[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6448133B2 - Vacuum consolidation method and vacuum consolidation system - Google Patents

Vacuum consolidation method and vacuum consolidation system Download PDF

Info

Publication number
JP6448133B2
JP6448133B2 JP2015050269A JP2015050269A JP6448133B2 JP 6448133 B2 JP6448133 B2 JP 6448133B2 JP 2015050269 A JP2015050269 A JP 2015050269A JP 2015050269 A JP2015050269 A JP 2015050269A JP 6448133 B2 JP6448133 B2 JP 6448133B2
Authority
JP
Japan
Prior art keywords
ground
layer
water
vacuum consolidation
groundwater level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015050269A
Other languages
Japanese (ja)
Other versions
JP2016169542A (en
Inventor
博 新舎
博 新舎
辰男 長津
辰男 長津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2015050269A priority Critical patent/JP6448133B2/en
Publication of JP2016169542A publication Critical patent/JP2016169542A/en
Application granted granted Critical
Publication of JP6448133B2 publication Critical patent/JP6448133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、真空圧密により地盤改良を行う真空圧密工法および真空圧密システムに関する。   The present invention relates to a vacuum consolidation method and a vacuum consolidation system for improving ground by vacuum consolidation.

軟弱な粘性土地盤に対して気密シートを敷設せずに真空圧密により地盤改良を行う真空圧密工法が公知である。その内の真空圧密ドレーン工法においては、図9のように、プラスチックボードドレーン材11をその一端に気密性キャップ12と排水ホース13を接続し軟弱地盤G’に打設し、排水ホース13の他端で真空ポンプに接続して真空圧密改良を行う(特許文献1)。この場合、気密性キャップ12を地中1m程度の深さに設置することで、在来粘土層の表層部約1mを負圧シール層として利用するのが標準である。   A vacuum consolidation method is known in which ground improvement is performed by vacuum consolidation without laying an airtight sheet on soft viscous ground. In the vacuum consolidation drain method, as shown in FIG. 9, the plastic board drain material 11 is connected to one end thereof with an airtight cap 12 and a drainage hose 13, and placed on a soft ground G ′. The end is connected to a vacuum pump to improve vacuum consolidation (Patent Document 1). In this case, it is standard that the airtight cap 12 is installed at a depth of about 1 m in the ground so that the surface layer of about 1 m of the conventional clay layer is used as a negative pressure seal layer.

特許第4493522号公報Japanese Patent No. 4493522

「真空圧密ドレーン工法技術資料」8頁 真空圧密ドレーン工法研究会 2013年3月発行"Vacuum Condensation Drain Method Technical Data", page 8 Vacuum Consolidation Drain Method Study Group, published in March 2013 三木幸蔵「透水係数と透気係数」 土と基礎 Vol.19 No.6 3〜4頁 1971年発行Kozo Miki “Permeability and Permeability Coefficient” Soil and Foundation Vol.19 No.6 3-4 Issued in 1971 新舎博、宮本健児、渡部要一「中間砂層からの吸引水がある場合の真空圧密効果に関する実験的研究」 土木学会論文集B3、Vol.69 No.2 970〜975頁 2013年発行Shinsha Hiroshi, Miyamoto Kenji, Watanabe Yoichi “Experimental Study on the Effect of Vacuum Consolidation in the Case of Suction Water from the Intermediate Sand Layer” Japan Society of Civil Engineers B3, Vol.69 No.2 pp. 970-975 2013

しかしながら、地盤の層序構成が複雑で、地盤の表層部に砂と粘土とが相互に重なった相互層がある場合に、表層部において約1m厚さの負圧シール層を確保できない場合がある。このように、地盤の表層部に砂と粘土との相互層がある場合には、地盤上部に約1m厚さの低透水土層を新たに築造し負圧シール層とすることが考えられる。気密シール層として必要な透水係数は、10-7m/s程度以下とされているが(非特許文献1参照)、築造した低透水土の透水係数にばらつきがあると、10-7m/s程度以下の透水係数を確保できないおそれが生じる。築造された低透水土が10-7m/s程度以下の透水係数を確保できないと、高い真空圧(絶対値で60〜65kN/m2以上の負圧)を粘土層に作用させることができず、充分な圧密改良効果が得られなくなる。 However, if the stratigraphic structure of the ground is complex and there is a mutual layer where sand and clay overlap each other on the surface layer of the ground, a negative pressure sealing layer with a thickness of about 1 m may not be secured in the surface layer. . In this way, when there is a mutual layer of sand and clay on the surface layer of the ground, it is conceivable that a low-permeability soil layer having a thickness of about 1 m is newly built on the ground to form a negative pressure sealing layer. The permeability coefficient required for the hermetic seal layer is about 10 -7 m / s or less (see Non-Patent Document 1), but if the permeability coefficient of the constructed low permeability soil varies, it will be 10 -7 m / s. There is a risk that a hydraulic conductivity of about s or less cannot be secured. If the constructed low-permeability soil cannot secure a hydraulic conductivity of 10 -7 m / s or less, high vacuum pressure (negative pressure of 60 to 65 kN / m 2 or more in absolute value) can be applied to the clay layer. Therefore, a sufficient consolidation improvement effect cannot be obtained.

本発明は、上述のような従来技術の問題に鑑み、表層部に砂と粘土との相互層がある地盤について真空圧密改良を実施する際に充分な圧密改良効果を得ることができる真空圧密工法および真空圧密システムを提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention provides a vacuum consolidation method capable of obtaining a sufficient consolidation improvement effect when performing a vacuum consolidation improvement on a ground having a mutual layer of sand and clay in the surface layer portion. And a vacuum compaction system.

上記目的達成のため本発明者等は、鋭意研究の結果、次のような知見を得た。まず、土の中を空気が通過する場合の透気係数kaと、水が通過する際の透水係数kとを比較すると、次の式(1)の関係があるとされている(非特許文献2参照)。
ka=70〜80×k (1)
式(1)によれば、透水係数kは透気係数kaよりもかなり小さく、水が土を浸透する速度は、空気が浸透する速度よりもかなり小さいことがわかる。
In order to achieve the above object, the present inventors have obtained the following knowledge as a result of intensive studies. First, comparing the air permeability coefficient ka when air passes through the soil and the water permeability coefficient k when water passes, it is said that there is a relationship of the following equation (1) (non-patent document) 2).
ka = 70-80 × k (1)
According to the equation (1), it is understood that the water permeability coefficient k is considerably smaller than the air permeability coefficient ka, and the speed at which water penetrates the soil is much smaller than the speed at which air penetrates.

また、これまでの施工では、真空圧密ドレーン工法において空気を吸引した場合は負圧が大きく低下したが、水を吸引すると負圧の低下量はほとんど無かった(非特許文献3参照)。この理由は、式(1)からもわかるように土の中を通る浸透水量は空気に比べてかなり少ないことに加え、空気は膨張性があるが、水は非圧縮性であるためと考えられる。また、真空圧密ドレーン工法の負圧作用時において、図9のようにプラスチックボードドレーン材11の気密性キャップ12が常に水位より下部に位置する必要があるとされている(非特許文献1参照)。これは、ドレーン材への空気の流入を避け、粘土層に高い負圧を作用させるためである。   Further, in the construction so far, the negative pressure is greatly reduced when air is sucked in the vacuum consolidation drain method, but when the water is sucked, there is almost no decrease in the negative pressure (see Non-Patent Document 3). The reason for this is that, as can be seen from equation (1), the amount of permeated water passing through the soil is much smaller than that of air, and air is inflatable, but water is incompressible. . Further, it is said that the airtight cap 12 of the plastic board drain material 11 must always be positioned below the water level as shown in FIG. 9 during the negative pressure action of the vacuum consolidation drain method (see Non-Patent Document 1). . This is to avoid the inflow of air into the drain material and to apply a high negative pressure to the clay layer.

そこで、地盤の表層に低透水土層を形成し、その低透水土層の下部に水を供給し、地盤の地下水位がプラスチックボードドレーン材の気密性キャップよりも常に上にあるように配慮することで、ドレーン材への空気の流入を避けることができ、これにより、改良対象である粘土層に高い負圧を作用させることができる。   Therefore, a low permeable soil layer is formed on the surface layer of the ground, and water is supplied to the lower part of the low permeable soil layer so that the groundwater level of the ground is always above the airtight cap of the plastic board drain material. Thus, inflow of air into the drain material can be avoided, and thereby a high negative pressure can be applied to the clay layer to be improved.

すなわち、上記目的を達成するための真空圧密工法は、表層部に砂と粘土との交互層が存在する地盤に対する地盤改良のための真空圧密工法であって、上端に気密性キャップを有するドレーン材を地表面から前記地盤へ打設し、前記地表面に低透水土層を構築し、前記低透水土層の下部から前記地盤内へ水を、前記地盤の地下水位が前記気密性キャップよりも上になるように供給する。   That is, the vacuum consolidation method for achieving the above object is a vacuum consolidation method for ground improvement for the ground where an alternating layer of sand and clay exists in the surface layer portion, and a drain material having an airtight cap at the upper end. From the ground surface to the ground, constructing a low permeable soil layer on the ground surface, water from the bottom of the low permeable soil layer into the ground, the groundwater level of the ground is more than the airtight cap Supply to be on top.

この真空圧密工法によれば、表層部に砂と粘土との相互層がある地盤にドレーン材を打設し低透水土層を構築してから、地盤内へ水を供給することで、地盤の地下水位がドレーン材の気密性キャップよりも上になるので、真空圧密時にドレーン材への空気の流入を避けることができる。このため、表層部に砂と粘土との相互層がある地盤について真空圧密改良を実施する際に、地盤に充分な負圧を作用させることができるので、充分な圧密改良効果を得ることができる。また、低透水土層が気密シール層として必要な透水係数(10-7m/s程度以下)を確保できない場合でも、充分な圧密改良効果を得ることが可能となる。 According to this vacuum consolidation method, a drain material is placed on the ground where the surface layer has a mutual layer of sand and clay to construct a low-permeability soil layer, and then water is supplied into the ground. Since the groundwater level is above the airtight cap of the drain material, it is possible to avoid the inflow of air into the drain material during vacuum consolidation. For this reason, when carrying out the vacuum consolidation improvement on the ground having a sand and clay mutual layer in the surface layer portion, a sufficient negative pressure can be applied to the ground, so that a sufficient consolidation improvement effect can be obtained. . Moreover, even when the low water permeability soil layer cannot secure the water permeability coefficient (about 10 −7 m / s or less) necessary as an airtight seal layer, a sufficient consolidation improvement effect can be obtained.

上記真空圧密工法において前記低透水土層の構築前に地表面に水供給部を設置することが好ましい。   In the vacuum consolidation method, it is preferable to install a water supply unit on the ground surface before the construction of the low water permeable soil layer.

また、前記地下水位を測定し、前記地下水位の測定結果に基づいて前記地下水位が前記気密キャップの深さ位置よりも低いと判断された場合は、前記水を前記地下水位が前記気密性キャップよりも上になるように供給することが好ましい。これにより、地下水位が気密性キャップよりも上になるように確実に管理することができる。
Further, the groundwater level is measured, and when it is determined that the groundwater level is lower than the depth position of the hermetic cap based on the measurement result of the groundwater level, the groundwater level is the hermetic cap. It is preferable to supply so that it may become above. Thereby, it can manage reliably so that a groundwater level may become above an airtight cap.

また、前記地盤に多数の前記ドレーン材が打設された範囲を包囲するように遮水壁を前記地盤内に設置することが好ましい。これにより、地盤内に供給した水が、遮水壁で遮断されるので、地下水位の低い周囲の地盤内へ拡散して改良対象地盤の地下水位が低下してしまうことを未然に防止することができる。   Moreover, it is preferable to install a water-impervious wall in the ground so as to surround a range where a large number of drain materials are placed on the ground. As a result, the water supplied to the ground is blocked by the impermeable walls, so that it is possible to prevent the groundwater level of the ground to be improved from being lowered by spreading into the surrounding ground where the groundwater level is low. Can do.

また、上記真空圧密工法は、改良対象層の上部に前記相互層として地盤表面から順に少なくとも砂層、粘土層、砂層が存在する地盤に適用することが好ましい。   Moreover, it is preferable to apply the said vacuum consolidation method to the ground where at least a sand layer, a clay layer, and a sand layer exist in order from the ground surface as the mutual layer above the improvement target layer.

上記目的を達成するための真空圧密システムは、表層部に砂と粘土との交互層が存在しかつ地表面に低透水土層が築造された地盤に対する地盤改良のための真空圧密システムであって、前記地盤内の改良対象層に打設された多数のドレーン材と、前記各ドレーン材の上端に配置された気密性キャップと、前記各ドレーン材の上端に前記気密性キャップとともに一端が接続された排水管と、前記排水管の他端側に配置された真空装置と、前記地表面に配置された水供給装置と、を備え、前記水供給装置により前記低透水土層の下部から前記地盤内へ水を供給する。   A vacuum consolidation system for achieving the above object is a vacuum consolidation system for ground improvement for a ground having alternating layers of sand and clay on the surface layer and a low water permeable soil layer built on the ground surface. A plurality of drain materials placed on the improvement target layer in the ground, an airtight cap disposed at an upper end of each drain material, and one end connected to the upper end of each drain material together with the airtight cap. A drainage pipe, a vacuum device arranged on the other end side of the drainage pipe, and a water supply device arranged on the ground surface, and the ground from above the low water permeable soil layer by the water supply device. Supply water inside.

この真空圧密システムによれば、表層部に砂と粘土との相互層がある地盤に低透水土層を構築しドレーン材を打設してから、水供給装置から地盤内へ水を供給することで、地盤の地下水位をドレーン材の気密性キャップよりも上にすることができるので、真空圧密時にドレーン材への空気の流入を避けることができる。このため、表層部に砂と粘土との相互層がある地盤について真空圧密改良を実施する際に、地盤に充分な負圧を作用させることができるので、充分な圧密改良効果を得ることができる。また、低透水土層が気密シール層として必要な透水係数(10-7m/s程度以下)を確保できない場合でも、充分な圧密改良効果を得ることが可能となる。 According to this vacuum consolidation system, after constructing a low-permeability soil layer on the ground with a sand and clay mutual layer in the surface layer and placing a drain material, water is supplied from the water supply device into the ground. Thus, since the groundwater level of the ground can be higher than the airtight cap of the drain material, it is possible to avoid the inflow of air into the drain material during vacuum consolidation. For this reason, when carrying out the vacuum consolidation improvement on the ground having a sand and clay mutual layer in the surface layer portion, a sufficient negative pressure can be applied to the ground, so that a sufficient consolidation improvement effect can be obtained. . Moreover, even when the low water permeability soil layer cannot secure the water permeability coefficient (about 10 −7 m / s or less) necessary as an airtight seal layer, a sufficient consolidation improvement effect can be obtained.

上記真空圧密システムにおいて前記地盤の地下水位を測定するための地下水位測定装置をさらに備えることが好ましい。これにより、地下水位が気密性キャップよりも上になるように確実に管理することができる。   The vacuum consolidation system preferably further includes a groundwater level measuring device for measuring the groundwater level of the ground. Thereby, it can manage reliably so that a groundwater level may become above an airtight cap.

なお、地下水位測定装置による測定結果に基づいて水供給装置から地盤内への水供給を自動的に制御することで、地下水位が常に所定値以上(気密性キャップよりも上)になるように制御し管理できる。   In addition, by automatically controlling the water supply from the water supply device to the ground based on the measurement result of the groundwater level measurement device, the groundwater level is always above the predetermined value (above the airtight cap) Control and manage.

本発明の真空圧密工法および真空圧密システムによれば、表層部に砂と粘土との相互層がある地盤について真空圧密改良を実施する際に充分な圧密改良効果を得ることができる。   According to the vacuum consolidation method and the vacuum consolidation system of the present invention, it is possible to obtain a sufficient consolidation improvement effect when the vacuum consolidation improvement is performed on the ground having a mutual layer of sand and clay in the surface layer portion.

本実施形態による真空圧密ドレーン工法を実行可能なキャップ付きドレーン材を用いた真空圧密システムを概略的に示す図である。It is a figure which shows roughly the vacuum consolidation system using the drain material with a cap which can perform the vacuum consolidation drain construction method by this embodiment. 図1の真空圧密システムを概略的に示す要部平面図である。It is a principal part top view which shows roughly the vacuum consolidation system of FIG. 図1,図2の水供給装置を概略的に示す図である。It is a figure which shows roughly the water supply apparatus of FIG. 1, FIG. 図1〜図3の注入ホースを概略的に示す要部平面図である。It is a principal part top view which shows roughly the injection hose of FIGS. 1-3. 図1の真空圧密システムの地下水位測定装置を概略的に示す図である。It is a figure which shows roughly the groundwater level measuring apparatus of the vacuum consolidation system of FIG. 図1の真空圧密システムにおいて地下水位を一定に保つための制御系を説明するためのブロック図である。It is a block diagram for demonstrating the control system for keeping a groundwater level constant in the vacuum consolidation system of FIG. 本実施形態の真空圧密ドレーン工法による地盤改良の各工程S01〜S10を説明するためのフローチャートである。It is a flowchart for demonstrating each process S01-S10 of the ground improvement by the vacuum consolidation drain method of this embodiment. 本実施形態で利用可能な砂質土、粘性土、および、これらの混合土についてのJIS A 1204による粒度分布を示すグラフである。It is a graph which shows the particle size distribution by JIS A 1204 about the sandy soil which can be used in this embodiment, viscous soil, and these mixed soil. 従来の真空圧密ドレーン工法を概略的に示す図である。It is a figure which shows the conventional vacuum consolidation drain construction method roughly.

以下、本発明を実施するための形態について図面を用いて説明する。図1は、本実施形態による真空圧密ドレーン工法を実行可能なキャップ付きドレーン材を用いた真空圧密システムを概略的に示す図である。図2は図1の真空圧密システムを概略的に示す要部平面図である。図3は図1,図2の水供給装置を概略的に示す図である。図4は図1〜図3の注入ホースを概略的に示す要部平面図である。図5は図1の真空圧密システムの地下水位測定装置を概略的に示す図である。図6は図1の真空圧密システムにおいて地下水位を一定に保つための制御系を説明するためのブロック図である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically illustrating a vacuum consolidation system using a drained material with a cap capable of executing the vacuum consolidation drain method according to the present embodiment. FIG. 2 is a plan view of an essential part schematically showing the vacuum consolidation system of FIG. FIG. 3 is a diagram schematically showing the water supply device of FIGS. 1 and 2. FIG. 4 is a plan view of an essential part schematically showing the injection hose shown in FIGS. FIG. 5 is a diagram schematically showing a groundwater level measuring device of the vacuum consolidation system of FIG. FIG. 6 is a block diagram for explaining a control system for keeping the groundwater level constant in the vacuum consolidation system of FIG.

図1,図2のように、真空圧密システム10は、改良対象の地盤G内の間隙水を吸引するように、地表面Sから地盤Gの粘土層(改良対象層)に打設された多数本のプラスチックボードドレーン材(PBD)11と、各PBD11の上端に接続された気密性キャップ12と、各気密性キャップ12に接続された排水ホース13と、各PBD11の内部を減圧するために排水ホース13の端部側に集水管14とヘッダパイプ16を介して接続される真空ポンプPと、地盤G内に方向aへ水を供給するための水供給装置20と、を備える。   As shown in FIG. 1 and FIG. 2, the vacuum consolidation system 10 is placed in a clay layer (improvement target layer) of the ground G from the ground surface S so as to suck pore water in the improvement target ground G. A plastic board drain material (PBD) 11, an airtight cap 12 connected to the upper end of each PBD 11, a drain hose 13 connected to each airtight cap 12, and drainage to depressurize the inside of each PBD 11 A vacuum pump P connected to the end portion side of the hose 13 via a water collecting pipe 14 and a header pipe 16, and a water supply device 20 for supplying water into the ground G in the direction a.

また、多数のPBD11の外側には、PBD11の打設範囲を包囲するように鋼矢板や固化連続壁等からなる遮水壁18が改良対象層の粘土層に達するように地盤Gに打設される。また、PBD11の打設後、地表面S上には低透水土層40が築造される。なお、PBD11や気密性キャップ12は、たとえば、特許文献1に開示された構成とすることができる。   Further, outside the large number of PBDs 11, a water-impervious wall 18 made of a steel sheet pile, a solidified continuous wall, or the like is placed on the ground G so as to reach the clay layer of the improvement target layer so as to surround the PBD 11 placement range. The Moreover, the low water-permeable earth layer 40 is built on the ground surface S after placement of PBD11. In addition, PBD11 and the airtight cap 12 can be set as the structure disclosed by patent document 1, for example.

図1〜図4のように、水供給装置20は、低透水土層40の築造前に地表面S上に配置される水供給部である注水ホース21と、注水ホース21へと水を定量供給する定容積ポンプ22と、開閉バルブ23と、水槽24と、を備える。注水ホース21は、図4のように、注水のための複数の孔21aと、孔21aを覆うように接合された紙や不織布等からなるフィルタ21bと、を有する。   As shown in FIGS. 1 to 4, the water supply device 20 quantifies water to the water supply hose 21, which is a water supply unit disposed on the ground surface S before the construction of the low water permeability soil layer 40, and the water supply hose 21. A constant volume pump 22 to be supplied, an on-off valve 23, and a water tank 24 are provided. As shown in FIG. 4, the water injection hose 21 has a plurality of holes 21a for water injection and a filter 21b made of paper, nonwoven fabric, or the like joined so as to cover the holes 21a.

また、真空圧密システム10は、図5のように、地下水位測定装置30を備え、地下水位測定装置30は、地盤G内の比較的浅い位置に設置された上部間隙水圧計31と、地盤G内の比較的深い位置に設置された下部間隙水圧計32と、を有する。   Further, as shown in FIG. 5, the vacuum compaction system 10 includes a groundwater level measuring device 30, and the groundwater level measuring device 30 includes an upper pore water pressure gauge 31 installed at a relatively shallow position in the ground G, and a ground G And a lower pore water pressure gauge 32 installed at a relatively deep position.

図5の地下水位測定装置30により次のようにして地下水位H1(改良対象地盤における地表面Sから図5の水面WL1までの距離)を測定することができる。
Hw=(u2−u1)/γw (1)
H1=H0−Hw (2)
ただし、
u1:上部間隙水圧計31の測定値
u2:下部間隙水圧計32の測定値
γw:水の単位体積重量
Hw:下部間隙水圧計32からWL1までの距離
H0:地表面Sから下部間隙水圧計32までの距離
The groundwater level H1 (distance from the ground surface S on the ground to be improved to the water surface WL1 in FIG. 5) can be measured by the groundwater level measuring device 30 in FIG. 5 as follows.
Hw = (u2-u1) / γw (1)
H1 = H0-Hw (2)
However,
u1: Measured value of upper pore hydrometer 31 u2: Measured value of lower pore hydrometer 32 γw: Unit volume weight of water Hw: Distance from lower pore hydrometer 32 to WL1 H0: Lower pore hydrometer 32 from ground surface S Distance to

以上のようにして地下水位測定装置30により測定された改良対象地盤における地下水位H1が、気密性キャップ12の深さ位置よりも上になる(高くなる)ように、水供給装置20から方向aへと地盤内に水を供給する。たとえば、図6のように、地下水位測定装置30の測定データをパーソナルコンピュータ(パソコン)PCに入力し、パソコンPCは、測定データから式(1)(2)により算出した地下水位H1が所定値よりも低い(気密性キャップ12の深さ位置に近い)と判断すると、図3の水供給装置20の定容積ポンプ22を作動させる。このような図6の制御系により、注水ホース21から水が地盤内へ自動的に供給され、地下水位H1が気密性キャップ12の深さ位置よりも常に上になるように自動制御することができる。   From the water supply device 20 in the direction a, the groundwater level H1 in the ground to be improved measured by the groundwater level measuring device 30 as described above is higher (higher) than the depth position of the airtight cap 12. Supply water to the ground. For example, as shown in FIG. 6, the measurement data of the groundwater level measurement device 30 is input to a personal computer (personal computer) PC, and the personal computer PC has the groundwater level H1 calculated from the measurement data by the formulas (1) and (2) as a predetermined value. 3 is operated (close to the depth position of the airtight cap 12), the constant volume pump 22 of the water supply device 20 of FIG. 3 is operated. With such a control system of FIG. 6, water is automatically supplied from the water injection hose 21 into the ground, and automatic control is performed so that the groundwater level H1 is always above the depth position of the airtight cap 12. it can.

図1のように、本実施形態における改良対象の地盤Gには、地表面Sから順に砂層、粘土層、砂層、粘土層、砂層、圧密対象の厚い粘土層、砂層が存在する。このように、地盤Gは、地表面S近くに砂層、粘土層、砂層、粘土層、砂層が交互に形成された交互層を有し、交互層を構成する各層は比較的薄い場合が多い。   As shown in FIG. 1, the ground G to be improved in the present embodiment includes a sand layer, a clay layer, a sand layer, a clay layer, a sand layer, a thick clay layer to be consolidated, and a sand layer in order from the ground surface S. Thus, the ground G has an alternating layer in which sand layers, clay layers, sand layers, clay layers, and sand layers are alternately formed near the ground surface S, and the layers constituting the alternating layers are often relatively thin.

次に、かかる地盤に対する本実施形態の真空圧密ドレーン工法による地盤改良工程について図1〜図7を参照して説明する。図7は、本実施形態の真空圧密ドレーン工法による地盤改良の各工程S01〜S10を説明するためのフローチャートである。   Next, the ground improvement process by the vacuum consolidation drain method of this embodiment with respect to this ground is demonstrated with reference to FIGS. FIG. 7 is a flowchart for explaining the steps S01 to S10 for ground improvement by the vacuum consolidation drain method according to the present embodiment.

まず、地表面SからPBD打設機によりPBD11を図1のように地盤内の圧密対象の粘土層へと打設する(S01)。このとき、PBD11は、その上端の気密性キャップ12が地表面Sから所定深さに位置するように打設される。このように多数のPBD11を最小の平面配置がたとえば1.0mの正方形となるようにして打設する。   First, the PBD 11 is placed on the clay layer to be consolidated in the ground as shown in FIG. 1 from the ground surface S by a PBD placing machine (S01). At this time, the PBD 11 is driven so that the airtight cap 12 at the upper end is located at a predetermined depth from the ground surface S. In this way, a large number of PBDs 11 are placed so that the minimum planar arrangement is, for example, a square of 1.0 m.

また、多数のPBD11の打設範囲を包囲するように鋼矢板や固化連続壁等からなる遮水壁18を圧密対象の粘土層に達するように打設する(S02)。   Further, a water shielding wall 18 made of a steel sheet pile, a solidified continuous wall or the like is placed so as to reach the clay layer to be consolidated so as to surround a large number of PBD 11 placement ranges (S02).

次に、排水ホース13を、図2のように、集水管14とヘッダパイプ15を介して真空ポンプPに接続する(S03)。   Next, the drain hose 13 is connected to the vacuum pump P through the water collection pipe 14 and the header pipe 15 as shown in FIG. 2 (S03).

また、図1〜図4のように、地盤改良対象の地表面Sに注水ホース21を配置し、定容積ポンプ22へ接続する(S04)。上述のようにして、図1の真空圧密システム10を構築する。   Moreover, the water injection hose 21 is arrange | positioned to the ground surface S of ground improvement object like FIGS. 1-4, and it connects to the constant volume pump 22 (S04). The vacuum consolidation system 10 of FIG. 1 is constructed as described above.

次に、地盤改良対象地で砂質土と粘性土を調達し、これらの砂質土と粘性土を、たとえば2:1の質量比で混合した混合土を作製し、この混合土のJIS A 1204による粒度分布を図8に示す。図8のように、混合土の細粒分含有率(75μm以下の質量比)は約28%であった。この混合土に対して変水位透水試験を「土の透水試験方法」(JIS A 1218)に基づいて実施すると、透水係数kは1×10-7m/sであった。 Next, sandy soil and cohesive soil are procured at the ground improvement target site, and a mixed soil is prepared by mixing these sandy soil and cohesive soil at a mass ratio of, for example, 2: 1. The particle size distribution according to 1204 is shown in FIG. As shown in FIG. 8, the content of fine particles in the mixed soil (mass ratio of 75 μm or less) was about 28%. When the water permeability test was performed on this mixed soil based on the “Soil Permeability Test Method” (JIS A 1218), the hydraulic conductivity k was 1 × 10 −7 m / s.

上述の砂質土と粘性土を2:1の質量比で2層に積み重ね、積み重ねられた砂質土と粘性土とをバックホウ等により混合し、この混合土を図1の地表面Sの上に湿地ブルドーザにより1m厚で撒き出すことで、地表面S上に低透水土層40を築造する(S05)。   The above-mentioned sandy soil and viscous soil are stacked in two layers at a mass ratio of 2: 1. The stacked sandy soil and viscous soil are mixed with a backhoe or the like, and this mixed soil is mixed on the ground surface S in FIG. Then, a low-permeable soil layer 40 is constructed on the ground surface S by rolling out with a wetland bulldozer at a thickness of 1 m (S05).

次に、図5の地下水位測定装置30により改良対象地盤における地下水位H1を測定する(S06)。この地下水位H1が所定値よりも低いときには(S07)、図1〜図4の水供給装置20により地盤内に水を供給する(S08)。   Next, the groundwater level H1 in the ground to be improved is measured by the groundwater level measuring device 30 in FIG. 5 (S06). When the groundwater level H1 is lower than a predetermined value (S07), water is supplied into the ground by the water supply device 20 of FIGS. 1 to 4 (S08).

上述の地下水位測定工程S06において改良対象地盤における地下水位H1が気密性キャップ12の深さ位置よりも上であることが確認されたら、次に、真空ポンプPを作動させ、PBD11を通して地盤Gに負圧を作用させる(S09)。このようにして地盤Gに対し負圧による圧力載荷を、地盤内の間隙水を外部へと排水しながら、所定期間実施する(S10)。この間、地下水位H1の測定(S06)を継続して行い、地下水位H1が気密性キャップ12の深さ位置よりも上であることを常に確認する。   If it is confirmed that the groundwater level H1 in the ground to be improved is higher than the depth position of the airtight cap 12 in the above-described groundwater level measurement step S06, then the vacuum pump P is operated and the ground G is passed through the PBD11. A negative pressure is applied (S09). In this way, the pressure loading due to the negative pressure is performed on the ground G for a predetermined period while draining the pore water in the ground to the outside (S10). During this time, the measurement of the groundwater level H1 (S06) is continued, and it is always confirmed that the groundwater level H1 is above the depth position of the airtight cap 12.

以上のように、本実施形態の真空圧密ドレーン工法によれば、表層部に砂と粘土との相互層がある地盤GにPBD11を打設し低透水土層40を構築してから、水供給装置20により地盤G内へ水を供給することで、地盤Gの地下水位H1がPBD11の気密性キャップ12よりも上になるので、真空圧密時にPBD11への空気の流入を避けることができる。このため、表層部に砂と粘土との相互層がある地盤Gに充分な負圧を作用させることができるので、地盤に対し真空圧密改良を実施する際に充分な圧密改良効果を得ることができる。   As described above, according to the vacuum consolidation drain method of the present embodiment, the PBD 11 is placed on the ground G having a mutual layer of sand and clay on the surface layer portion to construct the low-permeable soil layer 40, and then the water supply By supplying water into the ground G by the device 20, the groundwater level H1 of the ground G becomes higher than the airtight cap 12 of the PBD 11, so that inflow of air into the PBD 11 can be avoided during vacuum consolidation. For this reason, since a sufficient negative pressure can be applied to the ground G where the surface layer portion has a mutual layer of sand and clay, a sufficient consolidation improvement effect can be obtained when the vacuum consolidation improvement is performed on the ground. it can.

また、低透水土層40が気密シール層として必要な透水係数(10-7m/s程度以下)を確保できない場合でも、PBD11への空気の流入を避けることができるので、充分な圧密改良効果を得ることが可能となる。 In addition, even if the low water permeability soil layer 40 cannot secure the water permeability coefficient (about 10 -7 m / s or less) required as an airtight seal layer, it is possible to avoid the inflow of air to the PBD 11, so that sufficient consolidation improvement effect can be achieved. Can be obtained.

また、図5の地下水位測定装置30による地下水位H1の測定結果に基づいて水供給装置20から地盤G内への水供給を図6のようにして自動的に制御することで、地下水位Hが常に所定値以上(気密性キャップよりも上)になるように確実に管理することができる。   Further, the water supply from the water supply device 20 to the ground G is automatically controlled as shown in FIG. 6 based on the measurement result of the groundwater level H1 by the groundwater level measurement device 30 in FIG. Can be reliably managed so that is always above a predetermined value (above the hermetic cap).

また、遮水壁18を地盤Gの圧密対象の粘土層まで打設し設置し、遮水壁18が多数のPBD11の打設範囲を包囲することで、地盤G内に供給した水が遮水壁18で遮断されるので、図1,図5の地下水位(WL2)の低い周囲の地盤内へ拡散して改良対象地盤の地下水位H1が低下してしまうことを未然に防止することができる。   In addition, the impermeable wall 18 is placed and installed up to the clay layer to be consolidated on the ground G, and the impermeable wall 18 surrounds the numerous PBD 11 placement areas so that the water supplied into the ground G is impermeable. Since it is blocked by the wall 18, it can be prevented in advance that the groundwater level H1 of the ground to be improved is lowered due to diffusion into the surrounding ground having a low groundwater level (WL2) in FIGS. .

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図6では、地下水位測定装置30による地下水位H1の測定結果に基づいて水供給装置20からの水供給を自動的に制御するようにしたが、本発明はこれに限定されず、地下水位H1の測定結果に基づいて水供給装置20を手動で制御するようにしてもよく、これによっても、地下水位H1が常に所定値以上(気密性キャップ12よりも上)になるように確実に管理することができる。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, in FIG. 6, the water supply from the water supply device 20 is automatically controlled based on the measurement result of the groundwater level H1 by the groundwater level measurement device 30, but the present invention is not limited to this, and the groundwater The water supply device 20 may be manually controlled based on the measurement result of the position H1, and this also ensures that the groundwater level H1 is always above a predetermined value (above the hermetic cap 12). Can be managed.

また、図1の地盤Gには、改良対象層の上部に相互層として砂層、粘土層、砂層、粘土層、砂層が存在するが、本発明を適用可能な地盤はこれに限定されず、たとえば、改良対象層の上部に相互層として地盤表面から順に少なくとも砂層、粘土層、砂層が存在する地盤に適用可能である。   In addition, in the ground G of FIG. 1, there are a sand layer, a clay layer, a sand layer, a clay layer, and a sand layer as mutual layers above the improvement target layer, but the ground to which the present invention is applicable is not limited to this, for example, It can be applied to the ground where at least a sand layer, a clay layer, and a sand layer exist in order from the ground surface as a mutual layer above the improvement target layer.

本発明によれば、表層部に砂と粘土との相互層がある地盤について真空圧密改良を実施する際に充分な圧密改良効果を得ることができるので、地盤の表層部に砂と粘土との相互層があるため真空圧密の際に表層部で充分な負圧シール層を確保できない場合でも真空圧密による地盤改良を確実に実施することができる。   According to the present invention, it is possible to obtain a sufficient consolidation improvement effect when performing a vacuum consolidation improvement on the ground having a mutual layer of sand and clay on the surface layer portion, so that the surface layer portion of the ground is composed of sand and clay. Since there are mutual layers, even if a sufficient negative pressure seal layer cannot be secured at the surface layer during vacuum consolidation, the ground improvement by vacuum consolidation can be carried out reliably.

10 真空圧密システム
11 プラスチックボードドレーン材、PBD、ドレーン材
12 気密性キャップ
13 排水ホース
18 遮水壁
20 水供給装置
21 注水ホース
30 地下水位測定装置
31 上部間隙水圧計
32 下部間隙水圧計
40 低透水土層
G 地盤
H1 地下水位
P 真空ポンプ
S 地表面
DESCRIPTION OF SYMBOLS 10 Vacuum compaction system 11 Plastic board drain material, PBD, drain material 12 Airtight cap 13 Drainage hose 18 Impermeable wall 20 Water supply device 21 Water injection hose 30 Groundwater level measurement device 31 Upper pore water pressure gauge 32 Lower pore water pressure gauge 40 Low water permeability Soil layer G Ground H1 Groundwater level P Vacuum pump S Ground surface

Claims (6)

表層部に砂と粘土との交互層が存在する地盤に対する地盤改良のための真空圧密工法であって、
上端に気密性キャップを有するドレーン材を地表面から前記地盤へ打設し、
前記地表面に低透水土層を構築し、
前記低透水土層の下部から前記地盤内へ水を、前記地盤の地下水位が前記気密性キャップよりも上になるように供給する真空圧密工法。
It is a vacuum consolidation method for ground improvement for ground where alternating layers of sand and clay exist in the surface layer part,
A drain material having an airtight cap at the upper end is driven from the ground surface to the ground,
Construct a low permeability soil layer on the ground surface,
A vacuum consolidation method for supplying water from the lower part of the low-permeability soil layer into the ground so that the groundwater level of the ground is above the hermetic cap.
前記低透水土層の構築前に前記地表面に水供給部を設置する請求項1に記載の真空圧密工法。   The vacuum consolidation method according to claim 1, wherein a water supply unit is installed on the ground surface before the construction of the low water permeable soil layer. 前記地下水位を測定し、
前記地下水位の測定結果に基づいて前記地下水位が前記気密キャップの深さ位置よりも低いと判断された場合は、前記水を前記地下水位が前記気密性キャップよりも上になるように供給する請求項1または2に記載の真空圧密工法。
Measuring the groundwater level,
When it is determined that the groundwater level is lower than the depth position of the hermetic cap based on the measurement result of the groundwater level, the water is supplied so that the groundwater level is higher than the hermetic cap. The vacuum consolidation method according to claim 1 or 2.
前記地盤に多数の前記ドレーン材が打設された範囲を包囲するように遮水壁を前記地盤内に設置する請求項1乃至3のいずれか1項に記載の真空圧密工法。   The vacuum consolidation method according to any one of claims 1 to 3, wherein a water-impervious wall is installed in the ground so as to surround a range where a large number of drain materials are placed on the ground. 表層部に砂と粘土との交互層が存在しかつ地表面に低透水土層が築造された地盤に対する地盤改良のための真空圧密システムであって、
前記地盤内の改良対象層に打設された多数のドレーン材と、
前記各ドレーン材の上端に配置された気密性キャップと、
前記各ドレーン材の上端に前記気密性キャップとともに一端が接続された排水管と、
前記排水管の他端側に配置された真空装置と、
前記地表面に配置された水供給装置と、を備え、
前記水供給装置により前記低透水土層の下部から前記地盤内へ水を供給する真空圧密システム。
It is a vacuum consolidation system for ground improvement for the ground where alternating layers of sand and clay exist in the surface layer and a low permeability soil layer is built on the ground surface,
A number of drain materials placed on the improvement target layer in the ground;
An airtight cap disposed at the upper end of each drain material;
A drain pipe having one end connected to the upper end of each drain member together with the airtight cap;
A vacuum device disposed on the other end of the drain pipe;
A water supply device disposed on the ground surface,
A vacuum consolidation system for supplying water from the lower part of the low water permeability soil layer into the ground by the water supply device.
前記地盤の地下水位を測定するための地下水位測定装置をさらに備える請求項5に記載の真空圧密システム。   The vacuum consolidation system according to claim 5, further comprising a groundwater level measuring device for measuring the groundwater level of the ground.
JP2015050269A 2015-03-13 2015-03-13 Vacuum consolidation method and vacuum consolidation system Active JP6448133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050269A JP6448133B2 (en) 2015-03-13 2015-03-13 Vacuum consolidation method and vacuum consolidation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050269A JP6448133B2 (en) 2015-03-13 2015-03-13 Vacuum consolidation method and vacuum consolidation system

Publications (2)

Publication Number Publication Date
JP2016169542A JP2016169542A (en) 2016-09-23
JP6448133B2 true JP6448133B2 (en) 2019-01-09

Family

ID=56983357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050269A Active JP6448133B2 (en) 2015-03-13 2015-03-13 Vacuum consolidation method and vacuum consolidation system

Country Status (1)

Country Link
JP (1) JP6448133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108265697A (en) * 2016-12-30 2018-07-10 北京市第五建筑工程集团有限公司 Vacuum prepressing ground foundation treatment method
CN111119155A (en) * 2020-01-09 2020-05-08 天津大学 Pressure-bearing layer rapid decompression and recharge system and method for tunnel emergency
CN114960608B (en) * 2022-03-22 2023-08-22 温州大学 Alternating bidirectional vacuum preloading consolidation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4391664B2 (en) * 2000-04-28 2009-12-24 株式会社間組 Ground improvement structure and construction method for soft ground
JP4493522B2 (en) * 2005-03-04 2010-06-30 五洋建設株式会社 Soft ground improvement method by vacuum consolidation
JP4596962B2 (en) * 2005-04-14 2010-12-15 五洋建設株式会社 Improved structure of soft ground and its improved construction method
JP5466961B2 (en) * 2010-02-03 2014-04-09 五洋建設株式会社 Vacuum consolidation ground improvement method

Also Published As

Publication number Publication date
JP2016169542A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
Rahardjo et al. Performance of an instrumented slope covered by a capillary barrier system
CN104120710B (en) A kind of highway on soft ground method of vacuum pre-pressed joint serous fluid of dredger fill
JP3757216B2 (en) Method of preventing liquefaction of saturated ground during earthquake by compressed gas injection
JP6448133B2 (en) Vacuum consolidation method and vacuum consolidation system
JP2009046918A (en) Construction method for improving soft ground by vacuum consolidation
JP6192118B2 (en) In-situ unsaturated permeability test equipment
Ding et al. Case study: Ground improvement of Yangtze river floodplain soils with combined vacuum and surcharge preloading method
JP2020514574A (en) How to agitate soft terrain with aerosols
JP6158555B2 (en) Ground improvement method
CN104120711A (en) Structure and method for conducting reinforcing processing on soft foundation by combining surcharge preloading and vacuum preloading
CN105239554A (en) Vacuum and preloading drainage structure with low-permeability sand layers and construction method
JP5213216B2 (en) Ground improvement method
KR101209008B1 (en) A Reinforcement method of weak stratum use of suction drainage
JP4051666B2 (en) Consolidation improvement method for water bottom soft ground.
JP2007303270A5 (en)
JP6426418B2 (en) Ground improvement method and ground improvement system
CN102704458A (en) Sand-free cushion layer vacuum-surcharge preloading reinforcement device and method for soft ground
JP4114944B2 (en) Ground improvement method
CN102787608A (en) Gravity type foundation pit supporting system under vacuum effect and construction method
JP6391163B2 (en) Vacuum consolidation method
JP2021147828A (en) Soil drainage device and construction method of soil drainage device
CN206540536U (en) The rapidly solidified weak soil experimental rig of low Low Level vacuum method
US2615307A (en) Method of consolidating soils
JP4055184B2 (en) Volume reduction method for water-bottom soft ground
JP5519722B2 (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6448133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150