JP6458883B2 - 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 - Google Patents
酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 Download PDFInfo
- Publication number
- JP6458883B2 JP6458883B2 JP2018001053A JP2018001053A JP6458883B2 JP 6458883 B2 JP6458883 B2 JP 6458883B2 JP 2018001053 A JP2018001053 A JP 2018001053A JP 2018001053 A JP2018001053 A JP 2018001053A JP 6458883 B2 JP6458883 B2 JP 6458883B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- sintered body
- crystal phase
- oxide sintered
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 255
- 238000000034 method Methods 0.000 title claims description 84
- 238000004519 manufacturing process Methods 0.000 title claims description 75
- 239000013078 crystal Substances 0.000 claims description 274
- 239000000843 powder Substances 0.000 claims description 200
- 239000011701 zinc Substances 0.000 claims description 152
- 229910052738 indium Inorganic materials 0.000 claims description 91
- 239000000203 mixture Substances 0.000 claims description 85
- 229910052721 tungsten Inorganic materials 0.000 claims description 83
- 229910052725 zinc Inorganic materials 0.000 claims description 83
- 238000004544 sputter deposition Methods 0.000 claims description 59
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 47
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 43
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 43
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 35
- 238000002441 X-ray diffraction Methods 0.000 claims description 33
- 239000002994 raw material Substances 0.000 claims description 33
- 238000005245 sintering Methods 0.000 claims description 33
- 239000012298 atmosphere Substances 0.000 claims description 32
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 30
- 239000010937 tungsten Substances 0.000 claims description 30
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 28
- 239000001301 oxygen Substances 0.000 claims description 28
- 229910003437 indium oxide Inorganic materials 0.000 claims description 19
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 19
- 238000000465 moulding Methods 0.000 claims description 8
- 239000010408 film Substances 0.000 description 247
- 238000010438 heat treatment Methods 0.000 description 57
- 230000005669 field effect Effects 0.000 description 42
- 230000015572 biosynthetic process Effects 0.000 description 41
- 239000000758 substrate Substances 0.000 description 41
- 230000001965 increasing effect Effects 0.000 description 37
- -1 indium tungstate compound Chemical class 0.000 description 29
- 238000005259 measurement Methods 0.000 description 29
- 238000005477 sputtering target Methods 0.000 description 25
- 238000002161 passivation Methods 0.000 description 23
- 239000007789 gas Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000011787 zinc oxide Substances 0.000 description 16
- 238000002156 mixing Methods 0.000 description 15
- 238000001354 calcination Methods 0.000 description 14
- 239000002184 metal Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 9
- 238000005211 surface analysis Methods 0.000 description 9
- 229910052984 zinc sulfide Inorganic materials 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 230000002950 deficient Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 238000005336 cracking Methods 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910001882 dioxygen Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 239000002159 nanocrystal Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000002003 electron diffraction Methods 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 150000002500 ions Chemical group 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Thin Film Transistor (AREA)
Description
本発明のさらに別の態様に係る半導体デバイスの製造方法は、酸化物半導体膜を含む半導体デバイスの製造方法であって、上記態様のスパッタターゲットを用意する工程と、スパッタターゲットを用いてスパッタ法により酸化物半導体膜を形成する工程とを含む。
まず、本発明の実施形態を列記して説明する。
[実施形態1:酸化物焼結体]
本実施形態の酸化物焼結体は、インジウム(In)、タングステン(W)および亜鉛(Zn)を含有する酸化物焼結体である。本実施形態の酸化物焼結体は、該酸化物焼結体の主成分であってビックスバイト型結晶相を含む第1結晶相と、第1結晶相よりも亜鉛の含有率が高い第2結晶相とを含み、第2結晶相を構成する粒子は、平均長軸径が3μm以上50μm以下であり、平均アスペクト比が4以上50以下である。第2結晶相は、酸化物焼結体の一部に含まれる。本実施形態の酸化物焼結体は、高い機械的強度を示すことができるとともに、高い熱伝導率を示すことができる。本実施形態の酸化物焼結体は、半導体デバイスの酸化物半導体膜(たとえばチャネル層として機能する酸化物半導体膜)を形成するためのスパッタターゲットとして好適に用いることができ、本実施形態の酸化物焼結体によれば、電界効果移動度および信頼性の高い半導体デバイスを得ることが可能である。
第1結晶相は、酸化物焼結体の主成分であり、少なくともビックスバイト型結晶相を含む、後述するインジウム高含有型結晶相である。本明細書において「ビックスバイト型結晶相」とは、ビックスバイト結晶相、ならびにビックスバイト結晶相の少なくとも一部にIn以外の金属元素の少なくとも1つが含まれる相であって、ビックスバイト結晶相と同じ結晶構造を有するものの総称をいう。ビックスバイト結晶相は、インジウム酸化物(In2O3)の結晶相の1つであり、JCPDSカードの6−0416に規定される結晶構造をいい、希土類酸化物C型相(またはC−希土構造相)とも呼ぶ。
本実施形態の酸化物焼結体は、第1結晶相よりもZn含有率(In、WおよびZnの合計に対するZnの含有率(原子%))が高い第2結晶相をさらに含む。第2結晶相は、酸化物焼結体の一部に含まれる相である。第2結晶相は、好ましくはZn含有率が50原子%以上である。機械的強度が高く、かつ高い熱伝導率を示す酸化物焼結体を実現する観点から、第2結晶相のZn含有率は、より好ましくは60原子%以上であり、さらに好ましくは70原子%以上である。第2結晶相のZn含有率は、100原子%であってもよい。
本実施形態の酸化物焼結体は、X線回折における2θの34.74degより大きく34.97degより小さい位置に第1回折ピークを有するとともに、2θの31.77degより大きく32.00degより小さい位置に第2回折ピークを有し、第1回折ピークのピーク強度Iaと第2回折ピークのピーク強度Ibとの比Ia/Ibが0.05以上3以下であることが好ましい。Ia/Ibがこの範囲であることは、比較的低い焼結温度でも高い見かけ密度が高く、かつ高い熱伝導率を示す酸化物焼結体を実現するうえで有利であり、また、酸化物焼結体を用いて形成される酸化物半導体膜をチャネル層として含む半導体デバイスの電界効果移動度および信頼性を高めるうえでも有利である。第1回折ピークと第2回折ピークは同じ結晶相から得られる場合もありえる。第1回折ピークと第2回折ピークが同じ結晶相から得られていない場合、第2回折ピークを有する結晶相は、In2O3(ZnO)5である可能性があるが、現在のところ定かではない。
(X線回折の測定条件)
θ−2θ法、
X線源:Cu Kα線、
X線管球電圧:45kV、
X線管球電流:40mA、
ステップ幅:0.03deg、
ステップ時間:1秒/ステップ、
測定範囲2θ:10deg〜90deg。
Ia=Ia’−Iave
より求める。同様に、第2回折ピークのピーク強度Ibを、下記式:
Ib=Ib’−Iave
より求める。本計算はX線回折におけるバックグラウンドを除去することを目的としている。
本実施形態の酸化物焼結体は、見かけ密度が6.4g/cm3より大きく7.5g/cm3以下であることが好ましい。また本実施形態の酸化物焼結体は、その理論密度に対する見かけ密度の比である相対密度(相対密度/理論密度)が94%以上であることが好ましい。本実施形態の酸化物焼結体の理論密度は、そのIn含有率、W含有率およびZn含有率に依存し、計算上、6.8g/cm3〜7.5g/cm3の範囲の値を採り得る。
本実施形態の酸化物焼結体は、スパッタターゲットとして好適に用いることができる。スパッタターゲットとは、スパッタ法の原料となるものである。スパッタ法とは、成膜室内にスパッタターゲットと基板とを対向させて配置し、スパッタターゲットに電圧を印加して、希ガスイオンでターゲットの表面をスパッタリングすることにより、ターゲットからターゲットを構成する原子を放出させて基板上に堆積させることによりターゲットを構成する原子で構成される膜を形成する方法をいう。
本実施形態に係る酸化物焼結体の製造方法の1つは、実施形態1に係る酸化物焼結体の製造方法であって、亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を調製する工程と、1次混合物を熱処理することにより仮焼粉末を形成する工程と、仮焼粉末を含む原料粉末の2次混合物を調製する工程と、2次混合物を成形することにより成形体を形成する工程と、成形体を焼結することにより酸化物焼結体を形成する工程とを含む。仮焼粉末を形成する工程は、酸素含有雰囲気下、550℃以上1200℃未満の温度で1次混合物を熱処理することにより、仮焼粉末としてZnとWとを含む複酸化物の粉末を形成することを含む。
酸化物焼結体の原料粉末として、インジウム酸化物粉末(たとえばIn2O3粉末)、タングステン酸化物粉末(たとえばWO3粉末、WO2.72粉末、WO2粉末)、亜鉛酸化物粉末(たとえばZnO粉末)等、酸化物焼結体を構成する金属元素の酸化物粉末を準備する。タングステン酸化物粉末としてはWO3粉末だけでなく、WO2.72粉末、WO2粉末のようなWO3粉末に比べて酸素が欠損した化学組成を有する粉末を原料として用いることが、半導体デバイスの電界効果移動度および信頼性を高める観点から好ましい。かかる観点から、WO2.72粉末およびWO2粉末の少なくとも1つをタングステン酸化物粉末の少なくとも一部として用いることがより好ましい。原料粉末の純度は、酸化物焼結体への意図しない金属元素およびSiの混入を防止し、安定した物性を得る観点から、99.9質量%以上の高純度であることが好ましい。
(2−1)亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を調製する工程
上記原料粉末の内、亜鉛酸化物粉末とタングステン酸化物粉末とを混合(または粉砕混合)する。このとき、酸化物焼結体の結晶相としてZnWO4型結晶相を得たい場合は、タングステン酸化物粉末と亜鉛酸化物粉末とをモル比で1:1の割合で、Zn2W3O8型結晶相を得たい場合は、タングステン酸化物粉末と亜鉛酸化物粉末とをモル比で3:2の割合で混合する。上述のように、酸化物焼結体の見かけ密度および機械的強度をより効果的に高める観点、ならびに半導体デバイスの電界効果移動度および信頼性を高める観点からは、酸化物焼結体は、ZnWO4型相を含むことが好ましい。タングステン酸化物粉末と亜鉛酸化物粉末とを混合する方法に特に制限はなく、乾式および湿式のいずれの方式であってもよく、具体的には、ボールミル、遊星ボールミル、ビーズミル等を用いて粉砕混合される。このようにして、原料粉末の1次混合物が得られる。湿式の粉砕混合方式を用いて得られた混合物の乾燥には、自然乾燥やスプレードライヤのような乾燥方法を用いることができる。
上記原料粉末の内、インジウム酸化物粉末とタングステン酸化物粉末とを混合(または粉砕混合)する。このとき、酸化物焼結体の結晶相としてIn6WO12型結晶相を得たい場合は、タングステン酸化物粉末とインジウム酸化物粉末とをモル比で1:3の割合で混合する。タングステン酸化物粉末とインジウム酸化物粉末とを混合する方法に特に制限はなく、乾式および湿式のいずれの方式であってもよく、具体的には、ボールミル、遊星ボールミル、ビーズミル等を用いて粉砕混合される。このようにして、原料粉末の1次混合物が得られる。湿式の粉砕混合方式を用いて得られた混合物の乾燥には、自然乾燥やスプレードライヤのような乾燥方法を用いることができる。
(3−1)タングステン酸亜鉛酸化物の仮焼粉末を形成する工程
得られた1次混合物を熱処理(仮焼)して、仮焼粉末(ZnとWとを含む複酸化物粉末)を形成する。1次混合物の仮焼温度は、仮焼物の粒径が大きくなりすぎて焼結体の見かけ密度が低下することがないように1200℃未満であることが好ましく、仮焼生成物としてZnとWとを含む複酸化物粉末を得るために、また、ZnWO4型結晶相を得るためには550℃以上であることが好ましい。より好ましくは550℃以上1000℃未満であり、さらに好ましくは550℃以上900℃以下である。仮焼温度は結晶相が形成される温度である限り、仮焼粉の粒径をなるべく小さくできる点から低い方が好ましい。このようにして、ZnWO4型結晶相を含む仮焼粉末を得ることができる。仮焼雰囲気は、酸素を含む雰囲気であればよいが、大気圧もしくは大気よりも圧力の高い空気雰囲気、または大気圧もしくは大気よりも圧力の高い酸素を25体積%以上含む酸素−窒素混合雰囲気が好ましい。生産性が高いことから、大気圧またはその近傍下での空気雰囲気がより好ましい。
得られた1次混合物を熱処理(仮焼)して、仮焼粉末(InとWとを含む複酸化物粉末)を形成する。1次混合物の仮焼温度は、仮焼物の粒径が大きくなりすぎて焼結体の見かけ密度または機械的強度が低下することがないように1400℃未満であることが好ましく、仮焼生成物としてInとWとを含む複酸化物粉末を得るために、また、In6WO12型結晶相を得るためには700℃以上であることが好ましい。より好ましくは800℃以上1300℃未満である。仮焼温度は結晶相が形成される温度である限り、仮焼粉の粒径をなるべく小さくできる点から低い方が好ましい。このようにして、In6WO12型結晶相を含む仮焼粉末を得ることができる。仮焼雰囲気は、酸素を含む雰囲気であればよいが、大気圧もしくは大気よりも圧力の高い空気雰囲気、または大気圧もしくは大気よりも圧力の高い酸素を25体積%以上含む酸素−窒素混合雰囲気が好ましい。生産性が高いことから、大気圧またはその近傍下での空気雰囲気がより好ましい。
次に、得られた仮焼粉末と、上記原料粉末の内の残りの粉末〔インジウム酸化物粉末(たとえばIn2O3粉末)または亜鉛酸化物粉末(例えばZnO粉末)〕とを、1次混合物の調製と同様にして、混合(または粉砕混合)する。このようにして、原料粉末の2次混合物が得られる。タングステン酸化物は、上記仮焼工程により複酸化物として存在していることが好ましい。
次に、得られた2次混合物を成形する。2次混合物を成形する方法に特に制限はないが、酸化物焼結体の見かけ密度を高くする点から、一軸プレス法、CIP(冷間静水圧処理)法、キャスティング法等が好ましい。
次に、得られた成形体を焼結して、酸化物焼結体を形成する。この際、生産性の面からホットプレス焼結法は用いないことが好ましい。成形体の焼結温度に特に制限はないが、形成される酸化物焼結体の見かけ密度を6.4g/cm3より大きくするとともに機械的強度を高くするために、900℃以上で、1200℃より低いことが好ましい。焼結雰囲気にも特に制限はないが、酸化物焼結体の構成結晶の粒径が大きくなることを防いでクラックの発生を防止する観点から、大気圧またはその近傍下での空気雰囲気が好ましい。
本実施形態に係るスパッタターゲットは、実施形態1の酸化物焼結体を含む。したがって、本実施形態に係るスパッタターゲットは、電界効果移動度が高く、信頼性も高い半導体デバイスの酸化物半導体膜をスパッタ法で形成するために好適に用いることができる。
図1を参照して、本実施形態に係る半導体デバイス10は、実施形態1の酸化物焼結体を用いて形成される、または実施形態3のスパッタターゲット用いてスパッタ法により形成した酸化物半導体膜14を含む。かかる酸化物半導体膜14を含むため、本実施形態に係る半導体デバイスは、電界効果移動度が高く、信頼性も高いという特性を有することができる。
測定方法:In−plane法(スリットコリメーション法)、
X線発生部:対陰極Cu、出力50kV 300mA、
検出部:シンチレーションカウンタ、
入射部:スリットコリメーション、
ソーラースリット:入射側 縦発散角0.48°
受光側 縦発散角0.41°、
スリット:入射側 S1=1mm*10mm
受光側 S2=0.2mm*10mm、
走査条件:走査軸 2θχ/φ、
走査モード:ステップ測定、走査範囲 10〜80°、ステップ幅0.1°、
ステップ時間 8sec.。
測定方法:極微電子線回折法、
加速電圧:200kV、
ビーム径:測定対象である酸化物半導体膜の膜厚と同じか、または同等。
図4(A)を参照して、基板11上にゲート電極12を形成する。基板11は、特に制限されないが、透明性、価格安定性、および表面平滑性を高くする観点から、石英ガラス基板、無アルカリガラス基板、アルカリガラス基板等であることが好ましい。ゲート電極12は、特に制限されないが、耐酸化性が高くかつ電気抵抗が低い点から、Mo電極、Ti電極、W電極、Al電極、Cu電極等であることが好ましい。ゲート電極12の形成方法は、特に制限されないが、基板11の主面上に大面積で均一に形成できる点から、真空蒸着法、スパッタ法等であることが好ましい。図4(A)に示されるように、基板11の表面上に部分的にゲート電極12を形成する場合には、フォトレジストを使ったエッチング法を用いることができる。
図4(B)を参照して、ゲート電極12および基板11上に絶縁層としてゲート絶縁膜13を形成する。ゲート絶縁膜13の形成方法は、特に制限はないが、大面積で均一に形成できる点および絶縁性を確保する点から、プラズマCVD(化学気相堆積)法等であることが好ましい。
図4(C)を参照して、ゲート絶縁膜13上にチャネル層として酸化物半導体膜14を形成する。上述のように、酸化物半導体膜14は、スパッタ法により成膜する工程を含んで形成されることが好ましく、たとえばスパッタ法による成膜後に加熱処理するか、またはスパッタ法により成膜を行いながら加熱処理することによって形成されることが好ましい。スパッタ法の原料ターゲット(スパッタターゲット)としては、上記実施形態1の酸化物焼結体を用いる。
図4(D)を参照して、酸化物半導体膜14上にソース電極15およびドレイン電極16を互いに接触しないように形成する。ソース電極15およびドレイン電極16は、特に制限はないが、耐酸化性が高く、電気抵抗が低く、かつ酸化物半導体膜14との接触電気抵抗が低いことから、Mo電極、Ti電極、W電極、Al電極、Cu電極等であることが好ましい。ソース電極15およびドレイン電極16を形成する方法は、特に制限はないが、酸化物半導体膜14が形成された基板11の主面上に大面積で均一に形成できる点から、真空蒸着法、スパッタリング法等であることが好ましい。ソース電極15およびドレイン電極16を互いに接触しないように形成する方法は、特に制限はないが、大面積で均一なソース電極15とドレイン電極16のパターンを形成できる点から、フォトレジストを使ったエッチング法による形成であることが好ましい。
最後に、通常は、加熱処理を施す。加熱処理は基板を加熱することによって実施できる。基板温度は、好ましくは100℃以上250℃以下である。加熱処理の雰囲気は、大気中、窒素ガス中、窒素ガス−酸素ガス中、Arガス中、Ar−酸素ガス中、水蒸気含有大気中、水蒸気含有窒素中など、各種雰囲気であってよい。好ましくは、窒素、Arガス中などの不活性雰囲気である。雰囲気圧力は、大気圧のほか、減圧条件下(たとえば0.1Pa未満)、加圧条件下(たとえば0.1Pa〜9MPa)であることができるが、好ましくは大気圧である。加熱処理の時間は、たとえば3分〜2時間程度であることができ、好ましくは10分〜90分程度である。
<実施例1〜実施例20>
(1)酸化物焼結体の作製
(1−1)粉末原料の準備
表1に示す組成とメジアン粒径d50(表1において「W粒径」と表記した。)を有し、純度が99.99質量%のタングステン酸化物粉末(表1において「W」と表記した。)と、メジアン粒径d50が1.0μmで純度が99.99質量%のZnO粉末(表1において「Z」と表記した。)と、メジアン粒径d50が1.0μmで純度が99.99質量%のIn2O3粉末(表1において「I」と表記した。)と、を準備した。
まず、ボールミルに、準備した原料粉末の内、タングステン酸化物粉末とZnO粉末、またはタングステン酸化物粉末とインジウム酸化物粉末とを入れて、18時間粉砕混合することにより原料粉末の1次混合物を調製した。タングステン酸化物粉末とZnO粉末とのモル混合比率は、およそタングステン酸化物粉末:ZnO粉末=1:1とした。タングステン酸化物粉末とインジウム酸化物粉末とのモル混合比率は、およそタングステン酸化物粉末:In2O3粉末=1:3とした。粉砕混合の際、分散媒としてエタノールを用いた。得られた原料粉末の1次混合物は大気中で乾燥させた。
次に、得られた原料粉末の1次混合物をアルミナ製坩堝に入れて、空気雰囲気中、表1に示す仮焼温度で8時間仮焼し、ZnWO4型結晶相で構成された仮焼粉末またはIn6WO12型結晶相で構成された仮焼粉末を得た。表1に、得られた仮焼粉末を構成する結晶相の組成(種類)を示す。
次に、得られた仮焼粉末を、準備した残りの原料粉末であるIn2O3粉末またはZnO粉末とともにポットへ投入し、さらに粉砕混合ボールミルに入れて12時間粉砕混合することにより原料粉末の2次混合物を調製した。これらの粉末の混合比は、混合物中のW、ZnおよびInのモル比が表1に示されるとおりとなるようにした。粉砕混合の際、分散媒としてエタノールを用いた。得られた混合粉末はスプレードライで乾燥させた。
次に、得られた2次混合物をプレスにより成形し、さらにCIPにより室温(5℃〜30℃)の静水中、190MPaの圧力で加圧成形して、直径100mmで厚み約9mmの円板状の成形体を得た。
次に、得られた成形体を大気圧下、空気雰囲気中にて表1に示す焼結温度で8時間焼結して、タングステンおよび亜鉛が固溶したビックスバイト型結晶相(In2O3型相)を含む第1結晶相を含有する酸化物焼結体を得た。タングステンおよび亜鉛が固溶しているとの判断は、X線回折の測定において、ピーク位置が、JCPDSカードの6−0416に規定されるピーク位置からずれていることの確認に基づいている。
〔A〕X線回折の測定
酸化物焼結体の一部からサンプルを採取して、粉末X線回折法による結晶解析を行い、ビックスバイト型結晶相と、2θの34.74degより大きく34.97degより小さい位置に現れる第1回折ピーク、および2θの31.77degより大きく32.00degより小さい位置に現れる第2回折ピークの存在の有無を確認した。X線回折の測定条件は以下のとおりとした。
θ−2θ法、
X線源:Cu Kα線、
X線管球電圧:45kV、
X線管球電流:40mA、
ステップ幅:0.03deg、
ステップ時間:1秒/ステップ、
測定範囲2θ:10deg〜90deg。
酸化物焼結体の一部からサンプルを採取し、該サンプルの表面を研磨して平滑にした。次いで、SEM−EDX(エネルギー分散型ケイ光X線分析計を付帯する走査型二次電子顕微鏡)を用いて、サンプルの当該表面をSEM(走査型二次電子顕微鏡)で観察し、各結晶粒子の金属元素の組成比をEDX(エネルギー分散型ケイ光X線分析計)で分析した。そして、それらの結晶粒子の金属元素の組成比の傾向に基づいて、結晶粒子のグループ分けを行った。具体的には、Zn含有率〔In、WおよびZnの合計に対するZnの含有率(原子%)〕が後述するグループBよりも高い結晶粒子のグループAと、Zn含有率が非常に低いかまたはZnを含有せず、かつ、グループAに比べてIn含有率(In、WおよびZnの合計に対するInの含有率(原子%))が高い結晶粒子のグループB(インジウム高含有型結晶相)とに分けた。グループBの結晶粒が第1結晶相であると判断した。
上述の〔B〕第1結晶相が主成分であることの確認およびインジウム高含有型結晶相占有率の測定において、グループAに分けられた結晶相を第2結晶相と判断した。またこの表面分析でのSEM観察において500倍の反射電子像を測定し、第1結晶相に分類されるグループBに比して濃いグレーに観察される第2結晶相を構成する結晶粒子について、上述の方法にしたがって平均長軸径および平均アスペクト比を測定した。結果を表2に示す。
上述の〔A〕X線回折の測定において、併せて、タングステン酸亜鉛化合物結晶相、タングステン酸インジウム化合物結晶相、六方晶ウルツ型結晶相およびIn2O3(ZnO)5の存在の有無を確認した。いずれの実施例・比較例においても、タングステン酸インジウム化合物結晶相の存在は認められなかった。
Z:六方晶ウルツ型結晶相(第2結晶相)、
ZW:タングステン酸亜鉛化合物結晶相(第2結晶相)、
IZ:In2O3(ZnO)5(第2結晶相)。
得られた酸化物焼結体中のIn、ZnおよびWの含有量は、ICP質量分析法により測定した。これらの含有量に基づいて、酸化物焼結体のW含有率(原子%)、Zn含有率(原子%)、およびZn/W比(原子数比)をそれぞれ求めた。結果を表2に示す。
得られた酸化物焼結体の見かけ密度はアルキメデス法により求めた。
JIS R 1606:1995により規定される方法にしたがって、引張試験を行った。試験は室温(25℃)にて行った。表2に、比較例1の引張強度を1とした場合の各実施例および比較例の引張強度比を示す。
JIS R 1611:2010に規定される方法にしたがって、熱拡散率、比熱容量および熱伝導率を測定した。表2に、比較例1の熱伝導率を1とした場合の各実施例および比較例の熱伝導率比を示す。
原料粉末であるタングステン酸化物粉末、ZnO粉末およびIn2O3粉末の混合比が表1に示されるとおりとなるようにしたこと、ならびに、仮焼粉末を形成することなく、これらの原料粉末を一度に混合し表1に示される温度で焼結したこと以外は実施例と同じ方法で酸化物焼結体を作製し、物性評価を行った。比較例の酸化物焼結体はいずれも第1結晶相を有していたが、第2結晶相を構成する粒子は、平均長軸径が3μm以上50μm以下であったが、平均アスペクト比が4以上50以下の粒子ではなかった。比較例2の酸化物焼結体については、第2結晶相がインジウム高含有型結晶相に分散しておらず、お互いに接触した形であり、第2結晶相の粒子形状を特定することができなかったため、平均長軸径および平均アスペクト比を測定することはできなかった。いずれの比較例においても、見かけ密度を高めるためには焼結温度は、実施例に比較して高くする必要があった。焼結温度を1160℃としたこと以外は比較例1、比較例2と同様にして酸化物焼結体を作製したところ、これらの酸化物焼結体の見かけ密度はいずれも6.3g/cm3であった。
得られた酸化物焼結体を、直径3インチ(76.2mm)×厚さ6mmに加工した後、銅のバッキングプレートにインジウム金属を用いて貼り付けた。
(2−1)スパッタリング電力の最大限界値(割れ電力)の計測
作製したスパッタターゲットをスパッタリング装置(図示せず)の成膜室内に設置した。スパッタターゲットは、銅のバッキングプレートを介して水冷されている。成膜室内を6×10-5Pa程度の真空度として、ターゲットを次のようにしてスパッタリングした。
次の手順で図3に示される半導体デバイス30と類似の構成を有するTFTを作製した。図4(A)を参照して、まず、基板11として50mm×50mm×厚み0.6mmの合成石英ガラス基板を準備し、その基板11上にスパッタリング法によりゲート電極12として厚み100nmのMo電極を形成した。次いで、図4(A)に示されるように、フォトレジストを使ったエッチングによりゲート電極12を所定の形状とした。
作製したTFTが備える酸化物半導体膜14の結晶性を上述の測定方法および定義に従って評価した。表3における「結晶性」の欄には、ナノ結晶である場合には「ナノ結晶」と、アモルファスである場合には「アモルファス」と記載している。また、酸化物半導体膜14中のIn、WおよびZnの含有量を、RBS(ラザフォード後方散乱分析)により測定した。これらの含有量に基づいて酸化物半導体膜14のW含有率(原子%)、Zn含有率(原子%)、およびZn/W比(原子数比)をそれぞれ求めた。結果を表3に示す。
半導体デバイス10であるTFTの特性を次のようにして評価した。まず、ゲート電極12、ソース電極15およびドレイン電極16に測定針を接触させた。ソース電極15とドレイン電極16との間に0.2Vのソース−ドレイン間電圧Vdsを印加し、ソース電極15とゲート電極12との間に印加するソース−ゲート間電圧Vgsを−10Vから15Vに変化させて、そのときのソース−ドレイン間電流Idsを測定した。そして、ソース−ゲート間電圧Vgsとソース−ドレイン間電流Idsの平方根〔(Ids)1/2〕との関係をグラフ化した(以下、このグラフを「Vgs−(Ids)1/2曲線」ともいう。)。Vgs−(Ids)1/2曲線に接線を引き、その接線の傾きが最大となる点を接点とする接線がx軸(Vgs)と交わる点(x切片)を閾値電圧Vthとした。閾値電圧Vthは、大気圧窒素雰囲気中250℃10分間の加熱処理を実施した後(Vth(250℃))と、大気圧窒素雰囲気中350℃10分間の加熱処理を実施した後(Vth(350℃))のTFTについて測定した。Vthは、0V以上であることが望ましいとされており、さらにはTFTを表示装置に用いる場合、a−Siとの駆動電圧の同一性から1.0Vにより近い方が望ましいとされている。
gm=dIds/dVgs 〔a〕
に従って、ソース−ドレイン間電流Idsをソース−ゲート間電圧Vgsについて微分することによりgmを導出した。そしてVgs=10.0Vにおけるgmの値を用いて、下記式〔b〕:
μfe=gm・CL/(CW・Ci・Vds) 〔b〕に基づいて、電界効果移動度μfeを算出した。上記式〔b〕におけるチャネル長さCLは30μmであり、チャネル幅CWは40μmである。また、ゲート絶縁膜13のキャパシタンスCiは3.4×10-8F/cm2とし、ソース−ドレイン間電圧Vdsは0.5Vとした。
11 基板
12 ゲート電極
13 ゲート絶縁膜
14 酸化物半導体膜
14c チャネル部
14d ドレイン電極形成用部
14s ソース電極形成用部
15 ソース電極
16 ドレイン電極
17 エッチストッパ層
17a コンタクトホール
18 パシベーション膜
Claims (11)
- インジウム、タングステンおよび亜鉛を含有する酸化物焼結体であって、
前記酸化物焼結体の主成分であり、ビックスバイト型結晶相を含む第1結晶相と、
前記第1結晶相よりも亜鉛の含有率が高い第2結晶相と、
を含み、
前記第2結晶相を構成する粒子は、平均長軸径が3μm以上50μm以下であり、平均アスペクト比が4以上50以下であり、
前記酸化物焼結体の見かけ密度が6.4g/cm3より大きく7.5g/cm3以下であり、
前記酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率が6原子%以上50原子%未満であり、
前記酸化物焼結体中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が0.5原子%より大きく5.0原子%以下であり、
前記酸化物焼結体中のタングステンに対する亜鉛の原子比が3.8以上100未満である、酸化物焼結体。 - X線回折における2θの34.74degより大きく34.97degより小さい位置に第1回折ピークを有するとともに、2θの31.77degより大きく32.00degより小さい位置に第2回折ピークを有し、
前記第1回折ピークのピーク強度Iaと前記第2回折ピークのピーク強度Ibとの比Ia/Ibが0.05以上3以下である、請求項1に記載の酸化物焼結体。 - 請求項1または請求項2に記載の酸化物焼結体を含む、スパッタターゲット。
- 酸化物半導体膜を含む半導体デバイスの製造方法であって、
請求項3に記載のスパッタターゲットを用意する工程と、
前記スパッタターゲットを用いてスパッタ法により前記酸化物半導体膜を形成する工程と、
を含み、
前記酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が0.5原子%より大きく5.0原子%以下であり、
前記酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対する亜鉛の含有率が3原子%以上50原子%未満であり、
前記酸化物半導体膜中のタングステンに対する亜鉛の原子比が3.0より大きく100より小さい、半導体デバイスの製造方法。 - 前記酸化物半導体膜は、ナノ結晶酸化物およびアモルファス酸化物の少なくともいずれか1つで構成される、請求項4に記載の半導体デバイスの製造方法。
- 請求項1または請求項2に記載の酸化物焼結体の製造方法であって、
インジウム酸化物粉末とタングステン酸化物粉末との1次混合物を調製する工程と、
前記1次混合物を熱処理することにより仮焼粉末を形成する工程と、
前記仮焼粉末を含む原料粉末の2次混合物を調製する工程と、
前記2次混合物を成形することにより成形体を形成する工程と、
前記成形体を焼結することにより酸化物焼結体を形成する工程と、
を含み、
前記仮焼粉末を形成する工程は、酸素含有雰囲気下、700℃以上1400℃未満の温度で前記1次混合物を熱処理することにより、前記仮焼粉末としてインジウムとタングステンとを含む複酸化物の粉末を形成することを含む、酸化物焼結体の製造方法。 - 前記複酸化物がIn6WO12型結晶相を含む、請求項6に記載の酸化物焼結体の製造方法。
- 請求項1または請求項2に記載の酸化物焼結体の製造方法であって、
亜鉛酸化物粉末とタングステン酸化物粉末との1次混合物を調製する工程と、
前記1次混合物を熱処理することにより仮焼粉末を形成する工程と、
前記仮焼粉末を含む原料粉末の2次混合物を調製する工程と、
前記2次混合物を成形することにより成形体を形成する工程と、
前記成形体を焼結することにより酸化物焼結体を形成する工程と、
を含み、
前記仮焼粉末を形成する工程は、酸素含有雰囲気下、550℃以上1200℃未満の温度で前記1次混合物を熱処理することにより、前記仮焼粉末として亜鉛とタングステンとを含む複酸化物の粉末を形成することを含む、酸化物焼結体の製造方法。 - 前記複酸化物がZnWO4型結晶相を含む、請求項8に記載の酸化物焼結体の製造方法。
- 前記タングステン酸化物粉末は、WO3結晶相、WO2結晶相、およびWO2.72結晶相からなる群より選ばれる少なくとも1種の結晶相を含む、請求項6から請求項9のいずれか1項に記載の酸化物焼結体の製造方法。
- 前記タングステン酸化物粉末は、メジアン粒径d50が0.1μm以上4μm以下である、請求項6から請求項10のいずれか1項に記載の酸化物焼結体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018001053A JP6458883B2 (ja) | 2018-01-09 | 2018-01-09 | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018001053A JP6458883B2 (ja) | 2018-01-09 | 2018-01-09 | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015182931A Division JP6308191B2 (ja) | 2015-09-16 | 2015-09-16 | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018087132A JP2018087132A (ja) | 2018-06-07 |
JP6458883B2 true JP6458883B2 (ja) | 2019-01-30 |
Family
ID=62493349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018001053A Active JP6458883B2 (ja) | 2018-01-09 | 2018-01-09 | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6458883B2 (ja) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4826066B2 (ja) * | 2004-04-27 | 2011-11-30 | 住友金属鉱山株式会社 | 非晶質の透明導電性薄膜およびその製造方法、並びに、該非晶質の透明導電性薄膜を得るためのスパッタリングターゲットおよびその製造方法 |
JP2006160535A (ja) * | 2004-12-02 | 2006-06-22 | Sumitomo Metal Mining Co Ltd | 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜 |
JP2006193363A (ja) * | 2005-01-12 | 2006-07-27 | Sumitomo Metal Mining Co Ltd | 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜 |
JP6137111B2 (ja) * | 2013-10-23 | 2017-05-31 | 住友電気工業株式会社 | 酸化物焼結体および半導体デバイスの製造方法 |
-
2018
- 2018-01-09 JP JP2018001053A patent/JP6458883B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018087132A (ja) | 2018-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6493502B2 (ja) | 酸化物焼結体の製造方法 | |
JP6308191B2 (ja) | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 | |
WO2018150621A1 (ja) | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 | |
WO2018211977A1 (ja) | 酸化物焼結体およびその製造方法、スパッタターゲット、酸化物半導体膜、ならびに半導体デバイスの製造方法 | |
JP6350466B2 (ja) | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 | |
WO2018150622A1 (ja) | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 | |
JP6458883B2 (ja) | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 | |
JP6493601B2 (ja) | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 | |
WO2018083837A1 (ja) | 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6458883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |