[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6478369B2 - Barium silicide film and method for producing the same - Google Patents

Barium silicide film and method for producing the same Download PDF

Info

Publication number
JP6478369B2
JP6478369B2 JP2014037351A JP2014037351A JP6478369B2 JP 6478369 B2 JP6478369 B2 JP 6478369B2 JP 2014037351 A JP2014037351 A JP 2014037351A JP 2014037351 A JP2014037351 A JP 2014037351A JP 6478369 B2 JP6478369 B2 JP 6478369B2
Authority
JP
Japan
Prior art keywords
film
barium
substrate
silicon
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014037351A
Other languages
Japanese (ja)
Other versions
JP2015160998A (en
Inventor
雅実 召田
雅実 召田
倉持 豪人
豪人 倉持
崇 末益
崇 末益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
University of Tsukuba NUC
Original Assignee
Tosoh Corp
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, University of Tsukuba NUC filed Critical Tosoh Corp
Priority to JP2014037351A priority Critical patent/JP6478369B2/en
Priority to TW104106282A priority patent/TW201536679A/en
Priority to PCT/JP2015/055914 priority patent/WO2015129878A1/en
Publication of JP2015160998A publication Critical patent/JP2015160998A/en
Application granted granted Critical
Publication of JP6478369B2 publication Critical patent/JP6478369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

シリコンを含有するワイドギャップ半導体は非常に特異的な特性を示すため、太陽電池材料や熱電変換材料等の環境エネルギー分野で広く利用されている。中でも、バリウム(Ba)とシリコン(Si)からなる珪化バリウムは、BaSi組成でバンドギャップが1.3eVと、シリコンの1.1eVよりも大きいため、注目されている。(例えば、非特許文献1)さらにSrを添加することでバンドギャップを1.4eVまで調整する事が可能である(例えば、特許文献1、非特許文献2参照)。 Wide-gap semiconductors containing silicon are widely used in the field of environmental energy such as solar cell materials and thermoelectric conversion materials because they exhibit very specific characteristics. Among them, barium silicide composed of barium (Ba) and silicon (Si) has attracted attention because it has a BaSi 2 composition and a band gap of 1.3 eV, which is larger than 1.1 eV of silicon. (For example, Non-Patent Document 1) It is possible to adjust the band gap to 1.4 eV by adding Sr (see, for example, Patent Document 1 and Non-Patent Document 2).

珪化バリウムの利用形態としては、膜として用いることが有効である。例えば、特許文献2にはn型とn+型珪化バリウム膜を積層した太陽電池がその例として挙げられている。膜の作製方法として以前より知られているのはシリコン(111)上へMBE法(分子線エピタキシー法)にて製膜する方法で、各元素を精密に製膜することが可能であるが、製膜速度が遅く、特殊な装置であることから、量産には向いていない。そこで、量産向きの膜の作製方法が求められる。また、利用する基板についてもより安価な酸化ケイ素系基板の利用が求められている。   It is effective to use it as a film as a utilization form of barium silicide. For example, Patent Document 2 discloses a solar cell in which an n-type and an n + -type barium silicide film are stacked. As a method for producing a film, a method of forming a film on silicon (111) by MBE method (molecular beam epitaxy method) can be used to precisely form each element. Since the film forming speed is slow and it is a special device, it is not suitable for mass production. Therefore, a method for manufacturing a film suitable for mass production is required. Further, the use of a cheaper silicon oxide substrate is also demanded for the substrate to be used.

量産に向いている膜の作製製法としてスパッタ法が挙げられる。スパッタリング法は陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面に設置した基板上にターゲット材料とほぼ同組成の膜を堆積する方法であり、直流スパッタリング法(DCスパッタリング法)と高周波スパッタリング法(RFスパッタリング法)がある。この方法を用いることで、例えばMBE法では困難な大面積への高速製膜が可能となる。   A sputtering method is an example of a method for producing a film suitable for mass production. In the sputtering method, positive ions such as Ar ions are physically collided with the target placed on the cathode, and the material constituting the target is released by the collision energy, and the target material is almost the same composition as the target material on the substrate placed on the opposite side. This is a method for depositing a film, and includes a direct current sputtering method (DC sputtering method) and a high frequency sputtering method (RF sputtering method). By using this method, high-speed film formation on a large area, which is difficult with the MBE method, for example, becomes possible.

特許文献3には、スパッタ法にて珪化バリウム膜を製膜した例が報告されているが、スパッタ法を用いた珪化バリウム膜に関して詳細な検討は行われていない。   Patent Document 3 reports an example in which a barium silicide film is formed by a sputtering method, but no detailed examination has been made on a barium silicide film using a sputtering method.

特開2005−294810号公報JP 2005-294810 A 特開2009−66719号公報JP 2009-66719 A 特開2012−214310号公報JP 2012-214310 A

Japanese Journal of Applied Physics Vol.49 04DP05−01−04DP05−05(2010)Japan Journal of Applied Physics Vol. 49 04DP05-01-04DP05-05 (2010) Japanese Journal of Applied Physics Vol.45 No.14 L390−392(2006)Japan Journal of Applied Physics Vol. 45 No. 14 L390-392 (2006)

本発明の目的は、膜の組織を均一化した珪化バリウム結晶性膜を提供することである。   An object of the present invention is to provide a barium silicide crystalline film having a uniform film structure.

本発明は、下記の態様を有する。
(1)珪素の組成ずれが8.9%以下であり、スパッタ法で製膜されていることを特徴とする珪化バリウム結晶性膜。
(2)BaSi斜方晶の結晶を有することを特徴とする(1)に記載の珪化バリウム結晶性膜。
(3)多結晶構造であることを特徴とする(1)または(2)に記載の珪化バリウム結晶性膜。
(4)リコンを主成分として含む基板の上に製膜されていることを特徴とする(1)〜(3)のいずれかに記載の珪化バリウム結晶性膜。
(5)前記基板の主成分が酸化ケイ素であることを特徴とする(4)に記載の珪化バリウム結晶性膜。
(6)珪化バリウム膜の厚みが500nm以上であることを特徴とする(1)〜(5)のいずれかに記載の珪化バリウム結晶性膜。
(7)珪化バリウム膜の面積が15cm以上であることを特徴とする(1)〜(6)のいずれかに記載の珪化バリウム結晶性膜。
(8)上記(1)〜(7)のいずれかに記載の珪化バリウム結晶性膜の製造方法であって、基板を350℃〜500℃に加熱した状態でスパッタ法にて製膜することを特徴とする珪化バリウム結晶性膜の製造方法。
(9)基板を350℃〜430℃に加熱した状態でスパッタ法にて製膜することを特徴とする(8)に記載の珪化バリウム結晶性膜の製造方法。
The present invention has the following aspects.
(1) composition shift of silicon is not more than 8.9%, silicide barium crystalline film, which is a film by sputtering.
(2) The barium silicide crystalline film according to (1), having a BaSi 2 orthorhombic crystal.
(3) The barium silicide crystalline film according to (1) or (2), which has a polycrystalline structure.
(4) The barium silicide crystalline film according to any one of (1) to (3), which is formed on a substrate containing recon as a main component.
(5) The barium silicide crystalline film according to (4), wherein a main component of the substrate is silicon oxide.
(6) The barium silicide crystalline film according to any one of (1) to (5), wherein the barium silicide film has a thickness of 500 nm or more.
(7) The barium silicide crystalline film according to any one of (1) to (6), wherein the barium silicide film has an area of 15 cm 2 or more.
(8) A method for producing a barium silicide crystalline film according to any one of ( 1) to (7 ) above, wherein the substrate is formed by sputtering in a state where the substrate is heated to 350 ° C to 500 ° C. method for producing a silicofluoride of barium crystalline film you characterized.
(9) The method for producing a barium silicide crystalline film according to (8), wherein the film is formed by sputtering in a state where the substrate is heated to 350 ° C. to 430 ° C.

本発明の珪化バリウム膜は、膜が均質であることから半導体として好適であり、太陽電池などに代表される半導体デバイスに使用することができる。   The barium silicide film of the present invention is suitable as a semiconductor because the film is homogeneous, and can be used for semiconductor devices represented by solar cells and the like.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の珪化バリウム薄膜は薄膜中の珪素の組成ずれが20%以下と均一であることを特徴とする。その組成分布の測定はEPMA(電子線マイクロアナライザー)等、元素の面分布を測定可能な分析手法を用いることで測定することができる。測定視野としては45μm四方以上の視野について面分析をすることが望ましい。珪素の組成分布が均一であるということはすなわち、膜組織が均一であることを示し、それにより、不均一組織と比較し高い光学特性や電気特性を得られる。   The barium silicide thin film of the present invention is characterized in that the compositional deviation of silicon in the thin film is uniform at 20% or less. The composition distribution can be measured by using an analytical method capable of measuring the surface distribution of elements such as EPMA (electron beam microanalyzer). As a measurement visual field, it is desirable to perform surface analysis on a visual field of 45 μm square or more. The fact that the silicon composition distribution is uniform means that the film structure is uniform, whereby high optical characteristics and electrical characteristics can be obtained as compared with the non-uniform structure.

本願ではその測定方法として下記の方法を用いた。   In this application, the following method was used as the measuring method.

まず、EPMA等を用いて45μm四方の視野に対し、珪素に関する組成分布を測定する。その後3μm四方毎に珪素検出量の平均値を取ることで、45μm四方における、3μm四方の平均検出量が算出される。それぞれの平均算出量に対し、最大量A、最少量Bならびに225か所の全平均量Cから下記の計算により組成ずれ(%)を算出する。
組成ずれ(%)=(最大量A−最少量B)/全平均値C
また、光吸収特性や電気伝導性を向上させるためには、珪化バリウム膜は結晶化していることが好ましい。その結晶系はBaSi、特に斜方晶の組織であることが好ましい。その場合に珪素―バリウム系の半導体物性として最も高い性能を示す。
First, a composition distribution relating to silicon is measured for a visual field of 45 μm square using EPMA or the like. Thereafter, by taking the average value of the silicon detection amount every 3 μm square, the average detection amount of 3 μm square in 45 μm square is calculated. For each average calculation amount, the composition deviation (%) is calculated from the maximum amount A, the minimum amount B, and the total average amount C at 225 locations by the following calculation.
Composition deviation (%) = (maximum amount A−minimum amount B) / total average value C
In order to improve light absorption characteristics and electrical conductivity, the barium silicide film is preferably crystallized. The crystal system is preferably BaSi 2 , particularly an orthorhombic structure. In that case, it shows the highest performance as a silicon-barium semiconductor physical property.

その結晶性は高いことが好ましいが、結晶の柔軟性や硬度を高めるために結晶は多結晶構造であることが好ましい。   The crystallinity is preferably high, but the crystal preferably has a polycrystalline structure in order to increase the flexibility and hardness of the crystal.

さらに、製膜するための基板としては、コスト面などを重視するとシリコン系基板、さらには酸化ケイ素を主成分にする基板を用いることが好ましい。特にアルカリフリーガラスを利用することで、コストの低減が可能となる。   Furthermore, as a substrate for forming a film, it is preferable to use a silicon-based substrate and further a substrate containing silicon oxide as a main component in view of cost. In particular, the cost can be reduced by using alkali-free glass.

また、本発明の珪化バリウム膜は、生産性、製造コストの観点からスパッタ法による製膜が好ましい。MBE法に代表される方法はエピタキシー成長させるために、基板の面方位、格子定数に成長膜が左右され、利用可能な基板が限定される。例えば珪化バリウム系膜において、BaSi結晶を析出させるためにはSi(111)、(100)面をもつ基板を用いる必要がある。それに対し、スパッタ法ではスパッタリングターゲットより発生する高エネルギーBaもしくはSi粒子を利用していることから、基板配向面によらず結晶性の珪化バリウム膜を作製することが可能な手法となる。 The barium silicide film of the present invention is preferably formed by sputtering from the viewpoint of productivity and manufacturing cost. In the method represented by the MBE method, the growth film depends on the plane orientation and the lattice constant of the substrate for epitaxy growth, and the usable substrates are limited. For example, in a barium silicide-based film, it is necessary to use a substrate having Si (111) and (100) planes in order to precipitate BaSi 2 crystals. On the other hand, since the high energy Ba or Si particles generated from the sputtering target are used in the sputtering method, a crystalline barium silicide film can be produced regardless of the substrate orientation plane.

熱膨張率の点からも基板を選定することが好ましい。珪化バリウムの熱膨張率が約150×10−7/Kであるため、なるべくこれに近い基板を用いることが好ましく、石英ガラス(5.4×10−7/K)と比較すればシリコン(35.9×10−7/K)やアルカリフリーガラス(31.7×10−7/K)のような熱膨張率が10×10−7/K以上の基板が望ましい。 It is preferable to select the substrate also in terms of the coefficient of thermal expansion. Since the thermal expansion coefficient of barium silicide is about 150 × 10 −7 / K, it is preferable to use a substrate as close as possible to this, and silicon (35) compared to quartz glass (5.4 × 10 −7 / K). .9 × 10 −7 / K) or an alkali-free glass (31.7 × 10 −7 / K) and a substrate having a thermal expansion coefficient of 10 × 10 −7 / K or more is desirable.

本発明の珪化バリウム膜の製造方法について説明する。   The manufacturing method of the barium silicide film of the present invention will be described.

本発明の珪化バリウム膜の製造方法は、基板を加熱しながらスパッタ法を用いて製膜する。   In the method for producing a barium silicide film of the present invention, a film is formed using a sputtering method while heating the substrate.

珪化バリウム膜を作製するに当たり、室温製膜では結晶化させるためのエネルギーが不足するため、結晶性を持つ珪化バリウム系膜を作製することが難しい。そこで、結晶性を持つ珪化バリウム系膜を作製するため、基板を加温した状態で製膜する、加熱製膜を用いる。スパッタ法はターゲットより飛び出したBaやSi粒子が基板に衝突し、膜を形成するが、基板を加熱しておくことで、基板に到着した粒子が安定層へ移動し、結晶膜を形成しやすくなる。基板の加熱温度としては350℃から800℃が好ましい。アーク溶解法等による珪化バリウム塊合成の場合はより高温が必要だが、高エネルギー粒子にさらにエネルギーを付加する形となるため、より低い温度で結晶性膜を形成することが可能である。350℃未満では粒子の移動エネルギーが小さく結晶膜を形成することが困難であり、800℃より高温になると、バリウムと珪素が遊離を始めるために、珪化バリウムの結晶を維持できなくなる。加熱温度が450℃以上600℃以下だと、BaSiの斜方晶の珪化バリウムの結晶が主に析出し、更に半導体としての性能を高めることが可能となる。 In producing a barium silicide film, it is difficult to produce a barium silicide-based film having crystallinity because the energy for crystallization is insufficient in film formation at room temperature. Therefore, in order to produce a barium silicide-based film having crystallinity, heating film formation is used in which the substrate is formed in a heated state. In the sputtering method, Ba and Si particles popping out from the target collide with the substrate to form a film. However, by heating the substrate, the particles arriving at the substrate move to the stable layer and easily form a crystal film. Become. The heating temperature of the substrate is preferably 350 ° C. to 800 ° C. In the case of barium silicide ingot synthesis by the arc melting method or the like, a higher temperature is required. However, since energy is added to high energy particles, a crystalline film can be formed at a lower temperature. If the temperature is lower than 350 ° C., it is difficult to form a crystal film because the particle movement energy is small, and if the temperature is higher than 800 ° C., barium and silicon begin to be released, so that the crystal of barium silicide cannot be maintained. When the heating temperature is 450 ° C. or higher and 600 ° C. or lower, BaSi 2 orthorhombic barium silicide crystals are mainly precipitated, and the performance as a semiconductor can be further improved.

また、太陽電池用途を想定する場合において、その膜は厚い方が好ましくその厚みは500nm以上が好ましく、1000nm以上であることがより好ましい。膜の面積は15cm以上が好ましい。 In the case of assuming a solar cell application, the film is preferably thick, and the thickness is preferably 500 nm or more, and more preferably 1000 nm or more. The area of the film is preferably 15 cm 2 or more.

以下、本発明の実施例をもって説明するが、本発明はこれに限定されるものではない。
(結晶性の確認方法)
XRD装置を用いて20°〜80°まで走査し、ピーク位置から結晶方位を同定した。
(珪素組成ずれの確認方法)
EPMAを用いて、45μm四方の視野に対し、珪素量分布を測定した。その後3μm四方毎に珪素検出量の平均値を取り、45μm四方における、3μm四方の平均検出量が算出される。それぞれの平均検出量に対し、最大量A、最少量Bならびに225か所の全平均量Cから下記の計算により組成ずれ(%)を算出する。
珪素組成ずれ(%)=(最大量A−最少量B)/全平均値C
(実施例1)
珪化バリウムスパッタリングターゲットを用いて、下記の条件にてスパッタ製膜試験を実施した。
(スパッタ条件)
放電方式 :RFスパッタ
製膜装置 :マグネトロンスパッタ装置
ターゲットサイズ :50mmφ
ターゲット―基板間距離:80mm
製膜圧力 :0.2Pa
導入ガス :アルゴン
放電パワー :100W(5.1W/cm
基板 :Si(111)面 50mm角(面積25cm
基板温度 :500℃
膜厚 :1000nm
以上の条件にて製膜を行なった結果、珪素組成ずれ4.8%、BaSi斜方晶ピークを有する、珪素―バリウム多結晶膜を作製する事が可能であることを確認した。
Examples of the present invention will be described below, but the present invention is not limited thereto.
(Method for confirming crystallinity)
Scanning was performed from 20 ° to 80 ° using an XRD apparatus, and the crystal orientation was identified from the peak position.
(Silicon composition deviation confirmation method)
Using EPMA, the silicon content distribution was measured for a 45 μm square field of view. Thereafter, an average value of the silicon detection amount is taken every 3 μm square, and an average detection amount of 3 μm square in 45 μm square is calculated. For each average detected amount, the composition deviation (%) is calculated from the maximum amount A, the minimum amount B, and the total average amount C at 225 locations by the following calculation.
Silicon composition deviation (%) = (maximum amount A−minimum amount B) / total average value C
Example 1
Using a barium silicide sputtering target, a sputtering film forming test was performed under the following conditions.
(Sputtering conditions)
Discharge method: RF sputtering Film-forming device: Magnetron sputtering device Target size: 50mmφ
Target-to-board distance: 80mm
Film forming pressure: 0.2 Pa
Introduced gas: Argon Discharge power: 100 W (5.1 W / cm 2 )
Substrate: Si (111) surface 50 mm square (area 25 cm 2 )
Substrate temperature: 500 ° C
Film thickness: 1000nm
As a result of film formation under the above conditions, it was confirmed that a silicon-barium polycrystalline film having a silicon composition shift of 4.8% and a BaSi 2 orthorhombic peak could be produced.

(実施例2)
基板温度を390℃とした以外は実施例1と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれ8.1%、BaSi結晶ピークを有する、珪素―バリウム多結晶膜を作製可能であることを確認した。
(Example 2)
A sputter film formation test was performed in the same manner as in Example 1 except that the substrate temperature was 390 ° C. As a result, it was confirmed that a silicon-barium polycrystalline film having a silicon composition deviation of 8.1% and a Ba 5 Si 3 crystal peak could be produced.

比較例5
基板温度を600℃とした以外は実施例1と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれ11.8%、BaSi斜方晶ピークを有する、珪素―バリウム多結晶膜を作製可能であることを確認した。
( Comparative Example 5 )
A sputter film formation test was performed in the same manner as in Example 1 except that the substrate temperature was 600 ° C. As a result, it was confirmed that a silicon-barium polycrystalline film having a silicon composition shift of 11.8% and a BaSi 2 orthorhombic peak could be produced.

(実施例4)
基板を石英ガラス(厚み0.5mm)とした以外は実施例1と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれ6.7%、BaSi斜方晶ピークを有する、珪素―バリウム多結晶膜を作製可能であることを確認した。
Example 4
A sputtering film formation test was performed in the same manner as in Example 1 except that the substrate was quartz glass (thickness 0.5 mm). As a result, it was confirmed that a silicon-barium polycrystalline film having a silicon composition deviation of 6.7% and a BaSi 2 orthorhombic peak could be produced.

(実施例5)
基板をアルカリフリーガラス(厚み0.5mm)とした以外は実施例1と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれ4.1%であり、BaSi斜方晶ピークを有する、珪素―バリウム多結晶膜を作製可能であることを確認した。
(Example 5)
A sputtering film forming test was performed in the same manner as in Example 1 except that the substrate was alkali-free glass (thickness 0.5 mm). As a result, it was confirmed that a silicon-barium polycrystalline film having a silicon composition deviation of 4.1% and having a BaSi 2 orthorhombic peak could be produced.

(実施例6)
基板温度を430℃とした以外は実施例5と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれ2.4%、BaSi斜方晶、BaSi結晶ピークを有する、珪素―バリウム多結晶膜を作製可能であることを確認した。
(Example 6)
A sputtering film forming test was performed in the same manner as in Example 5 except that the substrate temperature was 430 ° C. As a result, it was confirmed that a silicon-barium polycrystalline film having a silicon composition deviation of 2.4%, a BaSi 2 orthorhombic crystal, and a Ba 5 Si 3 crystal peak could be produced.

(実施例7)
基板の大きさを3インチΦ(面積46cm)とした以外は実施例1と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれ8.9%である、BaSi斜方晶ピークを有する、珪素―バリウム多結晶膜を作製可能であることを確認した。
(Example 7)
A sputtering film formation test was performed in the same manner as in Example 1 except that the size of the substrate was 3 inches Φ (area 46 cm 2 ). As a result, it was confirmed that a silicon-barium polycrystalline film having a BaSi 2 orthorhombic peak with a silicon composition deviation of 8.9% can be produced.

(比較例1)
基板温度を25℃とした以外は実施例1と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれが7.8%、結晶性のない珪素―バリウム膜となり、望むものは得られなかった。
(Comparative Example 1)
A sputter film formation test was performed in the same manner as in Example 1 except that the substrate temperature was 25 ° C. As a result, the silicon composition deviation was 7.8%, and a silicon-barium film having no crystallinity was obtained.

(比較例2)
基板温度25℃とした以外は実施例1と同様の方法で珪素―バリウム薄膜を作製した後に、700℃にて熱処理を施した。その結果、珪素組成ずれが39.4%、BaSi斜方晶ピークを有する、珪素―バリウム多結晶膜となり、望むものは得られなかった。
(Comparative Example 2)
A silicon-barium thin film was prepared in the same manner as in Example 1 except that the substrate temperature was 25 ° C., and then heat-treated at 700 ° C. As a result, a silicon-barium polycrystalline film having a silicon composition shift of 39.4% and a BaSi 2 orthorhombic peak was obtained, and the desired product was not obtained.

(比較例3)
基板温度を200℃とした以外は実施例1と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれが6.3%、結晶性のない珪素―バリウム膜となり、望むものは得られなかった。
(Comparative Example 3)
A sputter film formation test was performed in the same manner as in Example 1 except that the substrate temperature was 200 ° C. As a result, the silicon composition deviation was 6.3%, and a silicon-barium film having no crystallinity was obtained.

(比較例4)
基板温度を250℃とした以外は実施例1と同様の方法でスパッタ製膜試験を実施した。その結果、珪素組成ずれが10.8%、結晶性のない珪素―バリウム薄膜となり、望むものは得られなかった。
(Comparative Example 4)
A sputter film formation test was performed in the same manner as in Example 1 except that the substrate temperature was 250 ° C. As a result, the silicon composition deviation was 10.8%, and a silicon-barium thin film having no crystallinity was obtained.

Figure 0006478369
Figure 0006478369

Claims (9)

珪素の組成ずれが8.9%以下であり、スパッタ法で製膜されていることを特徴とする珪化バリウム結晶性膜。 Composition shift of silicon is not more than 8.9%, silicide barium crystalline film, which is a film by sputtering. BaSi斜方晶の結晶を有することを特徴とする請求項1に記載の珪化バリウム結晶性膜。 2. The barium silicide crystalline film according to claim 1, which has BaSi 2 orthorhombic crystals. 多結晶構造であることを特徴とする請求項1または2に記載の珪化バリウム結晶性膜。 The barium silicide crystalline film according to claim 1 or 2, which has a polycrystalline structure. シリコンを主成分として含む基板の上に製膜されていることを特徴とする請求項1〜3のいずれかに記載の珪化バリウム結晶性膜。 The barium silicide crystalline film according to claim 1, wherein the film is formed on a substrate containing silicon as a main component. 前記基板の主成分が酸化ケイ素であることを特徴とする請求項4に記載の珪化バリウム結晶性膜。 5. The barium silicide crystalline film according to claim 4, wherein a main component of the substrate is silicon oxide. 珪化バリウム膜の厚みが500nm以上であることを特徴とする請求項1〜5のいずれかに記載の珪化バリウム結晶性膜。 The barium silicide crystalline film according to any one of claims 1 to 5, wherein the thickness of the barium silicide film is 500 nm or more. 珪化バリウム膜の面積が15cm以上であることを特徴とする請求項1〜6のいずれかに記載の珪化バリウム結晶性膜。 The barium silicide crystalline film according to claim 1, wherein the barium silicide film has an area of 15 cm 2 or more. 請求項1〜7のいずれかに記載の珪化バリウム結晶性膜の製造方法であって、基板を350℃〜500℃に加熱した状態でスパッタ法にて製膜することを特徴とする珪化バリウム結晶性膜の製造方法。 A method of manufacturing a silicide barium crystalline film according to claim 1, you characterized in that a film by sputtering while heating the substrate to 350 ° C. ~ 500 ° C. silicofluoride Method for producing a barium fluoride crystalline film. 基板を350℃〜430℃に加熱した状態でスパッタ法にて製膜することを特徴とする請求項8に記載の珪化バリウム結晶性膜の製造方法。 The method for producing a barium silicide crystalline film according to claim 8, wherein the substrate is formed by a sputtering method in a state where the substrate is heated to 350 ° C. to 430 ° C.
JP2014037351A 2014-02-27 2014-02-27 Barium silicide film and method for producing the same Active JP6478369B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014037351A JP6478369B2 (en) 2014-02-27 2014-02-27 Barium silicide film and method for producing the same
TW104106282A TW201536679A (en) 2014-02-27 2015-02-26 Silicide barium-based bulk body and silicide barium-based film, and manufacturing method thereof
PCT/JP2015/055914 WO2015129878A1 (en) 2014-02-27 2015-02-27 Barium-silicide-based bulk body, film, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037351A JP6478369B2 (en) 2014-02-27 2014-02-27 Barium silicide film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015160998A JP2015160998A (en) 2015-09-07
JP6478369B2 true JP6478369B2 (en) 2019-03-06

Family

ID=54184315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037351A Active JP6478369B2 (en) 2014-02-27 2014-02-27 Barium silicide film and method for producing the same

Country Status (1)

Country Link
JP (1) JP6478369B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294810A (en) * 2004-03-12 2005-10-20 Japan Science & Technology Agency Manufacturing method and equipment of mixed crystal semiconductor thin film using alkaline earth metal
JP4998923B2 (en) * 2006-08-10 2012-08-15 国立大学法人 筑波大学 Silicon-based high efficiency solar cell and manufacturing method thereof
JP5110593B2 (en) * 2007-08-30 2012-12-26 国立大学法人 筑波大学 Semiconductor material, solar cell using the same, and manufacturing method thereof
JP2009277735A (en) * 2008-05-12 2009-11-26 Toyota Central R&D Labs Inc Method of manufacturing thermoelectric material
CN102422438B (en) * 2009-05-12 2014-07-09 国立大学法人筑波大学 Semiconductor device, manufacturing method therefor, and solar cell
JP5732978B2 (en) * 2011-03-31 2015-06-10 東ソー株式会社 Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target
JP5768446B2 (en) * 2011-03-31 2015-08-26 東ソー株式会社 Barium silicide polycrystal, method for producing the same, and barium silicide sputtering target

Also Published As

Publication number Publication date
JP2015160998A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
Misra et al. Low temperature deposition of highly transparent and conducting Al-doped ZnO films by RF magnetron sputtering
Cai et al. Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film
Manavizadeh et al. Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application
JP7031181B2 (en) Gallium nitride based film and its manufacturing method
JP2016204748A (en) Gallium nitride-based film and production method thereof
Shi et al. Structural and opto-electric properties of Ga and F codoped ZnO thin films on PC substrates
Kong et al. Characterization of Cu (In, Ga) Se2 thin films prepared by RF magnetron sputtering using a single target without selenization
Yusof et al. Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique
JP6347041B2 (en) Barium silicide laminated material and method for producing the same
JP6478369B2 (en) Barium silicide film and method for producing the same
Park et al. Co-doping effects of Mg and Be on properties of ZnMgBeGaO UV-range transparent conductive oxide films prepared by RF magnetron sputtering
Wang et al. Two-step molecular beam epitaxy growth of bismuth telluride nanoplate thin film with enhanced thermoelectric properties
Prepelita et al. Evolution of the properties of ZnO thin films subjected to heating treatments
K Thakur et al. Effect of substrate on the structural and electrical properties of Mo thin films
JP2015160997A (en) Barium silicide film and production method thereof
Avril et al. Correlation between the electrical and structural properties of aluminium-doped ZnO thin films obtained by direct current magnetron sputtering
JP5834871B2 (en) Thermoelectric conversion element and manufacturing method thereof
Shin et al. Hydrothermally grown ZnO buffer layer for the growth of highly (4 wt%) Ga-doped ZnO epitaxial thin films on MgAl2O4 (1 1 1) substrates
Wu et al. Structural and optical properties of Ti-doped ZnO thin films prepared by the cathodic vacuum arc technique with different annealing processes
JP2015162601A (en) Barium silicide film and manufacturing method of the same
Kumar et al. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films
JP5185051B2 (en) Method for producing thermoelectric conversion material
Hsu et al. Effect of annealing temperature on electrical properties of ZnTe layers grown by thermal evaporation
Tsai et al. Effect of Al2O3-doping on the structure and optoelectronic characteristics of MgZnO thin film prepared by RF magnetron sputtering
Tani et al. Structural and electrical properties of Mg–Si thin films fabricated by radio-frequency magnetron sputtering deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6478369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250