JP6485692B2 - Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring - Google Patents
Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring Download PDFInfo
- Publication number
- JP6485692B2 JP6485692B2 JP2015051487A JP2015051487A JP6485692B2 JP 6485692 B2 JP6485692 B2 JP 6485692B2 JP 2015051487 A JP2015051487 A JP 2015051487A JP 2015051487 A JP2015051487 A JP 2015051487A JP 6485692 B2 JP6485692 B2 JP 6485692B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- heat
- resistant alloy
- alloy
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 195
- 239000000956 alloy Substances 0.000 title claims description 195
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000000463 material Substances 0.000 claims description 55
- 238000012545 processing Methods 0.000 claims description 55
- 239000000203 mixture Substances 0.000 claims description 48
- 230000032683 aging Effects 0.000 claims description 45
- 229910052782 aluminium Inorganic materials 0.000 claims description 35
- 229910052804 chromium Inorganic materials 0.000 claims description 35
- 229910052758 niobium Inorganic materials 0.000 claims description 35
- 229910052719 titanium Inorganic materials 0.000 claims description 32
- 230000035882 stress Effects 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- 229910052750 molybdenum Inorganic materials 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 238000005482 strain hardening Methods 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000005452 bending Methods 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 239000000523 sample Substances 0.000 description 104
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 46
- 230000000694 effects Effects 0.000 description 34
- 238000010438 heat treatment Methods 0.000 description 33
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 19
- 238000005259 measurement Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 229910001247 waspaloy Inorganic materials 0.000 description 11
- 238000005491 wire drawing Methods 0.000 description 11
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- 238000010587 phase diagram Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000000921 elemental analysis Methods 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 101000912561 Bos taurus Fibrinogen gamma-B chain Proteins 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 3
- 229910000816 inconels 718 Inorganic materials 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- 229910000521 B alloy Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 229910001188 F alloy Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000519995 Stachys sylvatica Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Description
本発明は、高温強度に優れた耐熱合金およびその製造方法と耐熱合金ばねに関する。 The present invention relates to a heat-resistant alloy excellent in high-temperature strength, a manufacturing method thereof, and a heat-resistant alloy spring.
従来から、エンジンの排気バルブ開閉用に耐熱ばねが使用されておりワスパロイ(Waspaloy:登録商標)、 インコネル718(Inconel:登録商標)などの耐熱合金からなる耐熱ばねが知られている。
インコネル718(登録商標)は、γ’’(ガンマダブルプライム)相を強化相として利用したNi基耐熱合金として知られており、ワスパロイ(登録商標)は、γ’’相よりも安定なγ’(ガンマプライム)相を強化相として25体積%程度析出させた耐熱合金として知られている。また、耐熱特性を向上させたUdimet720(登録商標)は、γ’相を45体積%程度析出させ、かつγ相の固溶強化のためにタングステンを添加したNi基耐熱合金として知られている。
Conventionally, heat-resistant springs have been used for opening and closing exhaust valves of engines, and heat-resistant springs made of heat-resistant alloys such as Waspaloy (registered trademark) and Inconel 718 (Inconel: registered trademark) are known.
Inconel 718 (registered trademark) is known as a Ni-based heat-resistant alloy using a γ ″ (gamma double prime) phase as a reinforcing phase, and Waspaloy (registered trademark) is more stable than γ ″ phase. It is known as a heat-resistant alloy in which about 25% by volume is precipitated using a (gamma prime) phase as a strengthening phase. Udimet 720 (registered trademark) with improved heat resistance is known as a Ni-based heat-resistant alloy in which about 45% by volume of the γ ′ phase is precipitated and tungsten is added for solid solution strengthening of the γ phase.
また、従来、発電プラントの蒸気タービン用やガスタービン用などの機械的強度に優れたNi基合金として、質量%でC:0.01〜0.15%、Cr:14〜20%、Co:10〜15%、Mo:6〜12%、Al:0.5〜4%、Ti:0.5〜4%、B:0.001〜0.006%を含有し、残部Niおよび不可避不純物からなり、結晶粒界に沿って結晶粒界上の少なくとも一部に不連続となる部分を有して塊状に析出した炭化物、結晶粒界内に粒状に析出した析出物を備えた合金が知られている(特許文献1参照)。 Conventionally, as Ni-based alloys having excellent mechanical strength for steam turbines and gas turbines of power plants, C: 0.01 to 0.15%, Cr: 14 to 20%, Co: 10 to 15%, Mo: 6 to 12%, Al: 0.5 to 4%, Ti: 0.5 to 4%, B: 0.001 to 0.006%, from the remaining Ni and inevitable impurities There are known carbides that have a discontinuous portion on at least a part of the crystal grain boundary along the grain boundary and precipitate in a lump shape, and an alloy having a precipitate precipitated in the grain boundary. (See Patent Document 1).
従来、エンジン、ガスタービンなどの耐熱部材用のNi基耐熱超合金として、Cr、Co、Ti、Al、Niを主要元素として含み、アニーリングツインを含み、ミクロ組織の平均結晶粒径が1〜60μmであるニッケル基耐熱超合金が知られている(特許文献2参照)。
従来、2〜25質量%のCr、2〜7質量%以下のAl、19.5〜55質量%のCoを基本組成として含有し、Tiを特定量添加し、γ’固溶温度の93〜100%未満で固溶体化したNi基耐熱合金が知られている(特許文献3参照)。
Conventionally, as Ni-base heat-resistant superalloys for heat-resistant members such as engines and gas turbines, Cr, Co, Ti, Al, Ni are included as main elements, annealing twins are included, and the average crystal grain size of the microstructure is 1-60 μm A nickel-based heat-resistant superalloy is known (see Patent Document 2).
Conventionally, 2 to 25% by mass of Cr, 2 to 7% by mass or less of Al, 19.5 to 55% by mass of Co are contained as a basic composition, a specific amount of Ti is added, and a γ ′ solid solution temperature of 93 to A Ni-base heat-resistant alloy that is solid solution at less than 100% is known (see Patent Document 3).
前記インコネル718(登録商標)は650℃、ワスパロイ(登録商標)は700℃が耐へたり性の限界とされている。
近年、エンジンの更なる効率アップを狙って排気バルブをエンジンにより近い位置に配置する傾向がある。すなわち、この種の耐熱合金には、更なる耐熱性の向上と機械特性の向上が要求されている。また、この種の耐熱合金からなる耐熱ばねには、今まで以上の高温耐熱へたり性が要求されている。
The limit of sag resistance is 650 ° C. for Inconel 718 (registered trademark) and 700 ° C. for Waspalloy (registered trademark).
In recent years, there is a tendency to arrange exhaust valves closer to the engine in order to further increase the efficiency of the engine. That is, this type of heat-resistant alloy is required to further improve heat resistance and mechanical properties. In addition, heat-resistant springs made of this type of heat-resistant alloy are required to have higher temperature and heat resistance than ever before.
本発明は、従来の実情に鑑みなされたものであり、従来材より優れた高温強度と耐へたり性を備えた耐熱合金とその製造方法、および耐熱合金ばねの提供を目的とする。 The present invention has been made in view of conventional circumstances, and an object of the present invention is to provide a heat-resistant alloy having a high-temperature strength and sag resistance superior to those of conventional materials, a manufacturing method thereof, and a heat-resistant alloy spring.
上記課題を解決するため、本発明の高温強度に優れる耐熱合金は、質量比でNi:34〜46%、Cr:13.5〜18%、Mo:2〜9%、Nb2.5〜3.5%、Fe:1〜2%、Al:1.5〜2.5%、Ti:0.6〜1.0%を含み、残部Co及び不可避不純物の組成を有し、かつ、組織が、γ母相と、粒径20〜50nmかつ体積率52〜65%のγ’相と、体積率10%以下のμ相を備えたことを特徴とする。 In order to solve the above-described problems, the heat-resistant alloy having excellent high-temperature strength according to the present invention has a mass ratio of Ni: 34 to 46%, Cr: 13.5 to 18%, Mo: 2 to 9%, Nb 2.5 to 3. 5%, Fe: 1-2%, Al: 1.5-2.5%, Ti: 0.6-1.0%, the composition of the balance Co and inevitable impurities, and the structure, A γ parent phase, a γ ′ phase having a particle size of 20 to 50 nm and a volume ratio of 52 to 65%, and a μ phase having a volume ratio of 10% or less are provided.
本発明の高温強度に優れる耐熱合金は、前記組成において、更に、Mn:0.3〜0.6%、Si:0.15〜0.25%、Zr:0.04〜0.06%、C:0.04〜0.06%の1種または2種以上を含んでいてもよい。
本発明の高温強度に優れる耐熱合金において、前記γ‘相が、組成式(Ni,Co)3(Al,Nb,Cr,Co,Ti)で示され、質量比でNi:57〜61%、Al:5〜6%、Nb:10〜13%、Ti:3〜5%、Cr:2〜3%、Co15〜17%を含む組成であることが好ましい。
本発明の高温強度に優れる耐熱合金において、板材(圧延材)ではビッカース硬さHV420以上、560未満、引張強さ1080MPa以上、1580MPa未満、線材(伸線加工材)ではビッカース硬さHV360以上、630未満、引張強さ1210MPa以上、2170MPa未満とすることができる。
In the above composition, the heat-resistant alloy having excellent high-temperature strength according to the present invention further has Mn: 0.3 to 0.6%, Si: 0.15 to 0.25%, Zr: 0.04 to 0.06%, C: You may contain 1 type, or 2 or more types of 0.04-0.06%.
In the heat-resistant alloy excellent in high temperature strength of the present invention, the γ ′ phase is represented by a composition formula (Ni, Co) 3 (Al, Nb, Cr, Co, Ti), and Ni: 57 to 61% by mass ratio. A composition containing Al: 5-6%, Nb: 10-13%, Ti: 3-5%, Cr: 2-3%, and Co 15-17% is preferable.
In the heat-resistant alloy excellent in high temperature strength of the present invention, the Vickers hardness is HV420 or more and less than 560 for the plate material (rolled material), the tensile strength is 1080 MPa or more and less than 1580 MPa, and the wire material (drawn material) is Vickers hardness HV360 or more and 630. Or a tensile strength of 1210 MPa or more and less than 2170 MPa.
本発明の高温強度に優れる耐熱合金の製造方法は、質量比でNi:34〜46%、Cr:13.5〜18%、Mo:2〜9%、Nb2.5〜3.5%、Fe:1〜2%、Al:1.5〜2.5%、Ti:0.6〜1.0%を含み、残部Co及び不可避不純物の組成を有する鋳塊を1150〜1250℃で4〜8時間均一化処理後、700〜850℃で2〜4時間の時効処理を施した後、所定の形状に成形し、さらに700〜850℃で2〜4時間の時効処理を施すことにより、γ母相と、粒径20〜50nmかつ体積率52〜65%のγ’相と、体積率10%以下のμ相を備えた組織とすることを特徴とする。
本発明の高温強度に優れる耐熱合金の製造方法は、質量比でNi:34〜46%、Cr:13.5〜18%、Mo:2〜9%、Nb2.5〜3.5%、Fe:1〜2%、Al:1.5〜2.5%、Ti:0.6〜1.0%を含み、残部Co及び不可避不純物の組成を有する鋳塊を1150〜1250℃で4〜8時間均一化処理後、加工率20%以上、60%未満の冷間加工を加え、所定の形状に成形し、700〜850℃で1〜4時間の時効処理を施すことにより、γ母相と、粒径20〜50nmかつ体積率52〜65%のγ’相と、体積率10%以下のμ相を備えた組織とすることを特徴とする。
The manufacturing method of the heat-resistant alloy excellent in high temperature strength of the present invention is as follows: mass ratio: Ni: 34 to 46%, Cr: 13.5 to 18%, Mo: 2 to 9%, Nb 2.5 to 3.5%, Fe : Ingot containing 1 to 2%, Al: 1.5 to 2.5%, Ti: 0.6 to 1.0%, and having the balance Co and inevitable impurity composition at 1150 to 1250 ° C and 4 to 8 after time homogenization treatment, it was subjected to an aging treatment of 2-4 hours at 700-850 ° C., and molded into a predetermined shape, Ri by the applying 2-4 hours of aging treatment at 700-850 ° C., It is characterized by having a structure including a γ parent phase, a γ ′ phase having a particle size of 20 to 50 nm and a volume ratio of 52 to 65%, and a μ phase having a volume ratio of 10% or less.
The manufacturing method of the heat-resistant alloy excellent in high temperature strength of the present invention is as follows: mass ratio: Ni: 34 to 46%, Cr: 13.5 to 18%, Mo: 2 to 9%, Nb 2.5 to 3.5%, Fe : Ingot containing 1 to 2%, Al: 1.5 to 2.5%, Ti: 0.6 to 1.0%, and having the balance Co and inevitable impurity composition at 1150 to 1250 ° C and 4 to 8 After the time equalization treatment, a cold working with a processing rate of 20% or more and less than 60% is added, formed into a predetermined shape, and subjected to an aging treatment at 700 to 850 ° C. for 1 to 4 hours. And a structure having a γ ′ phase having a particle size of 20 to 50 nm and a volume ratio of 52 to 65% and a μ phase having a volume ratio of 10% or less.
本発明の高温強度に優れる耐熱合金の製造方法は、前記組成において、更に、Mn:0.3〜0.6%、Si:0.15〜0.25%、Zr:0.04〜0.06%、C:0.04〜0.06%の1種または2種以上を含む組成を有する鋳塊を用いることができる。
本発明の高温強度に優れる耐熱合金の製造方法は、前記γ‘相が、組成式(Ni,Co)3(Al,Nb,Cr,Co,Ti)で示され、質量比でNi:57〜61%、Al:5〜6%、Nb:10〜13%、Ti:3〜5%、Cr:2〜3%、Co15〜17%を含むことを特徴とする。
本発明の高温強度に優れる耐熱合金の製造方法は、板材ではビッカース硬さHV420以上、560未満、引張強さ1080MPa以上、1580MPa未満、線材ではビッカース硬さHV360以上、630未満、引張強さ1210MPa以上、2170MPa未満とすることが好ましい。
本発明の高温強度に優れる耐熱合金の製造方法は、所定の形状に成形した後に行う前記時効処理を800℃で2〜3時間処理することにより、700℃、96時間で550MPaの曲げ応力によるへたりを30%以下とすることが好ましい。
本発明の耐熱合金ばねは、先のいずれかの特徴を有する耐熱合金からなる。
In the method for producing a heat-resistant alloy having excellent high temperature strength according to the present invention, Mn: 0.3-0.6%, Si: 0.15-0.25%, Zr: 0.04-0. An ingot having a composition containing one or more of 06% and C: 0.04 to 0.06% can be used.
In the method for producing a heat-resistant alloy having excellent high-temperature strength according to the present invention, the γ ′ phase is represented by the composition formula (Ni, Co) 3 (Al, Nb, Cr, Co, Ti), and the mass ratio is Ni: 57 to 61%, Al: 5 to 6%, Nb: 10 to 13%, Ti: 3 to 5%, Cr: 2 to 3%, Co 15 to 17%.
Method for producing a heat-resistant alloy excellent in high temperature strength of the present invention, Vickers hardness HV420 above a plate material, less than 560, the tensile strength of 1080MPa or more, less than 1580MPa, the wire Vickers hardness HV360 or more, less than 630, the tensile strength 1210MPa As described above, the pressure is preferably less than 2170 MPa.
In the method for producing a heat-resistant alloy having excellent high-temperature strength according to the present invention, the aging treatment performed after forming into a predetermined shape is performed at 800 ° C. for 2 to 3 hours, so that the bending stress of 550 MPa is obtained at 700 ° C. for 96 hours. It is preferable that the content is 30% or less.
The heat-resistant alloy spring of the present invention is made of a heat-resistant alloy having any one of the above characteristics.
本発明によれば、20〜50nmの粒径の微細なγ’相が高温になっても粒成長し難く、組織の大半を占めるので、従来材より優れた高温強度を有し、優れた耐へたり性と優れた耐食性を備えた耐熱合金を提供できる。また、Co、Ni、Cr、Mo、Nb、Fe、Al、Tiを上述の組成比でバランス良く含むことで、耐食性に優れ、硬度が高く、加工性に優れ、靭性の低下も生じ難い耐熱合金を提供できる。
微細なγ’相は、転位すべり止め効果を有効に作用させ、高温になってもγ’相が粒成長し難いので、高温強度に特に優れた耐熱合金を提供できる。また、μ相の割合を低く抑えることで、変形過程においてクラックの発生を抑制できるので、靭性の低下が起こり難く加工性に優れた耐熱合金を提供できる。
本発明によれば、γ’相として、NiとAlに加えてNb、Cr、Co、Tiを含むγ’相としているので、高温に長時間曝されてもγ’相の粒成長が生じ難く、高温かつ長時間の加熱に耐える耐熱合金を提供できる。
According to the present invention, a fine γ ′ phase having a particle size of 20 to 50 nm hardly grows even at a high temperature and occupies most of the structure. It is possible to provide a heat-resistant alloy having sagability and excellent corrosion resistance. In addition, by containing Co, Ni, Cr, Mo, Nb, Fe, Al, and Ti in a balanced manner as described above, the heat resistant alloy has excellent corrosion resistance, high hardness, excellent workability, and does not easily deteriorate toughness. Can provide.
The fine γ ′ phase effectively acts as a dislocation slip-preventing effect, and since the γ ′ phase hardly grows even at high temperatures, it can provide a heat-resistant alloy that is particularly excellent in high-temperature strength. Moreover, since the generation of cracks during the deformation process can be suppressed by keeping the ratio of the μ phase low, it is possible to provide a heat-resistant alloy that is difficult to cause a decrease in toughness and has excellent workability.
According to the present invention, since the γ ′ phase is a γ ′ phase containing Nb, Cr, Co, and Ti in addition to Ni and Al, even if exposed to a high temperature for a long time, the γ ′ phase hardly grows. It is possible to provide a heat-resistant alloy that can withstand high temperature and long-time heating.
本発明の製造方法によれば、時効効果により高温強度が向上し、硬度が高く、加工性に優れ、耐へたり性に優れた耐熱合金を製造することができる。
本発明の耐熱合金から耐熱合金ばねを形成できる。
According to the production method of the present invention, it is possible to produce a heat-resistant alloy with improved high-temperature strength due to aging effects, high hardness, excellent workability, and excellent sag resistance.
A heat resistant alloy spring can be formed from the heat resistant alloy of the present invention.
以下に本発明の実施形態に係る高温強度に優れた耐熱合金について説明する。
本実施形態の耐熱合金は、質量比でNi:34〜46%、Cr:13.5〜18%、Mo:2〜9%、Nb2.5〜3.5%、Fe:1〜2%、Al:1.5〜2.5%、Ti:0.6〜1.0%を含み、残部Co及び不可避不純物からなる組成を有し、かつ、組織がγ母相と粒径20〜50nmのγ’相を主体としてなることを特徴とする。また、組織の大半を占めるγ’相は体積率で52〜65%含まれていることが好ましく、組織の一部に体積率で10%以下のμ相を含んでいてもよい。
本実施形態の耐熱合金は、前記組成において、更に、Mn:0.3〜0.6%、Si:0.15〜0.25%、Zr:0.04〜0.06%、C:0.04〜0.06%を含むことが好ましい。
The heat-resistant alloy excellent in high temperature strength according to the embodiment of the present invention will be described below.
The heat-resistant alloy of the present embodiment has a mass ratio of Ni: 34 to 46%, Cr: 13.5 to 18%, Mo: 2 to 9%, Nb 2.5 to 3.5%, Fe: 1 to 2%, Al: 1.5 to 2.5%, Ti: 0.6 to 1.0%, the balance is Co and inevitable impurities, and the structure is γ matrix and particle size 20 to 50 nm It is characterized by being mainly composed of a γ 'phase. The γ ′ phase occupying most of the tissue is preferably contained in a volume ratio of 52 to 65%, and a part of the tissue may contain a μ phase having a volume ratio of 10% or less.
In the heat-resistant alloy of the present embodiment, in the above composition, Mn: 0.3 to 0.6%, Si: 0.15 to 0.25%, Zr: 0.04 to 0.06%, C: 0 It is preferable to contain 0.04 to 0.06%.
本実施形態の耐熱合金において、前記γ‘相が、組成式(Ni,Co)3(Al,Nb,Cr,Co,Ti)で示され、質量比でNi:57〜61%、Al:5〜6%、Nb:10〜13%、Ti:3〜5%、Cr:2〜3%、Co15〜17%を含む組成であることが好ましい。
なお、本願明細書において各元素の含有範囲について〜を用いて表記した場合、特に記載しない限り、上限と下限を含むものとする。このため、例えば、Ni:59〜61%と表記した場合Niを59%以上61%以下の範囲で含むことを意味する。
In the heat-resistant alloy of this embodiment, the γ ′ phase is represented by a composition formula (Ni, Co) 3 (Al, Nb, Cr, Co, Ti), and has a mass ratio of Ni: 57 to 61%, Al: 5 It is preferable that it is a composition containing -6%, Nb: 10-13%, Ti: 3-5%, Cr: 2-3%, Co15-17%.
In addition, when it describes using-about the content range of each element in this specification, unless otherwise indicated, an upper limit and a lower limit shall be included. For this reason, for example, when expressed as Ni: 59 to 61%, it means that Ni is included in the range of 59% to 61%.
以下に本実施形態の耐熱合金において組成範囲を限定した理由について説明する。
Crは、耐食性を確保するのに不可欠な成分であり、また、マトリクスを強化する効果があるが、13.5%未満では高温耐へたり性に対する効果が弱く、18%を越えると熱処理時に加工性・靭性に影響を及ぼすσ相が発生するため、13.5%以上18%以下とした。
Moは、マトリクスに固溶してこれを強化する効果、加工硬化能を増大させる効果、及びCrとの共存において耐食性を高める効果があるが、2%未満では所望する効果が得られず、9%を越えるとμ相が生成しやすくなることから、2%以上9%以下とした。
The reason why the composition range is limited in the heat resistant alloy of the present embodiment will be described below.
Cr is an indispensable component for ensuring corrosion resistance and has an effect of strengthening the matrix. However, if it is less than 13.5%, the effect on high temperature sag resistance is weak, and if it exceeds 18%, it is processed during heat treatment. Since a σ phase that affects the toughness and toughness is generated, it is set to 13.5% or more and 18% or less.
Mo has the effect of strengthening the solid solution by dissolving in the matrix, the effect of increasing the work hardening ability, and the effect of increasing the corrosion resistance in the coexistence with Cr. However, if it is less than 2%, the desired effect cannot be obtained. If it exceeds 50%, the μ phase is likely to be generated, so the content was set to 2% or more and 9% or less.
Niは、面心立方格子相を安定化し、加工性を維持し、耐食性を高める効果があるが、本発明合金のCo、Cr、Mo、Nb、Feの組成範囲において、Niが34%未満では安定した面心立方格子相を得ることが困難であり、46%を越えると機械的強度が低下することから、34%以上46%以下とした。
Coは、それ自体加工硬化能が大きく、切り欠け脆さを減じ、疲労強度を高め、高温強度を高める効果があるが、17%未満ではその効果が弱く、本案組成で41%を越えるとマトリクスが硬くなり過ぎて加工困難となると共に面心立方格子相が最密六方格子相に対して不安定になるため、17%以上41%以下とした。
Ni stabilizes the face-centered cubic lattice phase, maintains workability, and improves corrosion resistance. However, in the composition range of Co, Cr, Mo, Nb, and Fe of the alloy of the present invention, when Ni is less than 34% It is difficult to obtain a stable face-centered cubic lattice phase, and if it exceeds 46%, the mechanical strength decreases.
Co itself has a large work-hardening ability, and has the effect of reducing notch brittleness, increasing fatigue strength, and increasing high-temperature strength, but the effect is weak at less than 17%, and when it exceeds 41% in the proposed composition, it is a matrix. Is too hard to process, and the face-centered cubic lattice phase becomes unstable with respect to the close-packed hexagonal lattice phase.
Tiは強い脱酸、脱窒、脱硫の効果、及び鋳塊組織の微細化の効果があるが、0.6%未満ではその効果が弱く、例えば1%では問題がないが、多過ぎると合金中に介在物が増え、η相(Ni3Ti)が析出して靱性が低下し、また、TiはAlを代替して安定なγ’相の形成には有効であるため、0.6%以上1.0%以下とした。
Mnは脱酸、脱硫の効果、及び面心立方格子相を安定化する効果があるが、多過ぎると耐食性、耐酸化性を劣化させるため、0.3%以上0.6%以下とした。
Ti has the effect of strong deoxidation, denitrification, desulfurization, and refinement of the ingot structure, but the effect is weak at less than 0.6%, for example, 1% is not a problem. Inclusions increase, η phase (Ni 3 Ti) precipitates and the toughness decreases, and Ti is effective for forming a stable γ ′ phase by replacing Al, so 0.6% It was made into 1.0% or less above.
Mn has the effect of deoxidation and desulfurization and the effect of stabilizing the face-centered cubic lattice phase, but if it is too much, the corrosion resistance and oxidation resistance are deteriorated.
Feは、マトリクスに固溶してこれを強化する効果があるが多過ぎると耐酸化性が低下するため上限を2.0%として、1%以上2%以下とした。
Cは、マトリクスに固溶するほか、Cr、Mo、Nb、W等と炭化物を形成し、結晶粒の粗大化の防止効果があるが、多過ぎると靭性の低下、耐食性の劣化等が生じるため、0.04%以上0.06%以下とした。
NbはTiと同様にAlを代替して安定なγ’相の形成には有効であり、多量に添加するとσ相やδ相(Ni3Nb)が析出して靭性が低下するが、マトリクスに固溶してこれを強化し、加工硬化能を増大させる効果があるため、2.5%以上3.5%以下とした。
Alは、脱酸、及び耐酸化性を向上させる効果とともにγ’相析出に必要な元素となる。ただし多量に含有させる場合はμ相の析出が多くなり狙った効果が得られない事から1.5%以上2.5%以下とした。
Fe has an effect of strengthening the solid solution in the matrix, but if too much, the oxidation resistance is lowered. Therefore, the upper limit is set to 2.0%, and is set to 1% or more and 2% or less.
C forms a carbide with Cr, Mo, Nb, W, etc. in addition to solid solution in the matrix, and has an effect of preventing coarsening of crystal grains. However, if too large, C causes toughness reduction, corrosion resistance deterioration, and the like. 0.04% to 0.06%.
Nb is effective for the formation of a stable γ ′ phase by substituting Al like Ti, and when added in a large amount, the σ phase and δ phase (Ni 3 Nb) are precipitated and the toughness is lowered. Since it has the effect of strengthening the solution by solid solution and increasing the work hardening ability, it is set to 2.5% or more and 3.5% or less.
Al becomes an element necessary for γ ′ phase precipitation together with effects of improving deoxidation and oxidation resistance. However, when it is contained in a large amount, the precipitation of the μ phase increases and the aimed effect cannot be obtained, so the content was made 1.5% to 2.5%.
Zrは、高温での結晶粒界強度を上げて、熱間加工性を向上させる効果があるが、多過ぎると逆に加工性が悪くなるため、Zrは0.04%以上0.06%以下とした。
Siは合金の耐酸化特性の向上に役たち、また鋳造過程において脱酸な効果がある、多量に添加すると、μ相、σ相を形成しやすくするため、0.15%以上0.25%以下とした。
Zr has the effect of increasing the grain boundary strength at high temperature and improving the hot workability, but if it is too much, the workability deteriorates conversely, so Zr is 0.04% or more and 0.06% or less. It was.
Si serves to improve the oxidation resistance of the alloy and has a deoxidizing effect in the casting process. When added in a large amount, it makes it easier to form a μ phase and a σ phase, so 0.15% or more and 0.25%. It was as follows.
本実施形態の耐熱合金は、一例として、γ母相を体積率で25〜48%、γ’相を52〜65%、μ相を10%以下含む組織を有する。μ相は析出していない組織としても良い。 As an example, the heat-resistant alloy of this embodiment has a structure including a γ parent phase of 25 to 48% by volume, a γ ′ phase of 52 to 65%, and a μ phase of 10% or less. The μ phase may be a structure not precipitated.
図1は後述する実施例において得られたCo-35Ni-17.5Cr-8Mo-3Nb-2Al-1.6Fe-0.8Ti-0.5Mn-0.2Si-0.05Zr-0.05Cなる組成の合金について、加工率20%での冷間加工後に800℃で2時間時効処理した後の合金組織を示す写真(1000倍)である。図2は同合金の加工率40%での冷間加工後に800℃で2時間時効処理した後の合金組織を示す写真(1000倍)であり、図3は同合金の加工率60%での冷間加工後に800℃で2時間時効処理した後の合金組織を示す写真(1000倍)である。
本発明に係る合金の組織は、図1〜図3の組織写真に示すように白点状に見えるμ相が析出された領域があり、その他の暗色部分の組織において、粒径20〜50nm程度の粒子状のγ’相が10〜20nm程度の間隔で析出された微細領域を有し、その周囲をγ母相が覆った構造を有している。この暗色部分の詳細構造については、後述する実施例の解析結果において詳述する。
FIG. 1 shows a processing rate of 20 for an alloy of the composition Co-35Ni-17.5Cr-8Mo-3Nb-2Al-1.6Fe-0.8Ti-0.5Mn-0.2Si-0.05Zr-0.05C obtained in the examples described later. 2 is a photograph (1000 times) showing an alloy structure after aging treatment at 800 ° C. for 2 hours after cold working at%. FIG. 2 is a photograph (1000 times) showing the alloy structure after aging treatment at 800 ° C. for 2 hours after cold working at a working rate of 40%. FIG. 3 shows the alloy at a working rate of 60%. It is a photograph (1000 times) which shows the alloy structure after aging treatment at 800 ° C for 2 hours after cold working.
The structure of the alloy according to the present invention has a region in which a μ phase that looks like white spots is precipitated as shown in the structure photographs of FIGS. 1 to 3, and in the structure of other dark portions, the particle size is about 20 to 50 nm. The particulate γ 'phase has a fine region in which it is deposited at intervals of about 10 to 20 nm, and the γ parent phase covers the periphery. The detailed structure of the dark color portion will be described in detail in the analysis results of examples described later.
本実施形態の合金において、γ’相は、この種のNiCrCoAl系の耐熱合金が生成する通常の単純なNi3Alではなく、組成式Ni3(Al,Nb)で示されるL12構造のγ’相、より詳細には組成式(Ni,Co)3(Al,Nb,Cr,Co,Ti)で示されるγ'相とされている。
そして、このγ’相は、質量比でNi:59〜61%、Al:5〜6%、Nb:10〜13%、Ti:3〜5%、Cr:2〜3%、Co15〜17%を含む組成であることが好ましい。本実施形態の合金では、Ni3Alが生成するγ’相に対し、Nbが固溶するとともに、他の添加元素である、Cr、Co、Tiも含まれたγ’相が生成される。
In the alloy of the present embodiment, gamma 'phase usually simple Ni 3 rather than Al of NiCrCoAl based heat resistant alloy of this type is produced, the L1 2 structure represented by the composition formula Ni 3 (Al, Nb) gamma 'Phase, more specifically, a γ' phase represented by a composition formula (Ni, Co) 3 (Al, Nb, Cr, Co, Ti).
And this γ 'phase is Ni: 59-61%, Al: 5-6%, Nb: 10-13%, Ti: 3-5%, Cr: 2-3%, Co15-17% by mass ratio It is preferable that it is a composition containing. In the alloy of the present embodiment, Nb is dissolved in the γ ′ phase produced by Ni 3 Al, and a γ ′ phase containing other additive elements such as Cr, Co, and Ti is produced.
このようにNi3Alに加えてNbが含まれていること、更に加えてCr、Co、Tiも含まれていることにより、本実施形態の合金に生成するγ’相は、20〜50nm程度の微細粒子であって、しかもこの微細粒子が熱履歴を経た後においてもこの範囲の粒径を保つことで、機械的特性と耐熱性の両方に優れた耐熱合金としての特性を発揮する。
この系の合金において、高温でも粒成長しない組成式Ni3(Al,Nb)で示されるL12構造のγ’相、より詳細には組成式(Ni,Co)3(Al,Nb,Cr,Co,Ti)で示されるγ'相が析出したことは、今回初めて得た知見であり本願発明合金の特異性を示している。また、同時に前記γ’相を有するこの系の合金が鈴木効果を発現したことも今回初めて得た知見であり、本願発明合金の特異性を示している。
Thus, in addition to Ni 3 Al, Nb is contained, and in addition, Cr, Co, and Ti are contained, so that the γ ′ phase generated in the alloy of this embodiment is about 20 to 50 nm. Further, by maintaining the particle size within this range even after the fine particles have undergone a thermal history, the characteristics as a heat-resistant alloy excellent in both mechanical properties and heat resistance are exhibited.
In alloys of this system, L1 2 structure gamma 'phase represented by the composition formula Ni 3 without grain growth at high temperatures (Al, Nb), and more formula (Ni, Co) 3 (Al , Nb, Cr, The precipitation of the γ ′ phase represented by (Co, Ti) is a knowledge obtained for the first time this time and shows the specificity of the alloy of the present invention. At the same time, the fact that this type of alloy having the γ ′ phase has developed the Suzuki effect is also the first knowledge obtained this time, indicating the specificity of the alloy of the present invention.
機械特性について例えば、板材ではビッカース硬さHV420以上、560未満、引張強さ1080MPa以上、1580MPa未満、線材ではビッカース硬さHV360以上、630未満、引張強さ1210MPa以上、2170MPa未満で、ヤング率Eが210〜250GPa、横弾性係数Gが80〜95GPa、ポアソン比0.31〜0.32の優れた機械特性が得られる。
また、一例として、ねじり応力392MPaで700℃、96時間での荷重損失率が35%以下のように優れたばね材としての特性が得られる。
本実施形態の耐熱合金において、μ相(Moリッチ)の平均粒径は90〜380μmであり、体積率で10%以下、例えば9%未満であることが好ましい。μ相は本実施形態の合金組織の中では脆い相であり、μ相が多く析出すると靭性が低下し加工性が劣化する。
Regarding mechanical properties, for example, Vickers hardness HV 420 or more and less than 560 for a plate material, tensile strength 1080 MPa or more and less than 1580 MPa, for a wire material, Vickers hardness HV 360 or more and less than 630, tensile strength 1210 MPa or more and less than 2170 MPa, and Young's modulus E is Excellent mechanical properties of 210 to 250 GPa, a transverse elastic modulus G of 80 to 95 GPa, and a Poisson's ratio of 0.31 to 0.32 are obtained.
Further, as an example, excellent characteristics as a spring material are obtained such that the load loss rate at 96 ° C. for 96 hours at a torsional stress of 392 MPa is 35% or less.
In the heat resistant alloy of the present embodiment, the average particle size of the μ phase (Mo rich) is 90 to 380 μm, and is preferably 10% or less, for example, less than 9% by volume. The μ phase is a brittle phase in the alloy structure of the present embodiment, and when a large amount of the μ phase precipitates, the toughness decreases and the workability deteriorates.
本実施形態の合金において、機械特性とばね特性が優れている要因は、上述の如くγ’相が20〜50nm程度の微細粒子であって、前述の複数の原子が含まれた組成であることに加え、鈴木効果を呈することによる。
鈴木効果とは、転位と溶質原子の相互作用の一つである。fcc(面心立方格子)合金およびhcp(最密六方格子)合金の転位は多くの場合拡張転位になっており、周囲とはある程度異なったエネルギー状態にあり、拡張転位部分には溶質原子が偏析する。この部分に転位が動くと、熱的に非平衡な偏析部分が残ると同時に偏析の無い部分が生じる。この双方は新たにエネルギーの大きな部分を作るので、転位の運動への抵抗となる。その固着力は弾性的相互作用と同等程度であるが、転位の拡張部分が大きいので固着から抜け出す事はより困難となる。この転位と溶質原子の相互作用を一般的に化学的効果(chemical interaction)又は鈴木効果(Suzuki effect)という。鈴木効果が発現すると合金の硬さや引張強さなどの機械的特性が向上する。
本実施形態の合金では、冷間加工により転位が導入され、多数の積層欠陥が導入された後に時効されているので、鈴木効果を発現し、前述の微細なγ’相の存在による効果と相俟って上述の優れた機械特性が得られ、ばね材とした場合の優れた耐へたり性が得られる。
In the alloy of the present embodiment, the reason why the mechanical characteristics and the spring characteristics are excellent is that the γ ′ phase is a fine particle of about 20 to 50 nm as described above, and has a composition containing the plurality of atoms described above. In addition to the Suzuki effect.
The Suzuki effect is one of the interactions between dislocations and solute atoms. The dislocations of fcc (face-centered cubic lattice) and hcp (close-packed hexagonal lattice) alloys are often extended dislocations and are in a different energy state from the surroundings, and solute atoms segregate in the extended dislocations. To do. When dislocations move in this part, a thermally non-equilibrium segregated part remains and at the same time a part without segregation occurs. Both of these create a new large portion of energy, which resists the movement of dislocations. Its sticking force is comparable to the elastic interaction, but it is more difficult to get out of sticking because of the large dislocation extension. This interaction between dislocations and solute atoms is generally called a chemical interaction or a Suzuki effect. When the Suzuki effect is manifested, mechanical properties such as hardness and tensile strength of the alloy are improved.
In the alloy of the present embodiment, dislocations are introduced by cold working and are aged after a number of stacking faults are introduced, so that the Suzuki effect is manifested, and the effect and phase due to the presence of the fine γ ′ phase described above. As a result, the above-described excellent mechanical properties can be obtained, and excellent sag resistance when used as a spring material can be obtained.
「製造方法」
前記組成の本実施形態に係る合金を製造するには、前記組成比となるように配合した材料を高周波真空誘導溶解炉等を用いて真空溶解などの溶解法により溶解し、炉冷して鋳塊(インゴット)を作製し、得られた鋳塊に固溶化のための熱処理を施す。この鋳塊に、冷間塑性加工を施して目的の形状に加工し、その後、時効処理を施して得ることができる。あるいは、前記の工程において冷間塑性加工の前に必要に応じて熱間塑性加工を施しても良い。
固溶化のための熱処理(均一化処理)は、1150〜1250℃に4〜8時間程度均一加熱する処理を示す。熱間圧延の温度も上述の範囲、例えば、1200℃で行うことが好ましい。
"Production method"
In order to manufacture the alloy according to the present embodiment having the above composition, the material blended so as to have the above composition ratio is melted by a melting method such as vacuum melting using a high frequency vacuum induction melting furnace or the like, and cooled in a furnace and cast. A lump (ingot) is produced, and the obtained ingot is subjected to heat treatment for solid solution. This ingot can be obtained by subjecting it to a desired shape by cold plastic working and then aging treatment. Or you may give a hot plastic working as needed before a cold plastic working in the said process.
The heat treatment for solid solution (homogenization treatment) indicates a treatment of uniformly heating to 1150 to 1250 ° C. for about 4 to 8 hours. The hot rolling temperature is preferably within the above-mentioned range, for example, 1200 ° C.
この後、700〜850℃で2〜4時間の時効処理を施した後、目的の形状に成形し、さらに700〜850℃で2〜4時間の時効処理を施すことにより、または、目的の形状に成形する前の時効処理に代わって、加工率20%以上、60%未満で冷間加工し、目的の形状に加工した後、700〜850℃で1〜4時間程度加熱する時効処理後、室温に戻すことで目的の形状の耐熱合金を得ることができる。目的の形状が板ばねである場合は板ばねの形状に加工し、コイルばねである場合はコイルばねの形状に加工する。
あるいは、時効処理後に不均一析出物の消去を目的として均質化のための熱処理を1200℃程度の温度で施しても良い。
得られた耐熱合金は、γ母相を体積率で25〜48%、γ’相を52〜65%、μ相を10%以下含む組織を有する。μ相は析出していない組織であっても良い。
Then, after performing an aging treatment at 700 to 850 ° C. for 2 to 4 hours, it is molded into a desired shape and further subjected to an aging treatment at 700 to 850 ° C. for 2 to 4 hours, or the desired shape In place of the aging treatment before forming into a cold, after cold working at a processing rate of 20% or more and less than 60% and processing into the desired shape, after heating at 700 to 850 ° C. for about 1 to 4 hours, By returning to room temperature, a heat-resistant alloy having a desired shape can be obtained. When the target shape is a leaf spring, it is processed into the shape of a leaf spring, and when it is a coil spring, it is processed into the shape of a coil spring.
Alternatively, a heat treatment for homogenization may be performed at a temperature of about 1200 ° C. for the purpose of eliminating the heterogeneous precipitate after the aging treatment.
The obtained heat-resistant alloy has a structure in which the γ parent phase is 25 to 48% by volume, the γ ′ phase is 52 to 65%, and the μ phase is 10% or less. The μ phase may be a non-precipitated structure.
本実施形態の合金は、上述の優れた機械特性とばね特性を有しているので、各種ばね材料として有効であり、インコネル(登録商標)718の耐へたり性の限界である650℃を超えるとともに、加工率によってはワスパロイ(登録商標)の耐へたり性の限界である700℃を超える優れた耐へたり性を得ることができる。このため、エンジンの効率化を狙って排気バルブをエンジンにより近い位置に配置する構造に対応するばね材として好適であり、マフラー等の配管部材に設けるばね材として、強度の低下が少なく、熱へたり性も低下し難いばね材を提供できる。
また、本実施形態の耐熱合金は、エンジンやタービンなどの耐熱部材用として、その他の耐熱部材として広く適用することができるのは勿論である。
The alloy of the present embodiment has the above-described excellent mechanical characteristics and spring characteristics, and thus is effective as various spring materials, and exceeds 650 ° C. which is the limit of sag resistance of Inconel (registered trademark) 718. In addition, depending on the processing rate, excellent sag resistance exceeding 700 ° C., which is the limit of sag resistance of Waspalloy (registered trademark), can be obtained. For this reason, it is suitable as a spring material corresponding to a structure in which the exhaust valve is arranged closer to the engine in order to increase the efficiency of the engine. It is possible to provide a spring material that is less likely to deteriorate in elasticity.
Of course, the heat-resistant alloy of the present embodiment can be widely applied to other heat-resistant members for heat-resistant members such as engines and turbines.
図4は、本実施形態に係る耐熱合金を用いて形成されるコイルばねの一例を示すもので、このコイルばね1は、前述の耐熱合金を伸線加工により線材化してコイル状に加工し、コイル両端の座面2を研磨し、研磨後に前述の条件の時効処理を施して得ることができる。
図5は、本実施形態に係る耐熱合金を用いて形成されるコイルばねの第2の例を示すもので、このコイルばね3は、前述の耐熱合金を伸線加工により線材化してコイル状に加工し、コイル端部3a、3bを部分的に直線状に維持したまま前述の条件の時効処理を施して得ることができる。
FIG. 4 shows an example of a coil spring formed using the heat-resistant alloy according to the present embodiment. This coil spring 1 is formed by forming the above-mentioned heat-resistant alloy into a coil by wire drawing, It can be obtained by polishing the seating surfaces 2 at both ends of the coil and applying the aging treatment under the above-mentioned conditions after polishing.
FIG. 5 shows a second example of a coil spring formed using the heat-resistant alloy according to this embodiment, and this coil spring 3 is formed into a coil shape by forming the above-mentioned heat-resistant alloy into a wire material by wire drawing. It can be obtained by aging treatment under the above-mentioned conditions while processing and keeping the coil end portions 3a, 3b partially linear.
本実施形態の耐熱合金を用いて形成する図4、図5に示すコイルばねは、ばね形状の一例に過ぎない。本実施形態の耐熱合金を用いて形成するばねの形状は、板ばね、トーションバー、竹の子ばね、皿ばね、ゼンマイばね等、いずれの形状のばねであっても良い。 The coil spring shown in FIGS. 4 and 5 formed using the heat-resistant alloy of this embodiment is merely an example of a spring shape. The shape of the spring formed using the heat-resistant alloy of this embodiment may be any shape spring such as a leaf spring, a torsion bar, a bamboo shoot spring, a disc spring, and a spring.
以下に本発明に係る耐熱合金の実施例について説明するが、本発明の耐熱合金が以下の実施例の記載に制限されないのは勿論である。
耐熱合金試料として、Ni:35%、Cr:17.5%、Mo:4.0%、Nb:3.0%、Fe:1.6%、Al:2%、Ti:0.8%、Mn:0.5%、Si:0.2%、Zr:0.05%、C:0.05%、残部Co及び不可避不純物で示される組成となるように材料を配合し高周波真空誘導溶解炉により鋳塊を得た後、以下の手順により合金試料Aを製造した。
耐熱合金試料として、Co−35Ni−17.5Cr−8Mo−3Nb−2Al−1.6Fe−0.8Ti−0.5Mn−0.2Si−0.05Zr−0.05Cなる組成となるように材料を配合後、高周波真空誘導溶解炉により鋳塊を得た後、以下の手順により耐熱合金試料Bを製造した。
耐熱合金試料として、Co−45Ni−17.5Cr−4Mo−3Nb−2Al−1.6Fe−0.8Ti−0.5Mn−0.2Si−0.05Zr−0.05Cなる組成となるように材料を配合後、高周波真空誘導溶解炉により鋳塊を得た後、以下の手順により耐熱合金試料Cを製造した。
Examples of the heat-resistant alloy according to the present invention will be described below, but it is needless to say that the heat-resistant alloy of the present invention is not limited to the description of the following examples.
As a heat-resistant alloy sample, Ni: 35%, Cr: 17.5%, Mo: 4.0%, Nb: 3.0%, Fe: 1.6%, Al: 2%, Ti: 0.8%, Mn: 0.5%, Si: 0.2%, Zr: 0.05%, C: 0.05%, materials are blended so as to have a composition represented by the balance Co and inevitable impurities, and a high-frequency vacuum induction melting furnace After obtaining an ingot, an alloy sample A was produced by the following procedure.
As a heat-resistant alloy sample, a material was prepared so as to have a composition of Co-35Ni-17.5Cr-8Mo-3Nb-2Al-1.6Fe-0.8Ti-0.5Mn-0.2Si-0.05Zr-0.05C. After blending, an ingot was obtained by a high-frequency vacuum induction melting furnace, and then a heat-resistant alloy sample B was produced by the following procedure.
As a heat-resistant alloy sample, a material was prepared so as to have a composition of Co-45Ni-17.5Cr-4Mo-3Nb-2Al-1.6Fe-0.8Ti-0.5Mn-0.2Si-0.05Zr-0.05C. After blending, an ingot was obtained with a high-frequency vacuum induction melting furnace, and then a heat-resistant alloy sample C was produced according to the following procedure.
耐熱合金試料として、Co−35Ni−14Cr−4Mo−3Nb−2Al−1.6Fe−0.8Ti−0.5Mn−0.2Si−0.05Zr−0.05Cなる組成となるように材料を配合後、高周波真空誘導溶解炉により鋳塊を得た後、以下の手順により耐熱合金試料Dを製造した。
耐熱合金試料として、Co−45Ni−14Cr−4Mo−3Nb−2Al−1.6Fe−0.8Ti−0.5Mn−0.2Si−0.05Zr−0.05Cなる組成となるように材料を配合後、高周波真空誘導溶解炉により鋳塊を得た後、以下の手順により耐熱合金試料Eを製造した。
比較用の耐熱合金試料として、Co:13.2%、Ni:58.8%、Cr:19.5%、Mo:4.2%、Ti:3%、Al:1.3なる組成となるように材料を配合後、高周波真空誘導溶解炉により鋳塊を得た後、以下の手順により比較例試料Fを製造した。この比較例試料Fはワスパロイ(登録商標)として知られている合金の組成である。
As a heat-resistant alloy sample, after blending the materials so as to have a composition of Co-35Ni-14Cr-4Mo-3Nb-2Al-1.6Fe-0.8Ti-0.5Mn-0.2Si-0.05Zr-0.05C After obtaining an ingot with a high-frequency vacuum induction melting furnace, a heat-resistant alloy sample D was produced by the following procedure.
As a heat-resistant alloy sample, after blending the materials so as to have a composition of Co-45Ni-14Cr-4Mo-3Nb-2Al-1.6Fe-0.8Ti-0.5Mn-0.2Si-0.05Zr-0.05C After obtaining an ingot with a high-frequency vacuum induction melting furnace, a heat-resistant alloy sample E was produced according to the following procedure.
As a heat-resistant alloy sample for comparison, the composition is Co: 13.2%, Ni: 58.8%, Cr: 19.5%, Mo: 4.2%, Ti: 3%, Al: 1.3. After the materials were mixed as described above, an ingot was obtained by a high-frequency vacuum induction melting furnace, and then a comparative sample F was manufactured by the following procedure. This comparative sample F has a composition of an alloy known as Waspalloy (registered trademark).
前記各組成の合金溶湯から長さ100mm、直径28mmの複数の鋳塊を得、各鋳塊を1200℃で3時間、均質化した後、熱間鍛造により厚さ10mmの板材を得た後、各板材を1200℃で1時間加熱した。得られた各板材を3等分し、各3等分した板材について、加工率20%、40%、60%の冷間圧延加工を施し、800℃で2時間の時効処理を行った後、この試験片の板厚中央から、放電加工により引張試験片やへたり試験片を切り出し、ラッピング研磨を行って試験に供した。なお、A〜Fの試料について、板厚中央部でマイクロビッカース硬さHV(おもり200gr)を測定した。
比較例試料Fは、長さ70mm直径20mmのロッドと長さ80mm直径20mmのロッドと長さ100mm直径20mmのロッドを用意し、各ロッドを1200℃で均質化後、300tプレスで厚さ10mmの板状に熱間鍛造し、それぞれの試験に供した。
引張試験片は、図6に示すように、全長10mm、幅3mm、厚さ0.38mm、長さ方向中央部に幅1.8mm、長さ4.8mmの帯状部が形成された標準試験片である。その他の部分の寸法は、図6に示す通りである。この試験片を用いて引張強さ、ヤング率を測定した。
へたり試験片は、板厚0.22mm、板幅3mm、長さ20mmであり、へたり試験は、700℃、高さスペーサー1.3mm、曲げ応力約550MPa、曲げスパン13mmの条件とし、24時間、48時間、96時間経過後のへたりを測定した。へたり率(%)は、(H1/H0)×100%の計算式に従い算出した。ここで、H0は所定の曲げ応力を負荷した時のばね高さ、H1は除荷後のばね高さを示し、この値が小さいほどへたりが少ないことを表す。
硬さ試験、引張試験、へたり試験の結果を以下の表1に示す。
After obtaining a plurality of ingots having a length of 100 mm and a diameter of 28 mm from the molten alloy of each composition, each ingot was homogenized at 1200 ° C. for 3 hours, and then a plate material having a thickness of 10 mm was obtained by hot forging. Each plate was heated at 1200 ° C. for 1 hour. Each obtained plate material was divided into three equal parts, and each of the three divided plate materials was subjected to cold rolling with a processing rate of 20%, 40%, 60%, and after aging treatment at 800 ° C. for 2 hours, From the thickness center of the test piece, a tensile test piece or a sag test piece was cut out by electric discharge machining and lapped and polished for use in the test. In addition, about the sample of AF, micro Vickers hardness HV (weight 200gr) was measured in the plate | board thickness center part.
Comparative sample F was prepared by preparing a rod having a length of 70 mm, a rod having a diameter of 80 mm, a rod having a length of 80 mm and a rod having a diameter of 100 mm, and a rod having a diameter of 100 mm and a diameter of 20 mm. The plate was hot forged and subjected to each test.
As shown in FIG. 6, the tensile test piece has a total length of 10 mm, a width of 3 mm, a thickness of 0.38 mm, and a standard test piece in which a belt-like portion having a width of 1.8 mm and a length of 4.8 mm is formed at the center in the length direction. It is. The dimensions of the other parts are as shown in FIG. Tensile strength and Young's modulus were measured using this test piece.
The test piece has a plate thickness of 0.22 mm, a plate width of 3 mm, and a length of 20 mm. The sag test is performed at a temperature of 700 ° C., a height spacer of 1.3 mm, a bending stress of about 550 MPa, and a bending span of 13 mm. Sag after 48 hours and 96 hours was measured. The settling rate (%) was calculated according to the calculation formula of (H 1 / H 0 ) × 100%. Here, H 0 indicates the spring height when a predetermined bending stress is applied, and H 1 indicates the spring height after unloading. The smaller this value, the less the sag.
The results of the hardness test, tensile test, and sag test are shown in Table 1 below.
試料A〜Fにおいて、いずれも圧延時の圧下率が高くなるほど、硬くなり引張強さも大きくなる傾向がある。ヤング率は圧下率が20%ではやや小さいが、40%以上では飽和傾向がある。へたりについては、いずれの試料も圧下率が高くなるほどへたり易くなる傾向があり、比較材F(ワスパロイ:登録商標)に対して開発材A、D、Eの圧下率20%材はへたりが小さくなった。
なお、加工率が上昇すると加工エネルギーによりμ相が析出し易くなり、40%加工においてμ相は約9体積%、60%加工においてμ相は約18体積%の割合となる。この系の合金においてμ相が析出すると、母相のMoがμ相に食われてしまい、耐へたり性が低下したと思われる。このため、μ相の析出を体積率で10%以下とすることが好ましく、9%以下とすることがより好ましい(後述の図34参照)。
In each of Samples A to F, the higher the rolling reduction during rolling, the harder and the tensile strength tends to increase. The Young's modulus is slightly small when the rolling reduction is 20%, but tends to be saturated when the rolling reduction is 40% or more. As for sag, any sample has a tendency to sag more easily as the reduction ratio becomes higher, and the developed materials A, D, and E have a reduction rate of 20% compared to the comparative material F (Waspalloy: registered trademark). Became smaller.
When the processing rate is increased, the μ phase is likely to precipitate due to processing energy. In 40% processing, the μ phase is about 9% by volume, and in 60% processing, the μ phase is about 18% by volume. When the μ phase is precipitated in this type of alloy, Mo of the parent phase is eroded by the μ phase, and it seems that the sag resistance is lowered. For this reason, the precipitation of the μ phase is preferably 10% or less, more preferably 9% or less by volume ratio (see FIG. 34 described later).
次に、この系の合金において、Cr含有量とAl含有量の適正範囲について検証する。
図7は、Co−35Ni−17.5Cr−8Mo−3Nb−2Al合金についてThermo-Calc(Thermo-Calc Software社製:ver.5.0,database:TCW, N17)を用いた計算状態図である。図7に示すように、Alの含有量が0〜3.5質量%の範囲でγ’相を析出できる領域と判断できる。このため、この組成系の合金について十分な量のγ’相を得るためにAlの添加量を1.5〜2.5%の範囲とすることが好ましいと判断できる。
Next, in this type of alloy, the proper range of Cr content and Al content will be verified.
FIG. 7 is a calculation state diagram using Thermo-Calc (manufactured by Thermo-Calc Software: ver. 5.0, database: TCW, N17) for the Co-35Ni-17.5Cr-8Mo-3Nb-2Al alloy. As shown in FIG. 7, it can be determined that the γ ′ phase can be precipitated in the range where the Al content is in the range of 0 to 3.5 mass%. For this reason, it can be judged that the addition amount of Al is preferably in the range of 1.5 to 2.5% in order to obtain a sufficient amount of γ ′ phase for the alloy of this composition system.
図8はCo−35Ni−(10〜25)Cr−4Mo−3Nb−2Al合金について同Thermo-Calcを用いた計算状態図、図9はCo−35Ni−(10〜25)Cr−8Mo−3Nb−2Al合金について同Thermo-Calcを用いた計算状態図である。
図10はCo−45Ni−(10〜25)Cr−4Mo−3Nb−2Al合金について同Thermo-Calcを用いた計算状態図、図11はCo−45Ni−(10〜25)Cr−8Mo−3Nb−2Al合金について同Thermo-Calcを用いた計算状態図である。
これらの状態図と表1に示す結果から、本願合金において、γ母相とγ’相を有する合金組織を得て上述の優れた耐へたり性と優れた機械特性を得るためには、Cr含有量を13.5〜18質量%の範囲とすることが好ましいと判断できる。
FIG. 8 is a calculation state diagram using the Thermo-Calc for a Co-35Ni- (10-25) Cr-4Mo-3Nb-2Al alloy, and FIG. 9 is a Co-35Ni- (10-25) Cr-8Mo-3Nb- It is a calculation state figure using the Thermo-Calc about 2Al alloy.
FIG. 10 is a calculation state diagram of the Co-45Ni- (10-25) Cr-4Mo-3Nb-2Al alloy using the Thermo-Calc, and FIG. 11 is a Co-45Ni- (10-25) Cr-8Mo-3Nb- It is a calculation state figure using the Thermo-Calc about 2Al alloy.
From these phase diagrams and the results shown in Table 1, in order to obtain an alloy structure having a γ matrix and a γ ′ phase and obtain the above-mentioned excellent sag resistance and excellent mechanical properties in the present alloy, Cr It can be judged that the content is preferably in the range of 13.5 to 18% by mass.
図12は、試料Aの合金について、圧下率20%で作製した試料の応力ひずみ線図を示し、図13は、試料Aの合金について、圧下率60%で作製した試料の応力ひずみ線図を示す。
図12に示すように500℃で鈴木効果によると思われるひずみカーブを示した。このため本実施例の合金は、鈴木効果により転位の移動を積層欠陥が抑制する結果、優れた機械特性を発現していると思われる。
FIG. 12 shows a stress strain diagram of a sample prepared at a reduction rate of 20% for the alloy of sample A, and FIG. 13 shows a stress strain diagram of a sample prepared at a reduction rate of 60% for the alloy of sample A. Show.
As shown in FIG. 12, a strain curve presumably due to the Suzuki effect at 500 ° C. was shown. For this reason, it is considered that the alloy of this example exhibits excellent mechanical properties as a result of the stacking fault suppressing the movement of dislocations by the Suzuki effect.
図14は、実施例合金において加工率20%、60%で冷間圧延または加工率20%、66%でスウェージング加工により作製した各試料の降伏応力の温度依存性を示す。合金の組成は、Co−35Ni−17.5Cr−8Mo−3Nb−2Al−1.6Fe−0.8Ti−0.5Mn−0.2Si−0.05Zr−0.05Cである。
冷間圧延では、熱間鍛造により厚み10mmの板材を作製した後、グラインダーで表面のスケールを除去し、板厚を9.5mmとした後、この板材を切断機で大凡3等分(長さ方向3等分)し、約40mm×45mm、板厚9.5mmのサンプル板3枚を板厚7.6mm(加工率20%)、板厚5.7mm(加工率40%)、板厚3.8mm(加工率60%)までそれぞれの加工率で冷間圧延したものである。さらに、それぞれのサンプル板を半分の大きさに切断し(長さ方向2等分)、750℃×2時間と800℃×2時間の時効処理を施した。
スウェージング加工では、φ13.0mmの丸棒をそれぞれの加工率で加工した。加工後の外径は、加工率20%試料でφ11.63mm、加工率40%試料でφ10.07mm、加工率66%試料でφ7.58mmとした。板材の冷間圧延の場合、加工率(%)は、(1−加工後の板厚/元板厚)×100の計算式により算出している。
図14に示すいずれの加工率の試料合金であっても耐熱合金として優れた値を示した。
FIG. 14 shows the temperature dependence of the yield stress of each sample produced by cold rolling at a working rate of 20% and 60% or by swaging at a working rate of 20% and 66% in the example alloys. The composition of the alloy is Co-35Ni-17.5Cr-8Mo-3Nb-2Al-1.6Fe-0.8Ti-0.5Mn-0.2Si-0.05Zr-0.05C.
In cold rolling, a plate material having a thickness of 10 mm is produced by hot forging, the surface scale is removed by a grinder, the plate thickness is set to 9.5 mm, and the plate material is roughly divided into three parts (length) by a cutting machine. The sample plate is divided into three equal directions, approximately 40 mm x 45 mm, and a plate thickness of 9.5 mm. A plate thickness of 7.6 mm (processing rate of 20%), a plate thickness of 5.7 mm (processing rate of 40%), and a plate thickness of 3 Cold-rolled at each processing rate up to 0.8 mm (processing rate 60%). Further, each sample plate was cut into half sizes (two equal parts in the length direction) and subjected to aging treatment at 750 ° C. × 2 hours and 800 ° C. × 2 hours.
In the swaging process, a round bar of φ13.0 mm was processed at each processing rate. The outer diameter after processing was φ11.63 mm for a sample with a processing rate of 20%, φ10.07 mm for a sample with a processing rate of 40%, and φ7.58 mm for a sample with a processing rate of 66%. In the case of cold rolling of the plate material, the processing rate (%) is calculated by a calculation formula of (1-plate thickness after processing / original plate thickness) × 100.
The sample alloy with any processing rate shown in FIG. 14 showed an excellent value as a heat-resistant alloy.
図15は同組成の合金において加工率20%、40%、66%でスウェージング加工により作製した各試料の降伏応力の温度依存性とSPRON510(登録商標)の降伏応力の温度依存性を示す。SPRON510(登録商標)は、35%Ni−32%Ni−20%Cr−10%Moの組成を有するCo−Ni基超合金である。
SPRON510(登録商標)は耐熱合金として優れた降伏応力を示す合金であるが、実施例合金はいずれの加工率であってもSPRON510(登録商標)よりも高い降伏応力を示した。また、前記組成の実施例合金は時効による強化機構も優れており、時効後に降伏強度を著しく向上できることがわかる。
FIG. 15 shows the temperature dependence of the yield stress and the temperature dependence of the yield stress of SPRON510 (registered trademark) for each sample produced by swaging at 20%, 40%, and 66% of the processing rate in an alloy having the same composition. SPRON510® is a Co—Ni based superalloy having a composition of 35% Ni-32% Ni-20% Cr-10% Mo.
SPRON510 (registered trademark) is an alloy exhibiting excellent yield stress as a heat-resistant alloy, but the example alloys exhibited higher yield stress than SPRON510 (registered trademark) at any processing rate. In addition, it can be seen that the example alloys having the above composition are excellent in the strengthening mechanism by aging, and the yield strength can be remarkably improved after aging.
図16は前記試料Bの加工率20%で圧延した試料と加工率60%で圧延した試料のそれぞれのγ’相領域を拡大して示す組織写真である。図16に示す組織写真から、100nmよりも遙かに小さい粒径のγ’相の存在を確認できた。このγ’相の熱安定性と詳細な解析結果について以下に説明する。 FIG. 16 is an enlarged structure photograph showing the γ ′ phase region of the sample B rolled at a working rate of 20% and a sample rolled at a working rate of 60%. From the structure photograph shown in FIG. 16, the presence of a γ ′ phase having a particle size much smaller than 100 nm was confirmed. The thermal stability of this γ ′ phase and detailed analysis results will be described below.
図17〜図19は20%、40%、66%の各スウェージング加工により得られた前記試料Bの合金についてそれぞれ700℃に所定時間加熱処理することによりγ’相の成長状態を確認した結果を示す。
図17〜図19に示すいずれの加工率の合金であっても、加熱前の粒径20〜30nmのγ’相が、96時間、276時間、380時間加熱後であっても、粒径30〜40nmの大きさに留まっていた。この試験結果から本実施例合金は長時間加熱を受けてもγ’相がほとんど粒成長しないため、極めて優れた耐熱性を得ることができると想定できる。
FIGS. 17 to 19 show the results of confirming the growth state of the γ ′ phase by heat-treating the alloy of Sample B obtained by 20%, 40%, and 66% swaging to 700 ° C. for a predetermined time. Indicates.
17 to 19, even when the γ ′ phase having a particle size of 20 to 30 nm before heating is heated for 96 hours, 276 hours, and 380 hours, the particle size of 30 It remained at a size of ˜40 nm. From this test result, it can be assumed that the alloy of this example can obtain extremely excellent heat resistance because the γ 'phase hardly grows even when heated for a long time.
前記20%加工率のスウェージング加工を施した試料Bの合金についてγ’相の析出している領域について3次元アトムプローブを用いて元素分析を行った。
NiとAlとNbの測定結果を図20(a)〜(d)に示す。各図に示すようにγ’相の存在する位置にNiとAlとNbが濃縮していることがわかった。
図21(a)〜(c)にAl−6%等濃度面とNi−50%等濃度面とNb−5%等濃度面を示す。
図21(a)に示すAl−6%等濃度面の測定位置に対応するようにNbとNiとCoとMoとAlとFeとTiとCrの位置毎の濃度を測定した結果を図22に示す。
図22に示すようにγ’相の生成位置に合わせて、Ni、Co、Cr、Al、Nb、Tiが存在しているので、本実施例合金のγ’相は、組成式(Ni,Co)3(Al,Nb,Cr,Co,Ti)で示されるγ’相であると判断できる。また、この元素分析結果から、質量比でNi:57〜61%、Co15〜17%、Al:5〜6%、Nb:10〜13%、Ti:3〜5%、Cr:2〜3%を含むγ’相であると推定できる。
With respect to the alloy of Sample B subjected to the 20% processing rate swaging, elemental analysis was performed on the region where the γ ′ phase was precipitated using a three-dimensional atom probe.
The measurement results of Ni, Al, and Nb are shown in FIGS. As shown in each figure, it was found that Ni, Al, and Nb were concentrated at the position where the γ ′ phase was present.
FIGS. 21A to 21C show the Al-6% isoconcentration surface, the Ni-50% isoconcentration surface, and the Nb-5% isoconcentration surface.
FIG. 22 shows the result of measuring the concentration of each position of Nb, Ni, Co, Mo, Al, Fe, Ti, and Cr so as to correspond to the measurement position of the Al-6% isoconcentration surface shown in FIG. Show.
As shown in FIG. 22, since Ni, Co, Cr, Al, Nb, and Ti are present in accordance with the generation position of the γ ′ phase, the γ ′ phase of this example alloy has the composition formula (Ni, Co ) 3 (Al, Nb, Cr, Co, Ti) It can be determined that it is a γ ′ phase represented by. Moreover, from this elemental analysis result, Ni: 57-61%, Co15-17%, Al: 5-6%, Nb: 10-13%, Ti: 3-5%, Cr: 2-3% by mass ratio It can be estimated that the γ ′ phase contains.
図23は同合金試料について、γ'相の存在する領域を収束イオンビームを用いたアトムプローブにより元素分析した他の結果を示すもので、γ’相はNi、Al、Nbの元素分布状態から粒径約20nmであることがわかる。また、隣接する他のγ’相との粒子間距離が約10nmであることもわかった。
組成式(Ni,Co)3(Al,Nb,Cr,Co,Ti)で示されるγ’相が粒径約20nmであり、かつ、他のγ’相との距離10nmで分離していることから、本願合金の優れた機械特性が発揮されていると推定される。即ち、鈴木効果の発現には、転位の移動を抑制するための微細粒子が所定の間隔で整列している微細領域の存在が必要であり、それら微細粒子配列に積層欠陥の配置が関連している必要がある。
上述のγ’相の配列と金属組織中に存在する積層欠陥の存在から、本実施例の合金は、高温でも粒成長し難い微細なγ’相の存在による優れた機械的特性に加え、鈴木効果の発現により上述のSPRON510(登録商標)を遙かに超える優れた機械特性を得ていると推定できる。
FIG. 23 shows another result of elemental analysis of a region where the γ ′ phase exists for the same alloy sample by an atom probe using a focused ion beam. The γ ′ phase is determined from the element distribution state of Ni, Al, and Nb. It can be seen that the particle size is about 20 nm. It was also found that the distance between particles with other adjacent γ ′ phases was about 10 nm.
The γ ′ phase represented by the composition formula (Ni, Co) 3 (Al, Nb, Cr, Co, Ti) has a particle size of about 20 nm and is separated from the other γ ′ phase at a distance of 10 nm. Therefore, it is estimated that the excellent mechanical properties of the present alloy are exhibited. In other words, the expression of the Suzuki effect requires the presence of fine regions in which fine particles for suppressing the movement of dislocations are aligned at a predetermined interval, and the arrangement of stacking faults is related to the fine particle arrangement. Need to be.
Due to the arrangement of the γ ′ phase and the presence of stacking faults present in the metal structure, the alloy of this example has an excellent mechanical property due to the presence of a fine γ ′ phase that hardly grows at high temperatures. It can be presumed that excellent mechanical properties far exceeding the above-mentioned SPRON510 (registered trademark) are obtained due to the manifestation of the effect.
図24は試料Bの合金について、室温におけるマイクロビッカース硬さ(おもり1kg)を測定した結果を示す。
いずれの加工率の試料についても時効処理を行うことで硬度が向上している。また、加工率が高くなるにつれて硬度も向上した。
図25は、試料Bの合金に対し加工率20%でスウェージング加工を施し、800℃で3時間時効処理した後、700℃に100時間あるいは240時間加熱した後のマイクロビッカース硬さ(おもり1000gr)の測定結果を示す。また、比較のために、試料Fの合金に対し加工率で20%の圧延加工を施し、800℃で3時間時効処理した後、700℃に100時間あるいは240時間加熱した後のマイクロビッカース硬さの測定結果を示す。
試料Fの合金は市場に流通しているばね材として著名な合金であり、これに対し試料Bの合金は長時間高温に加熱した後においてもより高い硬度を示した。
FIG. 24 shows the result of measuring the micro Vickers hardness (weight 1 kg) at room temperature for the alloy of Sample B.
The hardness of the samples with any processing rate is improved by performing an aging treatment. Moreover, the hardness improved as the processing rate increased.
FIG. 25 shows the micro Vickers hardness (weight 1000 gr) after swaging the alloy of sample B at a processing rate of 20%, aging treatment at 800 ° C. for 3 hours, and heating to 700 ° C. for 100 hours or 240 hours. ) Shows the measurement results. For comparison, the micro Vickers hardness after subjecting the alloy of Sample F to 20% rolling at a processing rate, aging treatment at 800 ° C. for 3 hours, and heating to 700 ° C. for 100 hours or 240 hours. The measurement results are shown.
The alloy of sample F is a prominent alloy as a spring material on the market, whereas the alloy of sample B showed higher hardness even after being heated to a high temperature for a long time.
図26は、試料Fの合金と試料Bの合金の金属組織を比較して対比するための組織写真である。
図26(a)に示す試料Fの合金の金属組織は、1080℃で4時間加熱処理後に850℃で2時間時効し、760℃に10時間加熱した後の合金について透過型電子顕微鏡により暗視野像を撮影した金属組織である。図26(a)に示す金属組織は、大きな粒径の初晶γ’相(粒径195nm)と微細な粒径のγ’相(23.9nm)との混相組織となっている。図26(a)に示す金属組織は、加熱を受けてγ’相が周囲のγ’相を吸収して粒成長してしまい、粗大な初晶γ’相になっていると推定できる。
これに対し図26(b)に示す試料Bの合金の金属組織は、1200℃で均一加熱処理し、800℃で3時間時効処理後、700℃に96時間加熱した後の合金について電界放出形走査電子顕微鏡で撮影した金属組織である。図26(a)に示すように試料Bの合金は、粒径20〜30nmの均一なγ’相が析出した金属組織となっている。
金属組織の対比からみて試料Bの合金は微細なγ’相とその周囲に存在するγ母相の集合体であり、粒径が粗大化した初晶γ’相が存在しないため、より耐熱性に優れた構造になっていると思われる。
FIG. 26 is a structure photograph for comparing and comparing the metal structures of the sample F alloy and the sample B alloy.
The metal structure of the alloy of Sample F shown in FIG. 26 (a) was dark-fielded by a transmission electron microscope for the alloy after heat treatment at 1080 ° C. for 4 hours, aging at 850 ° C. for 2 hours, and heating at 760 ° C. for 10 hours. This is a metallographic image of the image. The metal structure shown in FIG. 26A is a mixed phase structure of a primary particle γ ′ phase (particle size 195 nm) having a large particle size and a γ ′ phase (23.9 nm) having a fine particle size. It can be presumed that the metal structure shown in FIG. 26 (a) is heated and the γ ′ phase absorbs the surrounding γ ′ phase and grows and grows into a coarse primary crystal γ ′ phase.
On the other hand, the metallographic structure of the alloy of Sample B shown in FIG. 26 (b) is a field emission type for the alloy after uniform heat treatment at 1200 ° C., aging treatment at 800 ° C. for 3 hours, and heating to 700 ° C. for 96 hours. It is the metal structure image | photographed with the scanning electron microscope. As shown in FIG. 26A, the alloy of Sample B has a metal structure in which a uniform γ ′ phase having a particle size of 20 to 30 nm is precipitated.
Compared to the metal structure, the alloy of Sample B is an aggregate of a fine γ 'phase and a γ parent phase existing around it, and there is no primary crystal γ' phase with a coarsened grain size. It seems to have an excellent structure.
図27は同合金試料について、真応力−真ひずみの関係を温度毎に測定した結果を示すもので、図27(a)は500℃の測定結果、図27(b)は700℃の測定結果、図28(c)は900℃の測定結果を示す。各図に加工前の試料(ST)、加工率66%でスウェージング加工した試料、加工率20%でスウェージング加工した後800℃で3時間時効処理した試料、加工率66%でスウェージング加工した後800℃で3時間時効処理した試料について、それぞれ対比して示す。
各図にDSAと表示した動的ひずみ時効によるフローが認められた。このことから、スプロン510(登録商標)と同様の機構で鈴木効果が発現していると想定できる。
FIG. 27 shows the result of measuring the true stress-true strain relationship for each temperature for the same alloy sample. FIG. 27 (a) shows the measurement result at 500 ° C., and FIG. 27 (b) shows the measurement result at 700 ° C. FIG. 28 (c) shows the measurement result at 900 ° C. Each figure shows a sample before processing (ST), a sample swaged at a processing rate of 66%, a sample swaged at a processing rate of 20% and then aged at 800 ° C. for 3 hours, and a swaging processing at a processing rate of 66% Each sample after aging treatment at 800 ° C. for 3 hours is shown in comparison.
A flow due to dynamic strain aging labeled DSA in each figure was observed. From this, it can be assumed that the Suzuki effect is manifested by a mechanism similar to that of Splon 510 (registered trademark).
図28は試料Bの合金について、20%スウェージング加工後、800℃で3時間時効した後の金属組織写真を示すが、図28(a)に示すように積層欠陥が層状に整列した状態を確認することができ、図28(b)に示すように積層欠陥が交差した状態を示す組織の存在を確認することができ、図28(c)に示すように積層欠陥が整列している組織を確認することができた。 FIG. 28 shows a photograph of the microstructure of the sample B alloy after 20% swaging and aging at 800 ° C. for 3 hours. As shown in FIG. 28 (a), the stacking faults are arranged in layers. As shown in FIG. 28 (b), it is possible to confirm the presence of a structure showing a state in which the stacking faults intersect, and as shown in FIG. 28 (c), a structure in which the stacking faults are aligned. I was able to confirm.
図29(a)は試料Bの合金に対し66%スウェージング加工を施し800℃で3時間時効処理した合金の透過型電子顕微鏡写真を示し、図29(b)は試料Bの合金に対し20%スウェージング加工を施し800℃で3時間時効処理した合金の透過型電子顕微鏡写真を示す。いずれの組織写真においても、L12構造を示すγ’相が粒径20〜30nmの球状になっていることがわかる。 FIG. 29 (a) shows a transmission electron micrograph of an alloy obtained by subjecting the alloy of sample B to 66% swaging and aging treatment at 800 ° C. for 3 hours, and FIG. A transmission electron micrograph of an alloy that has been subjected to% swaging and aged at 800 ° C. for 3 hours is shown. Any of the in tissue photographs, it is understood that the gamma 'phase indicating an L1 2 structure is in spherical particle size 20 to 30 nm.
前述の開発合金Bを用いて伸線加工率0、20、40、60%の線材を製作し、図4に示す圧縮ばねと図5に示すねじりばねを試作して、600〜700℃でのへたり試験を行った。表2にへたり試験に用いた線材の引張特性とビッカース硬さ(おもり300gr)を示す。表2においては試料Bの合金を開発材00、20、40、60と略記し、試料Fの合金を比較材F(ワスパロイ:登録商標)と略記した。開発材00は均一化熱処理後(ビッカース硬さHV217)に800℃、3時間の時効処理を行ってγ’相を析出させたもので(ビッカース硬さHV372)、伸線加工は施していない。 A wire rod having a drawing rate of 0, 20, 40, 60% is manufactured using the developed alloy B described above, and a compression spring shown in FIG. 4 and a torsion spring shown in FIG. A sagging test was performed. Table 2 shows the tensile properties and Vickers hardness (weight 300 gr) of the wire used in the sag test. In Table 2, the alloy of sample B is abbreviated as development material 00, 20, 40, 60, and the alloy of sample F is abbreviated as comparative material F (Waspalloy: registered trademark). The developed material 00 is obtained by performing aging treatment at 800 ° C. for 3 hours after homogenizing heat treatment (Vickers hardness HV217) to precipitate a γ ′ phase (Vickers hardness HV372), and is not subjected to wire drawing.
前記表2に示す線材を用いて図4に示す圧縮ばね1と同等形状の圧縮ばねをコイリング(表面の曲げひずみ10%)した後、ばね両端の座面を研磨して平面とし、時効処理、セッチングした後、へたり試験に供した。ばね緒元と各試料の6時間荷重印加後、24時間荷重印加後、96時間荷重印加後の荷重損失率を求めた。
なお、圧縮ばねの線径d:1.4〜1.8mm、中心径D:18.6mm、総巻数:5.8、有効巻数:3.8の圧縮ばねを試作した。圧縮ばねの全長は52mmである。
After coiling a compression spring having the same shape as the compression spring 1 shown in FIG. 4 using the wires shown in Table 2 (surface bending strain of 10%), the seating surfaces at both ends of the spring are polished to a flat surface, an aging treatment, After setting, it was subjected to a settling test. The load loss rate after applying the load of the spring and each sample for 6 hours, applying the load for 24 hours, and applying the load for 96 hours was determined.
A compression spring having a wire diameter d of 1.4 to 1.8 mm, a center diameter D of 18.6 mm, a total number of windings of 5.8, and an effective number of windings of 3.8 was prototyped. The total length of the compression spring is 52 mm.
表3は開発材00について、コイリング加工(表面の加工率10%)後の時効処理条件とへたりの関係をみたものである。これより、加工後の時効温度を高くすることにより、鈴木効果によって耐へたり性が良くなることがわかる。この傾向は他の開発材でも同じ傾向であった。また、荷重損失率で35%以下とするためには、700℃以上の時効処理が必要であることがわかる。したがって、開発材はコイリング加工後800℃×2hの時効処理を行ってへたり試験に供することとした。 Table 3 shows the relationship between the aging treatment conditions and the sag after the coiling process (surface processing rate of 10%) for the developed material 00. From this, it can be seen that by increasing the aging temperature after processing, the sag resistance is improved by the Suzuki effect. This trend was the same with other developed materials. It can also be seen that an aging treatment of 700 ° C. or higher is necessary to make the load loss rate 35% or less. Therefore, the developed material was subjected to an aging treatment of 800 ° C. × 2 h after coiling and subjected to a sag test.
図30に荷重損失の測定方法を示す。せん断応力392MPa負荷時の荷重P1と高さaを測定し、負荷した状態でばねを加熱炉に挿入し、700℃で6時間、24時間、96時間経過後にばねを加熱炉から取り出し除荷・解放し、再度高さaまで負荷した時の荷重P2を測定した。荷重損失率(%)は、(1-P2/P1)×100%の計算式に従い算出した。 FIG. 30 shows a method for measuring load loss. A load P 1 and the height a at the time of shearing stress 392MPa load was measured by inserting a spring into the heating furnace load state, 6 hours at 700 ° C., 24 hours, unloading removed springs from the furnace after 96 hours · released was measured load P 2 when loaded again to the height a. The load loss rate (%) was calculated according to the calculation formula of (1-P 2 / P 1 ) × 100%.
表4に示す結果から、700℃、96時間の締付け時の荷重損失率は、締付け応力392MPa時No.1とNo.6の比較で試料Bの合金の方が24%良好な結果となり、650℃96時間No.2とNo.7の比較でも試料Bの合金の方が18%良好となった。
従来材である試料Fの合金を用いた比較材F(ワスパロイ:登録商標)は、優れた耐へたり性を有する合金として市販されているが、本発明に係る試料で20%、40%加工率の試料はいずれにおいても比較材Fよりも優れた耐へたり性を有していることがわかる。しかし、加工率が60%になると比較材Fよりも耐へたり性は悪くなる。
From the results shown in Table 4, the load loss rate at the time of tightening at 700 ° C. for 96 hours is 24% better for the alloy of Sample B than the No. 1 and No. 6 when the tightening stress is 392 MPa, and 650 Even in comparison between No. 2 and No. 7 at 96 ° C., the alloy of Sample B was 18% better.
Comparative material F (Waspalloy: registered trademark) using an alloy of sample F, which is a conventional material, is commercially available as an alloy having excellent sag resistance, but it is 20% and 40% processed with the sample according to the present invention. It can be seen that all the samples of the rate have sag resistance superior to that of the comparative material F. However, when the processing rate is 60%, the sag resistance is worse than that of the comparative material F.
図31は、締付け温度700℃、締付け応力392MPaで締付け時間6h、24h、96h後の開発材と比較材の荷重損失率を比較したものである。これより、開発材00、20、40の順に荷重損失が大きくなり、耐へたり性は悪くなるものの、比較材Fよりも荷重損失が少なく、優れた耐へたり性を示すことがわかる。また、開発材60は比較材Fよりも耐へたり性は悪くなる。加工率とともに鈴木効果で抑えられる転位以上に転位が増えるために、耐へたり性が悪くなると考えられる。図32に締付け温度に対する荷重損失率の比較材との対比を示す。 FIG. 31 is a comparison of the load loss rate of the developed material and the comparative material after a tightening temperature of 700 ° C. and a tightening stress of 392 MPa and after tightening times of 6 h, 24 h, and 96 h. From this, it can be seen that although the load loss increases in the order of the developed materials 00, 20, and 40 and the sag resistance deteriorates, the load loss is smaller than that of the comparative material F and exhibits excellent sag resistance. In addition, the developed material 60 is less sag resistant than the comparative material F. Since dislocations increase more than the dislocations suppressed by the Suzuki effect together with the processing rate, it is considered that the sag resistance deteriorates. FIG. 32 shows a comparison of the load loss rate with respect to the tightening temperature with the comparative material.
図33は、図5に示す形状のねじりばね3を用いてへたり試験を行う場合の測定位置を示す。前記試料Bの合金からなる線径1.8mmの線材を加工率20%の伸線加工で作製し、この線材を用いて中心径D:12.2mm、総巻数9.5の図5および表5のばね緒元に示すサイズのねじりばね3を試作し、800℃に2時間加熱する時効処理を施してねじりばね試験体を作製した。
このねじりばね試験体に対し、図33に示すように一方のばね端部3aを固定し、他方のばね端部3bを締付け角度53〜66°に設定して試験した。実締付け応力は500〜620MPaとなった。トルク測定は締付け温度700℃の場合、実角度44゜で測定したへたり率を算出した。650℃締付けの場合の測定点は、実締付け角度のへたり率を測定した。また、比較のために、試料Fの合金にて同等サイズのねじりばね試験体を試作し、同等条件のへたり試験に供した。試料Fの合金において上述の試験体の合金と同様にばね成形後800℃、4時間の時効処理を施している。
FIG. 33 shows a measurement position when a sag test is performed using the torsion spring 3 having the shape shown in FIG. A wire rod having a wire diameter of 1.8 mm made of the alloy of the sample B was produced by wire drawing with a processing rate of 20%, and using this wire rod, a center diameter D: 12.2 mm and a total number of turns of 9.5 in FIG. A torsion spring 3 having the size shown in the spring specifications of No. 5 was prototyped and subjected to aging treatment at 800 ° C. for 2 hours to prepare a torsion spring specimen.
With respect to this torsion spring test body, as shown in FIG. 33, one spring end 3a was fixed, and the other spring end 3b was set to a tightening angle of 53 to 66 °. The actual tightening stress was 500 to 620 MPa. In the torque measurement, when the tightening temperature was 700 ° C., the sag rate measured at an actual angle of 44 ° was calculated. As a measurement point in the case of tightening at 650 ° C., the sag rate of the actual tightening angle was measured. For comparison, a torsion spring specimen of the same size was made with the alloy of Sample F and subjected to a sag test under the same conditions. The alloy of sample F was subjected to an aging treatment at 800 ° C. for 4 hours after the spring forming in the same manner as the alloy of the above-described specimen.
表5にねじりばねのへたり試験結果を示す。700℃、96時間締付け時のトルク損失率は締付け応力500MPa時No.9とNo.11の比較で試料Bの合金の方が7.6%良好な結果となり、620MPa時のNo.10とNo.12の比較でも試料Bの合金の方が15.9%良好となった。
650℃、96時間の締付け時のトルク損失率は、締付け応力500MPa時No.13とNo.15の比較で試料Bの合金の方が2.7%良好な結果となり、620MPa時のNo.14とNo.16の比較でも試料Bの方が2.6%良好となった。
Table 5 shows the results of the torsion spring sag test. The torque loss rate when tightened at 700 ° C. for 96 hours was 7.6% better for the alloy of sample B when compared with No. 9 and No. 11 when the tightening stress was 500 MPa, and No. 10 and No. at 620 MPa. Even in the comparison of .12, the alloy of Sample B was 15.9% better.
The torque loss rate at the time of tightening at 650 ° C. for 96 hours was 2.7% better for the alloy of sample B in comparison with No. 13 and No. 15 when the tightening stress was 500 MPa, and No. 14 at 620 MPa. In comparison with No. 16, Sample B was 2.6% better.
図34(a)は、試料Bの合金について、40%伸線加工し、800℃で2時間時効処理した後の金属組織の析出物(μ相)の状態を示す組織写真、図34(b)は試料Bの合金について60%伸線加工し、800℃で2時間時効処理した後の金属組織の析出物(μ相)の状態を示す組織写真である。
図34(a)に示す組織写真について、白黒2値化処理による画像判定を行い、白点状のμ相の体積率を試料Bの40%伸線加工材に対し算出したところ、8.0%と算出できた。また、同一組成の他の試料に対し同様の2値化処理を行ない、白点状のμ相の体積率を8.7%と算出できた。
図34(b)に示す組織写真について、白黒2値化処理による画像判定を行い、白点状のμ相の体積率を試料Bの60%伸線加工材に対し算出したところ、14.5%と算出できた。また、同一組成の他の試料に対し同様の2値化処理を行ったところ、白点状のμ相の面積率を18.4%と算出できた。これらの2値化処理からの換算は、2値化処理から求めた面積率を3/2乗で換算して体積率とした。なお、同一合金において、均一化熱処理後に伸線加工なしで時効処理のみ施したものや20%伸線加工し、800℃で2時間時効処理したものでは、μ相は検出されなかった。
FIG. 34 (a) is a structural photograph showing the state of the precipitate (μ phase) of the metal structure after 40% wire drawing and aging treatment at 800 ° C. for 2 hours for the alloy of Sample B, FIG. ) Is a structure photograph showing the state of precipitates (μ phase) of the metal structure after 60% wire drawing of the alloy of Sample B and aging treatment at 800 ° C. for 2 hours.
With respect to the structure photograph shown in FIG. 34 (a), image determination by black and white binarization processing was performed, and the volume ratio of the white dot-like μ phase was calculated for the 40% wire drawing material of Sample B. %. Moreover, the same binarization process was performed with respect to the other sample of the same composition, and the volume ratio of the white dot-like μ phase could be calculated as 8.7%.
The structure photograph shown in FIG. 34 (b) was subjected to image determination by black-and-white binarization processing, and the volume ratio of the white dot-like μ phase was calculated for the 60% wire drawing material of Sample B. %. Moreover, when the same binarization process was performed with respect to the other sample of the same composition, the area ratio of the white dot-like μ phase could be calculated as 18.4%. Conversion from these binarization processes was carried out by converting the area ratio obtained from the binarization process to 3/2 to obtain a volume ratio. In the same alloy, the μ phase was not detected when the alloy was subjected to only aging treatment without drawing after homogenization heat treatment or 20% wire drawing and aging treatment at 800 ° C. for 2 hours.
前述の種々の試験結果から60%伸線加工材について言えば、μ相の体積率が10%を大きく超えて14〜16%となり、耐へたり性を向上させる母相中のMoがμ相に食われたために、高温での耐へたり性が低下したものと想定できる。このため、本発明に係る合金を熱処理して時効処理する場合、μ相の体積率を10%以下、より好ましくは9%以下とすることが良好な耐へたり性を得る上で重要であると判断できる。 From the above-mentioned various test results, regarding the 60% wire drawn material, the volume fraction of the μ phase greatly exceeds 10% and becomes 14 to 16%, and Mo in the parent phase that improves sag resistance is the μ phase. It can be assumed that the resistance to sag at high temperatures has decreased due to the erosion. For this reason, when heat-treating the alloy according to the present invention by heat treatment, it is important to obtain a good sag resistance when the volume fraction of the μ phase is 10% or less, more preferably 9% or less. It can be judged.
1…圧縮ばね、3…ねじりばね、3a、3b…ねじりばね端部。 DESCRIPTION OF SYMBOLS 1 ... Compression spring, 3 ... Torsion spring, 3a, 3b ... Torsion spring edge part.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015051487A JP6485692B2 (en) | 2014-03-14 | 2015-03-13 | Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014052786 | 2014-03-14 | ||
JP2014052786 | 2014-03-14 | ||
JP2015051487A JP6485692B2 (en) | 2014-03-14 | 2015-03-13 | Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015187304A JP2015187304A (en) | 2015-10-29 |
JP6485692B2 true JP6485692B2 (en) | 2019-03-20 |
Family
ID=54429662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015051487A Active JP6485692B2 (en) | 2014-03-14 | 2015-03-13 | Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6485692B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6569152B2 (en) * | 2017-07-05 | 2019-09-04 | 日本製鉄株式会社 | Surface polishing method for rod-shaped specimens |
JP6610846B1 (en) * | 2018-03-06 | 2019-11-27 | 日立金属株式会社 | Manufacturing method of Ni-base superalloy and Ni-base superalloy |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5985754B2 (en) * | 2013-07-17 | 2016-09-06 | 三菱日立パワーシステムズ株式会社 | Ni-base alloy product and manufacturing method thereof |
-
2015
- 2015-03-13 JP JP2015051487A patent/JP6485692B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015187304A (en) | 2015-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6793689B2 (en) | Manufacturing method of Ni-based alloy member | |
US20200056272A1 (en) | Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same | |
US11085104B2 (en) | Method for manufacturing Ni-based heat-resistant superalloy wire, and Ni-based heat-resistant super alloy wire | |
CN107075629B (en) | Austenitic stainless steel sheet | |
JP4277113B2 (en) | Ni-base alloy for heat-resistant springs | |
EP2826877B1 (en) | Hot-forgeable Nickel-based superalloy excellent in high temperature strength | |
JP6839401B1 (en) | Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy | |
JP6826235B2 (en) | Ni-based alloy softened powder and method for producing the softened powder | |
TWI557233B (en) | Nilr-based heat-resistant alloy and method of manufacturing the same | |
RU2695852C2 (en) | α-β TITANIUM ALLOY | |
US20180057920A1 (en) | Grain refinement in in706 using laves phase precipitation | |
JP6160787B2 (en) | Thin plate and manufacturing method thereof | |
WO2012132679A1 (en) | Cast austenitic stainless steel | |
JP2005002451A (en) | Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING | |
JPWO2019045001A1 (en) | Alloy plate and gasket | |
JP6293682B2 (en) | High strength Ni-base superalloy | |
JP6485692B2 (en) | Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring | |
WO2017170433A1 (en) | Method for producing ni-based super heat-resistant alloy | |
JP6690359B2 (en) | Austenitic heat-resistant alloy member and method for manufacturing the same | |
JP6829830B2 (en) | Fe—Ni based alloy and its manufacturing method | |
JP2010053419A (en) | Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength | |
JP6787246B2 (en) | Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine | |
JP2009167500A (en) | METHOD FOR PRODUCING Ni BASED HEAT RESISTANT ALLOY | |
JP2008179864A (en) | METHOD FOR MANUFACTURING Ni-BASE ALLOY | |
JP2009167499A (en) | Ni-BASE HEAT RESISTANT ALLOY FOR HOT WORK DIE, HAVING EXCELLENT MACHINABILITY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20151007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160411 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6485692 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |