[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6451974B2 - Curable composition and cured product thereof - Google Patents

Curable composition and cured product thereof Download PDF

Info

Publication number
JP6451974B2
JP6451974B2 JP2013151609A JP2013151609A JP6451974B2 JP 6451974 B2 JP6451974 B2 JP 6451974B2 JP 2013151609 A JP2013151609 A JP 2013151609A JP 2013151609 A JP2013151609 A JP 2013151609A JP 6451974 B2 JP6451974 B2 JP 6451974B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
compound
mass
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013151609A
Other languages
Japanese (ja)
Other versions
JP2015021091A (en
Inventor
真実 木村
真実 木村
小林 厚子
厚子 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2013151609A priority Critical patent/JP6451974B2/en
Publication of JP2015021091A publication Critical patent/JP2015021091A/en
Application granted granted Critical
Publication of JP6451974B2 publication Critical patent/JP6451974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、硬化物における破壊靱性と機械強度とに優れる硬化性組成物、及びその硬化物に関する。   The present invention relates to a curable composition excellent in fracture toughness and mechanical strength in a cured product, and a cured product thereof.

強化繊維複合材料は、軽量でありながら耐熱性や機械強度に優れる特徴が注目され、自動車や航空機の筐体或いは各種部材をはじめ、様々な構造体用途での利用が拡大している。繊維強化複合材料のマトリックス樹脂には、強化繊維への含浸性に優れること、硬化性が高くありながらもボイド等の発生がないこと、硬化物における耐熱性、機械強度及び破壊靱性に優れることなど様々な要求性能があり、これら各種性能のバランスに優れる樹脂材料の開発が求められている。   Reinforced fiber composite materials are attracting attention because they are lightweight but have excellent heat resistance and mechanical strength, and their use in various structural applications such as automobile and aircraft casings and various members is expanding. The matrix resin of the fiber reinforced composite material is excellent in impregnation into reinforcing fibers, has high curability but does not generate voids, and has excellent heat resistance, mechanical strength and fracture toughness in the cured product, etc. There are various required performances, and there is a demand for the development of resin materials that have an excellent balance of these various performances.

強化繊維複合材料用のマトリックス樹脂として、例えば、芳香族ジイソシアネート化合物、芳香族エポキシ化合物のメタクリル酸エステル、スチレン、水酸基価56mgKOH/gの3官能ポリエーテルポリオールと水酸基価280mgKOH/gのポリエーテルジオールとを質量比7/3で含有する樹脂組成物が知られている(特許文献1参照。)このような樹脂組成物は硬化物における耐衝撃性には優れるものの、靱性が低く硬脆いものであった。   Examples of matrix resins for reinforced fiber composite materials include aromatic diisocyanate compounds, methacrylic esters of aromatic epoxy compounds, styrene, trifunctional polyether polyols having a hydroxyl value of 56 mgKOH / g, and polyether diols having a hydroxyl value of 280 mgKOH / g Is known (see Patent Document 1). Such a resin composition is excellent in impact resistance in a cured product, but has low toughness and is hard and brittle. It was.

特開平5−170863号公報JP-A-5-170863

従って、本発明が解決しようとする課題は、硬化物における靱性及び機械強度に優れる硬化性組成物、及びその硬化物を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a curable composition excellent in toughness and mechanical strength in a cured product, and a cured product thereof.

本発明者らは上記課題を解決するため鋭意検討した結果、脂肪族ポリイソシアネート化合物、ジオール化合物、芳香族系エポキシ化合物のポリ(メタ)アクリレート、重合性不飽和結合含有単量体、及び重合開始剤を必須の成分とする硬化性組成物は、その硬化物が靱性と機械強度との両方に優れることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an aliphatic polyisocyanate compound, a diol compound, a poly (meth) acrylate of an aromatic epoxy compound, a polymerizable unsaturated bond-containing monomer, and polymerization initiation The curable composition which has an agent as an essential component has found that the cured product is excellent in both toughness and mechanical strength, and has completed the present invention.

即ち、本発明は、脂肪族ポリイソシアネート化合物(A)、ジオール化合物(B)、芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)、重合性不飽和結合含有単量体(D)、及び重合開始剤(E)を必須の成分とすることを特徴とする硬化性組成物に関する。   That is, the present invention comprises an aliphatic polyisocyanate compound (A), a diol compound (B), an aromatic epoxy compound poly (meth) acrylate (C), a polymerizable unsaturated bond-containing monomer (D), and The present invention relates to a curable composition comprising a polymerization initiator (E) as an essential component.

本発明は更に、前記硬化性組成物を硬化させてなる硬化物に関する。   The present invention further relates to a cured product obtained by curing the curable composition.

本発明は更に、前記硬化性組成物と、強化繊維とを必須成分とする繊維強化複合材料に関する。   The present invention further relates to a fiber-reinforced composite material containing the curable composition and reinforcing fibers as essential components.

本発明は更に、前記硬化性組成物の硬化物と強化繊維とを必須成分とする繊維強化樹脂成形品に関する。   The present invention further relates to a fiber reinforced resin molded product comprising a cured product of the curable composition and reinforcing fibers as essential components.

本発明は更に、前記硬化性組成物の硬化物と強化繊維とを必須成分とする自動車部材に関する。   The present invention further relates to an automobile member comprising a cured product of the curable composition and reinforcing fibers as essential components.

本発明によれば、硬化物における靱性と機械強度とに優れる硬化性組成物、及びその硬化物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the curable composition excellent in the toughness and mechanical strength in hardened | cured material, and its hardened | cured material can be provided.

以下、本発明を詳細に説明する。
本発明の硬化性組成物は、脂肪族ポリイソシアネート化合物(A)、ジオール化合物(B)、芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)、重合性不飽和結合含有単量体(D)、及び重合開始剤(E)を必須の成分とすることを特徴とする。
Hereinafter, the present invention will be described in detail.
The curable composition of the present invention comprises an aliphatic polyisocyanate compound (A), a diol compound (B), an aromatic epoxy compound poly (meth) acrylate (C), a polymerizable unsaturated bond-containing monomer (D ) And polymerization initiator (E) as essential components.

このような硬化性組成物は、前記脂肪族ポリイソシアネート化合物(A)のイソシアネート基と、前記ジオール化合物(B)或いは芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)が含有する水酸基とのウレタン結合形成反応と、前記芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)及び重合性不飽和結合含有単量体(D)が含有する不飽和結合による重合反応との2種類の反応系により硬化するため、硬化物における機械強度に優れる特徴を有する。更に、ポリイソシアネート化合物として脂肪族ポリイソシアネート化合物(A)を、ポリオール化合物としてジオール化合物(B)を選択的に用いるとにより、機械強度を維持しつつ、靱性にも優れる硬化物を得ることが出来る。   Such a curable composition comprises an isocyanate group of the aliphatic polyisocyanate compound (A) and a hydroxyl group contained in the poly (meth) acrylate (C) of the diol compound (B) or aromatic epoxy compound. Two types of reaction systems, a urethane bond forming reaction and a polymerization reaction by unsaturated bonds contained in the poly (meth) acrylate (C) and the polymerizable unsaturated bond-containing monomer (D) of the aromatic epoxy compound Therefore, the cured product has excellent mechanical strength. Further, by selectively using the aliphatic polyisocyanate compound (A) as the polyisocyanate compound and the diol compound (B) as the polyol compound, a cured product having excellent toughness can be obtained while maintaining the mechanical strength. .

前記脂肪族ポリイソシアネート化合物(A)は前述の通り、脂肪族ポリイソシアネート化合物、即ち、アルキル基又は脂環構造を形成する炭素原子にイソシアネート基が結合した構造を有する化合物であることにより、硬化物における靱性を向上させる効果を奏する。ここで用いる脂肪族ポリイソシアネート化合物(A)は、例えば、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート等の直鎖又は分岐のアルキル型ジイソシアネート化合物;イソホロンジイソシアネート、4,4’−ジシクロへキシルメタンジイソシアネート、水添キシリレンジイソシアネート、ノルボルナンジイソシアネート等の脂環式ジイソシアネート化合物;前記アルキル型ジイソシアネート化合物或いは前記脂環式ジイソシアネート化合物と、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、ポリオキシエチレンジオール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール化合物とを反応させてなるポリオール変性ポリイソシアネート化合物;前記アルキル型ジイソシアネート化合物或いは前記脂環式ジイソシアネート化合物の一部がヌレート環を形成したヌレート変性イソシアネート化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。   As described above, the aliphatic polyisocyanate compound (A) is an aliphatic polyisocyanate compound, that is, a compound having a structure in which an isocyanate group is bonded to a carbon atom forming an alkyl group or an alicyclic structure. There is an effect of improving toughness. Examples of the aliphatic polyisocyanate compound (A) used here include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate. Linear or branched alkyl diisocyanate compound; alicyclic diisocyanate compound such as isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, norbornane diisocyanate; the alkyl diisocyanate compound or the alicyclic Diisocyanate compounds, ethylene glycol, propylene glycol, butanediol, hexanediol, polyoxyethylenediol, polyoxypropyleneglycol A polyol-modified polyisocyanate compound obtained by reacting a polyol compound such as polyoxytetramethylene glycol, glycerin, trimethylolpropane, or pentaerythritol; a part of the alkyl-type diisocyanate compound or the alicyclic diisocyanate compound has a nurate ring Examples thereof include the formed nurate-modified isocyanate compound. These may be used alone or in combination of two or more.

前記各種の脂肪族ポリイソシアネート化合物(A)の中でも、硬化物における靱性と機械強度との両方に優れる硬化性組成物となることから、イソシアネート基含有量が10質量%〜65質量%の範囲であるポリイソシアネート化合物が好ましく、ヘキサメチレンジイソシアネート又はイソホロンジイソシアネート、及びこれらを原料とする変性ポリイソシアネート化合物がより好ましく、ヘキサメチレンジイソシアネート又はイソホロンジイソシアネートが特に好ましい。   Among the various aliphatic polyisocyanate compounds (A), since the curable composition is excellent in both toughness and mechanical strength in the cured product, the isocyanate group content is in the range of 10% by mass to 65% by mass. A certain polyisocyanate compound is preferable, hexamethylene diisocyanate or isophorone diisocyanate, and a modified polyisocyanate compound using these as a raw material are more preferable, and hexamethylene diisocyanate or isophorone diisocyanate is particularly preferable.

本発明では前記ポリイソシアネート化合物(A)と反応させるポリオール化合物としてジオール化合物(B)を選択的に用いることにより、靱性と機械強度のバランスに優れる硬化物を得ることが出来る。   In the present invention, by selectively using the diol compound (B) as a polyol compound to be reacted with the polyisocyanate compound (A), a cured product having an excellent balance between toughness and mechanical strength can be obtained.

前記ジオール化合物(B)は、例えばポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリウレタンジオール、芳香族ジオール等が挙げられる。   Examples of the diol compound (B) include polyether diol, polyester diol, polycarbonate diol, polyurethane diol, and aromatic diol.

前記ポリエーテルジオールは、例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール等のポリオキシアルキレングリコール等が挙げられる。   Examples of the polyether diol include polyoxyalkylene glycols such as polyoxyethylene glycol, polyoxypropylene glycol, and polyoxytetramethylene glycol.

前記ポリエステルジオールは、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオール化合物と、コハク酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、ヘキサヒドロフタル酸、フタル酸等のジカルボン酸化合物とを反応させて得られるポリエステルジオール等が挙げられる。   Examples of the polyester diol include diol compounds such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, neopentylglycol, cyclohexanedimethanol, succinic acid, adipic acid, sebacic acid, maleic acid, fumaric acid, Examples thereof include polyester diols obtained by reacting dicarboxylic acid compounds such as hexahydrophthalic acid and phthalic acid.

前記ポリカーボネートジオールは、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオール化合物と、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジフェニルカーボネート等のカルボニル化剤とを反応させて得られるポリカーボネートジオール等が挙げられる。   The polycarbonate diol is a diol compound such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, neopentyl glycol, cyclohexanedimethanol, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate. And polycarbonate diol obtained by reacting with a carbonylating agent such as

前記ポリウレタンジオールは、例えば、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、4,4’−ジシクロへキシルメタンジイソシアネート、水添キシリレンジイソシアネート、ノルボルナンジイソシアネート等のジイソシアネート化合物と、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオール化合物や、前記ポリエーテルジオール、前記ポリカーボネートジオールとを反応させて得られるポリウレタンジオール等が挙げられる。   Examples of the polyurethane diol include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and isophorone. Diisocyanate compounds such as diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, norbornane diisocyanate, ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, Diol compounds such as neopentyl glycol and cyclohexanedimethanol, and the polyether diol Polyurethane diols obtained by reacting the polycarbonate diol.

前記芳香族ジオールは、例えば、ヒドロキノン、2−メチルヒドロキノン、1,4−ベンゼンジメタノール、3,3’−ビフェニルジオール、4,4’−ビフェニルジオール、ビフェニル−4,4’−ジメタノール、ビスフェノールA、ビスフェノールB、ビスフェノールF、ビスフェノールS、1,4−ナフタレンジオール、1,5−ナフタレンジオール、1,6−ナフタレンジオール、2,6−ナフタレンジオール、2,7−ナフタレンジオール等の芳香族ジオールが挙げられる。   Examples of the aromatic diol include hydroquinone, 2-methylhydroquinone, 1,4-benzenedimethanol, 3,3′-biphenyldiol, 4,4′-biphenyldiol, biphenyl-4,4′-dimethanol, and bisphenol. A, bisphenol B, bisphenol F, bisphenol S, aromatic diols such as 1,4-naphthalenediol, 1,5-naphthalenediol, 1,6-naphthalenediol, 2,6-naphthalenediol, 2,7-naphthalenediol Is mentioned.

以上例示した各種のジオール化合物(B)はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも靱性と機械強度とのバランスに優れる硬化物が得られることから、脂肪族ジオール化合物であることが好ましく、ポリオキシアルキレングリコール又は脂肪族ポリエステルジオールがより好ましく、ポリオキシアルキレングリコールが特に好ましい。   The various diol compounds (B) exemplified above may be used alone or in combination of two or more. Among them, an aliphatic diol compound is preferable, a polyoxyalkylene glycol or an aliphatic polyester diol is more preferable, and a polyoxyalkylene glycol is particularly preferable because a cured product having an excellent balance between toughness and mechanical strength can be obtained.

また、前記ジオール化合物(B)の水酸基価は、硬化性に優れ、強化繊維への含浸性にも優れる硬化性組成物となることから、25〜150mgKOH/gであることが好ましい。また、その数平均分子量(Mn)は750〜4,000の範囲であるものが好ましく、1,500〜2,500範囲であるものが特に好ましい。   Further, the hydroxyl value of the diol compound (B) is preferably 25 to 150 mgKOH / g since it becomes a curable composition having excellent curability and excellent impregnation into reinforcing fibers. The number average molecular weight (Mn) is preferably in the range of 750 to 4,000, and particularly preferably in the range of 1,500 to 2,500.

尚、本願発明において、数平均分子量(Mn)は、下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定される値である。   In the present invention, the number average molecular weight (Mn) is a value measured by gel permeation chromatography (GPC) under the following conditions.

測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids, filtered through a microfilter (50 μl)

本発明では所望の性能に応じて、前記ジオール化合物(B)と併せて3官能以上のポリオール化合物(B’)を併用しても良い。この場合、本発明の効果が十分に発現し、靱性と機械強度とのバランスに優れる硬化物が得られることから、全ポリオール成分の合計、即ち、前記ジオール化合物(B)と前記3官能以上のポリオール化合物(B’)との合計における前記ジオール化合物(B)の含有量は50質量%以上であることが好ましく、80質量%以上であることがより好ましい。   In the present invention, a tri- or higher functional polyol compound (B ′) may be used in combination with the diol compound (B) according to the desired performance. In this case, since the effect of the present invention is sufficiently exhibited and a cured product having an excellent balance between toughness and mechanical strength is obtained, the total of all polyol components, that is, the diol compound (B) and the trifunctional or higher functional group. The content of the diol compound (B) in the total with the polyol compound (B ′) is preferably 50% by mass or more, and more preferably 80% by mass or more.

前記ポリオール化合物(B’)は、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリウレタンポリオール、芳香族ポリオール、アクリルポリオール、フッ素化ポリオール等が挙げられる。   Examples of the polyol compound (B ′) include polyether polyol, polyester polyol, polyurethane polyol, aromatic polyol, acrylic polyol, and fluorinated polyol.

前記ポリエーテルポリオールは、例えばポリオキシエチレントリオール、ポリオキシプロピレントリオール、ポリオキシテトラメチレントリオール等のポリオキシアルキレントリオール等が挙げられる。   Examples of the polyether polyol include polyoxyalkylene triols such as polyoxyethylene triol, polyoxypropylene triol, and polyoxytetramethylene triol.

前記ポリエステルポリオールは、例えば、前記ポリエステルジオールにおいて原料の一部にグリセリン、トリメチロールプロパン、ペンタエリスリトール等の3官能以上のポリオール化合物又はトリメリット酸等の3官能以上のポリカルボン酸化合物を用いて得られるポリエステルポリオール等が挙げられる。   The polyester polyol is obtained by using, for example, a trifunctional or higher functional polyol compound such as glycerin, trimethylolpropane, pentaerythritol, or a trifunctional or higher functional polycarboxylic acid compound such as trimellitic acid as a part of the raw material in the polyester diol. And polyester polyols.

前記ポリウレタンポリオールは、例えば、ポリウレタンジオールにおいて原料の一部にグリセリン、トリメチロールプロパン、ペンタエリスリトール等の3官能以上のポリオール化合物を用いて得られるポリウレタンポリオール等が挙げられる。   Examples of the polyurethane polyol include polyurethane polyols obtained by using a tri- or higher functional polyol compound such as glycerin, trimethylolpropane, pentaerythritol as a part of the raw material in polyurethane diol.

前記アクリルポリオールは、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有アクリレート化合物と、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート等の(メタ)アクリル酸エステルとの共重合体であるアクリルポリオールが挙げられる。   Examples of the acrylic polyol include hydroxyl group-containing acrylate compounds such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) ) Acrylic polyol which is a copolymer with (meth) acrylic acid ester such as acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, etc. Can be mentioned.

前記フッ素化ポリオールは、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有アクリレート化合物と、フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン等のフッ素含有ビニル化合物との共重合体であるフッ素化ポリオールが挙げられる。   Examples of the fluorinated polyol include hydroxyl group-containing acrylate compounds such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, and hexafluoro. A fluorinated polyol which is a copolymer with a fluorine-containing vinyl compound such as propylene can be mentioned.

これら3官能以上のポリオール化合物(B’)はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。また、前記3官能以上のポリオール化合物(B’)の数平均分子量(Mn)は、硬化性に優れ、強化繊維への含浸性にも優れる硬化性組成物となることから750〜4,000の範囲であるものが好ましく、1,500〜2,500範囲であるものが特に好ましい。   These trifunctional or higher functional polyol compounds (B ′) may be used alone or in combination of two or more. Further, the number average molecular weight (Mn) of the tri- or higher functional polyol compound (B ′) is 750 to 4,000 because it is excellent in curability and is excellent in impregnation into reinforcing fibers. Those in the range are preferred, and those in the range of 1,500 to 2,500 are particularly preferred.

前記芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)は、分子構造中に重合性基である(メタ)アクリロイル基と、イソシアネート基と反応する水酸基との両方を有することから、硬化物における架橋密度を向上させ機械強度を向上させる効果を奏する。   The poly (meth) acrylate (C) of the aromatic epoxy compound has both a (meth) acryloyl group that is a polymerizable group and a hydroxyl group that reacts with an isocyanate group in the molecular structure. There is an effect of improving the crosslink density and mechanical strength.

前記芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)は、芳香族系エポキシ樹脂と(メタ)アクリル酸とを反応させて得られるものであり、ここで用いる芳香族エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビスフェノール化合物のノボラック型エポキシ樹脂、複数種のフェノール性水酸基含有化合物を原料とする混合ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン、フェノールアラルキル型又はナフトールアラルキル型のエポキシ樹脂、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)アルカン等のナフタレン骨格含有エポキシ樹脂;ビフェニル型エポキシ樹脂;フェノール性水酸基含有化合物と芳香族アルデヒドとの縮合物のエポキシ化物;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂等が挙げられる。   The poly (meth) acrylate (C) of the aromatic epoxy compound is obtained by reacting an aromatic epoxy resin and (meth) acrylic acid, and the aromatic epoxy resin used here is, for example, Bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol B type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolak type epoxy resin, bisphenol compound Novolak epoxy resins, mixed novolac epoxy resins such as mixed novolac epoxy resins made from a plurality of phenolic hydroxyl group-containing compounds, diglycidyloxynaphthalene, phenol aralkyl type or naphthol Aralkyl type epoxy resin, naphthalene skeleton-containing epoxy resin such as 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane; biphenyl type epoxy resin; condensation of phenolic hydroxyl group-containing compound and aromatic aldehyde Epoxidized product of the product; triphenylmethane type epoxy resin; tetraphenylethane type epoxy resin; dicyclopentadiene-phenol addition reaction type epoxy resin.

これら芳香族系エポキシ化合物のポリ(メタ)アクリレート(C))はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。なかでも、より機械強度に優れる硬化物が得られることからビスフェノール型エポキシ樹脂又はノボラック型エポキシ樹脂の(メタ)アクリル酸エステルがより好ましく、更に、破壊靱性と機械強度とのバランスに優れる硬化物が得られることからビスフェノール型エポキシ樹脂の(メタ)アクリル酸エステルが特に好ましい。   These aromatic epoxy compound poly (meth) acrylates (C)) may be used alone or in combination of two or more. Of these, a bisphenol type epoxy resin or a novolac type epoxy resin (meth) acrylate ester is more preferable because a cured product having more excellent mechanical strength is obtained, and a cured product having an excellent balance between fracture toughness and mechanical strength. Since it is obtained, a (meth) acrylic ester of a bisphenol type epoxy resin is particularly preferable.

前記芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)は、強化繊維への含浸性に優れる硬化性組成物となることから、その数平均分子量(Mn)は300〜2,000の範囲であることが好ましく、400〜1,500の範囲であることがより好ましい。   Since the poly (meth) acrylate (C) of the aromatic epoxy compound becomes a curable composition excellent in impregnation into reinforcing fibers, its number average molecular weight (Mn) is in the range of 300 to 2,000. It is preferable that it is in the range of 400 to 1,500.

また、硬化性に優れ、硬化物における破壊靱性及び機械強度に優れる硬化性組成物となることから、前記芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)が含有する水酸基のモル数(x)と、重合性不飽和結合のモル数(y)との比[(x)/(y)]は、0.9〜3.0の範囲であることが好ましい。   Moreover, since it becomes the curable composition which is excellent in sclerosis | hardenability and is excellent in the fracture toughness and mechanical strength in hardened | cured material, the number of moles of the hydroxyl group which poly (meth) acrylate (C) of the said aromatic epoxy compound contains (x ) And the number of moles of polymerizable unsaturated bonds (y) [(x) / (y)] is preferably in the range of 0.9 to 3.0.

前記芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)が含有する水酸基のモル数(x)と、重合性不飽和結合のモル数(y)との比[(x)/(y)]は、JIS K 0070に従って測定されるポリ(メタ)アクリレート(C)の水酸基価と、13C−NMR測定から算出されるポリ(メタ)アクリレート(C)の重合性不飽和結合量とから直接計算する方法、又は、前記ポリ(メタ)アクリレート(C)の分子設計から計算する方法のどちらで算出しても良い。前記ポリ(メタ)アクリレート(C)の分子設計から計算する場合は、例えば、ポリ(メタ)アクリレート(C)の原料であるエポキシ基含有化合物に(メタ)アクリル酸を付加させることにより、エポキシ基含有化合物中のエポキシ基1つに対し(メタ)アクリロイル基が1つ付加すると共に、水酸基が1つ生成することから、エポキシ基含有化合物中の水酸基含有量及びエポキシ基含有量と、(メタ)アクリル酸の付加量から理論計算値を算出することが出来る。   Ratio [(x) / (y)] of the number of moles of hydroxyl groups (x) contained in the poly (meth) acrylate (C) of the aromatic epoxy compound and the number of moles of polymerizable unsaturated bonds (y) Is directly calculated from the hydroxyl value of poly (meth) acrylate (C) measured according to JIS K 0070 and the amount of polymerizable unsaturated bonds of poly (meth) acrylate (C) calculated from 13C-NMR measurement. You may calculate by either the method or the method of calculating from the molecular design of the said poly (meth) acrylate (C). When calculating from the molecular design of the poly (meth) acrylate (C), for example, by adding (meth) acrylic acid to an epoxy group-containing compound that is a raw material of the poly (meth) acrylate (C), an epoxy group Since one (meth) acryloyl group is added to one epoxy group in the containing compound and one hydroxyl group is generated, the hydroxyl group content and the epoxy group content in the epoxy group-containing compound, and (meth) Theoretical calculation value can be calculated from the added amount of acrylic acid.

前記重合性不飽和結合含有単量体(D)は分子量が低く硬化性組成物の強化繊維への含浸性を向上させる効果と、重合性不飽和結合濃度が比較的高く硬化性組成物の硬化性を向上させる効果を奏する。ここで用いる重合性不飽和結合含有単量体(D)は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリレート化合物;   The polymerizable unsaturated bond-containing monomer (D) has an effect of improving the impregnation property of the curable composition with a low molecular weight and a relatively high polymerizable unsaturated bond concentration and curing of the curable composition. Has the effect of improving the performance. The polymerizable unsaturated bond-containing monomer (D) used here is, for example, a hydroxyl group-containing (meth) acrylate compound such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate;

スチレン、メチルスチレン、ハロゲン化スチレン、ジビニルベンゼン等のスチレン化合物;   Styrene compounds such as styrene, methylstyrene, halogenated styrene, divinylbenzene;

メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、モルホリン(メタ)アクリレート、フェニルフェノキシエチルアクリレート、フェニルベンジル(メタ)アクリレート等の単官能(メタ)アクリレート化合物;   Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl ( Monofunctional (meth) acrylate compounds such as (meth) acrylate, phenoxyethyl (meth) acrylate, morpholine (meth) acrylate, phenylphenoxyethyl acrylate, phenylbenzyl (meth) acrylate;

エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、1,4−シクロヘキサンジメタノールジ(メタ)アクリレート等のジ(メタ)アクリレート化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種以上を併用しても良い。   Ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol di (meth) acrylate, 1,4 -Di (meth) acrylate compounds such as cyclohexanedimethanol di (meth) acrylate and the like. These may be used alone or in combination of two or more.

これらの中でも、強化繊維への含浸性に優れ、硬化物における破壊靱性及び機械強度に優れる硬化性組成物となることから、スチレン化合物が好ましい。   Among these, a styrene compound is preferable because it is excellent in impregnation into reinforcing fibers and becomes a curable composition excellent in fracture toughness and mechanical strength in a cured product.

本発明で用いる重合開始剤(E)は、例えば、例えば、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−〔4−(2−ヒドロキシエトキシ)フェニル〕−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、チオキサントン及びチオキサントン誘導体、2,2′−ジメトキシ−1,2−ジフェニルエタン−1−オン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−1−プロパノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。   Examples of the polymerization initiator (E) used in the present invention include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 1- [4- (2-hydroxyethoxy). ) Phenyl] -2-hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2′-dimethoxy-1,2-diphenylethane-1-one, 2,4,6-trimethyl Benzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethyl And amino-1- (4-morpholinophenyl) -butan-1-one. These may be used alone or in combination of two or more.

これらラジカル重合開始剤の市販品は、例えば、「イルガキュア−184」、「イルガキュア−149」、「イルガキュア−261」、「イルガキュア−369」、「イルガキュア−500」、「イルガキュア−651」、「イルガキュア−754」、「イルガキュア−784」、「イルガキュア−819」、「イルガキュア−907」、「イルガキュア−1116」、「イルガキュア−1664」、「イルガキュア−1700」、「イルガキュア−1800」、「イルガキュア−1850」、「イルガキュア−2959」、「イルガキュア−4043」、「ダロキュア−1173」(チバスペシャルティーケミカルズ社製)、「ルシリンTPO」(ビーエーエスエフ社製)、「カヤキュア−DETX」、「カヤキュア−MBP」、「カヤキュア−DMBI」、「カヤキュア−EPA」、「カヤキュア−OA」(日本化薬株式会社製)、「バイキュア−10」、「バイキュア−55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア−PDO」、「クオンタキュア−ITX」、「クオンタキュア−EPD」(ワードブレンキンソップ社製)等が挙げられる。   Commercially available products of these radical polymerization initiators include, for example, “Irgacure-184”, “Irgacure-149”, “Irgacure-261”, “Irgacure-369”, “Irgacure-500”, “Irgacure-651”, “Irgacure”. -754 "," Irgacure-784 "," Irgacure-819 "," Irgacure-907 "," Irgacure-1116 "," Irgacure-1664 "," Irgacure-1700 "," Irgacure-1800 "," Irgacure-1850 " ”,“ Irgacure-2959 ”,“ Irgacure-4043 ”,“ Darocur-1173 ”(manufactured by Ciba Specialty Chemicals),“ Lucirin TPO ”(manufactured by BASF),“ Kayacure-DETX ”,“ Kayacure-MBP ” , "Kayaki “A-DMBI”, “Kayacure-EPA”, “Kayacure-OA” (manufactured by Nippon Kayaku Co., Ltd.), “Vicure-10”, “Bicure-55” (manufactured by Stofa Chemical), “Trigonal P1” (Akzo) "Sandray 1000" (Sands), "Deep" (Apjon), "Quantacure-PDO", "Quantacure-ITX", "Quantacure-EPD" (WordBrenkinsop) ) And the like.

本発明の硬化性組成物における各成分の配合割合について、前記ジオール化合物(B)、前記ポリオール化合物(B’)、或いは芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)が含有する水酸基の合計のモル数(OH)と、前記脂肪族ポリイソシアネート化合物(A)が含有するイソシアネート基のモル数(NCO)との比[(OH)/(NCO)]は、0.9/1.0〜1.0/1.0の割合であることが、硬化性に優れる組成物となることから好ましい。   About the mixture ratio of each component in the curable composition of this invention, the said diol compound (B), the said polyol compound (B '), or the hydroxyl group which the poly (meth) acrylate (C) of an aromatic epoxy compound contains The ratio [(OH) / (NCO)] of the total number of moles (OH) and the number of moles of isocyanate groups (NCO) contained in the aliphatic polyisocyanate compound (A) is 0.9 / 1.0. It is preferable that it is a ratio of -1.0 / 1.0 from becoming a composition excellent in sclerosis | hardenability.

前記ポリオール化合物(B)と前記芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)との質量比[(B)/(C)]は、硬化物における靱性と機械強度とのバランスに一層優れることから、5/95〜30/70の範囲にあることが好ましい。   The mass ratio [(B) / (C)] of the polyol compound (B) and the poly (meth) acrylate (C) of the aromatic epoxy compound is more excellent in the balance between toughness and mechanical strength in the cured product. Therefore, it is preferably in the range of 5/95 to 30/70.

前記重合性不飽和結合含有単量体(D)の配合量は、強化繊維への含浸性に優れ、かつ、硬化性に優れる組成物となることから、芳香族系エポキシ化合物のポリ(メタ)アクリレート(C)100質量部に対し、25〜150質量部の範囲であることが好ましく、50〜100質量部の範囲であることがより好ましい。   Since the compounding amount of the polymerizable unsaturated bond-containing monomer (D) is a composition excellent in impregnation into reinforcing fibers and excellent in curability, poly (meth) of an aromatic epoxy compound. The range is preferably 25 to 150 parts by mass, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the acrylate (C).

また、本発明の硬化性組成物における重合開始剤(E)の配合量は、硬化性に優れるものとなることから、硬化性組成物中0.1〜5質量%の範囲であることが好ましい。   Moreover, since the compounding quantity of the polymerization initiator (E) in the curable composition of this invention will be excellent in sclerosis | hardenability, it is preferable that it is the range of 0.1-5 mass% in a curable composition. .

本発明の硬化性組成物は、前記(A)〜(E)成分の他、各種の添加剤を含有していても良い。本発明の硬化性組成物が含有しても良い各種の添加剤としては、例えば難燃剤が挙げられ、具体的には、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム、リン酸アミド等の無機リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン−10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物;トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等の窒素系難燃剤;シリコーンオイル、シリコーンゴム、シリコーン樹脂等のシリコーン系難燃剤;金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等の無機難燃剤等が挙げられる。これら難燃剤を用いる場合は、硬化性組成物中0.1〜20質量%の範囲であることが好ましい。   The curable composition of the present invention may contain various additives in addition to the components (A) to (E). Examples of various additives that may be contained in the curable composition of the present invention include a flame retardant, and specifically include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, Inorganic phosphorus compounds such as ammonium phosphate such as ammonium polyphosphate and phosphoric acid amide; phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, 9,10-dihydro -9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-dihydro Oxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide An organic phosphorus compound such as a derivative obtained by reacting it with a compound such as an epoxy resin or a phenol resin; a nitrogen flame retardant such as a triazine compound, a cyanuric acid compound, an isocyanuric acid compound, or phenothiazine; a silicone oil; Silicone flame retardants such as silicone rubber and silicone resin; inorganic flame retardants such as metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass. When using these flame retardants, it is preferable that it is the range of 0.1-20 mass% in a curable composition.

本発明の硬化性組成物を積層板やフィルム等、通常有機溶剤に希釈して用いる用途に使用する場合には、必要に応じて適宜有機溶剤を配合しても良い。ここで用いる有機溶剤は、例えば、アセトン、メチルエチルケトン、酢酸エチル等が挙げられ、前記(A)〜(E)成分よりも低沸点のもの、具体的には沸点が100℃以下のものを用いることが好ましい。これら有機溶剤の使用量は目的の用途等にもよるが硬化性組成物中の有機溶剤量が60質量%以下であることが好ましい。   When the curable composition of the present invention is used for applications such as laminates and films that are usually diluted with an organic solvent, an organic solvent may be appropriately blended as necessary. Examples of the organic solvent used here include acetone, methyl ethyl ketone, and ethyl acetate, and those having a boiling point lower than the components (A) to (E), specifically those having a boiling point of 100 ° C. or less. Is preferred. The amount of these organic solvents used depends on the intended use and the like, but the amount of the organic solvent in the curable composition is preferably 60% by mass or less.

本発明の硬化性組成物を繊維強化複合材料用に用いる場合には、実質有機溶剤を使用しないことが好ましく、使用する場合には、硬化性組成物中の有機溶剤量が5質量%以下であることが好ましい。ここで用いる有機溶剤は、例えば、アセトン、メチルエチルケトン、酢酸エチル等が挙げられ、前記(A)〜(E)成分よりも低沸点のもの、具体的には沸点が100℃以下のものを用いることが好ましい。本発明の硬化性組成物は流動性に優れることから、多量の有機溶媒を使わずとも強化繊維への含浸性に優れ、繊維強化複合材料用途に好適に用いることが出来る。このとき、硬化性組成物の具体的な粘度は、25℃における粘度が0.1〜50Pa・sの範囲であることが好ましい。   When the curable composition of the present invention is used for a fiber-reinforced composite material, it is preferable not to use a substantial organic solvent. When used, the amount of the organic solvent in the curable composition is 5% by mass or less. Preferably there is. Examples of the organic solvent used here include acetone, methyl ethyl ketone, and ethyl acetate, and those having a boiling point lower than the components (A) to (E), specifically those having a boiling point of 100 ° C. or less. Is preferred. Since the curable composition of the present invention is excellent in fluidity, it is excellent in impregnation into reinforcing fibers without using a large amount of organic solvent, and can be suitably used for fiber-reinforced composite materials. At this time, the specific viscosity of the curable composition is preferably in the range of 0.1 to 50 Pa · s at 25 ° C.

本発明の硬化性組成物は、流動性に優れ、硬化物における破壊靱性及び機械強度に優れる特徴を活かし様々な用途に用いることが出来る。具体的には、自動車や航空機の筐体或いは各種部材に代表されるCFRP等の繊維強化樹脂成型品、プリント配線基板用積層板、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム、半導体封止材料、ダイアタッチ剤、フリップチップ実装用アンダーフィル材、グラブットプ材、TCP用液状封止材、導電性接着剤、液晶シール材、フレキシブル基板用カバーレイ、レジストインキなどの電子回路基板等に用いられる樹脂材料;光導波路や光学フィルムなどの光学用材料、樹脂注型材料、接着剤、絶縁塗料等のコーティング材料;LED、フォトトランジスタ、フォトダイオード、フォトカプラー、CCD、EPROM、フォトセンサーなどの様々な光半導体装置等が挙げられ、特に、動車や航空機の筐体或いは各種部材に代表されるCFRP等の繊維強化樹脂成型品用途に好適に用いることが出来る。   The curable composition of the present invention is excellent in fluidity and can be used for various applications by taking advantage of the characteristics of excellent fracture toughness and mechanical strength in the cured product. Specifically, fiber reinforced resin molded products such as CFRP represented by automobile and aircraft casings and various members, laminated boards for printed wiring boards, interlayer insulation materials for build-up boards, adhesive films for build-up, semiconductor encapsulation Used for electronic circuit boards such as fixing materials, die attach agents, flip-chip mounting underfill materials, grab top materials, TCP liquid sealing materials, conductive adhesives, liquid crystal seal materials, flexible substrate coverlays, resist inks, etc. Resin materials: Optical materials such as optical waveguides and optical films, resin casting materials, adhesives, coating materials such as insulating paints, etc .; LED, phototransistor, photodiode, photocoupler, CCD, EPROM, photosensor, etc. Optical semiconductor devices, etc. It can be suitably used in the fiber-reinforced resin molding applications CFRP or the like.

本発明の硬化性組成物を繊維強化樹脂成型品用途に用いる場合、本発明の繊維強化複合材料は、前記硬化性組成物と強化繊維とを含有する。ここで用いる強化繊維は有撚糸、解撚糸、又は無撚糸などいずれでも良いが、繊維強化プラスチック製部材の成形性と機械強度を両立することから解撚糸や無撚糸が好ましい。さらに、強化繊維の形態は繊維方向を一方向に引き揃えたものや織物が使用でき、織物としては平織りや朱子織りなど、使用する部位や用途に応じて自由に選択することができる。具体的な素材としては、機械強度や耐久性に優れることから、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられる。これらはそれぞれ単独で用いても良いし、2種以上を併用しても良い。これらの中でもとりわけ成形品の強度が良好なものとなる点から炭素繊維が好ましく、かかる、炭素繊維は、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。中でも、容易に高強度の炭素繊維が得られるポリアクリロニトリル系のものが好ましい。   When using the curable composition of this invention for a fiber reinforced resin molded article use, the fiber reinforced composite material of this invention contains the said curable composition and a reinforced fiber. The reinforcing fiber used here may be a twisted yarn, an untwisted yarn, or a non-twisted yarn, but an untwisted yarn or a non-twisted yarn is preferred because both the formability of the fiber-reinforced plastic member and the mechanical strength are compatible. Furthermore, the form of the reinforcing fiber can be a fiber in which the fiber directions are aligned in one direction or a woven fabric, and the woven fabric can be freely selected according to the part to be used and the application, such as plain weave and satin weave. Specific examples of the material include carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber because of excellent mechanical strength and durability. These may be used alone or in combination of two or more. Among these, carbon fiber is preferable from the viewpoint that the strength of the molded product is particularly good. As the carbon fiber, various types such as polyacrylonitrile-based, pitch-based, and rayon-based can be used. Among these, a polyacrylonitrile-based one that can easily obtain a high-strength carbon fiber is preferable.

本発明の繊維強化複合材料中の強化繊維の含有量は破壊靱性及び機械強度に優れる成形物が得られることから、硬化性組成物中の強化繊維の体積含有率が40〜85%の範囲となる量であることが好ましい。   Since the content of the reinforcing fiber in the fiber-reinforced composite material of the present invention provides a molded article having excellent fracture toughness and mechanical strength, the volume content of the reinforcing fiber in the curable composition is in the range of 40 to 85%. Is preferred.

本発明の繊維強化複合材料を用いて繊維強化樹脂成形品を製造する方法は、型に繊維骨材を敷き、前記ワニスを多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材に硬化性組成物を含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有する繊維強化複合材料をシート状にしたものを金型で圧縮成型するSMCプレス法、繊維を敷き詰めた合わせ型に前記硬化性組成物を注入するRTM法、強化繊維に前記硬化性組成物を含浸させてプリプレグを製造し、これを大型のオートクレーブで焼き固める方法などが挙げられる。   A method for producing a fiber reinforced resin molded article using the fiber reinforced composite material of the present invention includes a hand lay-up method or a spray-up method in which a fiber aggregate is laid on a mold and the varnishes are laminated in layers, a male mold and a female Using one of the molds, a base made of reinforcing fibers is impregnated with a curable composition and molded, covered with a flexible mold that can apply pressure to the molded product, and then hermetically sealed with vacuum ( Decompression) Vacuum bag method for molding, SMC press method in which a fiber reinforced composite material containing reinforcing fibers is formed into a sheet shape by compression molding with a mold, and the curable composition is injected into a mating die laid with fibers Examples thereof include an RTM method, a method in which a reinforcing fiber is impregnated with the curable composition to produce a prepreg, and this is baked and hardened in a large autoclave.

このようにして得られた繊維強化樹脂成形品の用途としては、釣竿、ゴルフシャフト、自転車フレームなどのスポーツ用品、自動車、航空機のフレーム又はボディー材、宇宙機部材、風力発電機ブレードなどが挙げられる。とりわけ、自動車部材、航空機部材、宇宙機部材には高度な破壊靱性と機械強度が要求されるため、本発明の繊維強化樹脂成形品はこれらの用途に適する。   Applications of the fiber-reinforced resin molded article thus obtained include sports equipment such as fishing rods, golf shafts, bicycle frames, automobiles, aircraft frames or body materials, spacecraft members, wind power generator blades, and the like. . In particular, since high fracture toughness and mechanical strength are required for automobile members, aircraft members, and spacecraft members, the fiber-reinforced resin molded article of the present invention is suitable for these applications.

次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。   Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, “parts” and “%” are based on mass unless otherwise specified.

実施例1〜4、6〜8、比較例1
下記要領で硬化性組成物を配合し、それらの硬化物について各種評価を行った。配合比及び各種評価試験の結果を表1に示す。
Examples 1-4 , 6-8 , Comparative Example 1
The curable composition was mix | blended in the following way, and various evaluation was performed about those hardened | cured material. Table 1 shows the mixing ratio and the results of various evaluation tests.

<硬化性組成物の調整>
下記表1に示す割合で各成分を配合し、撹拌機を用いて均一混合して硬化性組成物を得た。
<Adjustment of curable composition>
Each component was mix | blended in the ratio shown in following Table 1, and it mixed uniformly using the stirrer, and obtained the curable composition.

<硬化性組成物に用いた各成分>
脂肪族ポリイソシアネート化合物(A1):ヘキサメチレンジイソシアネート(旭化成ケミカルズ株式会社製「デュラネート 50M−HDI」イソシアネート基含有量50質量%)
脂肪族ポリイソシアネート化合物(A2):イソホロンジイソシアネート(住化バイエルウレタン株式会社「IPDI」イソシアネート基含有量38質量%)
脂肪族ポリイソシアネート化合物(A3):DIC株式会社製「バーノック DN−992S」ヘキサメチレンジイソシアネートを原料とする変性ポリイソシアネート化合物 イソシアネート基含有量14質量%)
比較用ポリイソシアネート化合物(A’2):液状ジフェニルメタンジイソシアネート(BASF INOAC ポリウレタン株式会社製「ルプラネートMI」イソシアネート基含有量33質量%)
<Each component used for curable composition>
Aliphatic polyisocyanate compound (A1): hexamethylene diisocyanate (“Duranate 50M-HDI” isocyanate group content 50 mass%, manufactured by Asahi Kasei Chemicals Corporation)
Aliphatic polyisocyanate compound (A2): Isophorone diisocyanate (Sumika Bayer Urethane Co., Ltd. “IPDI” isocyanate group content 38 mass%)
Aliphatic polyisocyanate compound (A3): “Bernock DN-992S” manufactured by DIC Corporation, modified polyisocyanate compound using hexamethylene diisocyanate as raw material, isocyanate group content of 14% by mass)
Polyisocyanate compound for comparison (A′2): Liquid diphenylmethane diisocyanate (BASF INOAC Polyurethane Co., Ltd. “Lupranate MI” isocyanate group content 33 mass%)

ジオール化合物(B1):ポリオキシエチレングリコール[日油株式会社製「PEG1000」不揮発分100質量%、水酸基価115mgKOH/g、数平均分子量(Mn)1,000]
ジオール化合物(B2):ポリオキシプロピレングリコール[三井化学株式会社製「アクトコールD−1000」不揮発分100質量%、水酸基価110mgOH/g、数平均分子量(Mn)1,000]
ジオール化合物(B3):ポリオキシプロプレングリコール[三井化学株式会社製「アクトコールD−2000」:不揮発分100質量%、水酸基価55mgKOH/g、数平均分子量2,000]
ジオール化合物(B4):ポリオキシテトラメチレングリコール[三菱化学株式会社製「PTMG2000」:不揮発分100質量%、水酸基価56mgKOH/g、数平均分子量2,000]
ジオール化合物(B6):ポリカーボネートジオール[旭化成ケミカルズ株式会社「デュラノールT−6001」不揮発分100質量%、水酸基価110mgKOH/g、数平均分子量(Mn)1,000]
ポリオール化合物(B’1):ポリオキシプロプレングリコール[三井化学株式会社製「アクトコールD−400」:不揮発分100質量%、水酸基価280mgKOH/g、数平均分子量(Mn)400]
ジオール化合物(B’2):3官能型ポリオキシアルキレングリコール[旭硝子株式会社製「エクセノールD−400」:不揮発分100質量%、水酸基価400mgKOH/g、数平均分子量(Mn)430]
Diol compound (B1): Polyoxyethylene glycol [Nippon Co., Ltd. “PEG1000” nonvolatile content 100 mass%, hydroxyl value 115 mg KOH / g, number average molecular weight (Mn) 1,000]
Diol compound (B2): polyoxypropylene glycol [“Accor D-1000” manufactured by Mitsui Chemicals Co., Ltd., 100% by mass nonvolatile content, hydroxyl value 110 mgOH / g, number average molecular weight (Mn) 1,000]
Diol compound (B3): polyoxypropylene glycol [“ACTCOL D-2000” manufactured by Mitsui Chemicals, Inc .: non-volatile content: 100% by mass, hydroxyl value: 55 mg KOH / g, number average molecular weight: 2,000]
Diol compound (B4): polyoxytetramethylene glycol ["PTMG2000" manufactured by Mitsubishi Chemical Corporation: non-volatile content: 100% by mass, hydroxyl value: 56 mgKOH / g, number average molecular weight: 2,000]
Diol compound (B6): Polycarbonate diol [Asahi Kasei Chemicals Corporation “Duranol T-6001” non-volatile content 100% by mass, hydroxyl value 110 mg KOH / g, number average molecular weight (Mn) 1,000]
Polyol compound (B′1): polyoxypropylene glycol [“ACTCOL D-400” manufactured by Mitsui Chemicals, Inc .: non-volatile content: 100 mass%, hydroxyl value: 280 mg KOH / g, number average molecular weight (Mn) 400]
Diol compound (B′2): trifunctional polyoxyalkylene glycol [Asahi Glass Co., Ltd. “Excenol D-400”: non-volatile content 100 mass%, hydroxyl value 400 mg KOH / g, number average molecular weight (Mn) 430]

芳香族系エポキシ化合物のポリ(メタ)アクリレート(C1)
温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに、ビスフェノールA型エポキシ樹脂(エポキシ当量188g/当量)270質量部およびビスフェノールA71質量部を仕込み150℃まで昇温した。150℃で反応を継続し、エポキシ当量が420g/当量(理論水酸基当量87g/当量)になるまで反応を継続した。温度を110℃まで冷却し、ハイドロキノン0.01質量部およびメタクリル酸65質量部を仕込み、付加反応を行った。酸価が7mgKOH/gになるまで反応を継続し、芳香族系エポキシ化合物のポリ(メタ)アクリレート(C1)374質量部を得た。得られた芳香族系エポキシ化合物のポリ(メタ)アクリレート(C1)の数平均分子量(Mn)は720、原料仕込み比から算出される水酸基のモル数(x)と、重合性不飽和結合のモル数(y)との比[(x)/(y)]は1.7であった。
Aromatic epoxy compound poly (meth) acrylate (C1)
A flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer was charged with 270 parts by mass of bisphenol A type epoxy resin (epoxy equivalent 188 g / equivalent) and 71 parts by mass of bisphenol A, and the temperature was raised to 150 ° C. The reaction was continued at 150 ° C. until the epoxy equivalent reached 420 g / equivalent (theoretical hydroxyl group equivalent 87 g / equivalent). The temperature was cooled to 110 ° C., 0.01 part by mass of hydroquinone and 65 parts by mass of methacrylic acid were added, and an addition reaction was performed. The reaction was continued until the acid value reached 7 mgKOH / g, and 374 parts by mass of an aromatic epoxy compound poly (meth) acrylate (C1) was obtained. The number average molecular weight (Mn) of the poly (meth) acrylate (C1) of the obtained aromatic epoxy compound is 720, the number of moles of hydroxyl (x) calculated from the raw material charge ratio, and the number of polymerizable unsaturated bonds. The ratio [(x) / (y)] to the number (y) was 1.7.

重合性不飽和結合含有単量体(D):スチレン Polymerizable unsaturated bond-containing monomer (D): styrene

重合開始剤(E1):ジベンゾイルパーオキサイド(日油株式会社製「ナイパーFF」) Polymerization initiator (E1): Dibenzoyl peroxide (“NIPER FF” manufactured by NOF Corporation)

4級アンモニウム塩系触媒 DIC株式会社製「バーノック BDP−25」 Quaternary ammonium salt catalyst "Bernock BDP-25" manufactured by DIC Corporation

尚、各化合物の数平均分子量は下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定した値である。   In addition, the number average molecular weight of each compound is a value measured by gel permeation chromatography (GPC) under the following conditions.

GPC:測定条件は以下の通り。
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)
GPC: Measurement conditions are as follows.
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids, filtered through a microfilter (50 μl)

<粘度の測定>
硬化性組成物の粘度を、25℃の温度条件下でE型粘度計(東機産業(株)製「TV−20形」コーンプレートタイプ)を用いて測定した。
<Measurement of viscosity>
The viscosity of the curable composition was measured using an E-type viscometer (“TV-20 type” cone plate type manufactured by Toki Sangyo Co., Ltd.) under a temperature condition of 25 ° C.

<曲げ強度・曲げ弾性率>
硬化性組成物を厚さ2mmのシリコンチューブをガラス板に挟んだ型に流しいれ、オーブン中で110℃1時間の条件にて硬化させて硬化物を得た。JIS K6911に準拠して曲げ強度及び曲げ弾性率を測定した。
<Bending strength and flexural modulus>
The curable composition was poured into a mold in which a 2 mm thick silicon tube was sandwiched between glass plates and cured in an oven at 110 ° C. for 1 hour to obtain a cured product. The bending strength and bending elastic modulus were measured according to JIS K6911.

<破壊靭性>
硬化性組成物を厚さ6mmのシリコンチューブをガラス板で挟んだ型に流し入れ、オーブン中で110℃1時間の条件にて硬化させて硬化物を得た。得られた硬化物をダイヤモンドカッターで幅12.7mm、長さ150mmに切り出し、ASTM D5045−99に従って、破壊靱性を測定した。
<Fracture toughness>
The curable composition was poured into a mold having a 6 mm thick silicon tube sandwiched between glass plates and cured in an oven at 110 ° C. for 1 hour to obtain a cured product. The obtained cured product was cut into a width of 12.7 mm and a length of 150 mm with a diamond cutter, and fracture toughness was measured according to ASTM D5045-99.

Figure 0006451974
Figure 0006451974



Claims (9)

脂肪族ポリイソシアネート化合物(A)、数平均分子量(Mn)750〜4,000の範囲である脂肪族ジオール化合物(B)、芳香族系エポキシ樹脂と(メタ)アクリル酸との付加反応物であるポリ(メタ)アクリレート(C)、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、スチレン、メチルスチレン、ハロゲン化スチレン、ジビニルベンゼン、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、モルホリン(メタ)アクリレート、フェニルフェノキシエチルアクリレート、フェニルベンジル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、及び1,4−シクロヘキサンジメタノールジ(メタ)アクリレートからなる群から選ばれる1種以上の重合性不飽和結合含有単量体(D)、及び重合開始剤(E)を必須の成分とし、
前記ジオール化合物(B)と前記芳香族系エポキシ樹脂と(メタ)アクリル酸との付加反応物であるポリ(メタ)アクリレート(C)との質量比[(B)/(C)]が5/95〜30/70の範囲で配合した硬化性組成物を硬化させることを特徴とする硬化物の製造方法。
It is an addition reaction product of an aliphatic polyisocyanate compound (A), an aliphatic diol compound (B) having a number average molecular weight (Mn) in the range of 750 to 4,000, and an aromatic epoxy resin and (meth) acrylic acid. Poly (meth) acrylate (C), hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, styrene, methylstyrene, halogenated styrene, divinylbenzene, methyl (meth) acrylate, ethyl ( (Meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) ) Acrylate, morpholine (meth) acrylate, phenylphenoxyethyl acrylate, phenylbenzyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, One or more polymerizable unsaturated bond-containing monomers selected from the group consisting of 6-hexanediol di (meth) acrylate, bisphenol di (meth) acrylate, and 1,4-cyclohexanedimethanol di (meth) acrylate ( D), and polymerization initiator (E) as essential components,
The mass ratio [(B) / (C)] of poly (meth) acrylate (C), which is an addition reaction product of the diol compound (B), the aromatic epoxy resin, and (meth) acrylic acid, is 5 / The manufacturing method of the hardened | cured material characterized by hardening the curable composition mix | blended in the range of 95-30 / 70.
前記脂肪族ポリイソシアネート化合物(A)が、イソシアネート基含有量が10質量%〜65質量%の範囲にあるポリイソシアネート化合物である請求項1記載の製造方法。 The production method according to claim 1, wherein the aliphatic polyisocyanate compound (A) is a polyisocyanate compound having an isocyanate group content in the range of 10 mass% to 65 mass%. 前記重合性不飽和結合含有単量体(D)の配合量が、芳香族系エポキシ樹脂と(メタ)アクリル酸との付加反応物であるポリ(メタ)アクリレート(C)100質量部に対し、25〜150質量部の範囲である請求項1〜の何れか一つに記載の製造方法。 The compounding amount of the polymerizable unsaturated bond-containing monomer (D) is 100 parts by mass of poly (meth) acrylate (C), which is an addition reaction product of an aromatic epoxy resin and (meth) acrylic acid, It is the range of 25-150 mass parts, The manufacturing method as described in any one of Claims 1-2 . 前記重合性不飽和結合含有単量体(D)の配合量が、芳香族系エポキシ樹脂と(メタ)アクリル酸との付加反応物であるポリ(メタ)アクリレート(C)100質量部に対し、50〜100質量部の範囲である請求項1〜の何れか一つに記載の製造方法。 The compounding amount of the polymerizable unsaturated bond-containing monomer (D) is 100 parts by mass of poly (meth) acrylate (C), which is an addition reaction product of an aromatic epoxy resin and (meth) acrylic acid, It is the range of 50-100 mass parts, The manufacturing method as described in any one of Claims 1-2 . 前記重合性不飽和結合含有単量体(D)がスチレンである請求項1〜4の何れか一つに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the polymerizable unsaturated bond-containing monomer (D) is styrene. 前記硬化性組成物が、25℃における粘度が0.1〜50Pa・sの範囲である請求項1〜5の何れか一つに記載の製造方法。 The manufacturing method according to claim 1, wherein the curable composition has a viscosity at 25 ° C. of 0.1 to 50 Pa · s. 脂肪族ポリイソシアネート化合物(A)、数平均分子量(Mn)750〜4,000の範囲である脂肪族ジオール化合物(B)、芳香族系エポキシ樹脂と(メタ)アクリル酸との付加反応物であるポリ(メタ)アクリレート(C)、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、スチレン、メチルスチレン、ハロゲン化スチレン、ジビニルベンゼン、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、モルホリン(メタ)アクリレート、フェニルフェノキシエチルアクリレート、フェニルベンジル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、及び1,4−シクロヘキサンジメタノールジ(メタ)アクリレートからなる群から選ばれる1種以上の重合性不飽和結合含有単量体(D)、及び重合開始剤(E)を必須の成分とし、
前記ジオール化合物(B)と前記芳香族系エポキシ樹脂と(メタ)アクリル酸との付加反応物であるポリ(メタ)アクリレート(C)との質量比[(B)/(C)]が5/95〜30/70の範囲で配合した硬化性組成物と、強化繊維とを必須成分とする繊維強化複合材料を硬化させる繊維強化樹脂成形品の製造方法。
It is an addition reaction product of an aliphatic polyisocyanate compound (A), an aliphatic diol compound (B) having a number average molecular weight (Mn) in the range of 750 to 4,000, and an aromatic epoxy resin and (meth) acrylic acid. Poly (meth) acrylate (C), hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, styrene, methylstyrene, halogenated styrene, divinylbenzene, methyl (meth) acrylate, ethyl ( (Meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) ) Acrylate, morpholine (meth) acrylate, phenylphenoxyethyl acrylate, phenylbenzyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, One or more polymerizable unsaturated bond-containing monomers selected from the group consisting of 6-hexanediol di (meth) acrylate, bisphenol di (meth) acrylate, and 1,4-cyclohexanedimethanol di (meth) acrylate ( D), and polymerization initiator (E) as essential components,
The mass ratio [(B) / (C)] of poly (meth) acrylate (C), which is an addition reaction product of the diol compound (B), the aromatic epoxy resin, and (meth) acrylic acid, is 5 / The manufacturing method of the fiber reinforced resin molded article which hardens the fiber reinforced composite material which has a curable composition mix | blended in the range of 95-30 / 70, and a reinforced fiber as an essential component.
強化繊維の体積含有率が40〜85%の範囲内である請求項7記載の繊維強化樹脂成形品の製造方法。 The method for producing a fiber-reinforced resin molded article according to claim 7, wherein the volume content of the reinforcing fibers is in the range of 40 to 85%. 前記繊維強化樹脂成形品が自動車用部材である請求項7又は8記載の製造方法。 The manufacturing method according to claim 7 or 8, wherein the fiber-reinforced resin molded article is an automobile member.
JP2013151609A 2013-07-22 2013-07-22 Curable composition and cured product thereof Active JP6451974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151609A JP6451974B2 (en) 2013-07-22 2013-07-22 Curable composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151609A JP6451974B2 (en) 2013-07-22 2013-07-22 Curable composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2015021091A JP2015021091A (en) 2015-02-02
JP6451974B2 true JP6451974B2 (en) 2019-01-16

Family

ID=52485832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151609A Active JP6451974B2 (en) 2013-07-22 2013-07-22 Curable composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP6451974B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134757B2 (en) * 2015-08-20 2017-05-24 株式会社コーケン Curable resin composition, concrete coating composition and lining material
JP6847197B2 (en) * 2017-02-22 2021-03-24 パナック株式会社 Resin composition and hard coat film
JP6579417B1 (en) * 2017-12-26 2019-09-25 Dic株式会社 Carbon fiber reinforced plastic molding resin composition, molding material, molded article and method for producing molded article
WO2020085075A1 (en) * 2018-10-24 2020-04-30 Dic株式会社 Molding resin composition, fiber-reinforced molding material, and molded article therefrom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749461B2 (en) * 1990-06-05 1995-05-31 昭和高分子株式会社 Method for producing radically curable resin
JP2656690B2 (en) * 1991-12-20 1997-09-24 帝人株式会社 Multi-component thermosetting resin composition and method for producing cured resin molded product
JP2006052271A (en) * 2004-08-10 2006-02-23 Japan Composite Co Ltd Unsaturated polyurethane resin composition, artificial stone molding material, and artificial stone molded product
US8487052B2 (en) * 2009-08-17 2013-07-16 Dic Corporation Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof

Also Published As

Publication number Publication date
JP2015021091A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP6390755B2 (en) Carbon fiber reinforced composite materials and structures
JP4775520B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED RESIN MOLDED ARTICLE, AND METHOD FOR PRODUCING SAME
ES2824534T3 (en) Prepreg and molded article
JP6451974B2 (en) Curable composition and cured product thereof
JP2017002202A (en) Epoxy resin composition, molded article, prepreg, fiber reinforced composite material and structure
JP6304525B2 (en) Urethane-modified epoxy resin, curable composition, cured product thereof, fiber reinforced composite material, and fiber reinforced resin molded product
KR102627148B1 (en) Hydroxy compounds, compositions, cured products and laminates
JPWO2020137945A1 (en) Resin compositions, fiber reinforced plastic molding materials and moldings
JP6593573B1 (en) Curable composition and fiber reinforced composite material
WO2022138807A1 (en) Curable resin composition and adhesive agent
WO2022114073A1 (en) One-pack type curable resin composition and adhesive
CN114127152B (en) Curable composition, cured product, fiber-reinforced composite material, and molded article
JP6772460B2 (en) Sheet molding compound and its molded products
JP6923090B2 (en) Curable composition, cured product, fiber reinforced composite material, molded product and its manufacturing method
WO2020213414A1 (en) Fiber-reinforced molding material and molded article using the same
EP4083092A1 (en) Prepreg and molded article
JP5297607B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME AND COMPOSITE MATERIAL INTERMEDIATE
JP2020033511A (en) Epoxy resin composition for sheet molding compound, sheet molding compound, and molding
JP6966026B2 (en) Fiber reinforced molding material and molded products using it
JP7239076B1 (en) Curable composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded product
JP7585632B2 (en) (Meth)acrylate resin, curable resin composition, cured product and article
WO2021261196A1 (en) Radical curable resin composition, fiber-reinforced molding material, and molded article using same
JP2024064038A (en) Curable epoxy resin composition, and fiber-reinforced composite material using the same
JP2018062643A (en) Composite particles and method for producing the same
WO2023089997A1 (en) Curable composition, cured product, fiber reinforced composite material, and fiber reinforced resin molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R151 Written notification of patent or utility model registration

Ref document number: 6451974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250