[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6474582B2 - Aluminum alloy plate with excellent formability - Google Patents

Aluminum alloy plate with excellent formability Download PDF

Info

Publication number
JP6474582B2
JP6474582B2 JP2014217433A JP2014217433A JP6474582B2 JP 6474582 B2 JP6474582 B2 JP 6474582B2 JP 2014217433 A JP2014217433 A JP 2014217433A JP 2014217433 A JP2014217433 A JP 2014217433A JP 6474582 B2 JP6474582 B2 JP 6474582B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
silicon
plate
containing aluminum
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014217433A
Other languages
Japanese (ja)
Other versions
JP2016084501A (en
Inventor
馨亮 井上
馨亮 井上
桜井 寛
寛 桜井
文彦 源島
文彦 源島
裕司 惣田
裕司 惣田
洋史 神戸
洋史 神戸
憲司 林
憲司 林
大塚 真司
真司 大塚
真次 熊井
真次 熊井
陽平 原田
陽平 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Nissan Motor Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Tokyo Institute of Technology NUC filed Critical Nissan Motor Co Ltd
Priority to JP2014217433A priority Critical patent/JP6474582B2/en
Publication of JP2016084501A publication Critical patent/JP2016084501A/en
Application granted granted Critical
Publication of JP6474582B2 publication Critical patent/JP6474582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、アルミニウム合金板及びその製造方法係り、更に詳細には、成形性に優れたケイ素含有アルミニウム合金板及びその製造方法に関する。   The present invention relates to an aluminum alloy plate and a method for producing the same, and more particularly to a silicon-containing aluminum alloy plate excellent in formability and a method for producing the same.

従来、アルミニウム合金板は、アルミニウム原料、いわゆるバージン材を鋳造してスラブを作製し、スラブに面削を施した後に均熱化処理を行い、更に熱間圧延及び冷間圧延を施すことにより製造されていた(例えば、特許文献1及び特許文献2参照。)。
また、従来の双ロール式連続鋳造では、圧延前に均熱化処理を行っているため、工程コストが大きくなりがちである(例えば、非特許文献1及び非特許文献2参照。)。
Conventionally, an aluminum alloy plate is manufactured by casting an aluminum raw material, so-called virgin material, to produce a slab, surface-treating the slab, then performing a soaking treatment, and further performing hot rolling and cold rolling. (For example, see Patent Document 1 and Patent Document 2).
Moreover, in the conventional twin roll type continuous casting, since the soaking process is performed before rolling, the process cost tends to be large (for example, see Non-Patent Document 1 and Non-Patent Document 2).

特開2004−143511号公報JP 2004-143511 A 特開平7−41896号公報JP 7-41896 A

Materials Transactions,Vol.45,No.2(2004)pp.403to406Materials Transactions, Vol. 45, no. 2 (2004) pp. 403to406 Journal of Materials Processing Technology,140(2003)pp.610to615Journal of Materials Processing Technology, 140 (2003) pp. 610to615

しかしながら、このような従来のアルミニウム合金板の製造においては、原料コストが高く、スラブの面削や均熱化などの各工程を実施しなければならず、しかも熱間及び冷間圧延にも相当な時間を要しており、原料コスト的にも製造効率上も十分とはいえなかった。   However, in the production of such a conventional aluminum alloy sheet, the raw material cost is high, and it is necessary to carry out each process such as chamfering and soaking of the slab, and also corresponds to hot and cold rolling. It took a lot of time and was not sufficient in terms of raw material costs and production efficiency.

また、従来の双ロール式連続鋳造では、双ロール材の組織制御が確立されておらず、アルミニウム合金板の板厚中心部位に偏析が生じやすく、そのため、双ロール鋳造後の冷間圧延性を低下させ、且つ成形性が低くなるため所望の製品形状が実現できないという問題があった。   Further, in conventional twin roll type continuous casting, the structure control of the twin roll material has not been established, and segregation is likely to occur in the central part of the thickness of the aluminum alloy plate. There is a problem that a desired product shape cannot be realized because of lowering and moldability.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、原料コストが低く、製造効率に優れ、且つ成形性に優れたケイ素含有アルミニウム合金板及びその製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art. The object of the present invention is to provide a silicon-containing aluminum alloy plate having low raw material costs, excellent production efficiency, and excellent formability. It is in providing the manufacturing method.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、安価な鋳造用合金やスクラップ材を用い、所定のSi濃度分布を付与することなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor found that the above object can be achieved by using a low-cost casting alloy or scrap material and imparting a predetermined Si concentration distribution. The invention has been completed.

即ち、本発明のケイ素含有アルミニウム合金板は、板厚方向に変動するSi濃度分布を有するケイ素含有アルミニウム合金板である。
このケイ素含有アルミニウム合金板は、Si濃度が最大となる板厚方向位置におけるSi濃度(Simax)と、板厚方向におけるSi濃度の平均値(Siaver)との比率Simax/Siaverが1.0〜1.3であり、
Cuを0〜0.2質量%、Siを6.5〜7.5質量%、Mgを0.2〜0.5質量%、Feを0〜0.8質量%、Mnを0〜0.6質量%の割合で含み、残部がAl及び不可避的不純物から成る、ことを特徴とする。
なお、本発明のアルミニウム含有アルミニウム合金板は、鋳造したままの鋳造板と、これに圧延処理を施した圧延板の双方を包含する。
That is, the silicon-containing aluminum alloy plate of the present invention is a silicon-containing aluminum alloy plate having a Si concentration distribution that varies in the plate thickness direction.
The silicon-containing aluminum alloy sheet, the Si concentration (Si max) in the thickness direction position Si concentration is maximum, the ratio Si max / Si aver the average value of the Si concentration in the thickness direction and (Si aver) 1 .0~1.3 der is,
Cu is 0 to 0.2 mass%, Si is 6.5 to 7.5 mass%, Mg is 0.2 to 0.5 mass%, Fe is 0 to 0.8 mass%, and Mn is 0 to 0.0 mass%. It is characterized in that it is contained in a proportion of 6% by mass, and the balance consists of Al and inevitable impurities .
In addition, the aluminum containing aluminum alloy plate of this invention includes both the cast plate as cast and the rolled plate which gave this the rolling process.

また、本発明のケイ素含有アルミニウム合金板の製造方法は、上述のようなケイ素含有アルミニウム合金板を製造する方法である。
この製造方法は、縦型双ロール式連続鋳造により板材を作製し、
次いで、この板材を圧下率50%以上で冷間圧延し、
しかる後、400〜500℃の範囲で焼鈍処理を行う、ことを特徴とする。
なお、この製造方法において、対象とするアルミニウム合金板が鋳造板である場合には、上記の冷間圧延、焼鈍処理を省略し得る。
Moreover, the manufacturing method of the silicon containing aluminum alloy plate of this invention is a method of manufacturing the above silicon containing aluminum alloy plates.
This manufacturing method produces a plate by vertical twin roll continuous casting,
Next, this plate material is cold-rolled at a reduction rate of 50% or more,
Thereafter, annealing is performed in the range of 400 to 500 ° C.
In addition, in this manufacturing method, when the aluminum alloy plate made into object is a cast plate, said cold rolling and annealing treatment can be abbreviate | omitted.

本発明によれば、安価な鋳造用合金やスクラップ材を用い、所定のSi濃度分布を付与することなどとしたため、原料コストが低く、製造効率に優れ、且つ成形性に優れたケイ素含有アルミニウム合金板及びその製造方法を提供することができる。   According to the present invention, a silicon-containing aluminum alloy having low raw material cost, excellent production efficiency, and excellent formability is obtained by using an inexpensive casting alloy or scrap material and imparting a predetermined Si concentration distribution. A board and a manufacturing method thereof can be provided.

本発明のケイ素含有アルミニウム合金板の一実施例の厚さ方向における断面(板厚断面)を示す光学顕微鏡組織写真である。It is an optical microscope structure | tissue photograph which shows the cross section (plate thickness cross section) in the thickness direction of one Example of the silicon-containing aluminum alloy plate of this invention. 本発明のケイ素含有アルミニウム合金板の他の実施例の厚さ方向における断面(板厚断面)を示す光学顕微鏡組織写真である。It is an optical microscope structure | tissue photograph which shows the cross section (plate thickness cross section) in the thickness direction of the other Example of the silicon containing aluminum alloy plate of this invention. 従来のケイ素含有アルミニウム合金板の一例の厚さ方向における断面(板厚断面)を示す光学顕微鏡組織写真であるIt is an optical microscope structure | tissue photograph which shows the cross section (plate thickness cross section) in the thickness direction of an example of the conventional silicon-containing aluminum alloy plate. ケイ素含有アルミニウム合金板のSi濃度分布を示すグラフである。It is a graph which shows Si concentration distribution of a silicon containing aluminum alloy plate. ケイ素含有アルミニウム合金板の冷間圧延結果を示すグラフである。It is a graph which shows the cold rolling result of a silicon containing aluminum alloy plate. ケイ素含有アルミニウム合金板の張出試験とX線回折の結果を示すグラフである。It is a graph which shows the result of the overhang test and X-ray diffraction of a silicon containing aluminum alloy plate.

以下、本発明のアルミニウム合金板について詳細に説明する。
本発明のアルミニウム合金板は、ケイ素(Si)を含有するアルミニウム合金製の板材であって、厚さ方向(板厚方向)に変動するSi濃度分布を有している。
また、Si濃度が最大となる板厚方向位置におけるSi濃度(Simax)と、この板厚方向におけるSi濃度の平均値(Siaver)との比率Simax/Siaverが1.0〜1.3である。
Hereinafter, the aluminum alloy plate of the present invention will be described in detail.
The aluminum alloy plate of the present invention is a plate made of aluminum alloy containing silicon (Si), and has a Si concentration distribution that varies in the thickness direction (plate thickness direction).
Further, a Si concentration (Si max) in the thickness direction position Si concentration is maximum, the ratio Si max / Si aver the average value of the Si concentration in the thickness direction (Si aver) is 1.0 to 1. 3.

ここで、Si濃度分布は、典型的には、板厚中心から当該合金板の両側に位置する最表面の方向において、Si濃度が漸次減少した濃度勾配を有する傾向にあるが、これに限定されるものではない。例えば、板厚中心から片側の最表面の方向に隣接する任意の2つの位置において、板厚中心側の位置におけるSi濃度が最表面側の位置におけるSi濃度よりも必ずしも大である必要はなく、同一又は小であってもよい。   Here, the Si concentration distribution typically has a concentration gradient in which the Si concentration gradually decreases in the direction of the outermost surface located on both sides of the alloy plate from the center of the plate thickness, but is not limited thereto. It is not something. For example, at any two positions adjacent in the direction of the outermost surface on one side from the thickness center, the Si concentration at the position on the thickness center side does not necessarily have to be higher than the Si concentration at the position on the outermost surface side, It may be the same or small.

なお、通常、上記のSi濃度分布は、Si濃度が同一か又はほぼ同一の相(Si濃度均一相)が複数層隣接(積層)した形式で構成されている。代表的には、板厚中心から一方の最表面方向に、板厚に対して約8%(双ロール式連続鋳造で作製したアルミニウム合金板では約200μm厚)のSi濃度均一相が隣接(積層)した形式で構成されている。
この場合、Si濃度分布は、板厚中心を通り厚さ方向に垂直な線(板厚中心線)に関してほぼ線対称となっており、よって、板厚中心を含む板厚中心相が構成するSi濃度均一相は、板厚に対して約8%(上記の双ロール式連続鋳造アルミニウム合金板では約200μm)の厚さを有することになる。
In general, the Si concentration distribution is configured in a form in which a plurality of layers having the same or substantially the same Si concentration (Si concentration uniform phase) are adjacent (laminated). Typically, an Si concentration uniform phase of about 8% (about 200 μm in the case of an aluminum alloy plate produced by twin roll type continuous casting) of the plate thickness is adjacent (laminated) from the plate thickness center to one outermost surface direction. ).
In this case, the Si concentration distribution is substantially line-symmetric with respect to a line (sheet thickness center line) that passes through the sheet thickness center and is perpendicular to the thickness direction, and thus the Si thickness center phase including the sheet thickness center constitutes the Si concentration distribution. The concentration uniform phase has a thickness of about 8% with respect to the plate thickness (about 200 μm in the above-mentioned twin-roll continuous cast aluminum alloy plate).

上述のような構造を有するケイ素含有アルミニウム合金板においては、板厚中心ないし板厚中心相がSimaxを有することが多いが、これら板厚中心相などのSi濃度が高くなり過ぎると、冷間圧延及び焼鈍後においても、板厚中心相などのSi濃度が高いままであり、冷間圧延性や成形性が劣化することがある。
これに対し、本発明は、典型的には、板厚方向に形成されるSi濃度均一相において、Si濃度の最大値(Simax)とSi濃度の平均値(Siaver)との比率Simax/Siaverを所定範囲内に制御することにより、当該合金板の冷間圧延性や成形性を向上させるものである。
In the silicon-containing aluminum alloy plate having the structure as described above, the plate thickness center or the plate thickness center phase often has Si max. However, if the Si concentration of the plate thickness center phase or the like becomes too high, Even after rolling and annealing, the Si concentration such as the sheet thickness central phase remains high, and the cold rollability and formability may deteriorate.
In contrast, the present invention is typically in the Si concentration uniform phase formed in a thickness direction, the ratio Si max of the maximum value of the Si concentration (Si max) average of Si concentration (Si aver) By controlling the / Si average within a predetermined range, the cold rolling property and formability of the alloy plate are improved.

即ち、本発明のケイ素含有アルミニウム合金板において、Si濃度が最大となる板厚方向位置におけるSi濃度(Simax)と、板厚方向におけるSi濃度の平均値(Siaver)との比率Simax/Siaverが1.3を超えると、板厚中心相のSi濃度が高くなりすぎ、冷間圧延性に劣り、圧延時に破断が起きることがある。 That is, in the silicon-containing aluminum alloy sheet of the present invention, the Si concentration (Si max) in the thickness direction position Si concentration becomes the maximum, the average value of the Si concentration in the thickness direction (Si aver) ratio of Si max / When Si average exceeds 1.3, the Si concentration in the sheet thickness center phase becomes too high, the cold rolling property is inferior, and breakage may occur during rolling.

さらに、本発明のケイ素含有アルミニウム合金板としては、冷間圧延と焼鈍処理を施したもので、X線回折による(111)面強度I111、(200)面強度I200、(220)面強度I220、(311)面強度I311につき、I111がI311以下で且つI220以下であり、I220/I111とI311/I111が3.0以下、I200/I220が0.6〜2.0であることが好ましい。
上記のX線強度比から逸脱すると、従来の一般的なアルミニウム合金板よりも成形性、特に張出性が劣化することがある。従来、(200)面と等価な面である(100)面を発達させることでアルミニウム合金板の成形性を向上させてきたが、本発明のように適切な冷間圧延と焼鈍を施すことにより、(220)面に加えて、(220)面及び(311)面をバランスよく発達させることが可能であり、これにより、良好な成形性を実現できる。
Further, the silicon-containing aluminum alloy plate of the present invention is subjected to cold rolling and annealing treatment, and (111) plane strength I 111 , (200) plane strength I 200 , (220) plane strength by X-ray diffraction. For I 220 and (311) plane intensity I 311 , I 111 is I 311 or less and I 220 or less, I 220 / I 111 and I 311 / I 111 are 3.0 or less, and I 200 / I 220 is 0. .6 to 2.0 is preferable.
When deviating from the above-mentioned X-ray intensity ratio, the formability, particularly the stretchability, may be deteriorated as compared with a conventional general aluminum alloy plate. Conventionally, the formability of the aluminum alloy plate has been improved by developing the (100) plane, which is equivalent to the (200) plane, but by applying appropriate cold rolling and annealing as in the present invention. In addition to the (220) plane, it is possible to develop the (220) plane and the (311) plane in a well-balanced manner, thereby realizing good moldability.

本発明のケイ素含有アルミニウム合金板は、Cuを0〜0.2質量%、Siを6.5〜7.5質量%、Mgを0.2〜0.5質量%、Feを0〜0.8質量%、Mnを0〜0.6質量%、必要に応じて、Znを0〜0.3質量%、Tiを0〜0.3質量%の割合で含み、残部がAl及び不可避的不純物から成る。
上記の各種構成元素の作用及び数値限定理由は、下記の通りである。
The silicon-containing aluminum alloy plate of the present invention has a Cu content of 0 to 0.2 mass%, a Si content of 6.5 to 7.5 mass%, a Mg content of 0.2 to 0.5 mass%, and a Fe content of 0 to 0.0 mass%. 8% by mass, Mn from 0 to 0.6% by mass, optionally containing Zn from 0 to 0.3% by mass, Ti from 0 to 0.3% by mass, the balance being Al and inevitable impurities Ru consists of.
The effects of the above various constituent elements and the reasons for limiting the numerical values are as follows.

Cu(銅):0〜0.2質量%
Cuは、耐力及び引張強さを向上させるために含有させる。Cuの含有量が0.2質量%を超えると、耐食性が悪化することがある。
Cu (copper): 0 to 0.2% by mass
Cu is contained in order to improve proof stress and tensile strength. If the Cu content exceeds 0.2% by mass, the corrosion resistance may deteriorate.

Si(ケイ素):6.5〜7.5質量%
Siは、湯流れ性などの鋳造性を向上させるために含有させる。Siの含有量が6.5質量%未満では、流動性が低く鋳造性が悪くなることがあり、7.5質量%を超えると、流動性は高くなるが伸びと成形性が低下することがある。
Si (silicon): 6.5 to 7.5% by mass
Si is contained in order to improve castability such as hot water flowability. If the Si content is less than 6.5% by mass, the fluidity is low and the castability may be deteriorated. If it exceeds 7.5% by mass, the fluidity is increased, but the elongation and formability may be reduced. is there.

Mg(マグネシウム):0.2〜0.5質量%
Mgは、耐力及び引張強さを向上させるために含有させる。Mgの含有量が0.2質量%未満では、耐力及び引張強さの向上が認められないことがあり、0.5質量%を超えると、伸びと成形性が低下することがある。
Mg (magnesium): 0.2 to 0.5 mass%
Mg is contained in order to improve proof stress and tensile strength. If the Mg content is less than 0.2% by mass, improvement in yield strength and tensile strength may not be observed, and if it exceeds 0.5% by mass, elongation and formability may be reduced.

Fe(鉄):0〜0.8質量%
Feは、焼き付き防止のために含有させる。Feの含有量が0.8質量%を超えると、伸びと成形性が低下することがある。
Fe (iron): 0 to 0.8 mass%
Fe is contained to prevent seizure. If the Fe content exceeds 0.8% by mass, the elongation and formability may be reduced.

Mn(マンガン):0〜0.6質量%
Mnは、Feによる延性の低下などの悪影響を緩和するとともに、焼き付き防止のために含有させる。Mnの含有量が0.6質量%を超えると、析出相や粗大な晶出物を生ぜしめて、伸びと成形性を低下させることがある。
Mn (manganese): 0 to 0.6% by mass
Mn is contained for mitigating adverse effects such as a decrease in ductility due to Fe and for preventing seizure. When the content of Mn exceeds 0.6% by mass, a precipitated phase and coarse crystallized matter may be generated, and elongation and formability may be lowered.

なお、不可避的不純物としては、Zn、Ti、Ni、Pb、Sn、Cr、Sb、Ca及びNaなどがある。通常、これらの不純物は0.1質量%以下で含まれる。   Inevitable impurities include Zn, Ti, Ni, Pb, Sn, Cr, Sb, Ca, and Na. Usually, these impurities are contained at 0.1% by mass or less.

以上に説明した本発明のケイ素含有アルミニウム合金板は、成形性に優れる。特に張出性に優れており、後述する張出高さは、代表的に27mm以上である。   The silicon-containing aluminum alloy plate of the present invention described above is excellent in formability. In particular, the overhang property is excellent, and the overhang height described later is typically 27 mm or more.

次に、本発明の自動車用部品について説明する。
本発明の自動車用部品は、上述の本発明のケイ素含有アルミニウム合金板を用いて製造されたものである。当該アルミニウム合金板の優れた成形性により、製造効率や加工精度に優れている。
自動車用部品としては、特に限定されるものではないが、外板パネルや内板パネルなどのパネル材、遮熱板、遮音板及びブラケットなどを例示することができる。
Next, the automotive part of the present invention will be described.
The automotive part of the present invention is manufactured using the above-mentioned silicon-containing aluminum alloy plate of the present invention. Due to the excellent formability of the aluminum alloy plate, it is excellent in production efficiency and processing accuracy.
Although it does not specifically limit as components for motor vehicles, Panel materials, such as an outer plate panel and an inner plate panel, a heat insulation board, a sound insulation board, a bracket, etc. can be illustrated.

次に、本発明のケイ素含有アルミニウム合金板の製造方法について説明する。
本発明のケイ素含有アルミニウム合金板の製造方法は、上述の本発明のケイ素含有アルミニウム合金板を製造する方法である。
この製造方法では、まず、縦型双ロール式連続鋳造により板材を作製し、次いで、この板材を圧下率50%以上で冷間圧延し、しかる後、400〜500℃の範囲で焼鈍処理を行う。
Next, the manufacturing method of the silicon containing aluminum alloy plate of this invention is demonstrated.
The method for producing a silicon-containing aluminum alloy plate of the present invention is a method for producing the above-described silicon-containing aluminum alloy plate of the present invention.
In this manufacturing method, first, a plate material is produced by vertical twin roll continuous casting, and then the plate material is cold-rolled at a reduction rate of 50% or more, and then annealed in the range of 400 to 500 ° C. .

ここで、双ロール式連続鋳造は、スラブの作製などを介さずに溶湯から板材を直接製造できる手法であって、縦型に配置した2つのローラーとコイラーにより溶湯を延伸ないし圧延する手法であり、従来公知の手法を適用できる。
溶湯原料としては、いわゆるバージン原料を使用することも可能であるが、スクラップ材やスクラップ材に安価な鋳造用合金、例えばホイールスクラップ、サッシ屑、缶スクラップなどを混合したものを用いることができる。
Here, the twin roll type continuous casting is a technique that can directly manufacture a plate material from a molten metal without using a slab or the like, and is a technique in which the molten metal is stretched or rolled by two rollers and a coiler arranged in a vertical shape. A conventionally known method can be applied.
As the molten material, a so-called virgin raw material can be used, but a scrap material or a scrap alloy mixed with an inexpensive casting alloy, for example, wheel scrap, sash scrap, can scrap, or the like can be used.

また、双ロール式連続鋳造により作製した板材について、圧下率50%以上で冷間圧延した後、350〜550℃の範囲で焼鈍処理を行うが、圧下率が50%未満では、焼鈍後の再結晶粒が粗大化して、伸び、張出高さ等の高い成形ができないことがある。
また、焼鈍温度が350℃未満では、再結晶が不完全となり、伸び、張出性が低下し、目的とする成形性が得られないことがあり、550℃を超えると、再結晶粒が粗大化するため、強度が低下して成形性が低下する可能性がある。
なお、上記の冷間圧延に続く焼鈍処理を350℃から550℃の温度範囲内で行えば、上記X線強度比を満足し、成形性、特に張出性に優れたケイ素含有アルミニウム合金板が得られる。より好ましくは焼鈍処理を400℃から500℃の温度範囲内で行うことで、上記のようにI220/I111とI311/I111が3.0以下、I200/I220が0.6〜2.0となり、よりいっそう成形性が向上する。
Moreover, about the board | plate material produced by the twin roll type continuous casting, after cold-rolling at a reduction rate of 50% or more, annealing treatment is performed in the range of 350 to 550 ° C. In some cases, the crystal grains become coarse, and molding such as elongation and overhang height cannot be performed.
In addition, when the annealing temperature is less than 350 ° C., recrystallization becomes incomplete, the elongation and the extrudability deteriorate, and the target formability may not be obtained. When the annealing temperature exceeds 550 ° C., the recrystallized grains are coarse. Therefore, the strength may decrease and the moldability may decrease.
In addition, if the annealing treatment following the cold rolling described above is performed within a temperature range of 350 ° C. to 550 ° C., a silicon-containing aluminum alloy plate satisfying the X-ray intensity ratio and having excellent formability, particularly extensibility, can be obtained. can get. More preferably, by performing the annealing treatment within a temperature range of 400 ° C. to 500 ° C., I 220 / I 111 and I 311 / I 111 are 3.0 or less and I 200 / I 220 is 0.6 as described above. It becomes -2.0, and a moldability improves further.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1及び2、比較例3)
表1に示す各種の化学成分組成を有するAl合金溶湯を、表2に示す双ロール連続鋳造又はDC鋳造法により鋳造した。
実施例1及び2については、表1中の番号Aの合金溶湯を用い、比較例3についても番号Aの合金溶湯を用いた。
なお、表1において、Mg量が2.54%である合金(番号B)、Mn量が0.97%である合金(番号C)は、本発明では好適範囲外の原料例である。
(Examples 1 and 2, Comparative Example 3)
Al alloy melts having various chemical component compositions shown in Table 1 were cast by the twin roll continuous casting shown in Table 2 or the DC casting method.
For Examples 1 and 2, the molten alloy of number A in Table 1 was used, and for the comparative example 3, the molten alloy of number A was also used.
In Table 1, an alloy having an Mg content of 2.54% (No. B) and an alloy having an Mn content of 0.97% (No. C) are examples of raw materials outside the preferred range in the present invention.

双ロール式連続鋳造(実施例1及び2)の際には、ケイ素を含有するAl合金溶湯を、耐火物製の給湯ノズルから、10m/min以上で回転する一対の銅鋳型等の双ロールの間に、液相線温度+5℃以上で注湯し、100℃/s以上の冷却速度で凝固させ、板厚2mm以上の鋳造板を作製した。
なお、双ロール式連続鋳造機で作製した鋳造材は、必要に応じて凝固完了後に板厚1mm以下まで冷間圧延した。次いで、冷延板に350〜550℃の温度で5分以上の焼鈍処理を施し、各例のアルミニウム合金板を得た。
In the twin roll type continuous casting (Examples 1 and 2), the Al alloy melt containing silicon is fed from a refractory hot water supply nozzle of a twin roll such as a pair of copper molds rotating at a speed of 10 m / min or more. In the meantime, molten metal was poured at a liquidus temperature of + 5 ° C. or more and solidified at a cooling rate of 100 ° C./s or more to produce a cast plate having a plate thickness of 2 mm or more.
In addition, the cast material produced with the twin roll type continuous casting machine was cold-rolled to a plate thickness of 1 mm or less after completion of solidification as necessary. Subsequently, the cold-rolled sheet was annealed at a temperature of 350 to 550 ° C. for 5 minutes or longer to obtain an aluminum alloy sheet of each example.

Figure 0006474582
Figure 0006474582

Figure 0006474582
Figure 0006474582

得られた実施例1及び2、比較例3の合金板の厚さ方向における断面(板厚断面)の光学顕微鏡により撮影した組織写真をそれぞれ図1〜図3に示す。
また、板厚中心(6)から最表面(1)の方向に所定間隔の位置におけるSi濃度を、下記性能評価における面分析の要領でよって測定し、得られた結果を表3、図4に示す。
実施例1の合金板では、Si濃度が最大となる厚さ方向位置におけるSi濃度(Simax)と、板厚方向のSi濃度の平均値(Siaver)との比率Simax/Siaverは、7.5/7.0=1.1となる。
The structure | tissue photograph image | photographed with the optical microscope of the cross section (plate thickness cross section) in the thickness direction of the obtained alloy plate of Examples 1 and 2 and the comparative example 3 is each shown in FIGS.
Further, the Si concentration at a predetermined interval in the direction from the thickness center (6) to the outermost surface (1) was measured in the manner of surface analysis in the following performance evaluation, and the obtained results are shown in Table 3 and FIG. Show.
The alloy plate of Example 1, the Si concentration (Si max) in the thickness direction position Si concentration is maximum, the ratio Si max / Si aver the average value of the thickness direction of the Si concentration (Si aver) is 7.5 / 7.0 = 1.1.

表3は、縦型双ロール鋳造により作製したケイ素含有アルミニウム合金板の板厚中心から一方の最表面方向にそれぞれ板厚に対して約8%厚の間隔でSi濃度分布を測定し、その区間のSi濃度、Si濃度比(Simax/Siaver)、及び当該合金板の冷間圧延性試験の結果を示したものである。
ここで、冷間圧延性試験結果において、「○」は板厚0.5mmまでの冷間圧延が可能だったもの、「×」は大きな割れが発生して板厚0.5mmまでの冷間圧延が不可能だったものを示す。
また、得られた実施例1及び2、比較例3の合金板のSi濃度比(Simax/Siaver)、及び当該合金板の冷間圧延性試験の結果を図5に示す。
Table 3 shows the Si concentration distribution measured at intervals of about 8% of the plate thickness from the center of the thickness of the silicon-containing aluminum alloy plate produced by vertical twin roll casting to the outermost surface. Si concentration, Si concentration ratio (Si max / Si aver), and shows the results of cold rolling test of the alloy plate.
Here, in the results of the cold rollability test, “◯” indicates that cold rolling up to a sheet thickness of 0.5 mm was possible, and “×” indicates that a large crack occurred and the sheet was cold down to a sheet thickness of 0.5 mm. Indicates that rolling was impossible.
Also shown obtained Example 1 and 2, Si concentration ratio of alloy plate of Comparative Example 3 (Si max / Si aver) , and the results of cold rolling test of the alloy sheet in FIG.

Figure 0006474582
Figure 0006474582

表3より、実施例1は、上述のようにSi濃度比が1.1であり、板厚方向でSi偏析が少なく、且つ板厚中心相のSi濃度が低いため、良好な冷間圧延性が得られた。
実施例2は、Si濃度比が1.2であり、板厚中心相のSi偏析は多いが、Si濃度比が適切に制御されているので、冷間圧延が可能であった。
比較例3は、Si濃度比が1.8と高く、板厚中心相のSi偏析が多いため、冷間圧延時に割れが多数発生するとともに圧延途中に破断し、圧延が不可能であった。
From Table 3, since Example 1 has a Si concentration ratio of 1.1 as described above, Si segregation is small in the plate thickness direction, and the Si concentration in the plate thickness central phase is low, and therefore, good cold rollability is achieved. was gotten.
In Example 2, the Si concentration ratio was 1.2, and Si segregation in the sheet thickness central phase was large, but cold rolling was possible because the Si concentration ratio was appropriately controlled.
In Comparative Example 3, since the Si concentration ratio was as high as 1.8 and there was a lot of Si segregation in the sheet thickness central phase, many cracks occurred during cold rolling and broke during the rolling, making rolling impossible.

(実施例5〜9、比較例10及び11)
表1に示す化学成分組成を有する材料を表2に示す双ロール鋳造法又はDC鋳造法により鋳造し、必要に応じて、表2に示す各種冷間圧延加工及び焼鈍熱処理を施し、各例のアルミニウム合金板を作製した。
(Examples 5-9, Comparative Examples 10 and 11)
The material having the chemical component composition shown in Table 1 is cast by the twin roll casting method or DC casting method shown in Table 2, and if necessary, various cold rolling processes and annealing heat treatments shown in Table 2 are performed. An aluminum alloy plate was produced.

<性能評価>
上述のようにして得られた各例の合金板につき下記の性能評価を行った。得られた結果を表4、図6に示す。なお、アルミニウム合金板の圧延平行方向に対しX線を照射することで、面強度及び回折強度比を調べた。
<Performance evaluation>
The following performance evaluation was performed on the alloy plates of the respective examples obtained as described above. The obtained results are shown in Table 4 and FIG. In addition, the surface intensity | strength and diffraction intensity ratio were investigated by irradiating an X-ray with respect to the rolling parallel direction of an aluminum alloy plate.

[引張試験]
Z2201:1998に規定されるJIS5号試験片を、試験片長手方向が圧延方向と一致するように作製し、室温での引張試験により、0.2%耐力、引張強さ、伸びの各特性値を測定する。
[Tensile test]
Z2201: JIS No. 5 test piece specified in 1998 was prepared so that the longitudinal direction of the test piece coincided with the rolling direction, and each characteristic value of 0.2% proof stress, tensile strength, and elongation was measured by a tensile test at room temperature. Measure.

[張出試験]
・試験条件
試験片形状 :200mm(長さ)×200mm(幅)×0.5mm(板厚)
しわ押さえ荷重:450kN
ポンチ速度 :10mm/min
ポンチ型 :φ100mm
・試験手順
張出試験については、直径100mmの球頭張出ポンチを用い、板厚0.5mm、長さ200mm、幅200mmの試験片に潤滑剤としての防錆油を塗布し、成形速度10mm/min、しわ押さえ荷重450kNで張出成形を行い、試験片が割れた際の高さ(mm)を測定する。
[Overhang test]
Test conditions Test piece shape: 200 mm (length) x 200 mm (width) x 0.5 mm (plate thickness)
Wrinkle holding load: 450kN
Punch speed: 10 mm / min
Punch type: φ100mm
Test procedure For the overhang test, a bulge head punch having a diameter of 100 mm was used, a rust preventive oil as a lubricant was applied to a test piece having a plate thickness of 0.5 mm, a length of 200 mm, and a width of 200 mm, and a molding speed of 10 mm. / Min, overhang forming is performed at a wrinkle holding load of 450 kN, and the height (mm) when the test piece is cracked is measured.

[面分析]
・試験条件
加速電圧:20kV
測定領域:200×260μm
測定時間:200sec
・試験手順
各例の合金板における板厚断面方向(圧延方向に対して平行な方向)を樹脂埋めし、鏡面状態になるまで研磨する。X線分析装置SEM−EDX(JEOL JSM−5910L)(日本電子社製)、走査型電子顕微鏡(アメテック社製、商品名EDAX)を用い、合金板鏡面の200×260μmの領域にX線を照射し、AlとSiの濃度分析を行う。
[Analysis]
・ Test conditions Acceleration voltage: 20 kV
Measurement area: 200 × 260 μm
Measurement time: 200 sec
Test procedure Fill the resin in the plate thickness cross-section direction (direction parallel to the rolling direction) in the alloy plate of each example, and polish it until it becomes a mirror surface state. Using an X-ray analyzer SEM-EDX (JEOL JSM-5910L) (manufactured by JEOL Ltd.) and a scanning electron microscope (manufactured by Ametech Co., Ltd., trade name EDAX), X-rays are irradiated onto the 200 × 260 μm region of the mirror surface of the alloy plate. Then, concentration analysis of Al and Si is performed.

Figure 0006474582
Figure 0006474582

表4に示すとおり、表3に示す本発明所定のSi濃度比を満足して製造されたアルミニウム合金板では、本発明所定のSi濃度比を満足しない比較例10及び11と比較して成形性に優れる結果が得られた。
また、X線回折強度比について、(111)面強度I111、(200)面強度I200、(220)面強度I220、(311)面強度I311につき、I111がI311以下で且つI220以下であり、I220/I111とI311/I111が3.0以下、I200/I220が0.6〜2.0を満足すれば、実施例6〜8のように、比較例10及び11に対して更に優れた成形性が得られることも分かった。
As shown in Table 4, in the aluminum alloy plate manufactured satisfying the predetermined Si concentration ratio of the present invention shown in Table 3, the formability as compared with Comparative Examples 10 and 11 not satisfying the predetermined Si concentration ratio of the present invention. Excellent results were obtained.
In addition, regarding the X-ray diffraction intensity ratio, for (111) plane intensity I 111 , (200) plane intensity I 200 , (220) plane intensity I 220 , and (311) plane intensity I 311 , I 111 is I 311 or less and and the I 220 or less, I 220 / I 111 and I 311 / I 111 is 3.0 or less, I 200 / I 220 is to satisfy the 0.6 to 2.0, as in example 6-8, It was also found that better moldability was obtained for Comparative Examples 10 and 11.

本発明のアルミニウム合金板は、自動車構成部品のみならず、例えば産業機械や家電製品など、あらゆる機器の構成部品素材として広く利用可能であり、特に成形性が要求される用途へのAl−Si系合金板に適用するのに好適である。   The aluminum alloy plate of the present invention can be widely used as a component material of not only automobile components but also industrial equipment and household appliances, for example, Al-Si based for applications requiring formability. It is suitable for application to an alloy plate.

Claims (5)

板厚方向に変動するSi濃度分布を有するケイ素含有アルミニウム合金板であって、
Si濃度が最大となる板厚方向位置におけるSi濃度(Simax)と、板厚方向におけるSi濃度の平均値(Siaver)との比率Simax/Siaverが1.0〜1.3であり、
Cuを0〜0.2質量%、Siを6.5〜7.5質量%、Mgを0.2〜0.5質量%、Feを0〜0.8質量%、Mnを0〜0.6質量%の割合で含み、残部がAl及び不可避的不純物から成る、ことを特徴とするケイ素含有アルミニウム合金板。
A silicon-containing aluminum alloy plate having a Si concentration distribution that varies in the plate thickness direction,
And Si concentration (Si max) in the thickness direction position Si concentration is maximum, the ratio Si max / Si aver the average value of the Si concentration in the thickness direction and (Si aver) is located at 1.0 to 1.3 ,
Cu is 0 to 0.2 mass%, Si is 6.5 to 7.5 mass%, Mg is 0.2 to 0.5 mass%, Fe is 0 to 0.8 mass%, and Mn is 0 to 0.0 mass%. A silicon-containing aluminum alloy plate comprising 6% by mass, the balance being made of Al and inevitable impurities.
冷間圧延と焼鈍処理を施されており、
X線回折による(111)面強度I111、(200)面強度I200、(220)面強度I220、(311)面強度I311につき、
111がI311及びI220以下であり、
220/I111及びI311/I111が3.0以下、
200/I220が0.6〜2.0であることを特徴とする請求項1に記載のケイ素含有アルミニウム合金板。
Cold rolled and annealed,
For (111) plane intensity I 111 , (200) plane intensity I 200 , (220) plane intensity I 220 , and (311) plane intensity I 311 by X-ray diffraction,
I 111 is less than or equal to I 311 and I 220 ,
I 220 / I 111 and I 311 / I 111 are 3.0 or less,
The silicon-containing aluminum alloy sheet according to claim 1, I 200 / I 220 is characterized in that it is a 0.6 to 2.0.
請求項1又は2に記載のケイ素含有アルミニウム合金板を用いて成ることを特徴とする自動車用部品。   An automotive part comprising the silicon-containing aluminum alloy plate according to claim 1 or 2. 請求項1又は2に記載のケイ素含有アルミニウム合金板を製造するに当たり、
縦型双ロール式連続鋳造により板材を作製し、
次いで、この板材を圧下率50%以上で冷間圧延し、
しかる後、400〜500℃の範囲で焼鈍処理を行う、ことを特徴とするケイ素含有アルミニウム合金板の製造方法。
In producing the silicon-containing aluminum alloy sheet according to claim 1 or 2,
A plate material is produced by vertical twin roll continuous casting,
Next, this plate material is cold-rolled at a reduction rate of 50% or more,
Thereafter, an annealing treatment is performed in the range of 400 to 500 ° C., and the method for producing a silicon-containing aluminum alloy plate is characterized.
請求項1又は2に記載のケイ素含有アルミニウム合金板を製造するに当たり、
縦型双ロール式連続鋳造を行う際、ケイ素を含有するアルミニウム合金溶湯を、10m/min以上で回転する双ロールの間に液相線温度+5℃以上で注湯し、100℃/s以上の冷却速度で凝固させて、板厚2mm以上の板材を得る、ことを特徴とするケイ素含有アルミニウム合金板の製造方法。
In producing the silicon-containing aluminum alloy sheet according to claim 1 or 2,
When performing vertical twin-roll continuous casting, molten aluminum alloy containing silicon is poured at a liquidus temperature of + 5 ° C. or more between twin rolls rotating at 10 m / min or more, and 100 ° C./s or more. A method for producing a silicon-containing aluminum alloy plate, characterized by solidifying at a cooling rate to obtain a plate material having a plate thickness of 2 mm or more.
JP2014217433A 2014-10-24 2014-10-24 Aluminum alloy plate with excellent formability Active JP6474582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014217433A JP6474582B2 (en) 2014-10-24 2014-10-24 Aluminum alloy plate with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014217433A JP6474582B2 (en) 2014-10-24 2014-10-24 Aluminum alloy plate with excellent formability

Publications (2)

Publication Number Publication Date
JP2016084501A JP2016084501A (en) 2016-05-19
JP6474582B2 true JP6474582B2 (en) 2019-02-27

Family

ID=55973084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014217433A Active JP6474582B2 (en) 2014-10-24 2014-10-24 Aluminum alloy plate with excellent formability

Country Status (1)

Country Link
JP (1) JP6474582B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7378916B2 (en) * 2018-04-24 2023-11-14 日産自動車株式会社 Al-Si-Mg aluminum alloy plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108659A (en) * 1994-10-07 1996-04-30 Fuji Photo Film Co Ltd Production of lithographic printing substrate
FR2742165B1 (en) * 1995-12-12 1998-01-30 Pechiney Rhenalu PROCESS FOR PRODUCING HIGH STRENGTH AND FORMABILITY ALUMINUM ALLOY THIN STRIPS
JP4542017B2 (en) * 2005-10-11 2010-09-08 株式会社神戸製鋼所 Aluminum alloy plate ingot for cold rolling
JP2012052158A (en) * 2010-08-31 2012-03-15 Toyo Aluminium Kk Aluminum foil and container
JP2012050995A (en) * 2010-08-31 2012-03-15 Mitsubishi Alum Co Ltd Aluminum alloy brazing material sheet for fluxless brazing and fluxless brazing method for aluminum material
CN102234728A (en) * 2011-08-10 2011-11-09 云南铝业股份有限公司 Production method capable of improving grain size of AlSi7Mg

Also Published As

Publication number Publication date
JP2016084501A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP4998277B2 (en) Aluminum alloy casting material and manufacturing method thereof, aluminum alloy material and manufacturing method thereof
KR102498463B1 (en) Manufacturing method of 6XXX aluminum sheet
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP5671091B2 (en) Aluminum alloy plate excellent in surface quality after anodizing treatment and manufacturing method thereof
JP5699255B2 (en) Method for producing AlMgSi aluminum strip
US20030042290A1 (en) Method for producing AlMn strips or sheets
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP5945370B2 (en) Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
KR20160092028A (en) Aluminium fin alloy and method of making the same
EP2862952B1 (en) Aluminum alloy plate
JP6224549B2 (en) Aluminum alloy plate with excellent rust resistance
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2008025006A (en) Aluminum alloy sheet having excellent stress corrosion cracking resistance
JP5813358B2 (en) Highly formable Al-Mg-Si alloy plate and method for producing the same
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
JP6589443B2 (en) Al-Si-Mg-based aluminum alloy plate, method for producing the alloy plate, and automotive parts using the alloy plate
JP7414453B2 (en) Aluminum alloy material and its manufacturing method
JP6474582B2 (en) Aluminum alloy plate with excellent formability
JP4001059B2 (en) Method for producing aluminum alloy sheet with excellent bake resistance
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP6768568B2 (en) Aluminum alloy plate with excellent press formability, rigging mark property, and BH property
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190130

R150 Certificate of patent or registration of utility model

Ref document number: 6474582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533