JP6482021B2 - Power generation equipment - Google Patents
Power generation equipment Download PDFInfo
- Publication number
- JP6482021B2 JP6482021B2 JP2015065102A JP2015065102A JP6482021B2 JP 6482021 B2 JP6482021 B2 JP 6482021B2 JP 2015065102 A JP2015065102 A JP 2015065102A JP 2015065102 A JP2015065102 A JP 2015065102A JP 6482021 B2 JP6482021 B2 JP 6482021B2
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- ammonia
- generation facility
- output
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
本発明は、再生可能エネルギーを用いた再生エネルギー発電設備が併用された発電設備に関する。 The present invention relates to a power generation facility in which a renewable energy power generation facility using renewable energy is used in combination.
化石燃料を使用しない再生可能エネルギーを用いた再生エネルギー発電設備が導入されつつある。再生可能エネルギー発電設備は、自然環境により出力が大きく変化するため、電力需要に対応するためには、火力発電設備を同時に用い、火力発電設備での出力を追従させる必要がある。自然環境の変化により再生可能エネルギー発電設備の出力が変化(低下)した場合、需用電力を賄うために、火力発電設備の出力を短時間で変化(増加)させる必要がある。 Renewable energy power generation facilities using renewable energy that does not use fossil fuels are being introduced. Since the output of the renewable energy power generation facility varies greatly depending on the natural environment, it is necessary to simultaneously use the thermal power generation facility and follow the output of the thermal power generation facility in order to meet the power demand. When the output of the renewable energy power generation facility changes (decreases) due to changes in the natural environment, it is necessary to change (increase) the output of the thermal power generation facility in a short time in order to cover the power demand.
このような状況から、系統の急激な負荷変化に対して、迅速に対応できる蒸気発電プラントが提案されている(特許文献1)。特許文献1に開示された技術は、ボイラで発生した蒸気をアキュムレータに貯蔵し、通常時にはアキュムレータからの蒸気により非常用蒸気タービンを無負荷もしくは低負荷で運転を行い、緊急に発電が必要になった時にはアキュムレータからの蒸気により全負荷の運転に移行するようにした技術である。 From such a situation, a steam power plant that can quickly respond to a rapid load change in the system has been proposed (Patent Document 1). The technique disclosed in Patent Document 1 stores steam generated in a boiler in an accumulator, and normally operates an emergency steam turbine with no load or low load by steam from the accumulator, so that power generation is urgently required. In some cases, the steam is transferred from the accumulator to full load operation.
特許文献1の技術を適用することにより、系統の出力を短時間で上昇させることができ、再生可能エネルギー発電設備の出力が変化(低下)した場合でも、電力需要に追従させることができる。 By applying the technique of Patent Document 1, the output of the system can be increased in a short time, and even when the output of the renewable energy power generation facility changes (decreases), the power demand can be followed.
しかし、系統(火力発電設備)を低い出力で運転するためには、天然ガス等の燃料を用いてボイラで蒸気を発生させ、低圧蒸気タービンを駆動する必要がある。このため、蒸気発生のための燃料が必要になり、火力発電設備の効率(燃費)が低下する問題があると共に、環境条件を守ることができない虞がある。 However, in order to operate the system (thermal power generation facility) at a low output, it is necessary to generate steam in a boiler using fuel such as natural gas and drive a low-pressure steam turbine. For this reason, fuel for generating steam is required, and there is a problem in that the efficiency (fuel consumption) of the thermal power generation facility is lowered, and environmental conditions may not be protected.
再生可能エネルギー発電設備と火力発電設備を同時に用いた設備では、通常時に、再生可能エネルギー発電設備及び火力発電設備を併用し、電力需要に対する電力を賄う設備もある。このような場合、再生可能エネルギー発電設備の出力が変化(低下)した場合、運転中の火力発電設備の出力を迅速に対応させる必要がある。 Among facilities that use a renewable energy power generation facility and a thermal power generation facility at the same time, there is also a facility that covers both the renewable energy power generation facility and the thermal power generation facility at the same time to cover the power demand. In such a case, when the output of the renewable energy power generation facility changes (decreases), it is necessary to quickly respond to the output of the thermal power generation facility during operation.
しかし、再生可能エネルギー発電設備の出力の変化に対し、運転中の火力発電設備の出力を細かく追従させるためには、微粉炭等の燃料の供給を細かく制御する必要がある。しかし、微粉炭等の燃料の供給を細かく制御するためには、燃料供給手段が大掛りになる等の問題があり、実現は困難であるのが現状であった。 However, it is necessary to finely control the supply of fuel such as pulverized coal in order to make the output of the thermal power generation facility in operation finely follow the change in the output of the renewable energy power generation facility. However, in order to finely control the supply of fuel such as pulverized coal, there is a problem that the fuel supply means becomes large, and it has been difficult to realize it.
本発明は上記状況に鑑みてなされたもので、再生可能エネルギー発電設備と火力発電設備を同時に用いた発電設備において、再生可能エネルギー発電設備の出力の変化に対し、運転中の火力発電設備の出力を細かく追従させることができる発電設備を提供することを目的とする。 The present invention has been made in view of the above situation, and in a power generation facility that uses a renewable energy power generation facility and a thermal power generation facility at the same time, the output of the thermal power generation facility during operation with respect to a change in the output of the renewable energy power generation facility An object of the present invention is to provide a power generation facility capable of closely following the power generation.
上記目的を達成するための請求項1に係る本発明の発電設備は、燃料が投入される燃焼手段と、前記燃焼手段により得られるエネルギーにより発電を行う発電手段と、前記発電手段で発電された電力が送られる電力系統と、前記電力系統に接続され、前記発電手段からの電力と共に要求負荷が賄われる再生可能エネルギー発電設備と、前記燃焼手段にアンモニアを投入するアンモニア投入手段と、前記再生可能エネルギー発電設備の出力の変動に応じて、前記要求負荷に対する発電出力が不足したときに前記アンモニアを投入して前記発電手段の出力を増加させ、前記要求負荷を賄うように、前記アンモニア投入手段による前記アンモニアの投入を制御するアンモニア調整手段とを備えたことを特徴とする。
In order to achieve the above object, a power generation facility according to a first aspect of the present invention includes a combustion means for supplying fuel, a power generation means for generating power using energy obtained by the combustion means, and power generated by the power generation means. An electric power system to which electric power is sent, a renewable energy power generation facility connected to the electric power system and covering a required load together with electric power from the electric power generation means, an ammonia input means for introducing ammonia into the combustion means, and the renewable According to the fluctuation of the output of the energy power generation facility, when the power generation output for the required load is insufficient, the ammonia is input to increase the output of the power generation unit by supplying the ammonia and cover the required load. And an ammonia adjusting means for controlling the introduction of the ammonia.
請求項1に係る本発明では、再生可能エネルギー発電設備の出力が変化した時に、アンモニア調整手段により、アンモニア投入手段からのアンモニアの燃焼手段への投入を制御し、再生可能エネルギー発電設備の出力の変化に対し発電手段の出力を追従させる。これにより、再生可能エネルギー発電設備の出力の変化に対し、燃焼手段に投入される主燃料の供給に影響を与えずに、運転中の発電手段(火力発電設備)の出力を細かく追従させることができる。 In the present invention according to claim 1, when the output of the renewable energy power generation facility changes, the ammonia adjusting means controls the input of ammonia from the ammonia charging means to the combustion means, and the output of the renewable energy power generation facility is controlled. The output of the power generation means is made to follow the change. As a result, the output of the operating power generation means (thermal power generation equipment) can be made to closely follow changes in the output of the renewable energy power generation equipment without affecting the supply of main fuel input to the combustion means. it can.
そして、請求項2に係る本発明の発電設備は、請求項1に記載の発電設備において、系内の熱源を用いて、前記アンモニア投入手段から投入される前記アンモニアから水素を得る水素発生手段と、前記水素発生手段で発生した水素を前記燃焼手段に供給する水素供給手段とを備えたことを特徴とする。 A power generation facility according to a second aspect of the present invention is the power generation facility according to the first aspect, wherein the power generation facility according to the first aspect includes a hydrogen generation unit that obtains hydrogen from the ammonia input from the ammonia input unit using a heat source in the system. And hydrogen supply means for supplying hydrogen generated by the hydrogen generation means to the combustion means.
請求項2に係る本発明では、水素発生手段により、系内の熱源を用いてアンモニアから水素を得て、水素供給手段により水素を燃焼手段に供給するので、外部のエネルギーを用いることなく燃焼手段で窒素酸化物を還元することができる。 In the present invention according to claim 2, since hydrogen is obtained from ammonia using a heat source in the system by the hydrogen generation means and hydrogen is supplied to the combustion means by the hydrogen supply means, the combustion means is used without using external energy. Can reduce nitrogen oxides.
また、請求項3に係る本発明の発電設備は、請求項1もしくは請求項2に記載の発電設備において、前記燃焼手段は、炉内で燃料が燃焼されることで蒸気を発生させるボイラであり、前記発電手段は、前記ボイラで発生した蒸気を膨張して発電動力を得る蒸気タービンであることを特徴とする。 According to a third aspect of the present invention, there is provided the power generation facility according to the first or second aspect of the present invention, wherein the combustion means is a boiler that generates steam by burning fuel in a furnace. The power generation means is a steam turbine that obtains power generation by expanding the steam generated in the boiler.
請求項3に係る本発明では、再生可能エネルギー発電設備の出力の変化に対し、ボイラで発生した蒸気により蒸気タービンを駆動して発電を行う火力発電設備の出力を細かく追従させることができる。 In this invention which concerns on Claim 3, the output of the thermal power generation equipment which drives a steam turbine with the steam which generate | occur | produced in the boiler with respect to the change of the output of a renewable energy power generation equipment can be made to follow finely.
また、請求項4に係る本発明の発電設備は、請求項1もしくは請求項2に記載の発電設備において、前記燃焼手段は、燃料が投入されて燃焼ガスを得る燃焼器であり、前記発電手段は、前記燃焼器で得られた燃焼ガスを膨張して発電動力を得るガスタービンであることを特徴とする。 According to a fourth aspect of the present invention, there is provided the power generation facility according to the first or second aspect, wherein the combustion means is a combustor that obtains combustion gas when fuel is introduced, and the power generation means. Is a gas turbine that expands the combustion gas obtained by the combustor to obtain power generation power.
請求項4に係る本発明では、再生可能エネルギー発電設備の出力の変化に対し、燃焼器で得られた燃焼ガスによりガスタービンを駆動して発電を行う火力発電設備の出力を細かく追従させることができる。 In the present invention according to claim 4, the output of the thermal power generation facility that generates power by driving the gas turbine with the combustion gas obtained by the combustor can be made to closely follow the change in the output of the renewable energy power generation facility. it can.
また、請求項5に係る本発明の発電設備は、請求項3もしくは請求項4に記載の発電設備において、前記燃焼手段の排気ガスの脱硝を行う脱硝手段を備え、前記アンモニア投入手段は、前記脱硝手段に供給されるアンモニアを前記燃焼手段に投入する手段であることを特徴とする。 A power generation facility according to a fifth aspect of the present invention is the power generation facility according to the third or fourth aspect, further comprising a denitration means for denitrating exhaust gas of the combustion means, wherein the ammonia charging means is the The ammonia is supplied to the denitration means, and is a means for charging the combustion means.
請求項5に係る本発明では、系の内部に備えられた脱硝手段に用いられるアンモニアを燃焼手段に投入することができ、別途、アンモニアを供給するための設備を必要としない。 In the present invention according to claim 5, ammonia used in the denitration means provided in the system can be introduced into the combustion means, and no separate facility for supplying ammonia is required.
本発明の発電設備は、再生可能エネルギー発電設備と火力発電設備を同時に用いた発電設備において、再生可能エネルギー発電設備の出力の変化に対し、運転中の火力発電設備の出力を細かく追従させることが可能になる。 The power generation facility according to the present invention is a power generation facility that uses a renewable energy power generation facility and a thermal power generation facility at the same time, and can closely follow the output of the thermal power generation facility during operation with respect to changes in the output of the renewable energy power generation facility. It becomes possible.
図1には本発明の一実施例に係る発電設備の全体の構成を説明する概略系統、図2には蒸気タービンを備えた火力発電設備の概略系統、図3にはガスタービンを備えた火力発電設備の概略系統、図4には他の実施例に係る火力発電設備の概略系統図、図5には要求出力における電力供給分布を説明するグラフを示してある。 FIG. 1 is a schematic system for explaining the overall configuration of a power generation facility according to an embodiment of the present invention, FIG. 2 is a schematic system of a thermal power generation facility equipped with a steam turbine, and FIG. 3 is a thermal power system equipped with a gas turbine. FIG. 4 is a schematic system diagram of a power generation facility, FIG. 4 is a schematic system diagram of a thermal power generation facility according to another embodiment, and FIG. 5 is a graph illustrating a power supply distribution at a required output.
図1に示すように、発電設備1は、石炭を燃料とする燃焼手段としてのボイラ2が備えられ、ボイラ2により生成された蒸気を駆動源とする蒸気タービン3が備えられている。蒸気タービン3により発電機4が駆動され、電力が得られるようになっている(発電手段)。発電機4で発電された電力は電力系統9に送られる。電力系統9からは外部の負荷10に電力が供給される。
As shown in FIG. 1, the power generation facility 1 is provided with a boiler 2 as combustion means using coal as fuel, and a steam turbine 3 using steam generated by the boiler 2 as a drive source. The generator 4 is driven by the steam turbine 3 to obtain electric power (power generation means). The electric power generated by the generator 4 is sent to the electric power system 9. Power is supplied from the power system 9 to an
また、発電設備11は、例えば、石炭ガス化ガスを燃料とする燃焼手段としての燃焼器12が備えられ、燃焼器12で生成された燃焼ガスを駆動源とするタービン13を備えたタービン設備14が備えられている。タービン13により発電機15が駆動され、電力が得られるようになっている(発電手段)。発電機15で発電された電力は電力系統9に送られる。
In addition, the
一方、電力系統9には、再生可能エネルギー発電設備20からの電力が供給される。再生可能エネルギー発電設備20は、例えば、複数の太陽光発電手段21、複数の風力発電手段22が適用される。尚、再生可能エネルギー発電設備20の発電手段としては、水力、地熱、潮流、バイオマス燃料等、化石燃料を使用しない発電設備が適用される。
On the other hand, power from the renewable energy
発電設備1、11と再生可能エネルギー発電設備20は、多数の設備が並列して運用される。例えば、電力の要求出力により、再生可能エネルギー発電設備20による電力、及び、発電設備1、11の電力が電力系統9に供給されて負荷10の電力(要求出力)が賄われる。再生可能エネルギー発電設備20は、自然環境により出力が大きく変化するため、安定した電力需要(要求出力)に対応する必要がある。
The
このため、再生可能エネルギー発電設備20の出力が低下した場合、電力系統9の要求出力を賄うために、ボイラ2、燃焼器12にアンモニアが投入され(アンモニア投入手段)、蒸気タービン3、タービン13の出力(発電手段の出力)を上げて、再生可能エネルギー発電設備20の出力の低下に追従させる。つまり、再生可能エネルギー発電設備20の出力の低下に応じて、アンモニアの投入を制御し(アンモニア調整手段)、蒸気タービン3、タービン13の出力(発電手段の出力)を上昇させる。
For this reason, when the output of the renewable energy
これにより、再生可能エネルギー発電設備20の出力の変化に対し、ボイラ2、燃焼器12に投入される主燃料の供給に影響を与えずに、運転中の発電設備1、11(火力発電設備)の出力を細かく追従させることができ、負荷10の要求出力を維持することができる。
Thus, the power generation facilities 1 and 11 (thermal power generation facilities) in operation without affecting the supply of the main fuel input to the boiler 2 and the
図2に基づいて、発電設備1を具体的に説明する。 The power generation facility 1 will be specifically described based on FIG.
図2に示すように、ボイラ2には燃料として石炭(微粉炭)が投入され、石炭の燃焼により蒸気が生成される。ボイラ2で発生した蒸気が蒸気タービン3に導入されて駆動力が得られる。蒸気タービン3が駆動することにより、発電機4で発電出力が得られる。蒸気タービン3の排気蒸気は復水器5で凝縮されて復水され、復水器5からの復水はボイラ2に給水される。 As shown in FIG. 2, coal (pulverized coal) is input to the boiler 2 as fuel, and steam is generated by combustion of the coal. Steam generated in the boiler 2 is introduced into the steam turbine 3 to obtain driving force. When the steam turbine 3 is driven, a power generation output is obtained by the power generator 4. The exhaust steam from the steam turbine 3 is condensed and condensed in the condenser 5, and the condensed water from the condenser 5 is supplied to the boiler 2.
ボイラ2の排気ガスは、脱硝装置31(脱硝手段)でNOxが除去された後、煙突から大気に放出される。脱硝装置31にはアンモニア供給装置32からアンモニアが供給され、排ガス中にアンモニアが投入されてNOxが浄化される。アンモニア供給装置32からは、燃料としてアンモニアをボイラ2に供給できるようになっている(アンモニア投入手段)。
The exhaust gas from the boiler 2 is discharged from the chimney to the atmosphere after NO x is removed by the denitration device 31 (denitration means). The
アンモニア供給装置32からは、アンモニア調整装置33の指令により、アンモニアが燃料としてボイラ2に供給される。つまり、アンモニア調整装置33には再生可能エネルギー発電設備20(図1参照)の出力変動の情報が入力され、出力の変動に応じて、ボイラ2にアンモニアを投入する指令が出力される。
From the
例えば、再生可能エネルギー発電設備20(図1参照)の出力が低下した場合、電力系統9(図1参照)の要求出力を賄うために、ボイラ2にアンモニアが投入されるようにアンモニア調整装置33から指令が出力される。アンモニア供給装置32からアンモニアがボイラ2に追加の燃料として供給され、蒸気タービン3の出力を上げて、再生可能エネルギー発電設備20(図1参照)の出力の低下に追従させる。つまり、再生可能エネルギー発電設備20(図1参照)の出力の低下に応じて、アンモニアの投入を制御し、蒸気タービン3の出力を上昇させる。
For example, when the output of the renewable energy power generation facility 20 (refer to FIG. 1) decreases, the
これにより、再生可能エネルギー発電設備20(図1参照)の出力の変化に対し、ボイラ2に投入される主燃料の供給に影響を与えずに、運転中の発電設備1の出力を細かく追従させることができ、負荷10の要求出力を維持することができる。
As a result, changes in the output of the renewable energy power generation facility 20 (see FIG. 1) are made to closely follow the output of the operating power generation facility 1 without affecting the supply of the main fuel input to the boiler 2. The required output of the
尚、アンモニア供給装置32からのアンモニアの一部から、系内の熱を用いて水素を発生させ、水素をボイラ2に供給することも可能である(水素供給手段)。水素をボイラ2に供給することで、外部のエネルギーを用いることなくボイラ2で窒素酸化物を還元することができる。
In addition, it is also possible to generate hydrogen from a part of ammonia from the
図3に基づいて、発電設備11を具体的に説明する。
Based on FIG. 3, the electric
図3に示すように、発電設備11は圧縮機16及びタービン13を備え、圧縮機16で圧縮された圧縮空気と燃料(ガスもしくは液体)が燃焼器12に送られる。燃焼器12からの燃焼ガスはタービン13で膨張されて動力が得られ、発電機15が駆動される。タービン13の排気ガスは排熱回収ボイラ17で熱回収され、脱硝装置18(脱硝手段)でNOxが除去された後、煙突から大気に放出される。
As shown in FIG. 3, the
脱硝装置18にはアンモニア供給装置25からアンモニアが供給され、排ガス中にアンモニアが投入されてNOxが浄化される。アンモニア供給装置25からは、燃料としてアンモニアを燃焼器12に供給できるようになっている(アンモニア投入手段)。
The
アンモニア供給装置25からは、アンモニア調整装置26の指令により、アンモニアが燃料として燃焼器12に供給される。つまり、アンモニア調整装置26には再生可能エネルギー発電設備20(図1参照)の出力変動の情報が入力され、出力の変動に応じて、燃焼器12にアンモニアを投入する指令が出力される。
From the
例えば、再生可能エネルギー発電設備20(図1参照)の出力が低下した場合、電力系統9(図1参照)の要求出力を賄うために、燃焼器12にアンモニアが投入されるようにアンモニア調整装置26から指令が出力される。アンモニア供給装置25からアンモニアが燃焼器12に追加の燃料として供給され、タービン13の出力を上げて、再生可能エネルギー発電設備20(図1参照)の出力の低下に追従させる。つまり、再生可能エネルギー発電設備20(図1参照)の出力の低下に応じて、アンモニアの投入を制御し、タービン13の出力を上昇させる。
For example, when the output of the renewable energy power generation facility 20 (see FIG. 1) decreases, the ammonia adjusting device is configured so that ammonia is input to the
これにより、再生可能エネルギー発電設備20(図1参照)の出力の変化に対し、燃焼器12に投入される主燃料の供給に影響を与えずに、運転中の発電設備11の出力を細かく追従させることができ、負荷10の要求出力を維持することができる。
As a result, changes in the output of the renewable energy power generation facility 20 (see FIG. 1) closely follow the output of the operating
尚、図4に示したように、アンモニア供給装置25からのアンモニアの一部を排熱回収ボイラ17で加熱して水素を発生させ、排熱回収ボイラ17で発生させた水素を燃焼器12に供給することも可能である(水素供給手段)。排熱回収ボイラ17で発生させた水素を燃焼器12に供給することで、外部のエネルギーを用いることなく燃焼器12で窒素酸化物を還元することができる。高温の水素を燃焼器12に供給するので、再生可能エネルギー発電設備20(図1参照)の出力の変化に対して追従しやすい。
As shown in FIG. 4, a part of the ammonia from the
また、燃焼手段を備えた再燃型の排熱回収ボイラを適用した場合、排熱回収ボイラ17で加熱されて得られた水素の一部(もしくは全部)を排熱回収ボイラの燃焼手段に投入することも可能である(図中点線で示してある)。この場合、アンモニア供給装置25からのアンモニアの一部を排熱回収ボイラ17の燃焼手段に投入することも可能である(図中点線で示してある)。
Further, when a reburning type exhaust heat recovery boiler equipped with combustion means is applied, a part (or all) of hydrogen obtained by heating with the exhaust
上述したように、再生可能エネルギー発電設備20の出力が低下した場合、電力系統9の要求出力を賄うために、ボイラ2、燃焼器12にアンモニアが投入され、蒸気タービン3、タービン13の出力を上げて、再生可能エネルギー発電設備20の出力の低下に追従させている。
As described above, when the output of the renewable energy
図5に基づいて電力の要求出力の経時変化を説明する。 The change with time of the required output of power will be described with reference to FIG.
自然環境の変化により、1日の中で再生可能エネルギー発電設備20による発電が不安定になった場合、要求出力(実線で示してある)に対して、出力が低下して不安定な状況になる(点線で示してある)。発電設備1、11で、アンモニアの投入を制御し(アンモニア調整手段)、蒸気タービン3、タービン13の出力(発電手段の出力)を上昇させることで、図5に実線で示した要求出力と、点線で示した低下出力との間の部分(網目部分)の出力を賄うことができる。
If power generation by the renewable energy
つまり、アンモニアを燃料として追加投入することにより、ボイラ2、燃焼器12に投入される主燃料の供給に影響を与えずに、運転中の発電設備1、11の出力を細かく追従させることができ、負荷10の要求出力を維持することができる。
In other words, by adding ammonia as a fuel, the output of the operating
従って、再生可能エネルギー発電設備20と火力発電設備(発電設備1、11)を同時に用いた発電設備において、再生可能エネルギー発電設備20の出力の変化に対し、運転中の発電設備1、11の出力を細かく追従させることが可能になる。
Therefore, in the power generation facility using the renewable energy
本発明は、再生可能エネルギーを用いた再生エネルギー発電設備が併用された発電設備の産業分野で利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of power generation facilities that are combined with renewable energy power generation facilities that use renewable energy.
1、11 発電設備
2 ボイラ
3 蒸気タービン
4、15 発電機
5 復水器
9 電力系統
10 負荷
12 燃焼器
13 タービン
16 圧縮機
17 排熱回収ボイラ
18、31 脱硝装置
20 再生可能エネルギー発電設備
21 太陽光発電設備
22 風力発電設備
25、32 アンモニア供給装置
26、33 アンモニア調整装置
DESCRIPTION OF
Claims (5)
前記燃焼手段により得られるエネルギーにより発電を行う発電手段と、
前記発電手段で発電された電力が送られる電力系統と、
前記電力系統に接続され、前記発電手段からの電力と共に要求負荷が賄われる再生可能エネルギー発電設備と、
前記燃焼手段にアンモニアを投入するアンモニア投入手段と、
前記再生可能エネルギー発電設備の出力の変動に応じて、前記要求負荷に対する発電出力が不足したときに前記アンモニアを投入して前記発電手段の出力を増加させ、前記要求負荷を賄うように、前記アンモニア投入手段による前記アンモニアの投入を制御するアンモニア調整手段とを備えた
ことを特徴とする発電設備。 Combustion means into which fuel is introduced;
Power generation means for generating power with energy obtained by the combustion means;
A power system to which the power generated by the power generation means is sent;
Renewable energy power generation facility connected to the power system and covered by the power demand from the power generation means ,
Ammonia charging means for charging ammonia into the combustion means;
In response to fluctuations in the output of the renewable energy power generation facility, when the power generation output for the required load is insufficient, the ammonia is added to increase the output of the power generation means to cover the required load. A power generation facility comprising: ammonia adjusting means for controlling charging of the ammonia by the charging means.
系内の熱源を用いて、前記アンモニア投入手段から投入される前記アンモニアから水素を得る水素発生手段と、
前記水素発生手段で発生した水素を前記燃焼手段に供給する水素供給手段とを備えた
ことを特徴とする発電設備。 The power generation facility according to claim 1,
Using a heat source in the system, hydrogen generating means for obtaining hydrogen from the ammonia input from the ammonia input means,
A power generation facility comprising: hydrogen supply means for supplying hydrogen generated by the hydrogen generation means to the combustion means.
前記燃焼手段は、炉内で燃料が燃焼されることで蒸気を発生させるボイラであり、
前記発電手段は、前記ボイラで発生した蒸気を膨張して発電動力を得る蒸気タービンである
ことを特徴とする発電設備。 In the power generation facility according to claim 1 or claim 2,
The combustion means is a boiler that generates steam by burning fuel in a furnace,
The power generation means is a steam turbine that obtains power generation by expanding steam generated in the boiler.
前記燃焼手段は、燃料が投入されて燃焼ガスを得る燃焼器であり、
前記発電手段は、前記燃焼器で得られた燃焼ガスを膨張して発電動力を得るガスタービンである
ことを特徴とする発電設備。 In the power generation facility according to claim 1 or claim 2,
The combustion means is a combustor that receives fuel and obtains combustion gas,
The power generation facility is characterized in that the power generation means is a gas turbine that expands the combustion gas obtained in the combustor to obtain power generation power.
前記燃焼手段の排気ガスの脱硝を行う脱硝手段を備え、
前記アンモニア投入手段は、前記脱硝手段に供給されるアンモニアを前記燃焼手段に投入する手段である
ことを特徴とする発電設備。
In the power generation equipment according to claim 3 or claim 4,
A denitration means for denitrating the exhaust gas of the combustion means,
The power generation facility, wherein the ammonia charging means is means for charging ammonia supplied to the denitration means into the combustion means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015065102A JP6482021B2 (en) | 2015-03-26 | 2015-03-26 | Power generation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015065102A JP6482021B2 (en) | 2015-03-26 | 2015-03-26 | Power generation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016183840A JP2016183840A (en) | 2016-10-20 |
JP6482021B2 true JP6482021B2 (en) | 2019-03-13 |
Family
ID=57242912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015065102A Active JP6482021B2 (en) | 2015-03-26 | 2015-03-26 | Power generation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6482021B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6707013B2 (en) * | 2016-11-08 | 2020-06-10 | 三菱日立パワーシステムズ株式会社 | Gas turbine plant and operating method thereof |
JP7079068B2 (en) * | 2016-12-13 | 2022-06-01 | 三菱重工業株式会社 | Thermal power plant, boiler and how to modify boiler |
JP6855874B2 (en) | 2017-03-27 | 2021-04-07 | 株式会社Ihi | Combustion equipment and gas turbine |
JP6926581B2 (en) | 2017-03-27 | 2021-08-25 | 株式会社Ihi | Combustion equipment and gas turbine |
JP6304462B1 (en) * | 2017-06-27 | 2018-04-04 | 中国電力株式会社 | Power generation equipment |
WO2019003317A1 (en) * | 2017-06-27 | 2019-01-03 | 中国電力株式会社 | Power generation installation |
WO2019049300A1 (en) * | 2017-09-08 | 2019-03-14 | 中国電力株式会社 | Combustion method |
JP6296216B1 (en) * | 2017-09-25 | 2018-03-20 | 中国電力株式会社 | Combustion apparatus and combustion method |
WO2019092858A1 (en) * | 2017-11-10 | 2019-05-16 | 中国電力株式会社 | Combustion state determination system |
EP3517757A1 (en) * | 2018-01-30 | 2019-07-31 | Siemens Aktiengesellschaft | Method for operating a power device and power device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58124107A (en) * | 1982-01-21 | 1983-07-23 | Babcock Hitachi Kk | Operation of denitrating device for combined plant |
JP4053965B2 (en) * | 2003-11-18 | 2008-02-27 | 株式会社日立製作所 | Combined heat and power system control method and combined heat and power system controller |
JP2012255420A (en) * | 2011-06-10 | 2012-12-27 | Nippon Shokubai Co Ltd | Gas turbine system |
JP5315492B1 (en) * | 2012-06-13 | 2013-10-16 | 武史 畑中 | Next generation carbon-free power plant and next-generation carbon-free power generation method, and next-generation carbon-free power plant and next-generation carbon-free power generation method |
JP5315491B1 (en) * | 2012-06-13 | 2013-10-16 | 武史 畑中 | Next-generation carbon-free combustor, next-generation carbon-free engine and next-generation carbon-free power generation device using the same, and next-generation carbon-free combustor, next-generation carbon-free engine and next-generation carbon-free power generation device |
-
2015
- 2015-03-26 JP JP2015065102A patent/JP6482021B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016183840A (en) | 2016-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6482021B2 (en) | Power generation equipment | |
EP2762706B1 (en) | Thermal power generation system and method for generating thermal electric power | |
JP5783764B2 (en) | Method for operating a solar combined power plant and a solar combined power plant for implementing this method | |
JP2016183839A (en) | Pulverized coal firing boiler and power generation facility | |
US20160138800A1 (en) | Combustion-powered electrodynamic combustion system | |
Chen et al. | An integrated system combining chemical looping hydrogen generation process and solid oxide fuel cell/gas turbine cycle for power production with CO2 capture | |
JP2016183641A (en) | Power generating facility | |
WO2013151028A1 (en) | Gas turbine engine system equipped with rankine cycle engine | |
KR20090064853A (en) | The power plant system combined with self-starting gas turbine using the fuel cell | |
US9617915B2 (en) | Method of increasing electricity output during high demand | |
JP6482020B2 (en) | Coal gasification combined power generation facility | |
US8640437B1 (en) | Mini sized combined cycle power plant | |
JP2018204601A (en) | Power generation system producing fuel and raw material | |
JP6474075B2 (en) | Power generation equipment | |
JP5321340B2 (en) | Steam injection gas turbine generator | |
JP6978277B2 (en) | Coal gasification power generation equipment | |
JP6336257B2 (en) | Gasified fuel cell combined power generation system and operation method thereof | |
JP2018062905A (en) | Chemical product co-producing type power generating facility | |
JP6733964B2 (en) | Cogeneration system | |
JP4823998B2 (en) | Waste power generation method | |
JP2017180350A (en) | Composite power generation facility | |
JP5690954B1 (en) | Conventional thermal power plant and conventional thermal power generation method | |
JP6382755B2 (en) | Fuel cell combined power generation system and operation method thereof | |
CN107075976B (en) | System and method for improving responsiveness of a duct fired combined cycle power plant | |
JP7246357B2 (en) | Fuel cell system and power generation system using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6482021 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |