JP6476944B2 - Non-aqueous electrolyte storage element - Google Patents
Non-aqueous electrolyte storage element Download PDFInfo
- Publication number
- JP6476944B2 JP6476944B2 JP2015022352A JP2015022352A JP6476944B2 JP 6476944 B2 JP6476944 B2 JP 6476944B2 JP 2015022352 A JP2015022352 A JP 2015022352A JP 2015022352 A JP2015022352 A JP 2015022352A JP 6476944 B2 JP6476944 B2 JP 6476944B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- negative electrode
- active material
- aqueous electrolyte
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、正極にアニオン、負極にカチオンを挿入及び脱離可能な非水電解液蓄電素子に関する。 The present invention relates to a nonaqueous electrolyte storage element capable of inserting and removing an anion in a positive electrode and a cation in a negative electrode.
近年、携帯機器の小型化、高性能化に伴い高いエネルギー密度を持つ非水電解液蓄電素子の特性が向上し普及しており、より大容量で安全性に優れた非水電解液蓄電素子の開発も進められ、電気自動車等への搭載も始まっている。
このような非水電解液蓄電素子としては、リチウムコバルト複合酸化物等の正極と、炭素の負極と、非水溶媒にリチウム塩を溶解した非水電解液とからなり、充電時には、正極中のリチウムが脱離して負極の炭素に挿入され、放電時には負極に挿入されたリチウムが脱離して正極の複合酸化物に戻ることにより充放電されるリチウムイオン二次電池が多く使用されている。
一方、蓄電素子がハイブリット自動車等に使用される場合には、瞬時に大電流の出力が可能であることが必須であり、更には回生エネルギーで充電できることが望ましく、エネルギー密度よりも高速充放電特性が重要となってくる。そのため、化学反応を必要とせず高速で充放電可能な電気二重層キャパシタが使用されている。しかし、リチウムイオン蓄電素子と比較するとエネルギー密度は数10分の1であり、十分な容量を確保するためには重い蓄電素子が必要となり、自動車に積載した場合には燃費向上を妨げていた。
In recent years, the characteristics of non-aqueous electrolyte storage elements with high energy density have improved and become widespread with the downsizing and higher performance of portable devices. Development is also underway, and installation in electric vehicles has begun.
Such a non-aqueous electrolyte storage element comprises a positive electrode such as a lithium cobalt composite oxide, a carbon negative electrode, and a non-aqueous electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent. Lithium ion secondary batteries are often used that are charged and discharged by lithium being desorbed and inserted into carbon of the negative electrode, and lithium inserted into the negative electrode being desorbed and returning to the composite oxide of the positive electrode during discharge.
On the other hand, when a power storage element is used in a hybrid vehicle or the like, it is essential to be able to output a large current instantaneously, and it is desirable that it can be charged with regenerative energy. Becomes important. Therefore, an electric double layer capacitor that can be charged and discharged at high speed without requiring a chemical reaction is used. However, the energy density is a few tenths compared with a lithium ion power storage element, and a heavy power storage element is required to secure a sufficient capacity, and hindering improvement in fuel consumption when mounted on an automobile.
エネルギー密度が高く、高速充放電に適した蓄電素子として、導電性高分子、炭素材料等を正極に用い、炭素等の負極、及び非水溶媒にリチウム塩を溶解した非水電解液からなり、充電時には、非水電解液中のアニオンが正極へ、カチオンが負極へ挿入され、放電時には、前記正極及び負極に挿入されたアニオン及びカチオンが電解液中へ脱離することにより充放電が行われる、いわゆるデュアルインターカレーションタイプの非水電解液蓄電素子(デュアルカーボン電池)の実用化が期待されている。
リチウム塩としてLiPF6を使用した場合には、下記反応式に示すように非水電解液中から正極にPF6 −が挿入され、負極にLi+が挿入されることにより充電が行われ、正極からPF6 −が、負極からLi+が非水電解液へ脱離することにより放電が行われる。
When LiPF 6 is used as the lithium salt, charging is performed by inserting PF 6 − into the positive electrode from the non-aqueous electrolyte and inserting Li + into the negative electrode as shown in the following reaction formula. To PF 6 − and Li + from the negative electrode are desorbed to the non-aqueous electrolyte, thereby discharging.
前記デュアルカーボン電池の放電容量は、正極のアニオン吸蔵量、正極のアニオン放出可能量、負極のカチオン吸蔵量、負極のカチオン放出可能量、非水電解液中のアニオン量及びカチオン量で決まる。このため、デュアルカーボン電池の放電容量を増加させるためには、正極活物質及び負極活物質の他に、リチウム塩を含む非水電解液の量も増やす必要がある(特許文献1参照)。
このようにデュアルカーボン電池において電池の持つ電気量は、非水電解液中のアニオン及びカチオンの総量に比例する。したがって、電池の蓄えるエネルギーは、正極活物質及び負極活物質に加えて、非水電解液の質量の合計に比例する。このため、電池の重量エネルギー密度を高めることが難しい。リチウムイオン二次電池に通常使用される1mol/L程度のリチウム塩濃度の非水電解液を用いると、リチウムイオン二次電池に比べて大量の非水電解液が必要になる。一方、リチウム塩濃度が3mol/L程度の濃い非水電解液を用いると、電池の充放電の繰り返しに伴う電池容量の低下が大きいという課題がある。
The discharge capacity of the dual carbon battery is determined by the anion storage amount of the positive electrode, the anion release amount of the positive electrode, the cation storage amount of the negative electrode, the cation release amount of the negative electrode, the anion amount and the cation amount in the non-aqueous electrolyte. For this reason, in order to increase the discharge capacity of the dual carbon battery, in addition to the positive electrode active material and the negative electrode active material, it is necessary to increase the amount of the non-aqueous electrolyte containing a lithium salt (see Patent Document 1).
As described above, the electric quantity of the battery in the dual carbon battery is proportional to the total amount of anions and cations in the non-aqueous electrolyte. Therefore, the energy stored in the battery is proportional to the total mass of the non-aqueous electrolyte in addition to the positive electrode active material and the negative electrode active material. For this reason, it is difficult to increase the weight energy density of the battery. When a non-aqueous electrolyte solution having a lithium salt concentration of about 1 mol / L, which is usually used for lithium ion secondary batteries, is used, a larger amount of non-aqueous electrolyte solution is required than lithium ion secondary batteries. On the other hand, when a non-aqueous electrolyte having a high lithium salt concentration of about 3 mol / L is used, there is a problem that the battery capacity is greatly reduced due to repeated charge and discharge of the battery.
デュアルカーボン電池は、動作電圧範囲が2.5V〜5.4V程度であり、最高電圧がリチウムイオン二次電池の4.2V程度より1V程度高いため、非水電解液が分解しやすい。非水電解液が分解するとガスの発生や負極表面へのフッ化物の過剰な被膜形成により電池容量の低下などの劣化が生じるため、非水電解液の分解によるフッ化物対策が必要である。
また、非水電解液蓄電素子としての非水電解液二次電池においては、最初の充放電時にSEI(Solid Electrolyte Interface)という不導体皮膜が形成され、これにより充電時の強い還元反応による負極の分解劣化、及び非水電解液の分解によるガスの発生を防いでいる。しかし、放電容量を増やすため電解質塩濃度を濃くするとSEIの形成がうまくいかず、充放電回数が増すにつれて蓄電容量が低下してしまい、サイクル毎の容量維持率が減少し、耐用寿命が減少してしまうという課題がある。
The dual carbon battery has an operating voltage range of about 2.5 V to 5.4 V, and the highest voltage is about 1 V higher than about 4.2 V of the lithium ion secondary battery, so that the non-aqueous electrolyte is easily decomposed. Decomposition of the non-aqueous electrolyte causes deterioration such as reduction in battery capacity due to generation of gas and formation of an excessive film of fluoride on the surface of the negative electrode. Therefore, it is necessary to take measures against fluoride by decomposition of the non-aqueous electrolyte.
Further, in a non-aqueous electrolyte secondary battery as a non-aqueous electrolyte storage element, a non-conductive film called SEI (Solid Electrolyte Interface) is formed at the time of initial charge and discharge. It prevents gas generation due to degradation and degradation of the non-aqueous electrolyte. However, if the electrolyte salt concentration is increased to increase the discharge capacity, the formation of SEI will not be successful, the storage capacity will decrease as the number of charge / discharge cycles increases, the capacity maintenance rate per cycle will decrease, and the service life will decrease. There is a problem that it ends up.
特許文献2では、正極活物質として、非晶性炭素により均一被覆された黒鉛を用い、耐久寿命や高温下の安全性を持たせた蓄電システムを提示している。しかし、検討された電圧の上限が3Vと低く、イオン径の大きいアニオンインターカレーション時の膨張・収縮が加味されていない。炭素の膨張・収縮が行われた場合、均一被覆された膜が破断する可能性が十分考えられ、その結果、耐久寿命が悪化するものと考えられる。
特許文献3では、黒鉛粉末と被覆固形材料を事前に攪拌し、熱による炭化処理を施して黒鉛粒子のエッジ部に炭素を優先付着させることにより、充放電効率やサイクル特性を損なわず、かつ高容量な電極を提示している。しかし、付着加工方法として事前攪拌後に静置して熱処理を行うため、エッジ部全面が常に被覆材料と接触し続けながら炭化し、エッジ部に面状に炭素が付着することが容易に考えられる。このような面状付着膜はアニオンインターカレーション時の膨張・収縮により破断する可能性が十分考えられ、結果として耐久寿命は悪化するものと考えられる。
Patent Document 2 proposes a power storage system that uses graphite uniformly coated with amorphous carbon as a positive electrode active material and has a durable life and safety at high temperatures. However, the upper limit of the studied voltage is as low as 3 V, and expansion / contraction during anion intercalation with a large ion diameter is not taken into consideration. When carbon is expanded and contracted, the possibility that the uniformly coated film is broken is considered to be sufficient, and as a result, the durable life is considered to deteriorate.
In Patent Document 3, the graphite powder and the coated solid material are agitated in advance, carbonized by heat, and preferentially adheres carbon to the edge of the graphite particles, so that the charge / discharge efficiency and cycle characteristics are not impaired. Capacitive electrodes are presented. However, since the heat treatment is performed by standing after pre-stirring as an adhesion processing method, it is considered that the entire edge portion is always carbonized while continuously in contact with the coating material, and carbon is adhered to the edge portion in a planar shape. It is considered that such a planar adhesion film may break due to expansion / contraction during anion intercalation, and as a result, the durability life is considered to deteriorate.
本発明は、上記従来技術の問題点を解決することができ、高いエネルギー密度を維持し、かつサイクル特性に優れた非水電解液蓄電素子の提供を目的とする。 An object of the present invention is to provide a nonaqueous electrolyte storage element that can solve the above-described problems of the prior art, maintains a high energy density, and has excellent cycle characteristics.
上記課題は、次の1)の発明によって解決される。
1) アニオンを挿入及び脱離可能な正極活物質を含む正極と、カチオンを挿入及び脱離可能な負極活物質を含む負極と、非水電解液とを有する非水電解液蓄電素子であって、前記正極活物質は、グラフェン、エッジ部、及びベイサル部を有する炭素をコア材料とし、その表面の前記エッジ部が粒子状の非晶性炭素で被覆されていることを特徴とする非水電解液蓄電素子。
The above problem is solved by the following invention 1).
1) A non-aqueous electrolyte storage element having a positive electrode containing a positive electrode active material capable of inserting and removing anions, a negative electrode containing a negative electrode active material capable of inserting and removing cations, and a non-aqueous electrolyte. the positive electrode active material, graphene, edges, and carbon as a core material having a basal portion, a non-aqueous electrolyte, wherein the edge portion of the surface, characterized in that it is coated with a particulate amorphous carbon Liquid storage element.
本発明によれば、高いエネルギー密度を維持し、かつサイクル特性に優れた非水電解液蓄電素子を提供できる。 According to the present invention, it is possible to provide a nonaqueous electrolyte storage element that maintains a high energy density and is excellent in cycle characteristics.
以下、上記本発明1)について詳しく説明するが、その実施の形態には次の2)〜3)も含まれるので、これらについても併せて説明する。
2) 前記コア材料のRh(1360cm−1/1580cm−1)をRh1とし、前記正極活物質のRh(1360cm−1/1580cm−1)をRh2としたとき、0.08≦Rh1/Rh2≦0.70であることを特徴とする1)に記載の非水電解液蓄電素子。
3) 前記粒子状の非晶性炭素の粒子径が8〜300nmであることを特徴とする1)又は2)に記載の非水電解液蓄電素子。
Hereinafter, the present invention 1) will be described in detail, but the following 2) to 3) are also included in the embodiment, and these will also be described together.
2) Rh and (1360cm -1 / 1580cm -1) and Rh 1 of the core material, when the positive electrode active material Rh and (1360cm -1 / 1580cm -1) was Rh 2, 0.08 ≦ Rh 1 / The nonaqueous electrolyte storage element according to 1), wherein Rh 2 ≦ 0.70.
3) The nonaqueous electrolyte storage element according to 1) or 2), wherein a particle diameter of the particulate amorphous carbon is 8 to 300 nm.
[非水電解液蓄電素子の構成]
1.正極
正極は、後述する本発明に係る正極活物質を含んでいれば特に制限はなく、目的に応じて適宜選択することができ、例えば、正極集電体上に正極活物質を有する正極材を備えた正極、などが挙げられる。
正極の形状には特に制限はなく、目的に応じて適宜選択することができ、例えば平板状などが挙げられる。
[Configuration of nonaqueous electrolyte storage element]
1. The positive electrode is not particularly limited as long as it contains a positive electrode active material according to the present invention described later, and can be appropriately selected according to the purpose. For example, a positive electrode material having a positive electrode active material on a positive electrode current collector is used. And a positive electrode provided.
There is no restriction | limiting in particular in the shape of a positive electrode, According to the objective, it can select suitably, For example, flat form etc. are mentioned.
1−1.正極材
正極材は少なくとも後述する本発明に係る正極活物質を含む必要がある。該正極活物質以外の材料には特に制限はなく、目的に応じて適宜選択することができ、例えば導電助剤、バインダ、増粘剤、などが挙げられる。
1-1. Positive electrode material The positive electrode material needs to contain the positive electrode active material which concerns on this invention mentioned later at least. There is no restriction | limiting in particular in materials other than this positive electrode active material, According to the objective, it can select suitably, For example, a conductive support agent, a binder, a thickener, etc. are mentioned.
(1)正極活物質
本発明で用いる正極活物質は、非水溶媒系でアニオンを挿入及び脱離可能であり、炭素をコア材料とし、その表面のエッジ部が粒子状の非晶性炭素で被覆されているものでなければならない。
コア材料となる炭素の一般的な構造を図1に示すが、炭素一次粒子1はグラフェン2、エッジ部3、ベイサル部4からなる。
コア材料の炭素としては、例えば、コークス、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、様々な熱分解条件での有機物の熱分解物、などが挙げられる。
(1) Positive electrode active material The positive electrode active material used in the present invention is a non-aqueous solvent system in which anions can be inserted and desorbed, carbon is used as a core material, and the edge portion of the surface is particulate amorphous carbon. Must be covered.
A general structure of carbon as a core material is shown in FIG. 1, and the carbon primary particles 1 are composed of graphene 2, edge portions 3, and basal portions 4.
Examples of the carbon of the core material include graphite (graphite) such as coke, artificial graphite and natural graphite, and organic pyrolysis products under various pyrolysis conditions.
(2)被覆剤
前記粒子状の非晶性炭素の原材料となる被覆剤には特に制限はない。
コア材料の表面を粒子状の非晶性炭素で被覆する方法としては、流動床式の反応炉を用いる化学蒸着処理が優れている。化学蒸着処理の炭素源として使用する有機物は、炭素を含有する化合物であれば特に制限はない。その例としては、ベンゼン、トルエン、キシレン、スチレン等の芳香族炭化水素、メタン、エタン、プロパン等の脂肪族炭化水素、メタノール、エタノール、プロパノール、ブタノール等のアルコール、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル等のエーテルなどが挙げられる。
被覆処理を行う際には、これらの有機物を窒素、アルゴン等の不活性ガスと混合して導入する。化学蒸着処理温度は700〜1200℃が好ましく、850〜1150℃がより好ましく、950〜1100℃が更に好ましい。また、化学蒸着処理を行う際にはコア材料を攪拌しながら処理することが好ましく、これによりコア材料の表面のエッジ部を首尾よく粒子状の非晶性炭素で被覆することが出来る。
(2) Coating agent There is no restriction | limiting in particular in the coating agent used as the raw material of the said particulate amorphous carbon.
As a method for coating the surface of the core material with particulate amorphous carbon, chemical vapor deposition using a fluidized bed reactor is excellent. The organic substance used as the carbon source for chemical vapor deposition is not particularly limited as long as it is a compound containing carbon. Examples include aromatic hydrocarbons such as benzene, toluene, xylene and styrene, aliphatic hydrocarbons such as methane, ethane and propane, alcohols such as methanol, ethanol, propanol and butanol, dimethyl ether, ethyl methyl ether and diethyl ether. And ethers.
When performing the coating treatment, these organic substances are mixed with an inert gas such as nitrogen or argon and introduced. The chemical vapor deposition temperature is preferably 700 to 1200 ° C, more preferably 850 to 1150 ° C, and still more preferably 950 to 1100 ° C. Moreover, when performing a chemical vapor deposition process, it is preferable to process a core material, stirring, and by this, the edge part of the surface of a core material can be coat | covered with a particulate amorphous carbon successfully.
正極活物質の黒鉛化度(正極活物質中の粒子状の非晶性炭素の割合)は、例えばラマン分光分析により測定できる。
正極活物質は、ラマン分光スペクトルにおける1360cm−1のピーク強度と1580cm−1のピーク強度との比(以下「Rh」という)のうち、コア材料のRhをRh1、被覆後の正極活物質のRhをRh2として、Rh1/Rh2が0.08〜0.70のものが好ましく、より好ましくは0.08〜0.50である。0.08以上であれば、正極活物質中のコア材料の割合は十分であり、容量低下等の不都合が生じることはなく、製造コストが高くなることもない。また、0.70以下であれば、被覆剤による十分な被覆効果が得られる。
コア材料を被覆した粒子状の非晶性炭素の粒子径は、8〜300nmが好ましく、より好ましくは20〜250nmである。8nm以上であれば、コア材料の炭素の表面に敷き詰めるように被覆が生じるので、アニオンの挿入及び脱離時に被覆粒子が破断してサイクル特性が悪化するようなことはない。また、300nm以下であれば、反応箇所を十分に被覆できるので、サイクル特性が悪化するようなことはない。
The degree of graphitization of the positive electrode active material (ratio of particulate amorphous carbon in the positive electrode active material) can be measured, for example, by Raman spectroscopy.
The positive electrode active material of the ratio of the peak intensity of the peak intensity and 1580 cm -1 in 1360 cm -1 in the Raman spectrum (hereinafter referred to as "Rh"), the Rh of the core material Rh 1, the positive electrode active material after coating the Rh as Rh 2, Rh 1 / Rh 2 is preferably has from 0.08 to 0.70, more preferably 0.08 to 0.50. If it is 0.08 or more, the ratio of the core material in the positive electrode active material is sufficient, there is no inconvenience such as capacity reduction, and the manufacturing cost does not increase. Moreover, if it is 0.70 or less, the sufficient coating effect by a coating agent will be acquired.
The particle diameter of the particulate amorphous carbon coated with the core material is preferably 8 to 300 nm, more preferably 20 to 250 nm. If it is 8 nm or more, coating occurs so as to spread on the surface of the carbon of the core material, so that the coated particles are not broken and the cycle characteristics are not deteriorated during insertion and desorption of anions. Moreover, if it is 300 nm or less, since the reaction site can be sufficiently covered, the cycle characteristics are not deteriorated.
(3)バインダ及び増粘剤
バインダ及び増粘剤としては、電極作製時に使用する溶媒や電解液、印加される電位に対して安定な材料であれば特に制限はなく、目的に応じて適宜選択することができる。
その例としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダ、エチレン−プロピレン−ブタジエンゴム(EPBR)、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、アクリレート系ラテックス、カルボキシメチルセルロース(CMC)、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリアクリル酸、ポリビニルアルコール、アルギン酸、酸化スターチ、リン酸スターチ、カゼイン、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、PVDF、PTFE等のフッ素系バインダ、アクリレート系ラテックス、CMCが好ましい。
(3) Binder and thickener The binder and thickener are not particularly limited as long as they are materials that are stable with respect to the solvent and electrolyte used for electrode preparation and the applied potential, and are appropriately selected according to the purpose. can do.
Examples thereof include fluorine-based binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), ethylene-propylene-butadiene rubber (EPBR), styrene-butadiene rubber (SBR), isoprene rubber, acrylate latex, Examples thereof include carboxymethylcellulose (CMC), methylcellulose, hydroxymethylcellulose, ethylcellulose, polyacrylic acid, polyvinyl alcohol, alginic acid, oxidized starch, phosphate starch, and casein. These may be used individually by 1 type and may use 2 or more types together. Among these, fluorine-based binders such as PVDF and PTFE, acrylate latex, and CMC are preferable.
(4)導電助剤
導電助剤としては、例えば、銅、アルミニウム等の金属材料、カーボンブラック、アセチレンブラック、カーボンナノチューブ等の炭素質材料、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
(4) Conductive aid Examples of the conductive aid include metal materials such as copper and aluminum, and carbonaceous materials such as carbon black, acetylene black, and carbon nanotube. These may be used individually by 1 type and may use 2 or more types together.
1−2.正極集電体
正極集電体の材質、形状、大きさ、構造には特に制限はなく、目的に応じて適宜選択することができる。
正極集電体の材質は、導電性材料で形成され、印加される電位に対して安定であればよく、例えば、ステンレススチール、ニッケル、アルミニウム、チタン、タンタル、などが挙げられる。これらの中でも、ステンレススチール、アルミニウムが特に好ましい。
正極集電体の大きさは、非水電解液蓄電素子に使用可能な大きさであればよい。
1-2. Positive electrode current collector The material, shape, size, and structure of the positive electrode current collector are not particularly limited, and can be appropriately selected according to the purpose.
The material of the positive electrode current collector may be formed of a conductive material and stable with respect to the applied potential. Examples thereof include stainless steel, nickel, aluminum, titanium, and tantalum. Among these, stainless steel and aluminum are particularly preferable.
The magnitude | size of a positive electrode electrical power collector should just be a magnitude | size which can be used for a nonaqueous electrolyte storage element.
1−3.正極の作製方法
正極は、正極活物質に、必要に応じてバインダ、増粘剤、導電剤、溶媒等を加えてスラリー状とした正極材を、正極集電体上に塗布し乾燥することにより作製できる。
前記溶媒としては特に制限はなく、目的に応じて適宜選択することができ、例えば、水系溶媒、有機系溶媒、などが挙げられる。前記水系溶媒としては、例えば、水、アルコール、などが挙げられる。前記有機系溶媒としては、例えば、N−メチル−2−ピロリドン(NMP)、トルエン、などが挙げられる。
なお、正極活物質をそのままロール成形してシート電極としたり、圧縮成形によりペレット電極とすることもできる。
1-3. Method for Producing Positive Electrode The positive electrode is obtained by applying a positive electrode material made into a slurry form by adding a binder, a thickener, a conductive agent, a solvent, etc. to the positive electrode active material as necessary, and drying it. Can be made.
There is no restriction | limiting in particular as said solvent, According to the objective, it can select suitably, For example, an aqueous solvent, an organic solvent, etc. are mentioned. Examples of the aqueous solvent include water, alcohol, and the like. Examples of the organic solvent include N-methyl-2-pyrrolidone (NMP), toluene, and the like.
In addition, the positive electrode active material can be roll-formed as it is to obtain a sheet electrode, or a pellet electrode can be obtained by compression molding.
2.負極
負極は、負極活物質を含んでいれば特に制限はなく、目的に応じて適宜選択することができ、例えば、負極集電体上に負極活物質を有する負極材を備えた負極、などが挙げられる。
負極の形状には特に制限はなく、目的に応じて適宜選択することができ、例えば平板状、などが挙げられる。
2. The negative electrode is not particularly limited as long as it contains a negative electrode active material, and can be appropriately selected according to the purpose. For example, a negative electrode including a negative electrode material having a negative electrode active material on a negative electrode current collector, and the like. Can be mentioned.
There is no restriction | limiting in particular in the shape of a negative electrode, According to the objective, it can select suitably, For example, flat form etc. are mentioned.
2−1.負極材
負極材は、少なくとも負極活物質を含み、必要に応じて導電助剤、バインダ、増粘剤、などを含む。
2-1. Negative electrode material The negative electrode material includes at least a negative electrode active material, and includes a conductive additive, a binder, a thickener, and the like as necessary.
(1)負極活物質
負極活物質としては、非水溶媒系でリチウムイオンなどのカチオンを挿入及び脱離可能な物質であれば特に制限はない。リチウムイオンに係る物質の例としては、炭素質材料、酸化アンチモン錫、一酸化珪素等のリチウムを吸蔵、放出可能な金属酸化物、アルミニウム、錫、珪素、亜鉛等のリチウムと合金化可能な金属又は金属合金、リチウムと合金化可能な金属と該金属を含む合金とリチウムとの複合合金化合物、チッ化コバルトリチウム等のチッ化金属リチウム、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、安全性とコストの点から炭素質材料が特に好ましい。
前記炭素質材料としては、例えば、コークス、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、様々な熱分解条件での有機物の熱分解物、などが挙げられる。これらの中でも、人造黒鉛、天然黒鉛が特に好ましい。
(1) Negative electrode active material The negative electrode active material is not particularly limited as long as it is a non-aqueous solvent material capable of inserting and removing cations such as lithium ions. Examples of substances related to lithium ions include carbonaceous materials, antimony tin oxide, metal oxides capable of occluding and releasing lithium such as silicon monoxide, metals capable of being alloyed with lithium such as aluminum, tin, silicon and zinc Alternatively, a metal alloy, a metal alloyable with lithium, a composite alloy compound of lithium and an alloy containing the metal, lithium metal nitride such as cobalt lithium nitride, and the like can be given. These may be used individually by 1 type and may use 2 or more types together. Among these, carbonaceous materials are particularly preferable from the viewpoint of safety and cost.
Examples of the carbonaceous material include graphite (graphite) such as coke, artificial graphite and natural graphite, and organic pyrolysis products under various pyrolysis conditions. Among these, artificial graphite and natural graphite are particularly preferable.
(2)バインダ及び増粘剤
バインダ及び増粘剤としては、電極作製時に使用する溶媒や電解液、印加される電位に対して安定な材料であれば特に制限はなく、目的に応じて適宜選択することができる。
その例としては、前記正極用のバインダ及び増粘剤と同様のものが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、PVDF、PTFE等のフッ素系バインダ、SBR、CMCが好ましい。
(2) Binder and thickener The binder and thickener are not particularly limited as long as they are materials that are stable with respect to the solvent and electrolyte used in electrode preparation and the applied potential, and are appropriately selected according to the purpose. can do.
Examples thereof include those similar to the positive electrode binder and thickener. These may be used individually by 1 type and may use 2 or more types together. Among these, fluorine-based binders such as PVDF and PTFE, SBR, and CMC are preferable.
(3)導電助剤
導電助剤としては、前記正極用の導電助剤と同様のものが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
(3) Conductive aid The conductive aid may be the same as the conductive aid for the positive electrode. These may be used individually by 1 type and may use 2 or more types together.
2−2.負極集電体
負極集電体の材質、形状、大きさ、構造には特に制限はなく、目的に応じて適宜選択することができる。
負極集電体の材質は、導電性材料で形成され、印加される電位に対して安定であればよく、例えば、ステンレススチール、ニッケル、アルミニウム、銅、などが挙げられる。これらの中でも、ステンレススチール、銅、アルミニウムが特に好ましい。
負極集電体の大きさは、非水電解液蓄電素子に使用可能な大きさであればよい。
2-2. Negative electrode current collector The material, shape, size, and structure of the negative electrode current collector are not particularly limited, and can be appropriately selected according to the purpose.
The material of the negative electrode current collector may be formed of a conductive material and stable with respect to the applied potential, and examples thereof include stainless steel, nickel, aluminum, and copper. Among these, stainless steel, copper, and aluminum are particularly preferable.
The magnitude | size of a negative electrode collector should just be a magnitude | size which can be used for a non-aqueous-electrolyte electrical storage element.
2−3.負極の作製方法
負極は、負極活物質に、必要に応じてバインダ及び増粘剤、導電剤、溶媒等を加えてスラリー状とした負極材を、負極集電体上に塗布し乾燥することにより作製できる。
前記溶媒としては、前記正極の作製方法の場合と同様のものを用いることができる。
また、負極活物質にバインダ及び増粘剤、導電剤等を加えたものをそのままロール成形してシート電極としたり、圧縮成形によりペレット電極としたり、蒸着、スパッタ、メッキ等の手法で負極集電体上に負極活物質の薄膜を形成することもできる。
2-3. Method for producing negative electrode A negative electrode is obtained by applying a negative electrode material in a slurry form by adding a binder, a thickener, a conductive agent, a solvent, etc. to a negative electrode active material as necessary, and then drying the negative electrode current collector. Can be made.
As the solvent, the same solvent as in the method for producing the positive electrode can be used.
In addition, a negative electrode active material added with a binder, a thickener, a conductive agent, etc. is roll-formed as it is to form a sheet electrode, a pellet electrode is formed by compression molding, and negative electrode current collection is performed by techniques such as vapor deposition, sputtering, and plating. A thin film of a negative electrode active material can also be formed on the body.
3.非水電解液
非水電解液は、非水溶媒に電解質塩を溶解させた電解液である。
3. Nonaqueous Electrolytic Solution The nonaqueous electrolytic solution is an electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent.
3−1.非水溶媒
非水溶媒としては特に制限はなく、目的に応じて適宜選択することができるが、非プロトン性有機溶媒が好適である。
前記非プロトン性有機溶媒としては、鎖状カーボネート、環状カーボネート等のカーボネート系有機溶媒が用いられ、低粘度な溶媒が好ましい。これらの中でも電解質塩の溶解力が高い点から、鎖状カーボネートが好ましい。
前記鎖状カーボネートとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(EMC)、などが挙げられる。これらの中でもDMCが好ましい。
DMCの含有量には特に制限はなく、目的に応じて適宜選択することができるが、非水溶媒全体の70質量%以上が好ましく、83質量%以上がより好ましい。含有量が70質量%以上であれば、残りの溶媒として誘電率が高い環状物質(環状カーボネートや環状エステル等)を用い、かつ3M以上の高濃度の非水電解液を作製したときでも粘度が高くなりすぎることはなく、非水電解液の電極への浸み込みやイオン拡散の点で不具合を生じることもない。
3-1. Nonaqueous solvent There is no restriction | limiting in particular as a nonaqueous solvent, Although it can select suitably according to the objective, An aprotic organic solvent is suitable.
As the aprotic organic solvent, carbonate-based organic solvents such as chain carbonates and cyclic carbonates are used, and low viscosity solvents are preferred. Among these, a chain carbonate is preferable from the viewpoint that the dissolving power of the electrolyte salt is high.
Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (EMC). Among these, DMC is preferable.
There is no restriction | limiting in particular in content of DMC, Although it can select suitably according to the objective, 70 mass% or more of the whole nonaqueous solvent is preferable, and 83 mass% or more is more preferable. If the content is 70% by mass or more, a cyclic substance (cyclic carbonate, cyclic ester, etc.) having a high dielectric constant is used as the remaining solvent, and the viscosity is high even when a non-aqueous electrolyte solution having a high concentration of 3M or more is prepared. It does not become too high, and there is no problem in terms of penetration of the non-aqueous electrolyte into the electrode and ion diffusion.
前記環状カーボネートとしては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、などが挙げられる。
前記環状カーボネートのECと、鎖状カーボネートのDMCを組み合わせた混合溶媒を用いる場合の混合割合には特に制限はなく、目的に応じて適宜選択することができるが、質量比(EC:DMC)で、3:10〜1:99が好ましく、3:10〜1:20がより好ましい。
Examples of the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), and the like.
The mixing ratio in the case of using a mixed solvent in which EC of the cyclic carbonate and DMC of the chain carbonate are used is not particularly limited and can be appropriately selected according to the purpose. However, the mass ratio (EC: DMC) 3:10 to 1:99 are preferable, and 3:10 to 1:20 are more preferable.
なお、非水溶媒としては、必要に応じて、環状エステル、鎖状エステル等のエステル系有機溶媒、環状エーテル、鎖状エーテル等のエーテル系有機溶媒、などを用いることもできる。
前記環状エステルとしては、例えば、γ−ブチロラクトン(γBL)、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン、などが挙げられる。
前記鎖状エステルとしては、例えば、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル〔酢酸メチル(MA)、酢酸エチル等〕、ギ酸アルキルエステル〔ギ酸メチル(MF)、ギ酸エチル等〕、などが挙げられる。
前記環状エーテルとしては、例えば、テトラヒドロフラン、アルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン、などが挙げられる。
前記鎖状エーテルとしては、例えば、1,2−ジメトシキエタン(DME)、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、などが挙げられる。
As the non-aqueous solvent, an ester organic solvent such as a cyclic ester or a chain ester, an ether organic solvent such as a cyclic ether or a chain ether, or the like can be used as necessary.
Examples of the cyclic ester include γ-butyrolactone (γBL), 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, and γ-valerolactone.
Examples of the chain ester include propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester [methyl acetate (MA), ethyl acetate, etc.], formic acid alkyl ester [methyl formate (MF), ethyl formate, etc.], etc. Is mentioned.
Examples of the cyclic ether include tetrahydrofuran, alkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane, and the like.
Examples of the chain ether include 1,2-dimethoxyethane (DME), diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether.
3−2.電解質塩
電解質塩としてはリチウム塩が好ましいが、非水溶媒に溶解し高いイオン伝導度を示すものであれば特に制限はない。リチウム塩の例としては、ヘキサフルオロリン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)、塩化リチウム(LiCl)、ホウ弗化リチウム(LiBF4)、六弗化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、リチウムビストリフルオロメチルスルホニルイミド〔LiN(CF3SO2)2〕、リチウムビスファーフルオロエチルスルホニルイミド〔LiN(C2F5SO2)2〕、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、炭素電極中へのアニオンの吸蔵量の大きさの観点から、LiPF6が特に好ましい。
電解質塩の濃度には特に制限はなく、目的に応じて適宜選択することができるが、非水溶媒中に、0.5〜6mol/Lが好ましく、電池容量と出力の両立の点から、2〜4mol/Lがより好ましい。
3-2. Electrolyte salt The electrolyte salt is preferably a lithium salt, but is not particularly limited as long as it is dissolved in a non-aqueous solvent and exhibits high ionic conductivity. Examples of lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium chloride (LiCl), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ). , Lithium trifluorometasulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], lithium bisfurfluoroethylsulfonylimide [LiN (C 2 F 5 SO 2 ) 2 ] , Etc. These may be used individually by 1 type and may use 2 or more types together. Among these, LiPF 6 is particularly preferable from the viewpoint of the amount of occlusion of anions in the carbon electrode.
There is no restriction | limiting in particular in the density | concentration of electrolyte salt, Although it can select suitably according to the objective, 0.5-6 mol / L is preferable in a nonaqueous solvent, and the point of coexistence of battery capacity and output is 2 -4 mol / L is more preferable.
4.セパレータ
セパレータは、正極と負極の短絡を防ぐために正極と負極の間に設けられる。
セパレータの材質、形状、大きさ、構造には特に制限はなく、目的に応じて適宜選択することができる。
セパレータの材質としては、例えば、クラフト紙、ビニロン混抄紙、合成パルプ混抄紙等の紙、セロハン、ポリエチレングラフト膜、ポリプロピレンメルトブロー不織布等のポリオレフィン不織布、ポリアミド不織布、ガラス繊維不織布、マイクロポア膜などが挙げられる。これらの中でも、電解液保持の観点から気孔率50%以上のものが好ましい。
セパレータの形状は、微多孔(マイクロポア)を有する薄膜タイプよりも、不織布系の方が気孔率が高いため好ましい。セパレータの厚みは、短絡防止と電解液保持の観点から20μm以上が好ましい。
セパレータの大きさは、非水電解液蓄電素子に使用可能な大きさであればよい。
セパレータの構造は、単層構造でも積層構造でもよい。
4). Separator The separator is provided between the positive electrode and the negative electrode in order to prevent a short circuit between the positive electrode and the negative electrode.
There is no restriction | limiting in particular in the material of a separator, a shape, a magnitude | size, and a structure, According to the objective, it can select suitably.
Examples of the material of the separator include paper such as kraft paper, vinylon mixed paper, synthetic pulp mixed paper, cellophane, polyethylene graft membrane, polyolefin nonwoven fabric such as polypropylene melt blown nonwoven fabric, polyamide nonwoven fabric, glass fiber nonwoven fabric, and micropore membrane. It is done. Among these, those having a porosity of 50% or more are preferable from the viewpoint of electrolyte solution retention.
As for the shape of the separator, the nonwoven fabric type is preferable because it has a higher porosity than the thin film type having micropores. The thickness of the separator is preferably 20 μm or more from the viewpoint of short circuit prevention and electrolyte solution retention.
The magnitude | size of a separator should just be a magnitude | size which can be used for a non-aqueous-electrolyte electrical storage element.
The structure of the separator may be a single layer structure or a laminated structure.
5.非水電解液蓄電素子の作製方法及び形状
本発明の非水電解液蓄電素子は、正極、負極及び非水電解液と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより作製できる。更に、必要に応じて電池外装缶等の他の構成部材を用いることも可能である。
非水電解液蓄電素子を組み立てる方法には特に制限はなく、通常採用されている方法の中から適宜選択することができる。
本発明の非水電解液蓄電素子の形状には特に制限はなく、一般的に採用されている各種形状の中から用途に応じて適宜選択することができる。その例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ、などが挙げられる。
5. Production method and shape of non-aqueous electrolyte storage element The non-aqueous electrolyte storage element of the present invention is produced by assembling a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator used as necessary into an appropriate shape. it can. Furthermore, other constituent members such as a battery outer can can be used as necessary.
There is no restriction | limiting in particular in the method of assembling a non-aqueous electrolyte electrical storage element, It can select suitably from the method employ | adopted normally.
There is no restriction | limiting in particular in the shape of the nonaqueous electrolyte electrical storage element of this invention, According to a use, it can select suitably from the various shapes generally employ | adopted. Examples thereof include a cylinder type in which the sheet electrode and the separator are spiral, a cylinder type having an inside-out structure in which the pellet electrode and the separator are combined, a coin type in which the pellet electrode and the separator are stacked, and the like.
6.用途
本発明の非水電解液蓄電素子は各種用途に用いることができる。その例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラなどが挙げられる。
6). Applications The non-aqueous electrolyte storage element of the present invention can be used for various applications. Examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. Electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, lighting equipment, toys, game machines, watches, strobes, cameras, etc.
以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、例中の「%」は「質量%」である。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples. In the examples, “%” is “mass%”.
[実施例1]
<正極活物質の作製(被覆処理)>
炭素粉末(TIMCAL社製、KS−6)をコア材料とし、流動床式炉内の石英製キュベットに該炭素粉末を添加し、キュベット内をArガスで満たした後、被覆処理を行って表面のエッジ部が粒子状の非晶性炭素で被覆された炭素粉末(正極活物質)を作製した。
なお、被覆処理時の被覆剤、処理温度、処理時間、攪拌の有無を表1に示す。
<正極の作製>
前記正極活物質を用い、導電助剤のアセチレンブラック(デンカブラック粉状:電気化学工業社製)、バインダのアクリレート系ラテックス(TRD202A:JSR社製)、増粘剤のカルボキシルメチルセルロース(ダイセル2200:ダイセル化学工業社製)を、固形分の質量比で100:7.5:3.0:3.8になるように混合し、水を加えて適切な粘度に調整しスラリーを得た。このスラリーを厚さ20μmのアルミニウム箔の片面にドクターブレードを用いて塗布した。乾燥後の目付け量(塗工された正極中の炭素活物質粉末の質量)の平均は10mg/cm2であった。これをφ16mmに打ち抜いて正極とした。
<非水電解液蓄電素子の作製>
上記正極、及びセパレータ(ADVANTEC社製GA−100)を150℃で4時間真空乾燥した後、乾燥アルゴングローブボックス中で、負極にφ16mmのリチウム金属箔を用い、非水電解液として「2mol/LのLiPF6のEC/DMC/FEC溶液」(キシダ化学社製)を用いて、2032型コインセル(非水電解液蓄電素子)を組み立てた。
<非水電解液蓄電素子の測定>
上記非水電解液蓄電素子を25℃の恒温槽中に保持し、自動電池評価装置(1024B−7V0.1A−4:エレクトロフィールド社製)を用いて、以下の条件で充放電試験を実施した。
即ち、基準電流値を2.0mAとし、充電終止電圧5.2Vまで充電した。1回目の充電後、3.0Vまで放電した。充電と放電、放電と充電の間には5分間の休止を入れた。この充放電を10回繰り返したときの放電容量(10サイクル後の放電容量)を測定し、この放電容量を基準として、容量維持率が80%を下回るまでのサイクル数を測定した。
[Example 1]
<Preparation of positive electrode active material (coating treatment)>
Carbon powder (manufactured by TIMCAL, KS-6) is used as a core material, the carbon powder is added to a quartz cuvette in a fluidized bed furnace, the interior of the cuvette is filled with Ar gas, and a coating treatment is performed. A carbon powder (positive electrode active material) in which the edge portion was coated with particulate amorphous carbon was produced.
Table 1 shows the coating agent, the processing temperature, the processing time, and the presence or absence of stirring during the coating process.
<Preparation of positive electrode>
Using the positive electrode active material, acetylene black (Denka black powder: manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive additive, acrylate latex (TRD202A: manufactured by JSR) as a binder, carboxymethyl cellulose (Daicel 2200: Daicel) as a thickener. Chemical Industry Co., Ltd.) was mixed so that the mass ratio of the solid content was 100: 7.5: 3.0: 3.8, and water was added to adjust the viscosity to an appropriate viscosity to obtain a slurry. This slurry was applied to one side of an aluminum foil having a thickness of 20 μm using a doctor blade. The average weight per unit area (mass of carbon active material powder in the coated positive electrode) after drying was 10 mg / cm 2 . This was punched out to φ16 mm to obtain a positive electrode.
<Preparation of nonaqueous electrolyte storage element>
After the above positive electrode and separator (ADVANTEC GA-100) were vacuum-dried at 150 ° C. for 4 hours, a lithium metal foil having a diameter of 16 mm was used as the negative electrode in a dry argon glove box, and “2 mol / L as a nonaqueous electrolyte solution was used. A 2032 type coin cell (non-aqueous electrolyte storage element) was assembled using “an EC / DMC / FEC solution of LiPF 6 ” (manufactured by Kishida Chemical Co., Ltd.).
<Measurement of non-aqueous electrolyte storage element>
The non-aqueous electrolyte storage element was held in a constant temperature bath at 25 ° C., and a charge / discharge test was performed under the following conditions using an automatic battery evaluation device (1024B-7V0.1A-4: manufactured by Electrofield). .
That is, the reference current value was set to 2.0 mA, and the battery was charged to a charge end voltage of 5.2V. After the first charge, the battery was discharged to 3.0V. There was a 5-minute pause between charging and discharging and between discharging and charging. The discharge capacity (discharge capacity after 10 cycles) when this charge / discharge was repeated 10 times was measured, and the number of cycles until the capacity retention rate fell below 80% was measured using this discharge capacity as a reference.
[比較例1]
実施例1と同じ炭素粉末を被覆処理せずに正極活物質として用いた点以外は、実施例1と同様にして正極及び蓄電素子を作製し、充放電試験を実施した。
[Comparative Example 1]
A positive electrode and a power storage device were produced in the same manner as in Example 1 except that the same carbon powder as in Example 1 was used as the positive electrode active material without coating, and a charge / discharge test was performed.
[比較例2]
実施例1と同じ炭素粉末をコア材料として被覆処理し、表面が非晶性炭素で均一に被覆された炭素粉末(正極活物質)を作製した。なお、被覆処理時の被覆剤、処理温度、処理時間、攪拌の有無を表1に示す。
上記正極活物質を用いた点以外は、実施例1と同様にして正極及び蓄電素子を作製し、充放電試験を実施した。
[Comparative Example 2]
The same carbon powder as in Example 1 was coated as a core material to produce a carbon powder (positive electrode active material) whose surface was uniformly coated with amorphous carbon. Table 1 shows the coating agent, the processing temperature, the processing time, and the presence or absence of stirring during the coating process.
A positive electrode and a storage element were produced in the same manner as in Example 1 except that the positive electrode active material was used, and a charge / discharge test was performed.
[比較例3]
コバルト酸リチウム粉末(日亜化学社製)をコア材料とした点以外は、実施例1と同様の方法で被覆処理して、表面に非晶性炭素が付着した正極活物質を作製した。なお、被覆処理時の被覆剤、処理温度、処理時間、攪拌の有無を表1に示す。
上記正極活物質を用いた点以外は、実施例1と同様にして正極及び蓄電素子を作製し、充放電試験を実施した。
[Comparative Example 3]
Except for using lithium cobalt oxide powder (manufactured by Nichia Chemical Co., Ltd.) as a core material, a coating active was performed in the same manner as in Example 1 to prepare a positive electrode active material having amorphous carbon attached to the surface. Table 1 shows the coating agent, the processing temperature, the processing time, and the presence or absence of stirring during the coating process.
A positive electrode and a storage element were produced in the same manner as in Example 1 except that the positive electrode active material was used, and a charge / discharge test was performed.
表2に、実施例1及び比較例1〜3の10サイクル後の放電容量、及び、容量維持率が80%を下回ったときのサイクル数を示す。また、正極活物質の物性値も合わせて示す。更に、図2に実施例1及び比較例1〜2に於ける基準電流値での容量維持率を示す。
なお、Rh1、Rh2は、ラマン分光法(NRS−1000、日本分光社製)によるものであり、非晶性炭素の形状は、走査型電子顕微鏡(SU8230、日立ハイテク社製)で観察したものであり、非晶性炭素の粒子径は、前記走査型電子顕微鏡の観察画像から画像解析によって得られた解析値である。
Table 2 shows the discharge capacity after 10 cycles of Example 1 and Comparative Examples 1 to 3, and the number of cycles when the capacity retention rate was less than 80%. The physical property values of the positive electrode active material are also shown. Further, FIG. 2 shows the capacity retention ratio at the reference current value in Example 1 and Comparative Examples 1 and 2.
Rh 1 and Rh 2 are determined by Raman spectroscopy (NRS-1000, manufactured by JASCO Corporation), and the shape of amorphous carbon was observed with a scanning electron microscope (SU8230, manufactured by Hitachi High-Tech). The particle diameter of amorphous carbon is an analysis value obtained by image analysis from an observation image of the scanning electron microscope.
表2及び図2から判るように、実施例1の非水電解液蓄電素子は、粒子状の非晶性炭素の被覆によって10サイクル後の放電容量が十分に高く、かつサイクル特性も非常に良好であった。
一方、非晶性炭素による被覆を行っていない比較例1は、サイクル毎の電解液との反応を抑制できないため、サイクル特性が著しく悪化した。
また、非晶性炭素の被覆形状を均一にした比較例2は、均一被覆がサイクル毎の活物質の膨張・収縮に耐え切れずに破断し、サイクル特性が著しく悪化した。
また、コア材料にコバルト酸リチウムを用いた比較例3は、非晶性炭素による内部抵抗の増大により、放電容量が著しく低下し、サイクル特性も著しく悪化した。
As can be seen from Table 2 and FIG. 2, the non-aqueous electrolyte storage element of Example 1 has a sufficiently high discharge capacity after 10 cycles due to the coating of particulate amorphous carbon, and the cycle characteristics are also very good. Met.
On the other hand, in Comparative Example 1 in which the coating with amorphous carbon was not performed, the reaction with the electrolytic solution for each cycle could not be suppressed, and thus the cycle characteristics were significantly deteriorated.
Further, in Comparative Example 2 in which the amorphous carbon coating shape was made uniform, the uniform coating broke without enduring the expansion and contraction of the active material for each cycle, and the cycle characteristics were remarkably deteriorated.
Further, in Comparative Example 3 in which lithium cobalt oxide was used as the core material, the discharge capacity was remarkably reduced and the cycle characteristics were remarkably deteriorated due to the increase in internal resistance due to amorphous carbon.
[実施例2〜15]
実施例1と同じ炭素粉末をコア材料とし、被覆剤及び/又は被覆処理条件の一部を変更した点以外は、実施例1と同様の被覆処理を行って、表面のエッジ部が粒子状の非晶性炭素で被覆された実施例2〜15の各炭素粉末(正極活物質)を作製した。なお、被覆剤、処理温度、処理時間、攪拌の有無を表3に示す。
[Examples 2 to 15]
The same carbon powder as in Example 1 was used as the core material, and the coating treatment similar to that in Example 1 was performed except that a part of the coating agent and / or coating treatment conditions were changed, and the edge portion of the surface was particulate. Each carbon powder (positive electrode active material) of Examples 2 to 15 coated with amorphous carbon was produced. Table 3 shows the coating agent, treatment temperature, treatment time, and presence / absence of stirring.
上記各正極活物質を用いた点以外は実施例1と同様にして実施例2〜15の各正極及び蓄電素子を作製し、充放電試験を実施した。
10サイクル後の放電容量と、容量維持率が80%を下回ったときのサイクル数、及び、実施例1と同様にして測定した正極活物質の物性値を表4に示す。なお、表4には、参考のため比較例1〜2のデータも合わせて示す。
表4から判るように、実施例2〜15の非水電解液蓄電素子は、10サイクル後の放電容量が十分高く、比較例1〜2よりもサイクル特性が向上している。
Except for the use of each positive electrode active material, each positive electrode and power storage device of Examples 2 to 15 were produced in the same manner as in Example 1, and a charge / discharge test was performed.
Table 4 shows the discharge capacity after 10 cycles, the number of cycles when the capacity retention rate was less than 80%, and the physical properties of the positive electrode active material measured in the same manner as in Example 1. In Table 4, the data of Comparative Examples 1 and 2 are also shown for reference.
As can be seen from Table 4, the nonaqueous electrolyte electricity storage devices of Examples 2 to 15 have sufficiently high discharge capacity after 10 cycles, and the cycle characteristics are improved as compared with Comparative Examples 1 and 2.
[実施例16]
<負極の作製>
負極活物質の炭素粉末(日立化成工業社製、MAGD)、導電助剤のアセチレンブラック(デンカブラック粉状:電気化学工業社製)、バインダのスチレンブタジエンゴム(EX−1215:電気化学工業社製)、増粘剤のカルボキシルメチルセルロース(ダイセル2200:ダイセル化学工業社製)を、固形分の重量比で100:5:3:2になるように混合し、水を加えて適切な粘度に調整しスラリーを得た。このスラリーを厚さ18μmの銅箔の片面にドクターブレードを用いて塗布した。乾燥後の目付け量の平均は10.0mg/cm2であった。これをφ16mmに打ち抜いて負極とした。
<非水電解液蓄電素子の作製及び測定>
実施例1における負極を、上記負極に変えた点以外は、実施例1と同様にして蓄電素子を作製し、充放電試験を実施した。
[Example 16]
<Production of negative electrode>
Carbon powder of negative electrode active material (manufactured by Hitachi Chemical Co., Ltd., MAGD), acetylene black of conductive additive (DENKA black powder: manufactured by Denki Kagaku Kogyo Co., Ltd.), styrene butadiene rubber of binder (EX-1215: manufactured by Denki Kagaku Kogyo Co., Ltd.) ), Carboxymethyl cellulose (Daicel 2200: manufactured by Daicel Chemical Industries, Ltd.), a thickener, is mixed so that the weight ratio of the solid content is 100: 5: 3: 2, and water is added to adjust the viscosity appropriately. A slurry was obtained. This slurry was applied to one side of a 18 μm thick copper foil using a doctor blade. The average basis weight after drying was 10.0 mg / cm 2 . This was punched out to φ16 mm to form a negative electrode.
<Preparation and measurement of nonaqueous electrolyte storage element>
A power storage device was produced in the same manner as in Example 1 except that the negative electrode in Example 1 was changed to the negative electrode, and a charge / discharge test was performed.
[実施例17]
実施例1における正極と負極を、実施例2で作製した正極と実施例16で作製した負極に変えた点以外は、実施例1と同様にして蓄電素子を作製し、充放電試験を実施した。
[Example 17]
A power storage device was produced in the same manner as in Example 1 except that the positive electrode and negative electrode in Example 1 were changed to the positive electrode produced in Example 2 and the negative electrode produced in Example 16, and a charge / discharge test was performed. .
[実施例18]
<正極の作製>
実施例1の正極の作製における乾燥後の目付け量の平均を3.0mg/cm2に変えた点以外は、実施例1と同様にして正極を作製した。
<負極の作製>
負極活物質のチタン酸リチウム(Li4Ti5O12:チタン工業社製)、導電助剤のアセチレンブラック(デンカブラック粉状:電気化学工業社製)、バインダのアクリレート系ラテックス(TRD202A:JSR社製)、増粘剤のカルボキシルメチルセルロース(ダイセル2200:ダイセル化学工業社製)を、固形分の重量比で100:7:3:1になるように混合し、水を加えて適切な粘度に調整してスラリーを得た。このスラリーを厚さ18μmの銅箔の片面にドクターブレードを用いて塗布した。乾燥後の目付け量の平均は3.0mg/cm2であった。これをφ16mmに打ち抜いて負極とした。
<非水電解液蓄電素子の作製及び測定>
実施例1における正極と負極を、上記正極と負極に変えた点以外は、実施例1と同様にして蓄電素子を作製し、充放電試験を実施した。
[Example 18]
<Preparation of positive electrode>
A positive electrode was produced in the same manner as in Example 1 except that the average weight per unit area after drying in producing the positive electrode of Example 1 was changed to 3.0 mg / cm 2 .
<Production of negative electrode>
Lithium titanate as a negative electrode active material (Li 4 Ti 5 O 12 : manufactured by Titanium Industry Co., Ltd.), acetylene black as a conductive additive (Denka Black powder: manufactured by Denki Kagaku Kogyo Co., Ltd.), acrylate latex of a binder (TRD202A: JSR Corporation) ), A thickener carboxymethylcellulose (Daicel 2200: manufactured by Daicel Chemical Industries) was mixed so that the weight ratio of the solid content was 100: 7: 3: 1, and water was added to adjust the viscosity to an appropriate level. Thus, a slurry was obtained. This slurry was applied to one side of a 18 μm thick copper foil using a doctor blade. The average basis weight after drying was 3.0 mg / cm 2 . This was punched out to φ16 mm to form a negative electrode.
<Preparation and measurement of nonaqueous electrolyte storage element>
A power storage device was produced in the same manner as in Example 1 except that the positive electrode and the negative electrode in Example 1 were changed to the positive electrode and the negative electrode, and a charge / discharge test was performed.
[実施例19]
<正極の作製>
実施例2の正極の作製における乾燥後の目付け量の平均を3.0mg/cm2に変えた点以外は、実施例2と同様にして正極を作製した。
<非水電解液蓄電素子の作製及び測定>
実施例1における正極と負極を、上記正極及び実施例18で作製した負極に変えた点以外は、実施例1と同様にして蓄電素子を作製し、充放電試験を実施した。
[Example 19]
<Preparation of positive electrode>
A positive electrode was produced in the same manner as in Example 2 except that the average weight per unit area after drying in producing the positive electrode of Example 2 was changed to 3.0 mg / cm 2 .
<Preparation and measurement of nonaqueous electrolyte storage element>
A power storage device was produced in the same manner as in Example 1 except that the positive electrode and the negative electrode in Example 1 were changed to the positive electrode and the negative electrode produced in Example 18, and a charge / discharge test was performed.
[比較例4]
比較例1の負極を実施例16で作製した負極に変えた点以外は、比較例1と同様にして蓄電素子を作製し、充放電試験を実施した。
[Comparative Example 4]
A power storage device was produced in the same manner as in Comparative Example 1 except that the negative electrode of Comparative Example 1 was changed to the negative electrode produced in Example 16, and a charge / discharge test was performed.
[比較例5]
比較例1の負極を実施例18で作製した負極に変えた点以外は、比較例1と同様にして蓄電素子を作製し、充放電試験を実施した。
[Comparative Example 5]
A power storage device was produced in the same manner as in Comparative Example 1 except that the negative electrode of Comparative Example 1 was changed to the negative electrode produced in Example 18, and a charge / discharge test was performed.
実施例16〜19及び比較例4〜5に於ける10サイクル後の放電容量と、容量維持率が80%を下回ったときのサイクル数、及び実施例1と同様にして測定した正極活物質の物性値を表6に示す。
表6から分かるように、実施例16〜17の非水電解液蓄電素子は、10サイクル後の放電容量が十分高く、比較例4に比べてサイクル特性が顕著に向上した。
また、実施例18〜19の非水電解液蓄電素子は、10サイクル後の放電容量が十分高く、比較例5よりもサイクル特性が向上した。
In Examples 16 to 19 and Comparative Examples 4 to 5, the discharge capacity after 10 cycles, the number of cycles when the capacity retention rate was less than 80%, and the positive electrode active material measured in the same manner as in Example 1 Table 6 shows the physical property values.
As can be seen from Table 6, the non-aqueous electrolyte storage elements of Examples 16 to 17 had a sufficiently high discharge capacity after 10 cycles, and the cycle characteristics were significantly improved as compared with Comparative Example 4.
Moreover, the non-aqueous electrolyte storage elements of Examples 18 to 19 had sufficiently high discharge capacity after 10 cycles, and the cycle characteristics were improved as compared with Comparative Example 5.
1 炭素一次粒子
2 グラフェン
3 エッジ部
4 ベイサル部
1 carbon primary particle 2 graphene 3 edge part 4 basal part
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015022352A JP6476944B2 (en) | 2015-02-06 | 2015-02-06 | Non-aqueous electrolyte storage element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015022352A JP6476944B2 (en) | 2015-02-06 | 2015-02-06 | Non-aqueous electrolyte storage element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016146261A JP2016146261A (en) | 2016-08-12 |
JP6476944B2 true JP6476944B2 (en) | 2019-03-06 |
Family
ID=56685512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015022352A Active JP6476944B2 (en) | 2015-02-06 | 2015-02-06 | Non-aqueous electrolyte storage element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6476944B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2976299B2 (en) * | 1995-11-14 | 1999-11-10 | 大阪瓦斯株式会社 | Anode material for lithium secondary battery |
AU6387599A (en) * | 1998-09-11 | 2000-04-03 | Daimlerchrysler Intellectual Capital Corporation | Lithium ion battery utilizing carbon foam electrodes |
JP2002298849A (en) * | 2001-04-02 | 2002-10-11 | Asahi Glass Co Ltd | Secondary electric power source |
JP4035150B2 (en) * | 2006-05-08 | 2008-01-16 | 真幸 芳尾 | Pseudo capacitance capacitor |
EP2128086A4 (en) * | 2007-01-31 | 2012-01-25 | Chuo Denki Kogyo Co Ltd | Carbon material and process for producing the carbon material |
JP5524202B2 (en) * | 2009-05-26 | 2014-06-18 | コカン カンパニー リミテッド | Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery |
JP5758753B2 (en) * | 2011-09-09 | 2015-08-05 | 株式会社リコー | Non-aqueous electrolyte secondary battery |
JP6100610B2 (en) * | 2013-05-27 | 2017-03-22 | 信越化学工業株式会社 | Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof |
-
2015
- 2015-02-06 JP JP2015022352A patent/JP6476944B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016146261A (en) | 2016-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5758753B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6685940B2 (en) | Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery | |
JP5540805B2 (en) | Non-aqueous secondary battery carbon material, negative electrode material and non-aqueous secondary battery | |
JP6965745B2 (en) | Lithium ion secondary battery | |
JP7281570B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
JP6669229B2 (en) | Carbonaceous materials and electrodes | |
JP2014130719A (en) | Nonaqueous electrolyte storage element | |
WO2016143423A1 (en) | Nonaqueous electrolyte electricity storage element | |
JP2016173985A (en) | Nonaqueous electrolyte power storage device | |
JP2016091652A (en) | Nonaqueous electrolyte power storage device | |
JP2016167443A (en) | Nonaqueous electrolyte power storage element | |
JP2016046042A (en) | Nonaqueous electrolyte power storage device | |
JP2018152158A (en) | Operation method of nonaqueous power storage device | |
JP2017228513A (en) | Nonaqueous electrolyte storage element | |
JP2016081801A (en) | Electrode for positive electrode, and nonaqueous electrolyte power storage device | |
JP2017091994A (en) | Nonaqueous electrolyte power storage device | |
JP6736833B2 (en) | Non-aqueous electrolyte storage element | |
JP6476944B2 (en) | Non-aqueous electrolyte storage element | |
JP6657829B2 (en) | Non-aqueous electrolyte storage element | |
EP3404761B1 (en) | Non-aqueous electrolyte electricity-storage element | |
JP2016149276A (en) | Electrode for positive electrode, and nonaqueous electrolyte power storage device | |
JP2018148018A (en) | Nonaqueous power storage element | |
JP6967473B2 (en) | Non-aqueous electrolyte storage element | |
JP2017010798A (en) | Nonaqueous electrolyte storage element | |
JP2017220332A (en) | Nonaqueous electrolyte power storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190121 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6476944 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |