[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6456088B2 - Radiator and refrigeration cycle device - Google Patents

Radiator and refrigeration cycle device Download PDF

Info

Publication number
JP6456088B2
JP6456088B2 JP2014198882A JP2014198882A JP6456088B2 JP 6456088 B2 JP6456088 B2 JP 6456088B2 JP 2014198882 A JP2014198882 A JP 2014198882A JP 2014198882 A JP2014198882 A JP 2014198882A JP 6456088 B2 JP6456088 B2 JP 6456088B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
refrigerant
outlet
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014198882A
Other languages
Japanese (ja)
Other versions
JP2016070566A (en
Inventor
猛志 竹田
猛志 竹田
村上 健一
健一 村上
仁宣 佐藤
仁宣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2014198882A priority Critical patent/JP6456088B2/en
Priority to EP15186759.5A priority patent/EP3002537B1/en
Publication of JP2016070566A publication Critical patent/JP2016070566A/en
Application granted granted Critical
Publication of JP6456088B2 publication Critical patent/JP6456088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、超臨界圧力に昇圧された冷媒を放熱させて冷却する放熱器、及び、放熱器を備える冷凍サイクル装置に関する。   The present invention relates to a radiator that radiates and cools a refrigerant that has been boosted to a supercritical pressure, and a refrigeration cycle apparatus that includes the radiator.

一般に、冷媒にCO(二酸化炭素)を用いて、この冷媒を超臨界圧力に昇圧する圧縮機と、この圧縮機から吐出された冷媒を放熱させて冷却する放熱器とを備える冷凍サイクル装置が知られている(例えば、特許文献1参照)。この種の冷凍サイクル装置では、放熱器として、所定の間隔で配置される複数のフィンプレートと、フィンプレートに挿通され、内部を冷媒が流れる複数の伝熱管とを備えたフィンアンドチューブ式の熱交換器が用いられ、熱交換の高効率化を図っている。また、従来、フィンアンドチューブ式の熱交換器では、並列に形成された複数の冷媒流路を備え、冷房(暖房)能力の向上を図ったものが知られている(例えば、特許文献2参照)。 In general, a refrigeration cycle apparatus including a compressor that uses CO 2 (carbon dioxide) as a refrigerant and boosts the refrigerant to a supercritical pressure, and a radiator that radiates and cools the refrigerant discharged from the compressor. It is known (see, for example, Patent Document 1). In this type of refrigeration cycle apparatus, a fin-and-tube type heat provided with a plurality of fin plates arranged at predetermined intervals as a radiator and a plurality of heat transfer tubes that are inserted through the fin plates and through which refrigerant flows. An exchanger is used to increase the efficiency of heat exchange. Conventionally, fin-and-tube heat exchangers are known that include a plurality of refrigerant flow paths formed in parallel to improve cooling (heating) capability (see, for example, Patent Document 2). ).

特開2007−232365号公報JP 2007-232365 A 特開平07−208822号公報JP 07-208822 A

ところで、冷媒が超臨界圧力まで昇圧される構成では、この冷媒は放熱器で冷却されても凝縮することはなく、顕熱変化がなされるガス冷媒として放熱器を流通する。冷凍サイクルの成績係数(COP)を向上させるためには、放熱器の各冷媒流路における冷媒出口温度がより低いことが望ましい。   By the way, in the configuration in which the pressure of the refrigerant is increased to the supercritical pressure, the refrigerant does not condense even when cooled by the radiator, and flows through the radiator as a gas refrigerant that undergoes a sensible heat change. In order to improve the coefficient of performance (COP) of the refrigeration cycle, it is desirable that the refrigerant outlet temperature in each refrigerant flow path of the radiator is lower.

しかし、従来の構成では、一の冷媒流路の出口伝熱管と自己または他の冷媒流路の入口伝熱管とが隣り合って配置されるため、入口伝熱管を流れる高温の冷媒によって、冷媒出口温度が上昇するおそれがあった。   However, in the conventional configuration, the outlet heat transfer tube of one refrigerant flow path and the inlet heat transfer pipe of itself or another refrigerant flow path are arranged adjacent to each other, so that the refrigerant outlet is heated by the high-temperature refrigerant flowing through the inlet heat transfer pipe. There was a risk of temperature rise.

本発明は、上述した事情に鑑みてなされたものであり、冷媒流路の冷媒出口温度の上昇を抑制した放熱器、及び、冷凍サイクル装置を提供することを目的とする。   This invention is made | formed in view of the situation mentioned above, and it aims at providing the heat radiator and the refrigerating-cycle apparatus which suppressed the raise of the refrigerant | coolant exit temperature of a refrigerant | coolant flow path.

上述した課題を解決し、目的を達成するために、本発明は、超臨界圧力に昇圧された冷媒を放熱する放熱器であって、上下方向に延在し、所定の間隔で配置される複数のフィンプレートと、フィンプレートに多段に挿通される伝熱管群により並列に形成される複数の冷媒流路とを備え、複数の冷媒流路は、それぞれ、フィンプレートの上部に設けられる入口伝熱管と、フィンプレートの下部に設けられる出口伝熱管と、入口伝熱管と出口伝熱管との間に設けられる中間伝熱管とを備えた。   In order to solve the above-described problems and achieve the object, the present invention is a radiator that radiates the refrigerant whose pressure has been increased to a supercritical pressure, and is a plurality of radiators that extend in the vertical direction and are arranged at predetermined intervals. And a plurality of refrigerant flow paths formed in parallel by a heat transfer tube group that is inserted into the fin plate in multiple stages, and each of the plurality of refrigerant flow paths is provided at an inlet heat transfer pipe provided above the fin plate. And an outlet heat transfer tube provided below the fin plate, and an intermediate heat transfer tube provided between the inlet heat transfer tube and the outlet heat transfer tube.

この構成によれば、複数の冷媒流路は、それぞれフィンプレートの上部側に入口伝熱管が設けられると共に、フィンプレートの下部側に出口伝熱管が設けられるため、一の冷媒流路の出口伝熱管と自己または他の冷媒流路の入口伝熱管とを離間して配置することができる。さらに、入口伝熱管と出口伝熱管との間に中間伝熱管が設けられるため、入口伝熱管と出口伝熱管とが隣り合うこともない。従って、入口伝熱管を流れる高温の冷媒によって、冷媒出口温度が上昇することが抑制されるため、冷凍サイクルの成績係数の向上を図ることができる。   According to this configuration, each of the plurality of refrigerant flow paths is provided with the inlet heat transfer tube on the upper side of the fin plate and the outlet heat transfer tube on the lower side of the fin plate. The heat pipe and the inlet heat transfer pipe of itself or another refrigerant flow path can be arranged apart from each other. Furthermore, since the intermediate heat transfer tube is provided between the inlet heat transfer tube and the outlet heat transfer tube, the inlet heat transfer tube and the outlet heat transfer tube are not adjacent to each other. Therefore, since the refrigerant outlet temperature is prevented from rising due to the high-temperature refrigerant flowing through the inlet heat transfer tube, the coefficient of performance of the refrigeration cycle can be improved.

この構成において、冷媒流路は、それぞれ冷媒を上段の伝熱管から下段の伝熱管へ流しても良い。超臨界圧力まで昇圧された冷媒は、放熱器を通過する際に凝縮することはないものの、冷却に伴い冷媒ガスの密度(比重)が大きくなる。このため、冷媒を上段の伝熱管から下段の伝熱管に流すように冷媒流路を構成することにより、重力によって冷媒の流通が促進され、熱交換効率の向上を図ることができる。   In this configuration, the refrigerant flow paths may cause the refrigerant to flow from the upper heat transfer tube to the lower heat transfer tube, respectively. Although the refrigerant whose pressure has been increased to the supercritical pressure does not condense when passing through the radiator, the density (specific gravity) of the refrigerant gas increases with cooling. Therefore, by configuring the refrigerant flow path so that the refrigerant flows from the upper heat transfer tube to the lower heat transfer tube, the flow of the refrigerant is promoted by gravity, and the heat exchange efficiency can be improved.

また、上下に区分けされた複数の熱交換部を備え、冷媒流路は、それぞれ上方の熱交換部から下方の熱交換部へ向けて、冷媒を順次流しても良い。この構成によれば、上方の熱交換部から下方の熱交換部へ向けて温度が低下する温度勾配が形成されるため、放熱器内の温度むらを抑えることができる。   In addition, a plurality of heat exchanging units divided into upper and lower portions may be provided, and the refrigerant flow may sequentially flow the refrigerant from the upper heat exchanging unit toward the lower heat exchanging unit. According to this configuration, since a temperature gradient is formed in which the temperature decreases from the upper heat exchanging part to the lower heat exchanging part, temperature unevenness in the radiator can be suppressed.

また、冷媒流路は、それぞれ、入口伝熱管に連なる第1中間伝熱管と、出口伝熱管に連なる第2中間伝熱管とを備え、各冷媒流路の第1中間伝熱管及び第2中間伝熱管がすべて接続される中間ヘッダを備えても良い。この構成によれば、冷媒流路の入口伝熱管での冷媒の分配が不適当であった場合であっても、冷媒が中間ヘッダに一度集約された後、各冷媒流路に再分配されるため、分配を適正とすることができる。   The refrigerant flow path includes a first intermediate heat transfer pipe connected to the inlet heat transfer pipe and a second intermediate heat transfer pipe connected to the outlet heat transfer pipe, and the first intermediate heat transfer pipe and the second intermediate heat transfer pipe of each refrigerant flow path. An intermediate header to which all the heat pipes are connected may be provided. According to this configuration, even if the refrigerant distribution at the inlet heat transfer tube of the refrigerant flow path is inappropriate, the refrigerant is once collected in the intermediate header and then redistributed to each refrigerant flow path. Therefore, distribution can be made appropriate.

また、伝熱管群は、フィンプレートに多列多段に挿通され、入口伝熱管は、出口伝熱管よりも風下側の列に配置されても良い。この構成によれば、冷媒と熱交換した際に空気が有する熱の影響を抑えることができ、冷媒出口温度の上昇を抑制できる。また、冷媒は、二酸化炭素冷媒であることが好ましい。   The heat transfer tube group may be inserted into the fin plate in multiple rows and multiple stages, and the inlet heat transfer tubes may be arranged in a row on the leeward side of the outlet heat transfer tubes. According to this configuration, it is possible to suppress the influence of heat of air when heat is exchanged with the refrigerant, and it is possible to suppress an increase in the refrigerant outlet temperature. The refrigerant is preferably a carbon dioxide refrigerant.

また、本発明の冷凍サイクル装置は、上記した放熱器と、冷媒を超臨界圧力まで昇圧する圧縮機と、減圧装置と、負荷側熱交換器とを配管接続した冷媒回路を備える。この構成によれば、放熱器の冷媒出口温度の上昇を抑制できるため、冷凍サイクルの成績係数の向上を図った冷凍サイクル装置を実現できる。   The refrigeration cycle apparatus of the present invention includes a refrigerant circuit in which the above-described radiator, a compressor that boosts the refrigerant to a supercritical pressure, a decompression device, and a load-side heat exchanger are connected by piping. According to this configuration, since the rise in the refrigerant outlet temperature of the radiator can be suppressed, a refrigeration cycle apparatus that improves the coefficient of performance of the refrigeration cycle can be realized.

本発明によれば、複数の冷媒流路は、それぞれフィンプレートの上部側に入口伝熱管が設けられると共に、フィンプレートの下部側に出口伝熱管が設けられるため、一の冷媒流路の出口伝熱管と自己または他の冷媒流路の入口伝熱管とを離間して配置することができる。さらに、入口伝熱管と出口伝熱管との間に中間伝熱管が設けられるため、入口伝熱管と出口伝熱管とが隣り合うこともない。従って、入口伝熱管を流れる高温の冷媒によって、冷媒出口温度が上昇することが抑制されるため、冷凍サイクルの成績係数の向上を図ることができる。   According to the present invention, each of the plurality of refrigerant channels has an inlet heat transfer tube provided on the upper side of the fin plate and an outlet heat transfer tube provided on the lower side of the fin plate. The heat pipe and the inlet heat transfer pipe of itself or another refrigerant flow path can be arranged apart from each other. Furthermore, since the intermediate heat transfer tube is provided between the inlet heat transfer tube and the outlet heat transfer tube, the inlet heat transfer tube and the outlet heat transfer tube are not adjacent to each other. Therefore, since the refrigerant outlet temperature is prevented from rising due to the high-temperature refrigerant flowing through the inlet heat transfer tube, the coefficient of performance of the refrigeration cycle can be improved.

図1は、本実施形態に係る冷凍サイクル装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a refrigeration cycle apparatus according to the present embodiment. 図2は、超臨界圧力に昇圧した冷媒の冷凍サイクルを示すモリエル線図である。FIG. 2 is a Mollier diagram showing the refrigeration cycle of the refrigerant whose pressure has been increased to the supercritical pressure. 図3は、本実施形態に係る放熱器の模式図である。FIG. 3 is a schematic diagram of a radiator according to the present embodiment. 図4は、変形例に係る放熱器の模式図である。FIG. 4 is a schematic diagram of a radiator according to a modification. 図5は、別の実施形態に係る放熱器の模式図である。FIG. 5 is a schematic view of a radiator according to another embodiment. 図6は、変形例に係る放熱器の模式図である。FIG. 6 is a schematic diagram of a radiator according to a modification. 図7は、別の変形例に係る放熱器の模式図である。FIG. 7 is a schematic diagram of a radiator according to another modification.

以下に、本発明にかかる実施形態について、図面を参照して説明する。なお、以下の実施形態によりこの発明が限定されるものではない。また、以下の実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below with reference to the drawings. In addition, this invention is not limited by the following embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、本実施形態に係る冷凍サイクル装置の回路構成図である。冷凍サイクル装置10は、図1に示すように、冷凍機ユニット11と負荷ユニット12とを備え、これら冷凍機ユニット11と負荷ユニット12とが、液冷媒配管13及びガス冷媒配管14により連結されて冷凍サイクル運転を行う冷媒回路15を構成している。冷媒回路15には、高圧側が超臨界圧力となる二酸化炭素(CO)冷媒が使用されている。二酸化炭素冷媒は、環境への負荷が小さく、毒性、可燃性がなく安全で安価であるという利点を有するため、有用な冷媒である。なお、高圧側が超臨界圧力となるものであれば、他の冷媒を使用できることは勿論である。 FIG. 1 is a circuit configuration diagram of a refrigeration cycle apparatus according to the present embodiment. As shown in FIG. 1, the refrigeration cycle apparatus 10 includes a refrigeration unit 11 and a load unit 12, and the refrigeration unit 11 and the load unit 12 are connected by a liquid refrigerant pipe 13 and a gas refrigerant pipe 14. A refrigerant circuit 15 for performing the refrigeration cycle operation is configured. The refrigerant circuit 15 uses carbon dioxide (CO 2 ) refrigerant whose high pressure side is at a supercritical pressure. The carbon dioxide refrigerant is a useful refrigerant because it has the advantages that it has a low environmental burden, is not toxic and flammable, and is safe and inexpensive. It should be noted that other refrigerants can be used as long as the high pressure side becomes a supercritical pressure.

冷凍機ユニット11は、冷媒を圧縮する圧縮機16を備え、この圧縮機16の吐出側には、冷媒吐出管17を介して、オイルセパレータ18、ガスクーラ(放熱器)19、膨張弁(減圧装置)20が順次接続されている。膨張弁20の出口側には、液化された冷媒が流通する冷凍機側液冷媒配管30が接続され、この冷凍機側液冷媒配管30は、上記した液冷媒配管13に接続されている。また、圧縮機16の吸込側には、冷媒吸込管21が接続され、この冷媒吸込管21は、アキュムレータ(図示略)を介して、上記したガス冷媒配管14に接続されている。   The refrigerator unit 11 includes a compressor 16 that compresses a refrigerant. An oil separator 18, a gas cooler (radiator) 19, an expansion valve (a pressure reducing device) are disposed on the discharge side of the compressor 16 via a refrigerant discharge pipe 17. ) 20 are sequentially connected. A refrigerator-side liquid refrigerant pipe 30 through which liquefied refrigerant flows is connected to the outlet side of the expansion valve 20, and the refrigerator-side liquid refrigerant pipe 30 is connected to the liquid refrigerant pipe 13 described above. A refrigerant suction pipe 21 is connected to the suction side of the compressor 16, and the refrigerant suction pipe 21 is connected to the gas refrigerant pipe 14 described above via an accumulator (not shown).

圧縮機16は、ケース22内に圧縮要素23を備える。この圧縮要素23は、例えば、低段圧縮要素と高段圧縮要素とを備えた2段圧縮可能な圧縮要素であり、冷媒吸込管21を通じて吸い込まれた低圧のガス冷媒を圧縮し、超臨界圧力まで昇圧された高温高圧のガス冷媒を冷媒吐出管17に吐出する。圧縮要素23は、電動機部(図示略)によって駆動され、この電動機部の運転周波数を変更することにより、圧縮要素23の回転数を調整可能となっている。また、ケース22内には、圧縮要素23の各部(軸受部や摺動部)を潤滑するためのオイルが収容されると共に、ケース22内のオイル量を検知するセンサ29が設けられている。   The compressor 16 includes a compression element 23 in the case 22. The compression element 23 is, for example, a two-stage compressible compression element including a low-stage compression element and a high-stage compression element, and compresses a low-pressure gas refrigerant sucked through the refrigerant suction pipe 21 to obtain a supercritical pressure. The high-temperature and high-pressure gas refrigerant whose pressure has been increased up to is discharged to the refrigerant discharge pipe 17. The compression element 23 is driven by an electric motor unit (not shown), and the rotation speed of the compression element 23 can be adjusted by changing the operating frequency of the electric motor unit. Further, in the case 22, oil for lubricating each part (bearing part and sliding part) of the compression element 23 is accommodated, and a sensor 29 for detecting the amount of oil in the case 22 is provided.

オイルセパレータ18は、圧縮機16から吐出された高圧(超臨界圧力)のガス冷媒に含まれるオイルを冷媒から分離して捕捉する。このオイルセパレータ18は、捕捉したオイルを圧縮機16のケース22に戻すオイル戻し管24を備え、このオイル戻し管24は、電磁弁25、キャピラリ管(絞り)26を介して、冷媒吸込管21に接続されている。本実施形態では、電磁弁25は、オイル量を検知する上記センサ29の信号に基づいて開閉される。   The oil separator 18 separates and captures the oil contained in the high-pressure (supercritical pressure) gas refrigerant discharged from the compressor 16 from the refrigerant. The oil separator 18 includes an oil return pipe 24 that returns the captured oil to the case 22 of the compressor 16, and the oil return pipe 24 is connected to a refrigerant suction pipe 21 via an electromagnetic valve 25 and a capillary pipe (throttle) 26. It is connected to the. In the present embodiment, the electromagnetic valve 25 is opened and closed based on a signal from the sensor 29 that detects the oil amount.

ガスクーラ19は、圧縮機16から吐出された高温高圧(超臨界圧力)のガス冷媒と空気との熱交換を行い、該ガス冷媒を放熱して冷却する。ガスクーラ19は、詳細は後述するが、フィンアンドチューブ式の熱交換器で構成され、ガスクーラ19の側方にはガスクーラ19に向けて送風する送風ファン(図示略)が配置されている。膨張弁20は、冷却されたガス冷媒を減圧(膨張)して液化させる。   The gas cooler 19 performs heat exchange between the high-temperature and high-pressure (supercritical pressure) gas refrigerant discharged from the compressor 16 and the air, and dissipates the heat to cool the gas refrigerant. Although the gas cooler 19 will be described in detail later, the gas cooler 19 is constituted by a fin-and-tube heat exchanger, and a blower fan (not shown) for blowing air toward the gas cooler 19 is disposed on the side of the gas cooler 19. The expansion valve 20 depressurizes (expands) the cooled gas refrigerant to liquefy it.

一方、負荷ユニット12は、上記した液冷媒配管13及びガス冷媒配管14を接続する負荷側配管27と、この負荷側配管27に設けられる蒸発器(負荷側熱交換器)28とを備える。負荷ユニット12は、液冷媒配管13を通じて供給された液冷媒を蒸発器28で蒸発させることにより、対象物を冷却するものであり、低温冷凍庫やショーケース等として利用される。蒸発器28は、ガスクーラ19と同様にフィンアンドチューブ式の熱交換器で構成され、蒸発器28の側方には蒸発器28に向けて送風する送風ファン(図示略)が配置されている。蒸発器28では、送風された空気から熱を奪って液冷媒が蒸発することで空気を冷却する。蒸発器28で蒸発した低温低圧のガス冷媒は、ガス冷媒配管14、アキュムレータ、冷媒吸込管21を通じて、圧縮機16に吸い込まれ、この圧縮機16で再度圧縮される。なお、本実施形態では、負荷ユニット12は、蒸発器28を1つ設けた構成について説明したが、複数の蒸発器28を並列に設けた構成としても良い。この場合、各負荷側配管27における蒸発器28の入口側(液冷媒配管13側)にそれぞれ膨張弁20を設けることが好ましい。   On the other hand, the load unit 12 includes a load side pipe 27 connecting the liquid refrigerant pipe 13 and the gas refrigerant pipe 14 and an evaporator (load side heat exchanger) 28 provided in the load side pipe 27. The load unit 12 cools the object by evaporating the liquid refrigerant supplied through the liquid refrigerant pipe 13 with the evaporator 28, and is used as a low-temperature freezer or a showcase. The evaporator 28 is configured by a fin-and-tube heat exchanger like the gas cooler 19, and a blower fan (not shown) for blowing air toward the evaporator 28 is disposed on the side of the evaporator 28. The evaporator 28 cools the air by removing heat from the blown air and evaporating the liquid refrigerant. The low-temperature and low-pressure gas refrigerant evaporated by the evaporator 28 is sucked into the compressor 16 through the gas refrigerant pipe 14, the accumulator, and the refrigerant suction pipe 21, and is compressed again by the compressor 16. In the present embodiment, the load unit 12 has been described with a configuration in which one evaporator 28 is provided, but a configuration in which a plurality of evaporators 28 are provided in parallel may be employed. In this case, it is preferable to provide the expansion valve 20 on each load side pipe 27 on the inlet side (liquid refrigerant pipe 13 side) of the evaporator 28.

ところで、本実施形態の冷凍サイクル装置10では、冷媒が超臨界圧力まで昇圧されるため、この冷媒はガスクーラ19で冷却されても凝縮することはなく、顕熱変化がなされるガス冷媒としてガスクーラ19を流通する。図2は、超臨界圧力に昇圧した冷媒の冷凍サイクルを示すモリエル線図である。この図2において、点Aは圧縮機16の吸込側における冷媒の圧力とエンタルピを示す。同様に、点Bはガスクーラ19の入口側、点Cはガスクーラ19の出口側、点Dは蒸発器28の入口側における冷媒の圧力とエンタルピを示す。また、図2における破線は各等温線を示す。   By the way, in the refrigeration cycle apparatus 10 of the present embodiment, since the refrigerant is pressurized to the supercritical pressure, the refrigerant does not condense even when cooled by the gas cooler 19, and the gas cooler 19 is a gas refrigerant that undergoes a sensible heat change. Circulate. FIG. 2 is a Mollier diagram showing the refrigeration cycle of the refrigerant whose pressure has been increased to the supercritical pressure. In FIG. 2, point A indicates the refrigerant pressure and enthalpy on the suction side of the compressor 16. Similarly, point B indicates the refrigerant pressure and enthalpy on the inlet side of the gas cooler 19, point C indicates the outlet side of the gas cooler 19, and point D indicates the refrigerant pressure and enthalpy on the inlet side of the evaporator 28. Moreover, the broken line in FIG. 2 shows each isotherm.

上述のように、ガスクーラ19では冷却による顕熱変化がなされる。この場合、図2に示すように、120℃から100℃までのエンタルピ量、100℃から80℃までのエンタルピ量、80℃から60℃までのエンタルピ量、60℃から約35℃までのエンタルピ量をそれぞれa、b、c、dとすると、このエンタルピ量は、a<b<c<dとなり、特に、60℃から約35℃までのエンタルピ量dは、他の温度帯に比べて大きい。従って、ガスクーラ19における冷媒出口温度をより低い温度に冷却すれば、その分、冷凍効果を大きくすることができ、成績係数(COP)を向上することができる。以下、冷媒出口温度をより低温に冷却できるガスクーラ19の構成について説明する。   As described above, the gas cooler 19 changes the sensible heat by cooling. In this case, as shown in FIG. 2, the amount of enthalpy from 120 ° C to 100 ° C, the amount of enthalpy from 100 ° C to 80 ° C, the amount of enthalpy from 80 ° C to 60 ° C, the amount of enthalpy from 60 ° C to about 35 ° C Are a, b, c, and d, respectively, the enthalpy amount is a <b <c <d. In particular, the enthalpy amount d from 60 ° C. to about 35 ° C. is larger than other temperature zones. Therefore, if the refrigerant outlet temperature in the gas cooler 19 is cooled to a lower temperature, the refrigeration effect can be increased correspondingly, and the coefficient of performance (COP) can be improved. Hereinafter, the configuration of the gas cooler 19 that can cool the refrigerant outlet temperature to a lower temperature will be described.

図3は、本実施形態に係るガスクーラを示す模式図である。ガスクーラ19は、図3に示すように、上下方向に延在し、互いに間隔を設けて略平行に並べられた複数のフィンプレート30と、これらフィンプレート30を貫通する複数の伝熱管からなる伝熱管群33とを備え、紙面に直交する方向に空気が流れるようになっている。本実施形態では、伝熱管群33は、フィンプレート30の上下方向に1列多段(本実施形態では12段)で配置され、これら伝熱管群33により、複数(本実施形態では3つ)の冷媒流路34A,34B,34Cが並列に形成されている。冷媒流路を複数形成することにより、冷媒が各冷媒流路に分配されて各冷媒流路を流れる流量が低減すると共に、冷媒流路の流路長が短縮されるため、ガスクーラ19での冷媒の圧力損失が低減し、成績係数の向上を図ることができる。   FIG. 3 is a schematic diagram showing a gas cooler according to the present embodiment. As shown in FIG. 3, the gas cooler 19 extends in the vertical direction, and includes a plurality of fin plates 30 that are arranged substantially parallel to each other at intervals, and a plurality of heat transfer tubes that penetrate the fin plates 30. A heat tube group 33 is provided, and air flows in a direction perpendicular to the paper surface. In the present embodiment, the heat transfer tube groups 33 are arranged in one row and multiple stages (12 stages in this embodiment) in the vertical direction of the fin plate 30, and a plurality (three in this embodiment) of these heat transfer tube groups 33 are arranged. Refrigerant flow paths 34A, 34B, and 34C are formed in parallel. By forming a plurality of refrigerant flow paths, the refrigerant is distributed to the respective refrigerant flow paths, the flow rate flowing through each refrigerant flow path is reduced, and the flow path length of the refrigerant flow path is shortened. Pressure loss can be reduced and the coefficient of performance can be improved.

ガスクーラ19は、オイルセパレータ18を経た入口管35(冷媒吐出管17)に接続された入口ヘッダ36と、膨張弁20に至る出口管37(冷媒吐出管17)に接続された出口ヘッダ38とを備え、これら入口ヘッダ36と出口ヘッダ38との間に3つの冷媒流路34A,34B,34Cが形成されている。冷媒流路34A,34B,34Cは、それぞれ4本の伝熱管を接続して形成され、ガスクーラ19の高さ方向(上下方向)の上方から下方に向けて冷媒が流れるようになっている。   The gas cooler 19 includes an inlet header 36 connected to the inlet pipe 35 (refrigerant discharge pipe 17) through the oil separator 18, and an outlet header 38 connected to the outlet pipe 37 (refrigerant discharge pipe 17) leading to the expansion valve 20. In addition, three refrigerant flow paths 34A, 34B, and 34C are formed between the inlet header 36 and the outlet header 38. The refrigerant flow paths 34A, 34B, 34C are each formed by connecting four heat transfer tubes, and the refrigerant flows from the upper side in the height direction (vertical direction) of the gas cooler 19 to the lower side.

冷媒流路34A,34B,34Cは、それぞれ入口ヘッダ36に接続される入口伝熱管40A,40B,40Cを備える。これら入口伝熱管40A,40B,40Cは、フィンプレート30の上部(1段、3段、5段)に配置されている。また、冷媒流路34A,34B,34Cは、それぞれ出口ヘッダ38に接続される出口伝熱管42A,42B,42Cを備える。これら出口伝熱管42A,42B,42Cは、フィンプレート30の下部(8段、10段、12段)に配置されている。   The refrigerant flow paths 34A, 34B, and 34C include inlet heat transfer tubes 40A, 40B, and 40C that are connected to the inlet header 36, respectively. These inlet heat transfer tubes 40 </ b> A, 40 </ b> B, 40 </ b> C are arranged on the upper portion (first, third, fifth) of the fin plate 30. The refrigerant flow paths 34A, 34B, and 34C include outlet heat transfer tubes 42A, 42B, and 42C connected to the outlet header 38, respectively. These outlet heat transfer tubes 42A, 42B, and 42C are arranged below the fin plate 30 (eight steps, ten steps, and twelve steps).

冷媒流路34Aは、入口伝熱管40AにU字管43を介して接続される第1中間伝熱管41A1と、出口伝熱管42AにU字管43を介して接続される第2中間伝熱管41A2とを備える。第1中間伝熱管41A1は、入口伝熱管40Aの1段下方に配置され、第2中間伝熱管41A2は、出口伝熱管42Aの1段上方に配置される。また、第1中間伝熱管41A1と第2中間伝熱管41A2とは中間ヘッダ44によって連結されている。これにより、冷媒流路34Aは、入口伝熱管40A、第1中間伝熱管41A1、第2中間伝熱管41A2、出口伝熱管42Aの順に、上段の伝熱管から下段の伝熱管に冷媒が流れる。   The refrigerant flow path 34A includes a first intermediate heat transfer tube 41A1 connected to the inlet heat transfer tube 40A via the U-shaped tube 43, and a second intermediate heat transfer tube 41A2 connected to the outlet heat transfer tube 42A via the U-shaped tube 43. With. The first intermediate heat transfer tube 41A1 is arranged one step below the inlet heat transfer tube 40A, and the second intermediate heat transfer tube 41A2 is arranged one step above the outlet heat transfer tube 42A. The first intermediate heat transfer tube 41A1 and the second intermediate heat transfer tube 41A2 are connected by an intermediate header 44. Accordingly, in the refrigerant flow path 34A, the refrigerant flows from the upper heat transfer tube to the lower heat transfer tube in the order of the inlet heat transfer tube 40A, the first intermediate heat transfer tube 41A1, the second intermediate heat transfer tube 41A2, and the outlet heat transfer tube 42A.

同様に、冷媒流路34Bは、入口伝熱管40BにU字管43を介して接続される第1中間伝熱管41B1と、出口伝熱管42BにU字管43を介して接続される第2中間伝熱管41B2とを備える。第1中間伝熱管41B1は、入口伝熱管40Bの1段下方に配置され、第2中間伝熱管41B2は、出口伝熱管42Bの1段上方に配置される。また、第1中間伝熱管41B1と第2中間伝熱管41B2とは上記した中間ヘッダ44によって連結されている。これにより、冷媒流路34Bは、入口伝熱管40B、第1中間伝熱管41B1、第2中間伝熱管41B2、出口伝熱管42Bの順に、上段の伝熱管から下段の伝熱管に冷媒が流れる。また、冷媒流路34Cは、入口伝熱管40CにU字管43を介して接続される第1中間伝熱管41C1と、出口伝熱管42CにU字管43を介して接続される第2中間伝熱管41C2とを備える。第1中間伝熱管41C1は、入口伝熱管40Cの1段下方に配置され、第2中間伝熱管41C2は、出口伝熱管42Cの1段上方に配置される。また、第1中間伝熱管41C1と第2中間伝熱管41C2とは上記した中間ヘッダ44によって連結されている。これにより、冷媒流路34Cは、入口伝熱管40C、第1中間伝熱管41C1、第2中間伝熱管41C2、出口伝熱管42Cの順に、上段の伝熱管から下段の伝熱管に冷媒が流れる。   Similarly, the refrigerant flow path 34B includes a first intermediate heat transfer pipe 41B1 connected to the inlet heat transfer pipe 40B via the U-shaped pipe 43, and a second intermediate line connected to the outlet heat transfer pipe 42B via the U-shaped pipe 43. And a heat transfer tube 41B2. The first intermediate heat transfer tube 41B1 is arranged one step below the inlet heat transfer tube 40B, and the second intermediate heat transfer tube 41B2 is arranged one step above the outlet heat transfer tube 42B. The first intermediate heat transfer tube 41B1 and the second intermediate heat transfer tube 41B2 are connected by the intermediate header 44 described above. Accordingly, in the refrigerant flow path 34B, the refrigerant flows from the upper heat transfer tube to the lower heat transfer tube in the order of the inlet heat transfer tube 40B, the first intermediate heat transfer tube 41B1, the second intermediate heat transfer tube 41B2, and the outlet heat transfer tube 42B. The refrigerant flow path 34C includes a first intermediate heat transfer pipe 41C1 connected to the inlet heat transfer pipe 40C via the U-shaped pipe 43, and a second intermediate transfer pipe connected to the outlet heat transfer pipe 42C via the U-shaped pipe 43. And a heat pipe 41C2. The first intermediate heat transfer tube 41C1 is arranged one step below the inlet heat transfer tube 40C, and the second intermediate heat transfer tube 41C2 is arranged one step above the outlet heat transfer tube 42C. The first intermediate heat transfer tube 41C1 and the second intermediate heat transfer tube 41C2 are connected by the intermediate header 44 described above. Thus, in the refrigerant flow path 34C, the refrigerant flows from the upper heat transfer tube to the lower heat transfer tube in the order of the inlet heat transfer tube 40C, the first intermediate heat transfer tube 41C1, the second intermediate heat transfer tube 41C2, and the outlet heat transfer tube 42C.

また、ガスクーラ19は、高さ方向(上下方向)に複数(本実施形態では2つ)に区分けされた上部熱交換部45と下部熱交換部46とを備える。冷媒流路34A,34B,34Cは、それぞれ上部熱交換部45及び下部熱交換部46を順次流通するように形成される。具体的には、冷媒流路34Aは、入口伝熱管40A及び第1中間伝熱管41A1が上部熱交換部45に設けられ、中間ヘッダ44を介して、第2中間伝熱管41A2及び出口伝熱管42Aが下部熱交換部46に設けられている。同様に、冷媒流路34Bは、入口伝熱管40B及び第1中間伝熱管41B1が上部熱交換部45に設けられ、第2中間伝熱管41B2及び出口伝熱管42Bが下部熱交換部46に設けられている。また、冷媒流路34Cは、入口伝熱管40C及び第1中間伝熱管41C1が上部熱交換部45に設けられ、第2中間伝熱管41C2及び出口伝熱管42Cが下部熱交換部46に設けられている。   The gas cooler 19 includes an upper heat exchanging unit 45 and a lower heat exchanging unit 46 that are divided into a plurality (two in this embodiment) in the height direction (vertical direction). The refrigerant flow paths 34A, 34B, and 34C are formed so as to flow through the upper heat exchange unit 45 and the lower heat exchange unit 46, respectively. Specifically, in the refrigerant flow path 34A, the inlet heat transfer tube 40A and the first intermediate heat transfer tube 41A1 are provided in the upper heat exchange unit 45, and the second intermediate heat transfer tube 41A2 and the outlet heat transfer tube 42A are interposed via the intermediate header 44. Is provided in the lower heat exchange section 46. Similarly, in the refrigerant flow path 34B, the inlet heat transfer tube 40B and the first intermediate heat transfer tube 41B1 are provided in the upper heat exchange unit 45, and the second intermediate heat transfer tube 41B2 and the outlet heat transfer tube 42B are provided in the lower heat exchange unit 46. ing. The refrigerant flow path 34C includes an inlet heat transfer tube 40C and a first intermediate heat transfer tube 41C1 provided in the upper heat exchange unit 45, and a second intermediate heat transfer tube 41C2 and an outlet heat transfer tube 42C provided in the lower heat exchange unit 46. Yes.

このように、本構成では、冷媒流路34A,34B,34Cは、それぞれフィンプレート30の上部側に入口伝熱管40A,40B,40Cが設けられると共に、フィンプレート30の下部側に出口伝熱管42A,42B,42Cが設けられるため、各冷媒流路34A,34B,34Cの42A,42B,42Cを自己または他の冷媒流路34A,34B,34Cの入口伝熱管40A,40B,40Cから離間して配置することができる。さらに、冷媒流路34A,34B,34Cは、それぞれ入口伝熱管40A,40B,40Cと、出口伝熱管42A,42B,42Cとの間に第1中間伝熱管(中間伝熱管)41A1,41B1,41C1及び第2中間伝熱管(中間伝熱管)41A2,41B2,41C2が設けられるため、入口伝熱管40A,40B,40Cと出口伝熱管42A,42B,42Cとが隣り合うこともない。従って、入口伝熱管40A,40B,40Cを流れる高温(例えば100〜120℃)の冷媒によって、冷媒出口温度が上昇することが抑制されるため、冷凍サイクルの成績係数の向上を図ることができる。   Thus, in this configuration, the refrigerant flow paths 34A, 34B, 34C are provided with the inlet heat transfer tubes 40A, 40B, 40C on the upper side of the fin plate 30, respectively, and the outlet heat transfer tubes 42A on the lower side of the fin plate 30. , 42B, and 42C, 42A, 42B, and 42C of each refrigerant flow path 34A, 34B, and 34C are separated from the inlet heat transfer tubes 40A, 40B, and 40C of themselves or other refrigerant flow paths 34A, 34B, and 34C. Can be arranged. Further, the refrigerant flow paths 34A, 34B, 34C are respectively provided with first intermediate heat transfer tubes (intermediate heat transfer tubes) 41A1, 41B1, 41C1 between the inlet heat transfer tubes 40A, 40B, 40C and the outlet heat transfer tubes 42A, 42B, 42C. Since the second intermediate heat transfer tubes (intermediate heat transfer tubes) 41A2, 41B2, and 41C2 are provided, the inlet heat transfer tubes 40A, 40B, and 40C and the outlet heat transfer tubes 42A, 42B, and 42C are not adjacent to each other. Therefore, since the refrigerant outlet temperature is prevented from rising by the high-temperature (for example, 100 to 120 ° C.) refrigerant flowing through the inlet heat transfer tubes 40A, 40B, and 40C, the coefficient of performance of the refrigeration cycle can be improved.

また、冷媒流路34A,34B,34Cは、それぞれ入口伝熱管40A,40B,40C、第1中間伝熱管41A1,41B1,41C1、第2中間伝熱管41A2,41B2,41C2、出口伝熱管42A,42B,42Cの順に、上段の伝熱管から下段の伝熱管に冷媒が流れる。超臨界圧力まで昇圧された冷媒は、ガスクーラ19で凝縮することはないものの、冷却に伴い冷媒ガスの密度(比重)が大きくなる。このため、冷媒を上段の伝熱管から下段の伝熱管に流すように冷媒流路34A,34B,34Cを構成することにより、重力によって冷媒の流通が促進され、熱交換効率の向上を図ることができる。   The refrigerant flow paths 34A, 34B, and 34C are respectively provided with inlet heat transfer tubes 40A, 40B, and 40C, first intermediate heat transfer tubes 41A1, 41B1, and 41C1, second intermediate heat transfer tubes 41A2, 41B2, and 41C2, and outlet heat transfer tubes 42A and 42B. , 42C, the refrigerant flows from the upper heat transfer tube to the lower heat transfer tube. Although the refrigerant whose pressure has been increased to the supercritical pressure is not condensed by the gas cooler 19, the density (specific gravity) of the refrigerant gas increases with cooling. Therefore, by configuring the refrigerant flow paths 34A, 34B, and 34C so that the refrigerant flows from the upper heat transfer tube to the lower heat transfer tube, the flow of the refrigerant is promoted by gravity, and the heat exchange efficiency can be improved. it can.

また、冷媒流路34A,34B,34Cは、上段の伝熱管から下段の伝熱管へと徐々に冷媒が冷却されるため、隣り合った伝熱管を流れる冷媒の温度差を所定温度以下にすることができ、隣り合った伝熱管の間での熱移動を抑えることができる。図2のモリエル線図を参照すると、本実施形態では、ガスクーラ19の出入口温度差が85℃となっているため、隣り合った伝熱管を流れる冷媒の温度差を20℃〜25℃程度に抑えることができる。また、通常、ガスクーラ19の出入口温度差は60℃程度であるため、この場合には、隣り合った伝熱管を流れる冷媒の温度差を15℃程度に抑えることができる。   In addition, since the refrigerant is gradually cooled from the upper heat transfer tubes to the lower heat transfer tubes, the refrigerant flow paths 34A, 34B, and 34C make the temperature difference between the refrigerants flowing through the adjacent heat transfer tubes equal to or lower than a predetermined temperature. And heat transfer between adjacent heat transfer tubes can be suppressed. Referring to the Mollier diagram of FIG. 2, in this embodiment, since the temperature difference between the inlet and outlet of the gas cooler 19 is 85 ° C., the temperature difference of the refrigerant flowing through the adjacent heat transfer tubes is suppressed to about 20 ° C. to 25 ° C. be able to. Further, since the temperature difference between the inlet and outlet of the gas cooler 19 is usually about 60 ° C., in this case, the temperature difference of the refrigerant flowing through the adjacent heat transfer tubes can be suppressed to about 15 ° C.

また、ガスクーラ19は、上下に区分けされた上部熱交換部45と下部熱交換部46とを備え、冷媒流路34A,34B,34Cは、それぞれ上部熱交換部45から下部熱交換部46に向けて順次冷媒が流れる構成となっているため、上部熱交換部45から下部熱交換部46に向けて温度が低下する温度勾配が形成され、ガスクーラ19の温度むらを抑えることができる。   The gas cooler 19 includes an upper heat exchanging portion 45 and a lower heat exchanging portion 46 that are divided into upper and lower portions, and the refrigerant flow paths 34A, 34B, and 34C are directed from the upper heat exchanging portion 45 to the lower heat exchanging portion 46, respectively. Therefore, a temperature gradient in which the temperature decreases from the upper heat exchanging portion 45 toward the lower heat exchanging portion 46 is formed, and the temperature unevenness of the gas cooler 19 can be suppressed.

また、冷媒流路34A,34B,34Cは、入口伝熱管40A,40B,40Cにそれぞれ連なる第1中間伝熱管41A1,41B1,41C1と、出口伝熱管42A,42B,42Cにそれぞれ連なる第2中間伝熱管41A2,41B2,41C2とを備え、各冷媒流路34A,34B,34Cの第1中間伝熱管41A1,41B1,41C1及び第2中間伝熱管41A2,41B2,41C2がすべて接続される中間ヘッダ44を備えるため、冷媒流路34A,34B,34Cの入口伝熱管40A,40B,40Cでの冷媒の分配が不適当であった場合であっても、冷媒は中間ヘッダ44に一度集約された後、各冷媒流路34A,34B,34Cに再分配されるため、分配を適正とすることができる。このため、ガスクーラ19での熱交換を十分に行うことができる。   Further, the refrigerant flow paths 34A, 34B, 34C are respectively connected to the first intermediate heat transfer tubes 41A1, 41B1, 41C1 connected to the inlet heat transfer tubes 40A, 40B, 40C and the second intermediate transfer tubes connected to the outlet heat transfer tubes 42A, 42B, 42C, respectively. And an intermediate header 44 to which all the first intermediate heat transfer tubes 41A1, 41B1, 41C1 and the second intermediate heat transfer tubes 41A2, 41B2, 41C2 of the refrigerant flow paths 34A, 34B, 34C are connected. Therefore, even if the refrigerant distribution at the inlet heat transfer tubes 40A, 40B, and 40C of the refrigerant flow paths 34A, 34B, and 34C is inappropriate, the refrigerant is once collected in the intermediate header 44, Since it is redistributed to the refrigerant flow paths 34A, 34B, 34C, the distribution can be made appropriate. For this reason, heat exchange in the gas cooler 19 can be sufficiently performed.

次に、本実施形態の変形例について説明する。図4は、変形例にかかるガスクーラを示す模式図である。このガスクーラ50において、上記したガスクーラ19と同一の構成については同一の符号を付して説明を省略する。ガスクーラ50では、冷媒流路34A,34B,34Cは、第1中間伝熱管41A1,41B1,41C1と第2中間伝熱管41A2,41B2,41C2とがそれぞれ連結管47A,47B,47Cを介して接続されている。この構成では、中間ヘッダ44が不要となるため、ガスクーラ50の小型化を実現できる。   Next, a modification of this embodiment will be described. FIG. 4 is a schematic diagram showing a gas cooler according to a modification. In the gas cooler 50, the same components as those of the gas cooler 19 described above are denoted by the same reference numerals and description thereof is omitted. In the gas cooler 50, the refrigerant flow paths 34A, 34B, and 34C are connected to the first intermediate heat transfer tubes 41A1, 41B1, and 41C1 and the second intermediate heat transfer tubes 41A2, 41B2, and 41C2 through connecting tubes 47A, 47B, and 47C, respectively. ing. In this configuration, since the intermediate header 44 is not necessary, the gas cooler 50 can be downsized.

上記した実施形態では、冷媒流路34A,34B,34Cは、中間伝熱管として、それぞれ第1中間伝熱管41A1,41B1,41C1と第2中間伝熱管41A2,41B2,41C2の2本ずつを備える構成としたが、冷媒流量やフィンプレート30の大きさに応じて本数を適宜変更しても良い。中間伝熱管は少なくとも1本設ければよく、冷媒流路を入口伝熱管、中間伝熱管、出口伝熱管の3本により1往復半して流れる最少構成としても良い。この構成では、冷媒の出口は、伝熱管の延びる方向における冷媒の入口とは反対側に位置する。このように冷媒流路を3パスで構成した場合、ガスクーラ19の出入口温度差は85℃となっている(図2)ため、隣り合った伝熱管を流れる冷媒の温度差は、25℃〜30℃程度に抑えることができる。この構成では、上記した冷媒流路を4本の伝熱管(4パス)で形成したものに比べて、隣り合った伝熱管を流れる冷媒の温度差が高くなり、30℃程度になることも考えられる。また、通常、ガスクーラ19の出入口温度差は60℃程度であるため、この場合には、隣り合った伝熱管を流れる冷媒の温度差は、20℃程度に抑えることができる。   In the above-described embodiment, each of the refrigerant flow paths 34A, 34B, and 34C includes two first heat transfer tubes 41A1, 41B1, and 41C1 and second intermediate heat transfer tubes 41A2, 41B2, and 41C2 as intermediate heat transfer tubes. However, the number may be changed as appropriate in accordance with the refrigerant flow rate and the size of the fin plate 30. It is sufficient that at least one intermediate heat transfer tube is provided, and the refrigerant flow path may have a minimum configuration in which the refrigerant flow flows one and a half times by three of the inlet heat transfer tube, the intermediate heat transfer tube, and the outlet heat transfer tube. In this configuration, the refrigerant outlet is located on the opposite side of the refrigerant inlet in the direction in which the heat transfer tube extends. When the refrigerant flow path is configured in three passes in this way, the temperature difference between the inlet and the outlet of the gas cooler 19 is 85 ° C. (FIG. 2), so the temperature difference between the refrigerants flowing through the adjacent heat transfer tubes is 25 ° C. to 30 ° C. It can be suppressed to about ℃. In this configuration, the temperature difference between the refrigerants flowing through the adjacent heat transfer tubes is higher than that in which the above-described refrigerant flow path is formed by four heat transfer tubes (four paths), and it may be about 30 ° C. It is done. In addition, since the inlet / outlet temperature difference of the gas cooler 19 is normally about 60 ° C., in this case, the temperature difference of the refrigerant flowing through the adjacent heat transfer tubes can be suppressed to about 20 ° C.

また、上記した実施形態では、伝熱管の配置する間隔(ピッチ)を同一にしたが、例えば、上部熱交換部45と下部熱交換部46との間、冷媒流路34Cの第1中間伝熱管41C1と、冷媒流路34Aの第2中間伝熱管41A2との間を、1本分余計に間隔を広げても良い。この構成では、上部熱交換部45と下部熱交換部46との熱伝達が抑制されるため、冷媒出口温度の上昇をより抑えることができる。   In the above-described embodiment, the interval (pitch) at which the heat transfer tubes are arranged is the same. For example, the first intermediate heat transfer tube of the refrigerant flow path 34C between the upper heat exchange unit 45 and the lower heat exchange unit 46 is used. The space between 41C1 and the second intermediate heat transfer tube 41A2 of the refrigerant flow path 34A may be increased by an extra line. In this configuration, since heat transfer between the upper heat exchanging portion 45 and the lower heat exchanging portion 46 is suppressed, an increase in the refrigerant outlet temperature can be further suppressed.

次に、別の実施形態にかかるガスクーラについて説明する。図5は、別の実施形態に係るガスクーラを示す模式図である。上記した実施形態では、ガスクーラ19,50は、1列の伝熱管群33を備える構成としたが、この実施形態では、複数列の伝熱管群33を備える点で構成を異にしている。上記したガスクーラ19と同一の構成については同一の符号を付して説明を省略する。   Next, a gas cooler according to another embodiment will be described. FIG. 5 is a schematic view showing a gas cooler according to another embodiment. In the above-described embodiment, the gas coolers 19 and 50 are configured to include one row of heat transfer tube groups 33, but in this embodiment, the configurations are different in that they include a plurality of rows of heat transfer tube groups 33. The same components as those of the gas cooler 19 described above are denoted by the same reference numerals and description thereof is omitted.

ガスクーラ60は、多列多段(この実施形態では2列6段)の伝熱管によって形成される伝熱管群33を備える。伝熱管群33は、各列の伝熱管の高さ位置を異ならせて形成され、風下側の列の伝熱管の方が風上側の列の伝熱管よりもわずかに上方に配置されている。また、ガスクーラ60は、伝熱管群33により並列に形成された3つの冷媒流路34A,34B,34Cを備える。   The gas cooler 60 includes a heat transfer tube group 33 formed by heat transfer tubes in multiple rows and multiple stages (in this embodiment, two rows and six stages). The heat transfer tube group 33 is formed with different height positions of the heat transfer tubes in each row, and the heat transfer tubes in the leeward row are arranged slightly above the heat transfer tubes in the leeward row. The gas cooler 60 includes three refrigerant flow paths 34 </ b> A, 34 </ b> B, and 34 </ b> C formed in parallel by the heat transfer tube group 33.

冷媒流路34A,34B,34Cは、それぞれ入口ヘッダ36に接続される入口伝熱管40A,40B,40Cを備える。これら入口伝熱管40A,40B,40Cは、フィンプレート30の風下側の列の上部(1段、2段、3段)に配置されている。また、冷媒流路34A,34B,34Cは、それぞれ出口ヘッダ38に接続される出口伝熱管42A,42B,42Cを備える。これら出口伝熱管42A,42B,42Cは、フィンプレート30の風上側の列の下部(4段、5段、6段)に配置されている。   The refrigerant flow paths 34A, 34B, and 34C include inlet heat transfer tubes 40A, 40B, and 40C that are connected to the inlet header 36, respectively. These inlet heat transfer tubes 40 </ b> A, 40 </ b> B, 40 </ b> C are arranged in the upper part (first stage, second stage, third stage) of the leeward side row of the fin plate 30. The refrigerant flow paths 34A, 34B, and 34C include outlet heat transfer tubes 42A, 42B, and 42C connected to the outlet header 38, respectively. These outlet heat transfer tubes 42 </ b> A, 42 </ b> B, 42 </ b> C are arranged in the lower part (4th, 5th, 6th) of the windward row of the fin plate 30.

冷媒流路34Aは、入口伝熱管40AにU字管(不図示)を介して接続される第1中間伝熱管41A1と、出口伝熱管42AにU字管(不図示)を介して接続される第2中間伝熱管41A2とを備える。第1中間伝熱管41A1は、入口伝熱管40Aの隣の列(風上側の列)の最上段に配置され、第2中間伝熱管41A2は、出口伝熱管42Aの隣の列(風下側の列)の下部(4段)に配置される。また、第1中間伝熱管41A1と第2中間伝熱管41A2とは中間ヘッダ44によって連結されている。これにより、冷媒流路34Aは、入口伝熱管40A、第1中間伝熱管41A1、第2中間伝熱管41A2、出口伝熱管42Aの順に、上段の伝熱管から下段の伝熱管に冷媒が流れる。   The refrigerant flow path 34A is connected to the inlet heat transfer tube 40A via a U-shaped tube (not shown) and to the outlet heat transfer tube 42A via a U-shaped tube (not shown). A second intermediate heat transfer tube 41A2. The first intermediate heat transfer tube 41A1 is arranged at the uppermost stage of the row adjacent to the inlet heat transfer tube 40A (windward row), and the second intermediate heat transfer tube 41A2 is the row adjacent to the outlet heat transfer tube 42A (rowward side row). ) Below (four steps). The first intermediate heat transfer tube 41A1 and the second intermediate heat transfer tube 41A2 are connected by an intermediate header 44. Accordingly, in the refrigerant flow path 34A, the refrigerant flows from the upper heat transfer tube to the lower heat transfer tube in the order of the inlet heat transfer tube 40A, the first intermediate heat transfer tube 41A1, the second intermediate heat transfer tube 41A2, and the outlet heat transfer tube 42A.

冷媒流路34Bは、入口伝熱管40BにU字管(不図示)を介して接続される第1中間伝熱管41B1と、出口伝熱管42BにU字管(不図示)を介して接続される第2中間伝熱管41B2とを備える。第1中間伝熱管41B1は、入口伝熱管40Bの隣の列(風上側の列)の上部(2段)に配置され、第2中間伝熱管41B2は、出口伝熱管42Bの隣の列(風下側の列)の下部(5段)に配置される。また、冷媒流路34Cは、入口伝熱管40CにU字管(不図示)を介して接続される第1中間伝熱管41C1と、出口伝熱管42CにU字管(不図示)を介して接続される第2中間伝熱管41C2とを備える。第1中間伝熱管41C1は、入口伝熱管40Cの隣の列(風上側の列)の上部(3段)に配置され、第2中間伝熱管41C2は、出口伝熱管42Cの隣の列(風下側の列)の下部(6段)に配置される。これにより、冷媒流路34B,34Cは、それぞれ入口伝熱管40B,40C、第1中間伝熱管41B1,41C1、第2中間伝熱管41B2,41C2、出口伝熱管42B,42Cの順に、上段の伝熱管から下段の伝熱管に冷媒が流れる。   The refrigerant flow path 34B is connected to the inlet heat transfer tube 40B via a U-shaped tube (not shown) and to the outlet heat transfer tube 42B via a U-shaped tube (not shown). A second intermediate heat transfer tube 41B2. The first intermediate heat transfer tube 41B1 is arranged at the upper part (two stages) of the row adjacent to the inlet heat transfer tube 40B (windward row), and the second intermediate heat transfer tube 41B2 is positioned next to the outlet heat transfer tube 42B (downwind). (5 columns) at the bottom of the side column. The refrigerant flow path 34C is connected to the inlet heat transfer tube 40C via a U-shaped tube (not shown) and to the outlet heat transfer tube 42C via a U-shaped tube (not shown). Second intermediate heat transfer tube 41C2. The first intermediate heat transfer tube 41C1 is arranged in the upper part (three stages) of the row next to the inlet heat transfer tube 40C (upstream row), and the second intermediate heat transfer tube 41C2 is arranged next to the outlet heat transfer tube 42C (downwind) Side column) is arranged at the lower part (six levels). Thus, the refrigerant flow paths 34B and 34C are arranged in the order of the inlet heat transfer tubes 40B and 40C, the first intermediate heat transfer tubes 41B1 and 41C1, the second intermediate heat transfer tubes 41B2 and 41C2, and the outlet heat transfer tubes 42B and 42C, respectively. The refrigerant flows from the bottom to the lower heat transfer tube.

また、ガスクーラ60は、高さ方向(上下方向)に2つに区分けされた上部熱交換部45と下部熱交換部46とを備える。冷媒流路34A,34B,34Cは、それぞれ上部熱交換部45及び下部熱交換部46を順次流通するように形成される。具体的には、冷媒流路34Aは、入口伝熱管40A及び第1中間伝熱管41A1が上部熱交換部45に設けられ、中間ヘッダ44を介して、第2中間伝熱管41A2及び出口伝熱管42Aが下部熱交換部46に設けられている。同様に、冷媒流路34Bは、入口伝熱管40B及び第1中間伝熱管41B1が上部熱交換部45に設けられ、第2中間伝熱管41B2及び出口伝熱管42Bが下部熱交換部46に設けられている。また、冷媒流路34Cは、入口伝熱管40C及び第1中間伝熱管41C1が上部熱交換部45に設けられ、第2中間伝熱管41C2及び出口伝熱管42Cが下部熱交換部46に設けられている。   The gas cooler 60 includes an upper heat exchange unit 45 and a lower heat exchange unit 46 which are divided into two in the height direction (vertical direction). The refrigerant flow paths 34A, 34B, and 34C are formed so as to flow through the upper heat exchange unit 45 and the lower heat exchange unit 46, respectively. Specifically, in the refrigerant flow path 34A, the inlet heat transfer tube 40A and the first intermediate heat transfer tube 41A1 are provided in the upper heat exchange unit 45, and the second intermediate heat transfer tube 41A2 and the outlet heat transfer tube 42A are interposed via the intermediate header 44. Is provided in the lower heat exchange section 46. Similarly, in the refrigerant flow path 34B, the inlet heat transfer tube 40B and the first intermediate heat transfer tube 41B1 are provided in the upper heat exchange unit 45, and the second intermediate heat transfer tube 41B2 and the outlet heat transfer tube 42B are provided in the lower heat exchange unit 46. ing. The refrigerant flow path 34C includes an inlet heat transfer tube 40C and a first intermediate heat transfer tube 41C1 provided in the upper heat exchange unit 45, and a second intermediate heat transfer tube 41C2 and an outlet heat transfer tube 42C provided in the lower heat exchange unit 46. Yes.

この実施形態では、伝熱管群33は、フィンプレート30に2列6段に挿通され、各冷媒流路34A,34B,34Cの入口伝熱管40A,40B,40Cは、出口伝熱管42A,42B,42Cよりも風下側の列に配置されるため、伝熱管を流れる冷媒と熱交換した際に空気が有する熱の影響を抑えることができ、冷媒出口温度の上昇を抑制できる。   In this embodiment, the heat transfer tube group 33 is inserted into the fin plate 30 in two rows and six stages, and the inlet heat transfer tubes 40A, 40B, and 40C of the refrigerant flow paths 34A, 34B, and 34C are connected to the outlet heat transfer tubes 42A, 42B, Since it is arranged in a row on the leeward side than 42C, it is possible to suppress the influence of the heat of the air when heat is exchanged with the refrigerant flowing through the heat transfer tubes, and it is possible to suppress an increase in the refrigerant outlet temperature.

次に、この実施形態の変形例について説明する。図6及び図7は、変形例にかかるガスクーラを示す模式図である。これらガスクーラ65,70において、上記したガスクーラ19,60と同一の構成については同一の符号を付して説明を省略する。ガスクーラ65は、図6に示すように、冷媒流路34A,34B,34Cは、第1中間伝熱管41A1,41B1,41C1と第2中間伝熱管41A2,41B2,41C2とがそれぞれ連結管51A,51B,51Cを介して接続されている。この構成では、中間ヘッダ44が不要となるため、ガスクーラ65の小型化を実現できる。   Next, a modification of this embodiment will be described. 6 and 7 are schematic views showing a gas cooler according to a modification. In these gas coolers 65 and 70, the same components as those of the gas coolers 19 and 60 described above are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 6, in the gas cooler 65, the refrigerant flow paths 34A, 34B, and 34C include the first intermediate heat transfer tubes 41A1, 41B1, and 41C1 and the second intermediate heat transfer tubes 41A2, 41B2, and 41C2, respectively. , 51C. In this configuration, the intermediate header 44 is not necessary, so that the gas cooler 65 can be downsized.

また、入口伝熱管40A,40B,40Cと出口伝熱管42A,42B,42Cとが隣り合わず、各冷媒流路34A,34B,34がそれぞれ冷媒を上段の伝熱管から下段の伝熱管に流すように構成されていれば、各伝熱管の配置構成は適宜変更が可能である。例えば、ガスクーラ70では、図7に示すように、入口伝熱管40A,40B,40Cが、すべて風下側の列に設けられるわけではなく、1本の入口伝熱管40Bを風上側の列の最上段に設けてもよい。また、出口伝熱管42A,42B,42Cについても、すべて風上側の列に設ける必要はなく、1本の出口伝熱管42Bを風下側の列の最下段に設けてもよい。この変形例に係るガスクーラ70は、上記したガスクーラ65と同様に、中間ヘッダ44を設けることなく、第1中間伝熱管41A1,41B1,41C1と第2中間伝熱管41A2,41B2,41C2とを連結管52A,52B,52Cを介して接続されている。この構成においても、連結管52A,52B,52Cの代わりに中間ヘッダ44を設けても良い。   In addition, the inlet heat transfer tubes 40A, 40B, and 40C and the outlet heat transfer tubes 42A, 42B, and 42C are not adjacent to each other, and the refrigerant flow paths 34A, 34B, and 34 flow the refrigerant from the upper heat transfer tube to the lower heat transfer tube, respectively. If it is comprised, the arrangement | positioning structure of each heat exchanger tube can be changed suitably. For example, in the gas cooler 70, as shown in FIG. 7, the inlet heat transfer tubes 40A, 40B, and 40C are not all provided in the leeward row, but the single inlet heat transfer tube 40B is placed at the uppermost stage in the leeward row. May be provided. Further, the outlet heat transfer tubes 42A, 42B, and 42C do not have to be provided in the leeward row, and one outlet heat transfer tube 42B may be provided in the lowermost row of the leeward row. Similarly to the gas cooler 65 described above, the gas cooler 70 according to this modification connects the first intermediate heat transfer tubes 41A1, 41B1, 41C1 and the second intermediate heat transfer tubes 41A2, 41B2, 41C2 without providing the intermediate header 44. They are connected via 52A, 52B, and 52C. Also in this configuration, an intermediate header 44 may be provided instead of the connecting pipes 52A, 52B, and 52C.

10 冷凍サイクル装置
15 冷媒回路
16 圧縮機
19、50、60、65,70 ガスクーラ(放熱器)
20 膨張弁(減圧装置)
28 蒸発器(負荷側熱交換器)
30 フィンプレート
33 伝熱管群
34A、34B、34C 冷媒流路
36 入口ヘッダ
38 出口ヘッダ
40A、40B、40C 入口伝熱管
41A1、41B1、41C1 第1中間伝熱管(中間伝熱管)
41A2、41B2、41C2 第2中間伝熱管(中間伝熱管)
42A、42B、42C 出口伝熱管
44 中間ヘッダ
45 上部熱交換部(熱交換部)
46 下部熱交換部(熱交換部)
DESCRIPTION OF SYMBOLS 10 Refrigeration cycle apparatus 15 Refrigerant circuit 16 Compressor 19, 50, 60, 65, 70 Gas cooler (heat radiator)
20 Expansion valve (pressure reduction device)
28 Evaporator (load-side heat exchanger)
30 Fin plate 33 Heat transfer tube group 34A, 34B, 34C Refrigerant flow path 36 Inlet header 38 Outlet header 40A, 40B, 40C Inlet heat transfer tube 41A1, 41B1, 41C1 First intermediate heat transfer tube (intermediate heat transfer tube)
41A2, 41B2, 41C2 Second intermediate heat transfer tube (intermediate heat transfer tube)
42A, 42B, 42C Outlet heat transfer tube 44 Intermediate header 45 Upper heat exchange part (heat exchange part)
46 Lower heat exchange section (heat exchange section)

Claims (7)

超臨界圧力に昇圧された冷媒を放熱する放熱器であって、
上下方向に延在し、所定の間隔で配置される複数のフィンプレートと、前記フィンプレートに多段に挿通される伝熱管群により並列に形成される複数の冷媒流路とを備え、
複数の前記冷媒流路は、それぞれ、前記フィンプレートの上部に設けられる入口伝熱管と、前記フィンプレートの下部に設けられる出口伝熱管と、前記入口伝熱管と前記出口伝熱管との間に設けられる中間伝熱管とを備え、該中間伝熱管が、前記入口伝熱管にU字管を介して連なる第1中間伝熱管と、前記出口伝熱管にU字管を介して連なる第2中間伝熱管とを備えた構成とし、
一の冷媒流路の前記入口伝熱管及び前記第1中間伝熱管の下方に、他の冷媒流路の前記入口伝熱管及び前記第1中間伝熱管が設けられ、
一の冷媒流路の前記第2中間伝熱管及び前記出口伝熱管の下方に、他の冷媒流路の前記第2中間伝熱管及び前記出口伝熱管が設けられたことを特徴とする放熱器。
A radiator that dissipates refrigerant that has been boosted to supercritical pressure,
A plurality of fin plates extending in the vertical direction and arranged at a predetermined interval; and a plurality of refrigerant flow paths formed in parallel by heat transfer tube groups inserted into the fin plates in multiple stages,
The plurality of refrigerant flow paths are respectively provided between an inlet heat transfer tube provided at an upper portion of the fin plate, an outlet heat transfer tube provided at a lower portion of the fin plate, and the inlet heat transfer tube and the outlet heat transfer tube. A first intermediate heat transfer tube connected to the inlet heat transfer tube via a U-shaped tube, and a second intermediate heat transfer tube connected to the outlet heat transfer tube via a U-shaped tube. And a configuration comprising
Below the inlet heat transfer tube and the first intermediate heat transfer tube of one refrigerant flow path, the inlet heat transfer tube and the first intermediate heat transfer tube of another refrigerant flow path are provided,
A heat radiator, wherein the second intermediate heat transfer tube and the outlet heat transfer tube of another refrigerant flow path are provided below the second intermediate heat transfer tube and the outlet heat transfer pipe of one refrigerant flow path .
前記冷媒流路は、それぞれ前記冷媒を上段の伝熱管から下段の伝熱管へ流すことを特徴とする請求項1に記載の放熱器。   2. The radiator according to claim 1, wherein each of the refrigerant flow paths causes the refrigerant to flow from an upper heat transfer tube to a lower heat transfer tube. 上下に区分けされた複数の熱交換部を備え、
前記冷媒流路は、それぞれ上方の熱交換部から下方の熱交換部へ向けて、前記冷媒を順次流すことを特徴とする請求項1または2に記載の放熱器。
It has a plurality of heat exchanging parts divided into upper and lower parts,
3. The radiator according to claim 1, wherein each of the refrigerant flow paths sequentially causes the refrigerant to flow from an upper heat exchange section toward a lower heat exchange section.
冷媒流路の前記第1中間伝熱管及び前記第2中間伝熱管がすべて接続される中間ヘッダを備えたことを特徴とする請求項1〜3のいずれか一項に記載の放熱器。 The radiator according to any one of claims 1 to 3, further comprising an intermediate header to which the first intermediate heat transfer tube and the second intermediate heat transfer tube of each refrigerant channel are all connected. 前記伝熱管群は、前記フィンプレートに多列多段に挿通され、前記入口伝熱管及び前記第2中間伝熱管は、それぞれ、前記第1中間伝熱管及び前記出口伝熱管よりも風下側の列に配置されることを特徴とする請求項1〜4のいずれか一項に記載の放熱器。 The heat transfer tube group is inserted into the fin plate in multiple rows and multiple stages, and the inlet heat transfer tube and the second intermediate heat transfer tube are arranged in a row on the leeward side of the first intermediate heat transfer tube and the outlet heat transfer tube , respectively. It arrange | positions, The heat radiator as described in any one of Claims 1-4 characterized by the above-mentioned. 前記冷媒は、二酸化炭素冷媒であることを特徴とする請求項1〜5のいずれか一項に記載の放熱器。   The radiator according to any one of claims 1 to 5, wherein the refrigerant is a carbon dioxide refrigerant. 請求項1〜6のいずれか一項に記載の放熱器と、冷媒を超臨界圧力まで昇圧する圧縮機と、減圧装置と、負荷側熱交換器とを配管接続した冷媒回路を備えることを特徴とする冷凍サイクル装置。   A radiator circuit comprising: the radiator according to any one of claims 1 to 6; a compressor that boosts a refrigerant to a supercritical pressure; a decompressor; and a load-side heat exchanger. A refrigeration cycle device.
JP2014198882A 2014-09-29 2014-09-29 Radiator and refrigeration cycle device Active JP6456088B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014198882A JP6456088B2 (en) 2014-09-29 2014-09-29 Radiator and refrigeration cycle device
EP15186759.5A EP3002537B1 (en) 2014-09-29 2015-09-24 Radiator and refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198882A JP6456088B2 (en) 2014-09-29 2014-09-29 Radiator and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP2016070566A JP2016070566A (en) 2016-05-09
JP6456088B2 true JP6456088B2 (en) 2019-01-23

Family

ID=54199071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198882A Active JP6456088B2 (en) 2014-09-29 2014-09-29 Radiator and refrigeration cycle device

Country Status (2)

Country Link
EP (1) EP3002537B1 (en)
JP (1) JP6456088B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531063B2 (en) * 2016-04-26 2019-06-12 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner
KR20190118598A (en) * 2017-02-13 2019-10-18 에밥코 인코포레이티드 Multi Section Euro Condenser
EP3580505A4 (en) * 2017-02-13 2020-12-16 Evapco, Inc. Multi-cross sectional fluid path condenser
CN110260416B (en) * 2019-05-28 2021-04-16 青岛海信日立空调系统有限公司 Partitioned heat exchanger assembly, air conditioner and control method of partitioned heat exchanger assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208822A (en) 1994-01-21 1995-08-11 Mitsubishi Heavy Ind Ltd Heat pump type refrigerating cycle
JP4540815B2 (en) * 2000-08-28 2010-09-08 株式会社日本クライメイトシステムズ Heat exchanger
JP2005257094A (en) * 2004-03-09 2005-09-22 Sanyo Electric Co Ltd Heat exchanger
JP2005308346A (en) * 2004-04-23 2005-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit
JP2007170718A (en) * 2005-12-20 2007-07-05 Denso Corp Heat exchanger
CA2611252C (en) * 2006-11-21 2011-06-28 Sanyo Electric Co., Ltd. Refrigerated showcase with fin-and-tube type heat exchanger
JP4710869B2 (en) 2007-05-08 2011-06-29 三菱電機株式会社 Air conditioner
WO2013084508A1 (en) * 2011-12-07 2013-06-13 パナソニック株式会社 Fin tube-type heat exchanger

Also Published As

Publication number Publication date
JP2016070566A (en) 2016-05-09
EP3002537B1 (en) 2019-06-19
EP3002537A1 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
JP5288020B1 (en) Refrigeration equipment
WO2014199501A1 (en) Air-conditioning device
JP2009133624A (en) Refrigerating/air-conditioning device
JP2008281326A (en) Refrigerating unit and heat exchanger used for the refrigerating unit
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JP6456088B2 (en) Radiator and refrigeration cycle device
JP2010501826A (en) Air conditioner for communication equipment
JP2011012828A (en) Refrigerating device
WO2017179631A1 (en) Condenser, and turbo-refrigerating apparatus equipped with same
EP3141857B1 (en) Radiator and supercritical pressure refrigeration cycle using the same
US11754320B2 (en) Refrigeration system with multiple heat absorbing heat exchangers
ES2330128T3 (en) TWO TEMPERATURE REFRIGERATION CIRCUIT.
JP6176470B2 (en) refrigerator
JP2012102992A (en) Parallel flow multi-stage condensation subcooler for outdoor unit
US8820111B2 (en) De-super heater chiller system with contra flow and refrigerating fan grill
KR20090045473A (en) A condenser
JP2013019581A (en) Refrigeration cycle apparatus
JP5485602B2 (en) Refrigeration system
KR101624622B1 (en) Apparatus for supplying warm water utilizing an air source heat pump
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP2008267731A (en) Air-conditioning device
JP6291684B2 (en) Refrigeration equipment
KR20210058652A (en) Heat exchanger and air conditioner having the same
JP4814823B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181218

R150 Certificate of patent or registration of utility model

Ref document number: 6456088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150