水素(H2)リザーバ11Tが見え、これは、遮断弁110を通り、次に圧力調整弁117を通り、次にエゼクタ113を通り、次にアノードで終端する燃料ガス供給チャネル11Aを通る供給ラインによって燃料電池1bのアノード回路の入口に結合されている。水素(燃料)供給回路11は、燃料電池スタックによって消費されなかった水素をリサイクルする回路11Rを更に含み、この回路は、燃料電池1bのアノード回路の出口に結合されている。気水分離器114がリサイクル回路11R内に設けられている。エゼクタ113及び再循環ポンプ115は、消費されなかった水素をリサイクルし、これをリザーバから来た新鮮な水素と混合する。 This apparatus has a fuel gas supply circuit 11 on the anode side. A pure hydrogen (H 2 ) reservoir 11T is visible, which feeds through a shutoff valve 110, then through a pressure regulating valve 117, then through an ejector 113, and then through a fuel gas supply channel 11A that terminates at the anode. The line is connected to the inlet of the anode circuit of the fuel cell 1b. The hydrogen (fuel) supply circuit 11 further includes a circuit 11R that recycles hydrogen not consumed by the fuel cell stack, and this circuit is coupled to the outlet of the anode circuit of the fuel cell 1b. A steam separator 114 is provided in the recycle circuit 11R. The ejector 113 and recirculation pump 115 recycle the unconsumed hydrogen and mix it with fresh hydrogen coming from the reservoir.

追加の燃料ガス蓄積チャンバ116も又見え、これは、遮断弁110と圧力調整弁117との間で燃料ガス供給回路11の管系上に設けられている。追加の蓄積チャンバは、この好ましい実施形態では、その容積を減少させるために又は容積が同一であるとすると、多量の水素を貯蔵するよう圧力が供給回路内で最も高い箇所に配置される。注目されるべきこととして、追加の燃料ガス蓄積チャンバ116は、燃料ガス供給回路中の任意の箇所、即ち、リサイクル回路11R内であれ又は気水分離器114とエゼクタ113との間の回路内であれ遮断弁110と燃料電池1bとの間の任意の箇所に配置される。しかしながら、追加燃料ガス蓄積チャンバをその容積を減少させるよう圧力が最も高い回路中の箇所に配置するのが有利である。さらに、圧力調整弁の上流側の位置は、蓄積チャンバからの制御された排出を可能にする。   An additional fuel gas storage chamber 116 is also visible and is provided on the tubing of the fuel gas supply circuit 11 between the shutoff valve 110 and the pressure regulating valve 117. The additional accumulation chamber is in this preferred embodiment placed at the highest point in the supply circuit to store a large amount of hydrogen to reduce its volume or, if the volume is the same. It should be noted that the additional fuel gas storage chamber 116 can be located anywhere in the fuel gas supply circuit, i.e. in the recycle circuit 11R or in the circuit between the steam separator 114 and the ejector 113. It is arranged at any location between the shut-off valve 110 and the fuel cell 1b. However, it is advantageous to place the additional fuel gas storage chamber at a point in the circuit where the pressure is highest so as to reduce its volume. Furthermore, the upstream position of the pressure regulating valve allows a controlled discharge from the storage chamber.

大気に通じると共に好ましくは気水分離器114の下で燃料ガスリサイクルループ11Rに結合されたライン上に設けられている吸引ポンプ119及び遮断弁118も又見える。図1に示されているこの正確な位置での連結により、遮断弁118を制御することによって3つの機能、即ち、水排出、パージ及び水素吸引を実行することができる。しかしながら、この実施形態の細部は、本発明を限定するものではない。本発明の特定の水素吸引機能を実行するため、遮断弁118を備えたラインは、圧力調整弁117の下流側の任意の箇所に結合可能である。   Also visible are a suction pump 119 and a shut-off valve 118 that are connected to the atmosphere and preferably on the line coupled to the fuel gas recycle loop 11R under the steam separator 114. With this exact position connection shown in FIG. 1, three functions can be performed by controlling the shut-off valve 118: water drain, purge and hydrogen aspiration. However, the details of this embodiment do not limit the invention. In order to perform the particular hydrogen suction function of the present invention, the line with the shut-off valve 118 can be coupled to any location downstream of the pressure regulating valve 117.

カソード回路の説明Cathode circuit description

この装置は、カソード側にオキシダントガス供給ガス回路12bを更に有している。この回路は、通常の使用の際、燃料電池に供給ラインによって大気としての空気126を供給するために用いられる空気圧縮機125bを有し、供給ラインは、遮断弁128を通り、次にカソードで終端するオキシダントガス供給チャネル12Aを通って延びている。注目されるべきこととして、本発明は、純粋酸素が供給される燃料電池の場合にも利用できる。この場合、オキシダントリザーバが空気入口126に代えて配置される。   This apparatus further includes an oxidant gas supply gas circuit 12b on the cathode side. This circuit has an air compressor 125b that, in normal use, is used to supply air 126 as atmosphere to the fuel cell by a supply line, which passes through a shut-off valve 128 and then at the cathode. It extends through the terminating oxidant gas supply channel 12A. It should be noted that the present invention can also be used in the case of fuel cells supplied with pure oxygen. In this case, an oxidant reservoir is arranged instead of the air inlet 126.

さらに酸素を収容した空気供給回路12bは、燃料電池1bのカソード回路の出口に連結されていて、燃料電池によって消費されなかった酸素をリサイクルする回路12Rを更に含む。リサイクル回路12Rbは、空気圧縮機125bの下流側に設けられた枝連結部123bを経て供給ライン12Aに直接連結されている。圧力調整弁122bにより、通常の動作中、酸素減少空気が大気に連続して逃げ出ることができる。この圧力調節弁122bの開き度は、カソード回路内の圧力を所望の値に維持するために制御される。   Further, the air supply circuit 12b containing oxygen is further connected to the outlet of the cathode circuit of the fuel cell 1b, and further includes a circuit 12R for recycling oxygen that has not been consumed by the fuel cell. The recycle circuit 12Rb is directly connected to the supply line 12A via a branch connecting portion 123b provided on the downstream side of the air compressor 125b. The pressure regulating valve 122b allows oxygen-reduced air to continuously escape to the atmosphere during normal operation. The degree of opening of the pressure control valve 122b is controlled to maintain the pressure in the cathode circuit at a desired value.

燃料電池の通常の動作中、リサイクル回路が使用されず、ポンプ125は、作動停止され、事実上存在しない状態になるリサイクル回路12Rb内をガスが循環することはない。カソード回路によって消費されなかったガスは全て、圧力調整弁122bを通って大気にガス抜きされる。ポンプ125がこのポンプを作動停止させたときに当然のことながら逆流防止機能を実行しない場合、逆止弁をリサイクル回路12Rb内に設けて圧縮機により供給される空気の全てを燃料電池1bのカソード回路に流すようにすることが必要である。   During normal operation of the fuel cell, the recycle circuit is not used, and the pump 125 is deactivated and no gas circulates in the recycle circuit 12Rb, which is virtually nonexistent. Any gas not consumed by the cathode circuit is vented to the atmosphere through the pressure regulating valve 122b. If the pump 125 does not perform the backflow prevention function when the pump is stopped, the check valve is provided in the recycle circuit 12Rb so that all of the air supplied by the compressor is supplied to the cathode of the fuel cell 1b. It is necessary to make it flow in the circuit.

遮断弁128により、燃料電池を動作停止させたときにカソードを大気から隔離することが可能である。この遮断弁128は、圧縮機の上流側か下流側かのいずれかに配置されるのが良い。   A shutoff valve 128 can isolate the cathode from the atmosphere when the fuel cell is shut down. The shut-off valve 128 may be disposed either upstream or downstream of the compressor.

さらにソレノイド弁129がオキシダントガス供給回路内でカソードの上流側に配置されている。このソレノイド弁は、燃料電池の通常の動作段階中、供給回路の大気へのガス抜きを定期的に且つ極めて短時間可能にするようになっている。確かに、弁129の開放は、常態では燃料電池に供給される空気又は酸素の大部分を瞬間的にそらす。すると、このそらしにより、燃料電池のカソードのところの酸素の一時的な供給不足又は欠乏が生じる。酸素のこの短時間の欠乏により、カソードのところの白金の酸化反応を還元反応に逆にすることができ、かくしてカソードを再生することができる。   Further, a solenoid valve 129 is disposed upstream of the cathode in the oxidant gas supply circuit. This solenoid valve allows the supply circuit to be vented to the atmosphere periodically and for a very short time during the normal operation phase of the fuel cell. Indeed, opening the valve 129 momentarily diverts most of the air or oxygen supplied to the fuel cell. This diversion then causes a temporary shortage or deficiency of oxygen at the fuel cell cathode. This short time depletion of oxygen can reverse the platinum oxidation reaction at the cathode to the reduction reaction and thus regenerate the cathode.

上述したように、具体化手段とは無関係にオキシダントガス供給の中断を燃料電池が電流を生じさせている段階中に実施することが必要である。確かに、この場合、圧縮機125bを作動させ、この圧縮機が空気又は酸素を供給回路12bに送る。その結果、弁129の開放中、供給回路内に存在する空気は、これが開口部を通って実際に逃げるような圧力状態にある。   As mentioned above, it is necessary to interrupt the supply of oxidant gas during the stage in which the fuel cell is generating current, regardless of the embodiment. Indeed, in this case, the compressor 125b is activated and this compressor sends air or oxygen to the supply circuit 12b. As a result, during the opening of the valve 129, the air present in the supply circuit is in a pressure state such that it actually escapes through the opening.

図2は、4時間30分の期間にわたり16個セル型燃料電池の性能を示している。この図は、燃料電池のセルの電流、電圧及び平均電力をそれぞれ示す3本の曲線を示している。最初の2時間の間、燃料電池は、従来プロセスに従って動作し、本発明を具体化することはない。時刻T+2時間のところから始まって、本発明のプロセスが実施される。   FIG. 2 shows the performance of the 16 cell fuel cell over a 4 hour 30 minute period. This figure shows three curves respectively showing the current, voltage and average power of the fuel cell. During the first two hours, the fuel cell operates according to conventional processes and does not embody the present invention. Beginning at time T + 2 hours, the process of the present invention is performed.

最初の2時間の動作中、燃料電池の性能の劣化が観察され、この劣化は、電圧及び送り出される電力の漸次降下によって表される。   During the first two hours of operation, degradation of fuel cell performance is observed, which is represented by a gradual drop in voltage and delivered power.

時刻T=2時間から始まって、燃料電池は、酸素の定期的な欠乏を生じ、かかる欠乏は、5分ごとに起こる。次に、時刻T=0のところに示されているレベルにほぼ等しいレベルに達するようにするために、送り出される電力の即時増加が各酸素欠乏時に観察される。   Beginning at time T = 2 hours, the fuel cell experiences a periodic depletion of oxygen, which occurs every 5 minutes. Next, an immediate increase in the delivered power is observed at each oxygen deficiency to reach a level approximately equal to the level shown at time T = 0.

この酸素欠乏は、本発明の変形例のうちの1つの具体化、例えば、図1に見えるソレノイド弁129の開放に対応している。この開放は、例えば、所定の持続時間の間、例えば3分間、燃料電池の制御装置によって制御される。この制御は、制御装置から定期的な信号をソレノイド弁に送ることによって行われる。この弁の開放及び酸素欠乏状態は、燃料電池の端子のところの電圧の急降下を生じさせる。かくして、別の実施例では、ソレノイド弁の閉鎖は、燃料電池の端子のところの電圧が所定のしきい値、例えば500mVに達したときに命じられる。   This oxygen deficiency corresponds to one embodiment of the variation of the present invention, for example the opening of the solenoid valve 129 visible in FIG. This opening is controlled, for example, by a fuel cell controller for a predetermined duration, for example 3 minutes. This control is performed by sending a periodic signal from the control device to the solenoid valve. This valve opening and oxygen depletion condition causes a sudden drop in voltage at the fuel cell terminals. Thus, in another embodiment, closing the solenoid valve is commanded when the voltage at the fuel cell terminal reaches a predetermined threshold, eg, 500 mV.

かくして、定期的な酸素欠乏により1時間の動作後であっても性能を事実上初期レベルに維持することができるということが、この曲線を見て観察され、これに対し、本発明の方法を具体化しない場合、燃料電池の性能は、非常に迅速に低下することが分かる。   Thus, it can be observed from this curve that performance can be maintained at virtually the initial level even after 1 hour of operation due to periodic oxygen deprivation, whereas the method of the present invention is If not specified, it can be seen that the performance of the fuel cell decreases very quickly.

Claims (5)

固体高分子電解質膜型燃料電池(1)の性能を維持する方法であって、前記燃料電池は、燃料ガスリザーバを前記燃料電池のアノードに連結する燃料ガス供給回路及びオキシダントガスリザーバ又は大気を前記燃料電池のカソードに連結するオキシダントガス供給回路を含むシステム内に設置され、前記方法は、
-前記燃料電池に燃料ガス及びオキシダントガスを供給するステップと、
-前記燃料電池が電流を生じさせる動作体制に達すると、前記カソード側での前記燃料電池の入口へのオキシダントガスの前記供給を中断するステップと、
-所与の時間後及び/又は前記燃料電池の端子のところの電圧が所定レベルに達したとき、前記オキシダントガス供給を再開するステップと、
-前記燃料電池が動作している間は先行する2つの前記ステップを定期的に繰り返すステップと、を含み、
前記オキシダントガス供給を中断する前記ステップは、前記燃料電池の前記カソードの上流側に配置されていて前記オキシダントガス供給回路を周囲空気に連結している弁を開くステップから成る、方法。
A method for maintaining the performance of a solid polymer electrolyte membrane fuel cell (1), wherein the fuel cell includes a fuel gas supply circuit for connecting a fuel gas reservoir to an anode of the fuel cell and an oxidant gas reservoir or the atmosphere as the fuel. Installed in a system including an oxidant gas supply circuit connected to the cathode of the battery, the method comprising:
Supplying fuel gas and oxidant gas to the fuel cell;
-Interrupting the supply of oxidant gas to the inlet of the fuel cell on the cathode side when the fuel cell reaches an operating regime for generating current;
Restarting the oxidant gas supply after a given time and / or when the voltage at the terminal of the fuel cell reaches a predetermined level;
-Periodically repeating the preceding two steps while the fuel cell is operating,
The oxidant gas supply step suspends consists step of opening a valve that the fuel cell said are arranged on the upstream side of the cathode of the connecting the oxidant gas supply circuit to the circumferential enclosed space air method.
前記オキシダントガス供給を3秒間の中断後に再開する、請求項1記載の方法。   The method of claim 1, wherein the oxidant gas supply is resumed after a 3 second interruption. 前記オキシダントガス供給を前記燃料電池の前記端子のところの前記電圧が500ミリボルト未満になったときに再開する、請求項1記載の方法。   The method of claim 1, wherein the oxidant gas supply is resumed when the voltage at the terminal of the fuel cell is less than 500 millivolts. 前記ステップの繰り返し周期は、5分に設定されている、請求項1〜3のうちいずれか一に記載の方法。   The method according to claim 1, wherein the repetition period of the step is set to 5 minutes. 固体高分子イオン交換膜型燃料電池(1)のガス回路であって、
-燃料ガスリザーバを燃料電池のアノードに連結する燃料ガス供給回路(11)と、
-オキシダントガスリザーバ又は周囲空気を前記燃料電池のカソードに連結するオキシダントガス供給回路(12b)と、を有するガス回路において、
前記ガス回路は、前記オキシダントガス供給回路(12b)内に設置されていて、前記燃料電池の前記カソードへの酸素の供給を定期的に且つ瞬間的に中断するのに適した手段を更に有し、
酸素欠乏状態を生じさせることができる前記手段は、前記オキシダントガス供給回路内で前記カソードの上流側に配置されていて前記ガス回路を前記周囲空気に連結するソレノイド弁を含む、ガス回路。
A gas circuit of a solid polymer ion exchange membrane fuel cell (1),
A fuel gas supply circuit (11) connecting the fuel gas reservoir to the anode of the fuel cell;
An oxidant gas reservoir or ambient air connected to the cathode of the fuel cell, an oxidant gas supply circuit (12b),
The gas circuit, the oxidant gas have been installed in the supply circuit (12b) in further have a means adapted for periodically and momentarily interrupting the supply of oxygen to the cathode of the fuel cell And
The gas circuit, wherein the means capable of producing an oxygen-deficient state includes a solenoid valve disposed upstream of the cathode in the oxidant gas supply circuit and connecting the gas circuit to the ambient air.
JP2016516116A 2013-05-27 2014-05-27 Method and fuel cell gas circuit for maintaining fuel cell system performance Active JP6486336B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1354747A FR3006114B1 (en) 2013-05-27 2013-05-27 METHOD OF MAINTAINING THE PERFORMANCE OF A FUEL CELL SYSTEM, AND GAS CIRCUIT OF A FUEL CELL
FR1354747 2013-05-27
PCT/EP2014/060901 WO2014191384A1 (en) 2013-05-27 2014-05-27 Method for maintaining the performance of a fuel cell system, and fuel cell gas circuit

Publications (2)

Publication Number Publication Date
JP2016522974A JP2016522974A (en) 2016-08-04
JP6486336B2 true JP6486336B2 (en) 2019-03-20

Family

ID=49237285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016516116A Active JP6486336B2 (en) 2013-05-27 2014-05-27 Method and fuel cell gas circuit for maintaining fuel cell system performance

Country Status (5)

Country Link
EP (1) EP3005453A1 (en)
JP (1) JP6486336B2 (en)
CN (1) CN105247721A (en)
FR (1) FR3006114B1 (en)
WO (1) WO2014191384A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053841A1 (en) 2016-07-06 2018-01-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives MEMBRANE / ELECTRODES ASSEMBLY COMPRISING A HIGH CAPACITY CATALYTIC ANODE
CN106654324B (en) * 2016-11-17 2019-10-25 上海攀业氢能源科技有限公司 A method of restoring air-cooling fuel cell performance
WO2020097240A1 (en) * 2018-11-07 2020-05-14 Ballard Power Systems Inc. Method and system for operating an electrochemical fuel cell stack with improved performance recovery
CN111682245B (en) * 2020-05-12 2022-03-08 广东国鸿氢能科技有限公司 Method for recovering performance of fuel cell stack
CN112864424A (en) * 2021-03-29 2021-05-28 武汉理工大学 Method for quickly activating proton exchange membrane fuel cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472090B1 (en) * 1999-06-25 2002-10-29 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic reactant starvation
US6399231B1 (en) * 2000-06-22 2002-06-04 Utc Fuel Cells, Llc Method and apparatus for regenerating the performance of a PEM fuel cell
US6841278B2 (en) * 2002-05-30 2005-01-11 Utc Fuel Cells, Llc Fuel cell performance recovery by cyclic oxidant starvation
JP4742501B2 (en) * 2004-02-17 2011-08-10 日産自動車株式会社 Fuel cell system
FR2873498B1 (en) * 2004-07-20 2007-08-10 Conception & Dev Michelin Sa STOPPING A FUEL CELL SUPPLIED WITH PURE OXYGEN
JP5064723B2 (en) * 2006-05-25 2012-10-31 パナソニック株式会社 Operation method of fuel cell
JP5190749B2 (en) * 2006-11-22 2013-04-24 トヨタ自動車株式会社 Fuel cell system
US9413020B2 (en) * 2008-09-17 2016-08-09 Belenos Clean Power Holding Ag Method of shut-down and starting of a fuel cell

Also Published As

Publication number Publication date
FR3006114A1 (en) 2014-11-28
EP3005453A1 (en) 2016-04-13
WO2014191384A1 (en) 2014-12-04
CN105247721A (en) 2016-01-13
JP2016522974A (en) 2016-08-04
FR3006114B1 (en) 2016-11-11

Similar Documents

Publication Publication Date Title
JP4350944B2 (en) Method for improving operating efficiency of fuel cell power equipment
JP5526226B2 (en) Method for activating solid polymer fuel cell
JP6453869B2 (en) Method for shutting down a system including a fuel cell stack and system including a fuel cell stack
JP4538190B2 (en) High fuel utilization in the fuel cell
JP6486336B2 (en) Method and fuel cell gas circuit for maintaining fuel cell system performance
JP4481165B2 (en) Recovery of fuel cell performance due to periodic oxidant depletion.
JP2014509045A (en) Recirculation loop for fuel cell stack
US8192876B2 (en) Method for operating a fuel cell system in a mode of reduced power output
WO2020138338A1 (en) Fuel cell activation method and apparatus
EP2375484B1 (en) Operating method of fuel cell system
JP2007184196A (en) Fuel cell system
JP5762263B2 (en) Gas supply system
JP2008257984A (en) Fuel cell system
JP4917796B2 (en) Fuel cell system
JP7393450B2 (en) Regenerative fuel cell system
JP2005276657A (en) Direct methanol fuel cell power generating apparatus and operating method thereof
JP4141796B2 (en) Fuel supply valve status detection device
JP6389835B2 (en) Pressure control method during output acceleration of fuel cell system
JP5559002B2 (en) Fuel cell system and starting method thereof
JP4627487B2 (en) Fuel cell system and fuel cell control method
JP5410766B2 (en) Fuel cell system and cathode pressure control method for fuel cell system
JP2017152174A (en) Stop control method for fuel cell system
JP4627486B2 (en) Fuel cell system and fuel cell control method
JP6315714B2 (en) Operation control method of fuel cell system
JP5557579B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190219

R150 Certificate of patent or registration of utility model

Ref document number: 6486336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250