[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6444229B2 - Cryogenic cable termination connection - Google Patents

Cryogenic cable termination connection Download PDF

Info

Publication number
JP6444229B2
JP6444229B2 JP2015056698A JP2015056698A JP6444229B2 JP 6444229 B2 JP6444229 B2 JP 6444229B2 JP 2015056698 A JP2015056698 A JP 2015056698A JP 2015056698 A JP2015056698 A JP 2015056698A JP 6444229 B2 JP6444229 B2 JP 6444229B2
Authority
JP
Japan
Prior art keywords
conductor
superconducting
shield
terminal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015056698A
Other languages
Japanese (ja)
Other versions
JP2016178779A (en
Inventor
足立 和久
和久 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2015056698A priority Critical patent/JP6444229B2/en
Publication of JP2016178779A publication Critical patent/JP2016178779A/en
Application granted granted Critical
Publication of JP6444229B2 publication Critical patent/JP6444229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Description

本発明は、超電導ケーブル等の極低温ケーブルの終端接続部に関する。   The present invention relates to a terminal connection part of a cryogenic cable such as a superconducting cable.

従来、極低温で超電導状態になる超電導線材を導体として用いた超電導ケーブルが知られている。超電導ケーブルは、大電流を低損失で送電可能な電力ケーブルとして期待されており、実用化に向けて開発が進められている。   Conventionally, a superconducting cable using a superconducting wire that becomes a superconducting state at an extremely low temperature as a conductor is known. The superconducting cable is expected as a power cable capable of transmitting a large current with a low loss, and is being developed for practical use.

超電導ケーブルは、断熱管内に一心又は複数心のケーブルコアが収容された構造を有する。ケーブルコアは、例えば中心から順に、フォーマ、超電導導体層、電気絶縁層、超電導シールド層、常電導シールド層、及び保護層等を有する。断熱管は、ケーブルコアを収容し内部に冷媒(例えば液体窒素)が充填される内管(以下「断熱内管」と称する)と、断熱内管の外周を覆う外管(以下「断熱外管」と称する)を有する。断熱内管と断熱外管の間は、断熱のために真空状態とされる。   The superconducting cable has a structure in which a single-core or multiple-core cable core is accommodated in a heat insulating tube. The cable core includes, for example, a former, a superconducting conductor layer, an electrical insulating layer, a superconducting shield layer, a normal conducting shield layer, and a protective layer in order from the center. The heat insulation pipe includes an inner pipe (hereinafter referred to as “heat insulation inner pipe”) that accommodates the cable core and is filled with a refrigerant (for example, liquid nitrogen), and an outer pipe that covers the outer periphery of the heat insulation inner pipe (hereinafter referred to as “heat insulation outer pipe”). "). Between the heat insulating inner tube and the heat insulating outer tube, a vacuum state is set for heat insulation.

超電導ケーブルの終端接続部においては、低温部となる低温容器に超電導ケーブルの端末部が収容され、超電導ケーブルのフォーマ及び超電導導体層が導体引出部を介して常温部となる実系統に接続される。また、超電導ケーブルの超電導シールド層及び常電導シールド層がシールド通電部を介して接地される。低温容器は、超電導ケーブルの端末部を収容し運転時に液体窒素等の冷媒が充填される冷媒槽と、冷媒槽を収容し運転時に真空状態とされる真空槽とからなる二重構造を有する。   In the terminal connection part of the superconducting cable, the terminal part of the superconducting cable is accommodated in a low temperature container that is a low temperature part, and the former of the superconducting cable and the superconducting conductor layer are connected to the actual system that becomes the room temperature part through the conductor lead-out part . In addition, the superconducting shield layer and the normal conducting shield layer of the superconducting cable are grounded via the shield energization part. The cryogenic container has a double structure composed of a refrigerant tank that accommodates the terminal portion of the superconducting cable and is filled with a refrigerant such as liquid nitrogen during operation, and a vacuum tank that accommodates the refrigerant tank and is in a vacuum state during operation.

ところで、超電導ケーブルの終端接続部においては、冷却時に超電導ケーブルや冷媒槽が熱収縮することが知られている。そのため、従来の終端接続部においては、冷却時の熱収縮を吸収するための手段(以下「収縮吸収部」)が講じられている(例えば特許文献1)。特許文献1には、導体引出部と超電導ケーブルの端末部とを編組線等の屈曲性のあるフレキシブル導体で接続することが開示されている。   By the way, in the termination | terminus connection part of a superconducting cable, it is known that a superconducting cable and a refrigerant tank will heat-shrink at the time of cooling. Therefore, in the conventional terminal connection part, means for absorbing thermal contraction during cooling (hereinafter referred to as “shrinkage absorbing part”) is taken (for example, Patent Document 1). Patent Document 1 discloses that a conductor lead portion and a terminal portion of a superconducting cable are connected by a flexible flexible conductor such as a braided wire.

また、超電導ケーブルの端末部は、超電導ケーブルの先端に直線状の常電導導体が取り付けられ、この常電導導体が通電端子に固着された構成を有し、通電端子にフレキシブル導体が接続されるようになっている。なお、具体的な記載はないが、常電導導体には、超電導ケーブルのフォーマ及び超電導導体層が接続されていると考えられる。   Also, the terminal portion of the superconducting cable has a configuration in which a straight normal conducting conductor is attached to the tip of the superconducting cable, the normal conducting conductor is fixed to the energizing terminal, and the flexible conductor is connected to the energizing terminal. It has become. Although there is no specific description, it is considered that a superconducting cable former and a superconducting conductor layer are connected to the normal conducting conductor.

特開2005−12911号公報JP 2005-12911 A

特許文献1に記載の終端接続部は、冷却時の超電導ケーブルの熱収縮を吸収することができるが、導体引出部と超電導ケーブルの端末部をフレキシブル導体によって接続するため、装置が大型になる。また、冷却時には、超電導ケーブルのフォーマ及び超電導導体層も収縮することとなるが、これらが一つの常電導導体に接続されていると、両者の熱収縮量の差によって接続部が破損し、電気特性(通電特性)が損なわれる虞がある。   Although the terminal connection part described in Patent Document 1 can absorb the heat shrinkage of the superconducting cable during cooling, the conductor lead-out part and the terminal part of the superconducting cable are connected by a flexible conductor, so that the apparatus becomes large. In addition, during cooling, the former of the superconducting cable and the superconducting conductor layer also shrink, but if they are connected to one normal conducting conductor, the connection portion is damaged due to the difference in the amount of thermal shrinkage between them, and the electrical There is a risk that the characteristics (energization characteristics) may be impaired.

本発明の目的は、冷却時におけるフォーマと超電導導体層の熱収縮量の差を吸収でき、良好な電気特性を確保できる信頼性の高い極低温ケーブルの終端接続部を提供することである。   It is an object of the present invention to provide a highly reliable cryogenic cable terminal connection that can absorb the difference in thermal shrinkage between the former and the superconducting conductor layer during cooling and can ensure good electrical characteristics.

本発明に係る極低温ケーブルの終端接続部は、少なくともフォーマ、及び超電導導体層を有する極低温ケーブルの端末部と、
前記フォーマ及び前記超電導導体層に電気的に接続される導体接続部と、
前記導体接続部に電気的に接続され、前記フォーマ及び/又は前記超電導導体層に流れる電流を外部に引き出す導体引出部と、
前記極低温ケーブルの端末部を収容し、運転時に冷媒が導入される冷媒槽と、を備え、
前記導体接続部は、前記導体引出部に接続される第1の導体接続端子と、前記フォーマに接続される第2の導体接続端子と、前記超電導導体層に接続される第3の導体接続端子と、を有し、
前記第2の導体接続端子及び前記第3の導体接続端子のそれぞれが、ばね状接触子を介して前記第1の導体接続端子に電気的に接続されるとともに、前記第1の導体接続端子内において前記極低温ケーブルの長さ方向に移動可能であることを特徴とする。
The terminal connection part of the cryogenic cable according to the present invention includes at least a former and a terminal part of the cryogenic cable having a superconducting conductor layer,
A conductor connecting portion electrically connected to the former and the superconducting conductor layer;
A conductor lead portion that is electrically connected to the conductor connection portion and draws out the current flowing in the former and / or the superconducting conductor layer to the outside;
Containing a terminal portion of the cryogenic cable, and a refrigerant tank into which a refrigerant is introduced during operation,
The conductor connecting portion includes a first conductor connecting terminal connected to the conductor leading portion, a second conductor connecting terminal connected to the former, and a third conductor connecting terminal connected to the superconducting conductor layer. And having
Each of the second conductor connection terminal and the third conductor connection terminal is electrically connected to the first conductor connection terminal via a spring-like contact, and in the first conductor connection terminal. In the above, it is possible to move in the length direction of the cryogenic cable.

本発明によれば、第2の導体接続端子及び第3の導体接続端子のそれぞれが、ばね状接触子を介して第1の導体接触子に電気的に接続されることにより、冷却時におけるフォーマと超電導導体層の熱収縮量の差が吸収されるので、良好な電気特性を確保することができる。したがって、信頼性の高い極低温ケーブルの終端接続部が実現される。   According to the present invention, each of the second conductor connection terminal and the third conductor connection terminal is electrically connected to the first conductor contact via the spring-like contact, thereby allowing the former at the time of cooling. And the difference in heat shrinkage between the superconducting conductor layers is absorbed, and good electrical characteristics can be ensured. Therefore, a highly reliable terminal connection portion of the cryogenic cable is realized.

本発明の一実施の形態に係る終端接続部を示す図である。It is a figure which shows the termination | terminus connection part which concerns on one embodiment of this invention. 導体引出部と極低温ケーブルの端末部との接続構造を示す拡大図である。It is an enlarged view which shows the connection structure of a conductor extraction part and the terminal part of a cryogenic cable.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の一実施の形態に係る終端接続部1を示す図である。説明の便宜上、極低温ケーブル10が導入される側を後端側(図1では右側)、反対側を先端側(図1では左側)として説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a termination connection unit 1 according to an embodiment of the present invention. For convenience of explanation, the side on which the cryogenic cable 10 is introduced will be described as the rear end side (right side in FIG. 1), and the opposite side will be described as the front end side (left side in FIG. 1).

図1に示すように、終端接続部1は、極低温ケーブル10の端末部、低温容器20、導体引出部30、シールド通電部40、碍管50等を備える。低温容器20(詳細には冷媒槽21)に極低温ケーブル10の端末部が所定の状態で収容され、導体引出部30を介して極低温ケーブル10の導体電流が電力機器等の実系統側に引き出される。また、シールド通電部40を介して、極低温ケーブル10のシールド層が接地される。   As shown in FIG. 1, the terminal connection portion 1 includes a terminal portion of the cryogenic cable 10, a cryogenic container 20, a conductor extraction portion 30, a shield energization portion 40, a soot tube 50, and the like. The terminal portion of the cryogenic cable 10 is accommodated in a predetermined state in the cryogenic container 20 (specifically, the refrigerant tank 21), and the conductor current of the cryogenic cable 10 is transferred to the actual system side such as a power device via the conductor lead-out portion 30. Pulled out. In addition, the shield layer of the cryogenic cable 10 is grounded via the shield energization unit 40.

極低温ケーブル10は、断熱管12内に一心のケーブルコア11が収容された単心型の超電導ケーブルである。なお、極低温ケーブル10は、ケーブルコア11が3本撚り合わせた状態で断熱管12内に収容される三心一括型の三相超電導ケーブルであってもよい。   The cryogenic cable 10 is a single-core superconducting cable in which a single cable core 11 is accommodated in a heat insulating tube 12. Note that the cryogenic cable 10 may be a three-core three-phase superconducting cable accommodated in the heat insulating tube 12 in a state where three cable cores 11 are twisted together.

ケーブルコア11は、例えば中心から順に、フォーマ111、超電導導体層112、電気絶縁層113、超電導シールド層114、常電導シールド層115、及び保護層116等を有する。   The cable core 11 includes, for example, a former 111, a superconducting conductor layer 112, an electrical insulating layer 113, a superconducting shield layer 114, a normal conducting shield layer 115, a protective layer 116, and the like in order from the center.

フォーマ111は、例えば銅線等の常電導線材を撚り合わせた構成を有し、短絡事故時に超電導導体層112に流れる事故電流が分流される。超電導導体層112は、フォーマ111上に複数条の超電導線材を螺旋状に巻回することにより形成され、定常運転時に送電電流が流れる。超電導導体層112上には電気絶縁層113が設けられる。超電導シールド層114は、電気絶縁層113上に複数条の超電導線材を螺旋状に巻回することにより形成され、定常運転時に電磁誘導によって電流が逆位相で流れる。常電導シールド層115は、超電導シールド層114上に銅線などの常電導線材を巻回することにより形成され、短絡事故時に超電導シールド層114に流れる事故電流が分流される。超電導導体層112及び超電導シールド層114は、積層構造を有していてもよい。   The former 111 has a configuration in which normal conductive wires such as copper wires are twisted together, for example, and an accident current flowing in the superconducting conductor layer 112 is shunted at the time of a short circuit accident. The superconducting conductor layer 112 is formed by spirally winding a plurality of superconducting wires on the former 111, and a transmission current flows during steady operation. An electrically insulating layer 113 is provided on the superconducting conductor layer 112. Superconducting shield layer 114 is formed by spirally winding a plurality of superconducting wires on electrical insulating layer 113, and current flows in reverse phase by electromagnetic induction during steady operation. The normal conducting shield layer 115 is formed by winding a normal conducting wire such as a copper wire on the superconducting shield layer 114, and an accident current flowing in the superconducting shield layer 114 is shunted in the event of a short circuit accident. Superconducting conductor layer 112 and superconducting shield layer 114 may have a laminated structure.

極低温ケーブル10の端末部においては、ケーブルコア11に段剥ぎ加工が施され、先端側から順に各層が露出する。超電導導体層112の外周には、フォーマ111及び超電導導体層112に電気的に接続される導体接続部13が配置される。常電導シールド層115の外周には、超電導シールド層114及び常電導シールド層115に電気的に接続されるシールド接続部14が配置される。導体接続部13とシールド接続部14の間に位置する電気絶縁層113の外周には、ストレスコーン等の電界緩和層15が配置される。フォーマ111及び超電導導体層112と導体接続部13との接続構造については後述する。   In the terminal portion of the cryogenic cable 10, the cable core 11 is stepped and the layers are exposed in order from the tip side. A conductor connecting portion 13 that is electrically connected to the former 111 and the superconducting conductor layer 112 is disposed on the outer periphery of the superconducting conductor layer 112. A superconducting shield layer 114 and a shield connection portion 14 that is electrically connected to the normal conducting shield layer 115 are disposed on the outer periphery of the normal conducting shield layer 115. An electric field relaxation layer 15 such as a stress cone is disposed on the outer periphery of the electrical insulating layer 113 located between the conductor connection portion 13 and the shield connection portion 14. A connection structure between the former 111 and the superconducting conductor layer 112 and the conductor connecting portion 13 will be described later.

断熱管12は、内側の断熱内管121と外側の断熱外管122とからなる二重管構造を有する。断熱内管121は、ケーブルコア11を収容し、運転時には冷媒(例えば液体窒素)が充填される。これにより、超電導導体層112は、超電導状態に維持される。断熱内管121と断熱外管122の間は、断熱のために、運転時に真空状態に保持される。   The heat insulating tube 12 has a double tube structure including an inner heat insulating inner tube 121 and an outer heat insulating outer tube 122. The heat insulating inner pipe 121 accommodates the cable core 11 and is filled with a refrigerant (for example, liquid nitrogen) during operation. Thereby, the superconducting conductor layer 112 is maintained in a superconducting state. A space between the heat insulating inner pipe 121 and the heat insulating outer pipe 122 is kept in a vacuum state during operation for heat insulation.

低温容器20は、内側の冷媒槽21と外側の真空槽22とからなる二重構造を有する。
冷媒槽21は、例えば中空円筒形状を有し、極低温ケーブル10の端末部を収容する。冷媒槽21は、導体引出部30を導入する導体引出口21A及びシールド通電部40を導入するシールド引出口21Bを有する。冷媒槽21は、例えば真空槽22内に配置された架台(図示略)に載置してもよい。
The cryogenic container 20 has a double structure including an inner refrigerant tank 21 and an outer vacuum tank 22.
The refrigerant tank 21 has a hollow cylindrical shape, for example, and accommodates the terminal portion of the cryogenic cable 10. The refrigerant tank 21 has a conductor outlet 21 </ b> A for introducing the conductor extraction portion 30 and a shield outlet 21 </ b> B for introducing the shield energization portion 40. The refrigerant tank 21 may be placed on a gantry (not shown) disposed in the vacuum tank 22, for example.

冷媒槽21には後端側から極低温ケーブル10の端末部が導入される。冷媒槽21の後端部212には、極低温ケーブル10の断熱内管121が接続される。冷媒槽21には、運転時に冷媒循環装置(図示略)により冷媒が循環供給される。冷媒槽21に連通する断熱内管121の内部も冷媒で充填される。   The end of the cryogenic cable 10 is introduced into the refrigerant tank 21 from the rear end side. The heat insulation inner pipe 121 of the cryogenic cable 10 is connected to the rear end portion 212 of the refrigerant tank 21. The refrigerant is circulated and supplied to the refrigerant tank 21 by a refrigerant circulation device (not shown) during operation. The inside of the heat insulating inner pipe 121 communicating with the refrigerant tank 21 is also filled with the refrigerant.

冷媒槽21の導体引出口21Aには、導体引出部30及び冷媒槽21の外面に密着して絶縁スペーサー62が配置される。絶縁スペーサー62は、例えばエポキシ樹脂や繊維強化プラスチック(FRP:Fiber Reinforced Plastics)で構成される。冷媒槽21のシールド引出口21Bには、冷媒槽21の外面に密着して蓋63が配置される。絶縁スペーサー62と蓋63及び冷媒槽21の先端部211により冷媒槽21と真空槽22とが仕切られ、冷媒槽21は気密かつ水密に封止される。   An insulating spacer 62 is disposed at the conductor outlet 21 </ b> A of the refrigerant tank 21 in close contact with the conductor drawing portion 30 and the outer surface of the refrigerant tank 21. The insulating spacer 62 is made of, for example, epoxy resin or fiber reinforced plastics (FRP). A lid 63 is disposed at the shield outlet 21 </ b> B of the refrigerant tank 21 in close contact with the outer surface of the refrigerant tank 21. The refrigerant tank 21 and the vacuum tank 22 are partitioned by the insulating spacer 62, the lid 63, and the tip 211 of the refrigerant tank 21, and the refrigerant tank 21 is hermetically and water-tightly sealed.

真空槽22は、例えば中空円筒形状を有し、冷媒槽21を収容する真空槽本体部22A、真空槽本体部22Aから上方に向けて垂設される第1の筒状部22B、及び第1の筒状部22Bと離間して真空槽本体部22Aから上方に向けて垂設される第2の筒状部22Cを有する。一般に、第1の筒状部22B及び第2の筒状部22Cは、温度勾配部と呼ばれる。   The vacuum chamber 22 has, for example, a hollow cylindrical shape, and includes a vacuum chamber main body portion 22A that houses the refrigerant tank 21, a first cylindrical portion 22B that hangs upward from the vacuum tank main body portion 22A, and a first The second cylindrical portion 22C is provided so as to be spaced upward from the vacuum chamber main body portion 22A and spaced apart from the cylindrical portion 22B. In general, the first cylindrical portion 22B and the second cylindrical portion 22C are called temperature gradient portions.

真空槽22の内部には、第1の筒状部22Bの下方に導体引出口21Aが位置し、第2の筒状部22Cの下方にシールド引出口21Bが位置するように位置決めされた状態で、冷媒槽21が配置される。真空槽22の後端部222には、極低温ケーブル10の断熱外管122が接続される。真空槽22の先端部221は、気密に封止される。   In the vacuum chamber 22, the conductor outlet 21A is positioned below the first cylindrical portion 22B, and the shield outlet 21B is positioned below the second cylindrical portion 22C. The refrigerant tank 21 is arranged. A heat insulating outer tube 122 of the cryogenic cable 10 is connected to the rear end portion 222 of the vacuum chamber 22. The tip 221 of the vacuum chamber 22 is hermetically sealed.

第1の筒状部22Bには導体引出部30が配置され、第1の筒状部22Bの上部には碍管50が配置される。第2の筒状部22Cには測定用配管61、及びシールド通電部40が配置される。測定用配管61は、冷媒槽21内に各種計器類(例えば液面計、温度計、圧力計等)のセンサー65を導入するためのコルゲート管である。測定用配管61の一端は真空槽22の第2の筒状部22Cの上面を気密に貫通して外部に引き出され、他端は蓋63を気密に貫通して冷媒槽21に延在する。各種計器類を含む付帯設備としての測定部64は、測定用配管61の近傍に配置される。   The conductor lead-out portion 30 is disposed on the first tubular portion 22B, and the soot tube 50 is disposed on the upper portion of the first tubular portion 22B. The second tubular portion 22C is provided with the measurement pipe 61 and the shield energizing portion 40. The measurement pipe 61 is a corrugated pipe for introducing a sensor 65 of various instruments (for example, a liquid level gauge, a thermometer, a pressure gauge, etc.) into the refrigerant tank 21. One end of the measurement pipe 61 passes through the upper surface of the second cylindrical portion 22 </ b> C of the vacuum chamber 22 in an airtight manner and is drawn to the outside, and the other end penetrates the lid 63 in an airtight manner and extends to the refrigerant bath 21. The measuring unit 64 as ancillary equipment including various instruments is disposed in the vicinity of the measurement pipe 61.

冷媒槽21の導体引出口21A及びシールド引出口21Bが真空槽22の真空槽本体部22Aに収容されるので、熱伝達経路となる導体引出部30、シールド通電部40、及び測定用配管61は真空槽本体部22Aの内部まで導入される。これにより、熱侵入を低減するための熱伝達経路長を確保しやすくなるので、第1の筒状部22B及び第2の筒状部22Cの長さを最小限にすることができ、終端接続部1の小型化を図ることができる。   Since the conductor outlet 21A and the shield outlet 21B of the refrigerant tank 21 are accommodated in the vacuum tank body 22A of the vacuum tank 22, the conductor extraction part 30, the shield energization part 40, and the measurement pipe 61 serving as a heat transfer path are The vacuum chamber body 22A is introduced into the interior. Thereby, since it becomes easy to ensure the heat transfer path length for reducing heat penetration, the length of the first cylindrical portion 22B and the second cylindrical portion 22C can be minimized, and the end connection The part 1 can be downsized.

真空槽22は、運転時に真空ポンプ(図示略)により真空引きされ、真空状態に保持される。真空槽22に連通する断熱内管121と断熱外管122の間の空間、及び碍管50の内部も真空状態に保持される。   The vacuum chamber 22 is evacuated by a vacuum pump (not shown) during operation and kept in a vacuum state. The space between the heat insulating inner tube 121 and the heat insulating outer tube 122 communicating with the vacuum chamber 22 and the inside of the soot tube 50 are also maintained in a vacuum state.

導体引出部30は、極低温ケーブル10から実系統に電流を引き出すための導体である。導体引出部30は、例えば銅製の棒材からなる導体引出棒を有する。なお、導体引出部30の構成はこれに限定されず、公知の構成を適用することができる。導体引出部30(導体引出棒)の一端は碍管50を気密に貫通して外部に引き出され、他端は導体接続部13に接続される。導体引出部30は、導体接続部13を介して極低温ケーブル10のフォーマ111及び超電導導体層112と電気的に接続される。   The conductor lead-out part 30 is a conductor for drawing a current from the cryogenic cable 10 to the actual system. The conductor lead-out part 30 has a conductor lead-out bar made of, for example, a copper bar. In addition, the structure of the conductor extraction part 30 is not limited to this, A well-known structure is applicable. One end of the conductor lead-out part 30 (conductor lead-out bar) is hermetically penetrated through the soot tube 50 and drawn to the outside, and the other end is connected to the conductor connection part 13. The conductor lead portion 30 is electrically connected to the former 111 and the superconducting conductor layer 112 of the cryogenic cable 10 via the conductor connecting portion 13.

シールド通電部40は、極低温ケーブル10の超電導シールド層114及び常電導シールド層115を接地するための導体である。シールド通電部40は、例えば銅製の棒材からなるシールド引出棒を有する。なお、シールド通電部40の構成はこれに限定されず、公知の構成を適用することができる。シールド通電部40(シールド引出棒)の一端は真空槽22の第2の筒状部22Cを気密に貫通して外部に引き出され、他端はシールド接続部14に接続される。シールド通電部40は、シールド接続部14を介して極低温ケーブル10の超電導シールド層114及び常電導シールド層115と電気的に接続する。   The shield energization unit 40 is a conductor for grounding the superconducting shield layer 114 and the normal conducting shield layer 115 of the cryogenic cable 10. The shield energization unit 40 includes a shield lead bar made of, for example, a copper bar. In addition, the structure of the shield energization part 40 is not limited to this, A well-known structure is applicable. One end of the shield energization part 40 (shield lead bar) is hermetically penetrated through the second cylindrical part 22C of the vacuum chamber 22 and drawn to the outside, and the other end is connected to the shield connection part 14. The shield energization unit 40 is electrically connected to the superconducting shield layer 114 and the normal conducting shield layer 115 of the cryogenic cable 10 via the shield connection unit 14.

碍管50は、ポリマー套管51及び遮へい金具52を有する。
ポリマー套管51は、絶縁筒51aと、ポリマー被覆体51bと、を有する。絶縁筒51aは、機械的強度の高いFRP(繊維強化プラスチック)で構成される。ポリマー被覆体51bは、電気絶縁性能に優れる材料、例えばシリコーンポリマー(シリコーンゴム)などの高分子材料で構成される。ポリマー被覆体51bは、絶縁筒51aの外周に設けられており、ポリマー被覆体51bの外周面には、複数個の傘状の襞部が長手方向に離間して形成される。ポリマー套管51の内部(絶縁筒51aの内部)は中空となっている。
The soot tube 50 has a polymer sleeve 51 and a shielding fitting 52.
The polymer sleeve 51 includes an insulating cylinder 51a and a polymer cover 51b. The insulating cylinder 51a is made of FRP (fiber reinforced plastic) having high mechanical strength. The polymer covering 51b is made of a material having excellent electrical insulation performance, for example, a polymer material such as silicone polymer (silicone rubber). The polymer cover 51b is provided on the outer periphery of the insulating cylinder 51a, and a plurality of umbrella-shaped ridges are formed on the outer peripheral surface of the polymer cover 51b so as to be separated in the longitudinal direction. The inside of the polymer sleeve 51 (inside the insulating cylinder 51a) is hollow.

遮へい金具52は、ポリマー套管51と同心状に埋設される円筒部52aと、円筒部52aの下端から径方向外側に延出するフランジ部52bを有する。円筒部52aは電界緩和機能を有し、碍管50の電界を緩和する。   The shielding metal fitting 52 has a cylindrical portion 52a embedded concentrically with the polymer sleeve 51, and a flange portion 52b extending radially outward from the lower end of the cylindrical portion 52a. The cylindrical portion 52a has an electric field relaxation function, and relaxes the electric field of the soot tube 50.

真空槽22の第1の筒状部22Bの上部に碍管50を載置し、遮へい金具52のフランジ部52bをボルト等の接続部材(図示略)で接続することにより、碍管50は真空槽22に気密に固定される。碍管50の内部は第1の筒状部22Bに連通し、運転時には真空状態となる。これにより、真空断熱部を大きく確保することができるので、導体引出部30を介する外部からの熱侵入を低減することができる。   By placing the soot tube 50 on the upper part of the first cylindrical portion 22B of the vacuum chamber 22 and connecting the flange portion 52b of the shielding metal fitting 52 with a connecting member (not shown) such as a bolt, the soot tube 50 is in the vacuum chamber 22. To be airtightly fixed. The inside of the soot tube 50 communicates with the first cylindrical portion 22B and is in a vacuum state during operation. Thereby, since a vacuum heat insulation part can be ensured largely, the heat penetration | invasion from the outside through the conductor extraction | drawer part 30 can be reduced.

図2は、導体引出部30と極低温ケーブル10の端末部との接続構造を示す拡大図である。図2では、第2の導体接続端子132及び第3の導体接続端子133については、上半分を断面で示している。   FIG. 2 is an enlarged view showing a connection structure between the conductor lead-out portion 30 and the terminal portion of the cryogenic cable 10. In FIG. 2, the upper half of the second conductor connection terminal 132 and the third conductor connection terminal 133 is shown in cross section.

図2に示すように、本実施の形態では、導体接続部13は、導体引出部30に接続される第1の導体接続端子131と、フォーマ111に接続される第2の導体接続端子132と、超電導導体層112に接続される第3の導体接続端子133と、を有する。   As shown in FIG. 2, in the present embodiment, the conductor connecting portion 13 includes a first conductor connecting terminal 131 connected to the conductor lead-out portion 30 and a second conductor connecting terminal 132 connected to the former 111. And a third conductor connection terminal 133 connected to the superconducting conductor layer 112.

第1の導体接続端子131は、頭部131a及び胴部131bを有する。頭部131aは、極低温ケーブル10の延在方向に対して垂直な方向から導体引出部30を取り付けるための取付孔131cを有する。この取付孔131cに導体引出部30の先端が挿入され、電気的に接続される。胴部131bは、円筒形状を有し、極低温ケーブル10の長手方向に延びており、頭部131aと電気的に接続されている。ここでは、胴部131bは、頭部131aに連設されており、導体引出部30の引き出し方向に対して垂直に延びる。   The first conductor connection terminal 131 has a head portion 131a and a body portion 131b. The head portion 131 a has an attachment hole 131 c for attaching the conductor lead-out portion 30 from a direction perpendicular to the extending direction of the cryogenic cable 10. The leading end of the conductor lead-out portion 30 is inserted into the mounting hole 131c and is electrically connected. The trunk portion 131b has a cylindrical shape, extends in the longitudinal direction of the cryogenic cable 10, and is electrically connected to the head portion 131a. Here, the trunk portion 131 b is connected to the head portion 131 a and extends perpendicular to the direction in which the conductor leading portion 30 is pulled out.

胴部131bには、第2の導体接続端子132及び第3の導体接続端子133が取り付けられた極低温ケーブル10の端末部が挿入される。胴部131bの後端部は電気絶縁層113まで延設される。胴部131bの長さは、冷却時に極低温ケーブル10が収縮しても超電導導体層112が露出しないような長さに設定される。   The end portion of the cryogenic cable 10 to which the second conductor connection terminal 132 and the third conductor connection terminal 133 are attached is inserted into the trunk portion 131b. The rear end portion of the trunk portion 131b extends to the electrical insulating layer 113. The length of the body portion 131b is set such that the superconducting conductor layer 112 is not exposed even when the cryogenic cable 10 contracts during cooling.

第2の導体接続端子132は、フォーマ導通部132aと、フォーマ導通部132aよりも小径のフォーマ取付部132bとからなる、二段円筒形状を有する。第2の導体接続端子132の挿入孔132dの内径は、フォーマ111の外径とほぼ同じである。フォーマ導通部132aの外径は、第1の導体接続端子131の胴部131bの内径とほぼ同じである。   The second conductor connection terminal 132 has a two-stage cylindrical shape including a former conducting portion 132a and a former attaching portion 132b having a smaller diameter than the former conducting portion 132a. The inner diameter of the insertion hole 132 d of the second conductor connection terminal 132 is substantially the same as the outer diameter of the former 111. The outer diameter of the former conducting portion 132a is substantially the same as the inner diameter of the trunk portion 131b of the first conductor connection terminal 131.

フォーマ導通部132aは、外周面に円環溝132cを有する。この円環溝132cにフォーマ用ばね状接触子134が配置される。ここでは、フォーマ用ばね状接触子134として、マルチコンタクトが適用される。フォーマ用ばね状接触子134としては、マルチコンタクトに代えて、バルシール等のコイルスプリングタイプの接触子を適用してもよい。第2の導体接続端子132の挿入孔132dにフォーマ111が挿入され、フォーマ取付部132bが圧縮されることにより、第2の導体接続端子132がフォーマ111に接続される。   The former conducting portion 132a has an annular groove 132c on the outer peripheral surface. The former spring contactor 134 is disposed in the annular groove 132c. Here, a multi-contact is applied as the former spring-like contactor 134. As the former spring-like contactor 134, a coil spring type contactor such as a valve seal may be applied instead of the multi-contact. The former 111 is inserted into the insertion hole 132 d of the second conductor connection terminal 132 and the former attachment portion 132 b is compressed, whereby the second conductor connection terminal 132 is connected to the former 111.

第2の導体接続端子132はフォーマ用ばね状接触子134を介して第1の導体接続端子131と電気的に接続される。第2の導体接続端子132は、第1の導体接続部131に対して固着されていないので、冷却時にフォーマ111が収縮すると、これに追従してフォーマ111と一体的に後端側へ移動する。   The second conductor connection terminal 132 is electrically connected to the first conductor connection terminal 131 through the former spring-like contactor 134. Since the second conductor connection terminal 132 is not fixed to the first conductor connection portion 131, when the former 111 contracts during cooling, the former 111 moves along with the former 111 and moves to the rear end side. .

第3の導体接続端子133は、超電導導通部133aと、超電導導通部133aよりも小径の超電導取付部133bとからなる、二段円形状を有する。第3の導体接続端子133の挿入孔133dの内径は、フォーマ111の外径より大きく、挿入孔133dは長手方向に貫通している。超電導導通部133aの外径は、第1の導体接続端子131の胴部131bの内径とほぼ同じである。   The third conductor connection terminal 133 has a two-stage circular shape including a superconducting conduction portion 133a and a superconducting attachment portion 133b having a smaller diameter than the superconducting conduction portion 133a. The inner diameter of the insertion hole 133d of the third conductor connection terminal 133 is larger than the outer diameter of the former 111, and the insertion hole 133d penetrates in the longitudinal direction. The outer diameter of the superconducting conduction portion 133a is substantially the same as the inner diameter of the body 131b of the first conductor connection terminal 131.

超電導導通部133aは、外周面に円環溝133cを有する。この円環溝133cに超電導用ばね状接触子135が配置される。ここでは、超電導用ばね状接触子135としてマルチコンタクトが適用される。超電導用ばね状接触子135としては、マルチコンタクトに代えて、バルシール等のコイルスプリングタイプの接触子を適用してもよい。   Superconducting conductive portion 133a has an annular groove 133c on the outer peripheral surface. A superconducting spring-like contact 135 is disposed in the annular groove 133c. Here, a multi-contact is applied as the superconducting spring-like contactor 135. As the superconducting spring-like contact 135, a coil spring type contact such as a valve seal may be applied instead of the multi-contact.

超電導取付部133bは、後端側に向かって縮径するテーパー形状を有する。第3の導体接続端子133の挿入孔133dにフォーマ111が挿入されると、超電導取付部133bの後端部は、超電導導体層112を径方向外側に押し拡げてフォーマ111と超電導導体層112の間に装着される。超電導取付部133bの外周面に超電導導体層112が半田付けされることにより、第3の導体接続端子133が超電導導体層112に接続される。   Superconducting mounting portion 133b has a tapered shape that decreases in diameter toward the rear end side. When the former 111 is inserted into the insertion hole 133 d of the third conductor connection terminal 133, the rear end portion of the superconducting attachment portion 133 b pushes the superconducting conductor layer 112 outward in the radial direction so that the former 111 and the superconducting conductor layer 112 Installed between. The third conductor connection terminal 133 is connected to the superconducting conductor layer 112 by soldering the superconducting conductor layer 112 to the outer peripheral surface of the superconducting attachment portion 133b.

第3の導体接続端子133の挿入孔133dは長手方向に貫通しており、挿入孔133dに挿入されたフォーマ111の先端は、第2の導体接続端子132の挿入孔132dに挿入され、上述のとおり、第2の導体接続端子132がフォーマ111に圧縮接続される。   The insertion hole 133d of the third conductor connection terminal 133 penetrates in the longitudinal direction, and the tip of the former 111 inserted into the insertion hole 133d is inserted into the insertion hole 132d of the second conductor connection terminal 132, and the above-mentioned As described above, the second conductor connection terminal 132 is compression-connected to the former 111.

第3の導体接続端子133は超電導用ばね状接触子135を介して第1の導体接続端子131と電気的に接続される。第3の導体接続端子133は、第1の導体接続部131及びフォーマ111に対して固着されていないので、冷却時に超電導導体層112が収縮すると、これに追従して超電導導体層112と一体的に後端側へ移動する。   The third conductor connection terminal 133 is electrically connected to the first conductor connection terminal 131 via the superconducting spring-like contact 135. Since the third conductor connection terminal 133 is not fixed to the first conductor connection portion 131 and the former 111, when the superconducting conductor layer 112 contracts during cooling, the third conductor connecting terminal 133 follows this and is integrated with the superconducting conductor layer 112. Move to the rear end side.

第2の導体接続端子132と第3の導体接続端子133は、極低温ケーブル10の長手方向に沿って並んで配置される。第2の導体接続端子132の後端部と第3の導体接続端子133の先端部は、フォーマ111と超電導導体層112の冷却時の収縮量を考慮して離間される。なお、第2の導体接続端子132と第3の導体接続端子133は、独立して移動可能な構成であれば、極低温ケーブル10の長さ方向に一部重なるようになっていてもよい。この場合、終端接続部1の長さ方向の小型化を図ることができる。   The second conductor connection terminal 132 and the third conductor connection terminal 133 are arranged side by side along the longitudinal direction of the cryogenic cable 10. The rear end portion of the second conductor connection terminal 132 and the front end portion of the third conductor connection terminal 133 are separated in consideration of the shrinkage amount during cooling of the former 111 and the superconducting conductor layer 112. Note that the second conductor connecting terminal 132 and the third conductor connecting terminal 133 may partially overlap in the length direction of the cryogenic cable 10 as long as the second conductor connecting terminal 132 and the third conductor connecting terminal 133 can move independently. In this case, it is possible to reduce the size of the terminal connection portion 1 in the length direction.

このように、終端接続部1は、少なくともフォーマ111、及び超電導導体層112を有する極低温ケーブル10の端末部と、フォーマ111及び超電導導体層112に電気的に接続される導体接続部13と、導体接続部13に電気的に接続され、フォーマ111及び/又は超電導導体層112に流れる電流を外部に引き出す導体引出部30と、極低温ケーブル10の端末部を収容し、運転時に冷媒が導入される冷媒槽21と、を備える。
導体接続部13は、導体引出部30に接続される第1の導体接続端子131と、フォーマ111に接続される第2の導体接続端子132と、超電導導体層112に接続される第3の導体接続端子133と、を有する。そして、第2の導体接続端子132及び第3の導体接続端子133のそれぞれが、フォーマ用ばね状接触子134、超電導用ばね状接触子135を介して第1の導体接続端子131に電気的に接続されるとともに、第1の導体接続端子131内において極低温ケーブル10の長手方向に移動可能となっている。
As described above, the terminal connection portion 1 includes at least the former 111 and the terminal portion of the cryogenic cable 10 having the superconducting conductor layer 112, and the conductor connecting portion 13 electrically connected to the former 111 and the superconducting conductor layer 112. A conductor lead-out portion 30 that is electrically connected to the conductor connection portion 13 and draws out the current flowing through the former 111 and / or the superconducting conductor layer 112 and the terminal portion of the cryogenic cable 10 are accommodated, and a refrigerant is introduced during operation. The refrigerant tank 21 is provided.
The conductor connecting portion 13 includes a first conductor connecting terminal 131 connected to the conductor lead-out portion 30, a second conductor connecting terminal 132 connected to the former 111, and a third conductor connected to the superconducting conductor layer 112. A connection terminal 133. Then, each of the second conductor connection terminal 132 and the third conductor connection terminal 133 is electrically connected to the first conductor connection terminal 131 via the former spring-like contactor 134 and the superconducting spring-like contactor 135. In addition to being connected, the first conductor connection terminal 131 is movable in the longitudinal direction of the cryogenic cable 10.

終端接続部1によれば、第2の導体接続端子132及び第3の導体接続端子133のそれぞれが、ばね状接触子134、135を介して第1の導体接触子131に電気的に接続されることにより、冷却時におけるフォーマ111と超電導導体層112の熱収縮量の差が吸収されるので、良好な電気特性を確保することができる。したがって、信頼性の高い極低温ケーブルの終端接続部が実現される。   According to the termination connection portion 1, the second conductor connection terminal 132 and the third conductor connection terminal 133 are electrically connected to the first conductor contact 131 via the spring-like contacts 134 and 135, respectively. As a result, the difference in thermal shrinkage between the former 111 and the superconducting conductor layer 112 during cooling is absorbed, so that good electrical characteristics can be ensured. Therefore, a highly reliable terminal connection portion of the cryogenic cable is realized.

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.

例えば、第1の導体接続端子131、第2の導体接続端子132、及び第3の導体接続端子133の構成は、実施の形態で示したものに限定されない。冷却時に、第1の導体接続端子131との電気的接続性が確保されるとともに、フォーマ111の収縮に追従して第2の導体接続端子132が移動でき、超電導導体層112の収縮に追従して第3の導体接続端子133が移動できればよい。   For example, the configurations of the first conductor connection terminal 131, the second conductor connection terminal 132, and the third conductor connection terminal 133 are not limited to those shown in the embodiment. At the time of cooling, electrical connectivity with the first conductor connection terminal 131 is ensured, and the second conductor connection terminal 132 can move following the contraction of the former 111 to follow the contraction of the superconducting conductor layer 112. The third conductor connection terminal 133 may be moved.

例えば、実施の形態では、導体引出部30の第1の導体接続端子131への接続は、極低温ケーブル10の延在方向に対して垂直な方向からの場合について説明したが、導体引出部30の接続方向は限定されない。   For example, in the embodiment, the connection of the conductor lead portion 30 to the first conductor connection terminal 131 is described from the direction perpendicular to the extending direction of the cryogenic cable 10. The connection direction is not limited.

また例えば、実施の形態における導体接続部13と導体引出部30との接続構造を、シールド接続部14とシールド通電部40との接続構造に適用してもよい。すなわち、シールド接続部14は、シールド通電部40に接続される第1のシールド接続端子(図示せず)と、常電導シールド層115に接続される第2のシールド接続端子(図示せず)と、超電導シールド層114に接続される第3のシールド接続端子(図示せず)と、を有し、第2のシールド接続端子及び第3のシールド接続端子のそれぞれが、ばね状接触子を介して第1のシールド接続端子に電気的に接続される。
さらには、第3の導体接続端子133は、超電導導体層112上に装着するようにしてもよい。
Further, for example, the connection structure between the conductor connection portion 13 and the conductor lead-out portion 30 in the embodiment may be applied to the connection structure between the shield connection portion 14 and the shield energization portion 40. That is, the shield connection part 14 includes a first shield connection terminal (not shown) connected to the shield energization part 40 and a second shield connection terminal (not shown) connected to the normal conducting shield layer 115. And a third shield connection terminal (not shown) connected to the superconducting shield layer 114, and each of the second shield connection terminal and the third shield connection terminal is connected via a spring-like contactor It is electrically connected to the first shield connection terminal.
Further, the third conductor connection terminal 133 may be mounted on the superconducting conductor layer 112.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 終端接続部
10 極低温ケーブル
11 ケーブルコア
111 フォーマ
112 超電導導体層
113 電気絶縁層
114 超電導シールド層
115 常電導シールド層
116 保護層
12 断熱管
121 断熱内管
122 断熱外管
13 導体接続部
131 第1の導体接続端子
132 第2の導体接続端子
133 第3の導体接続端子
134 フォーマ用ばね状接触子
135 超電導用ばね状接触子
14 シールド接続部
15 電界緩和層
20 低温容器
21 冷媒槽
22 真空槽
30 導体引出部
40 シールド通電部
50 碍管
DESCRIPTION OF SYMBOLS 1 Termination connection part 10 Cryogenic cable 11 Cable core 111 Former 112 Superconducting conductor layer 113 Electrical insulation layer 114 Superconducting shield layer 115 Normal conduction shield layer 116 Protection layer 12 Heat insulation pipe 121 Heat insulation inner pipe 122 Heat insulation outer pipe 13 Conductor connection part 131st 1 conductor connection terminal 132 second conductor connection terminal 133 third conductor connection terminal 134 spring-like contactor for former 135 spring-like contactor for superconductivity 14 shield connection part 15 electric field relaxation layer 20 low temperature vessel 21 refrigerant tank 22 vacuum tank 30 Conductor extraction part 40 Shield energization part 50 Steel pipe

Claims (7)

少なくともフォーマ、及び超電導導体層を有する極低温ケーブルの端末部と、
前記フォーマ及び前記超電導導体層に電気的に接続される導体接続部と、
前記導体接続部に電気的に接続され、前記フォーマ及び/又は前記超電導導体層に流れる電流を外部に引き出す導体引出部と、
前記極低温ケーブルの端末部を収容し、運転時に冷媒が導入される冷媒槽と、を備え、
前記導体接続部は、前記導体引出部に接続される第1の導体接続端子と、前記フォーマに接続される第2の導体接続端子と、前記超電導導体層に接続される第3の導体接続端子と、を有し、
前記第2の導体接続端子及び前記第3の導体接続端子のそれぞれが、ばね状接触子を介して前記第1の導体接続端子に電気的に接続されるとともに、前記第1の導体接続端子内において前記極低温ケーブルの長さ方向に移動可能であることを特徴とする極低温ケーブルの終端接続部。
A terminal portion of a cryogenic cable having at least a former and a superconducting conductor layer;
A conductor connecting portion electrically connected to the former and the superconducting conductor layer;
A conductor lead portion that is electrically connected to the conductor connection portion and draws out the current flowing in the former and / or the superconducting conductor layer to the outside;
Containing a terminal portion of the cryogenic cable, and a refrigerant tank into which a refrigerant is introduced during operation,
The conductor connecting portion includes a first conductor connecting terminal connected to the conductor leading portion, a second conductor connecting terminal connected to the former, and a third conductor connecting terminal connected to the superconducting conductor layer. And having
Each of the second conductor connection terminal and the third conductor connection terminal is electrically connected to the first conductor connection terminal via a spring-like contact, and in the first conductor connection terminal. The terminal connection part of a cryogenic cable characterized by being movable in the length direction of the said cryogenic cable.
前記第1の導体接続端子は、前記導体引出部が接続される頭部と、前記頭部と電気的に接続されて、前記極低温ケーブルの長手方向に延び、前記第2の導体接続端子及び前記第3の導体接続端子が取り付けられた前記極低温ケーブルの端末部が挿入される胴部を有することを特徴とする請求項1に記載の極低温ケーブルの終端接続部。   The first conductor connection terminal is connected to the head to which the conductor lead portion is connected, and is electrically connected to the head, and extends in the longitudinal direction of the cryogenic cable, and the second conductor connection terminal and The terminal connection part of the cryogenic cable according to claim 1, further comprising a body part into which a terminal part of the cryogenic cable to which the third conductor connection terminal is attached is inserted. 前記極低温ケーブルの端末部は、前記超電導導体層上に電気絶縁層を有し、
前記胴部は、冷却時に前記超電導導体層が露出しない所定の長さで、前記電気絶縁層まで延設されていることを特徴とする請求項2に記載の極低温ケーブルの終端接続部。
The terminal portion of the cryogenic cable has an electrically insulating layer on the superconducting conductor layer,
The terminal connection portion of a cryogenic cable according to claim 2, wherein the trunk portion has a predetermined length that does not expose the superconducting conductor layer during cooling and extends to the electrical insulating layer.
前記第2の導体接続端子及び前記第3の導体接続端子は、前記フォーマが挿入される挿入孔を有し、前記極低温ケーブルの長手方向に沿って並んで配置されることを特徴とする請求項1から3のいずれか一項に記載の極低温ケーブルの終端接続部。   The second conductor connection terminal and the third conductor connection terminal each have an insertion hole into which the former is inserted, and are arranged side by side along the longitudinal direction of the cryogenic cable. Termination connection part of the cryogenic cable as described in any one of claim | item 1 -3. 前記第2の導体接続端子は、前記ばね状接触子が配置されるフォーマ導通部と、前記フォーマ導通部よりも外径が小さく前記フォーマが挿入されるフォーマ取付部と、を有し、
前記フォーマ取付部が圧縮されることにより、前記第2の導体接続端子が前記フォーマに接続されることを特徴とする請求項4に記載の極低温ケーブルの終端接続部。
The second conductor connection terminal has a former conduction part in which the spring-like contactor is disposed, and a former attachment part in which the outer diameter is smaller than the former conduction part and the former is inserted.
The terminal connection part of the cryogenic cable according to claim 4, wherein the second conductor connection terminal is connected to the former by compressing the former attachment part.
前記第3の導体接続端子は、前記ばね状接触子が配置される超電導導通部と、前記超電導導通部よりも外径が小さく前記超電導導体層が接続される超電導取付部と、を有し、
前記超電導導通部及び前記超電導取付部に前記フォーマが挿通され、前記超電導取付部の外周面に前記超電導導体層が半田付けされることにより、前記第3の導体接続端子が前記超電導導体層に接続されることを特徴とする請求項4又は5に記載の極低温ケーブルの終端接続部。
The third conductor connection terminal has a superconducting conduction part in which the spring-like contactor is disposed, and a superconducting attachment part to which the superconducting conductor layer is connected and having an outer diameter smaller than that of the superconducting conduction part,
The former is inserted into the superconducting conduction part and the superconducting attachment part, and the superconducting conductor layer is soldered to the outer peripheral surface of the superconducting attachment part, so that the third conductor connection terminal is connected to the superconducting conductor layer. The termination connection part of the cryogenic cable according to claim 4 or 5, wherein
前記極低温ケーブルの端末部は、前記超電導導体層上に電気絶縁層を有し、前記電気絶縁層上に超電導シールド層を有し、前記超電導シールド層上に常電導シールド層を更に有し、
前記超電導シールド層及び前記常電導シールド層に電気的に接続されるシールド接続部と、
前記シールド接続部に電気的に接続され、前記超電導シールド層及び前記常電導シールド層を接地するシールド通電部と、を備え、
前記シールド接続部は、前記シールド通電部に接続される第1のシールド接続端子と、前記常電導シールド層に接続される第2のシールド接続端子と、前記超電導シールド層に接続される第3のシールド接続端子と、を有し、
前記第2のシールド接続端子及び前記第3のシールド接続端子のそれぞれが、ばね状接触子を介して前記第1のシールド接続端子に電気的に接続されることを特徴とする請求項1から6のいずれか一項に記載の極低温ケーブルの終端接続部。
The terminal portion of the cryogenic cable has an electrical insulating layer on the superconducting conductor layer, has a superconducting shield layer on the electrical insulating layer, and further has a normal conducting shield layer on the superconducting shield layer,
A shield connection portion electrically connected to the superconducting shield layer and the normal conducting shield layer;
A shield energization part that is electrically connected to the shield connection part and grounds the superconducting shield layer and the normal conduction shield layer, and
The shield connection portion includes a first shield connection terminal connected to the shield energization portion, a second shield connection terminal connected to the normal conducting shield layer, and a third shield connected to the superconducting shield layer. A shield connection terminal;
Each of the second shield connection terminal and the third shield connection terminal is electrically connected to the first shield connection terminal via a spring-like contact. The termination | terminus connection part of the cryogenic cable as described in any one of.
JP2015056698A 2015-03-19 2015-03-19 Cryogenic cable termination connection Active JP6444229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056698A JP6444229B2 (en) 2015-03-19 2015-03-19 Cryogenic cable termination connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056698A JP6444229B2 (en) 2015-03-19 2015-03-19 Cryogenic cable termination connection

Publications (2)

Publication Number Publication Date
JP2016178779A JP2016178779A (en) 2016-10-06
JP6444229B2 true JP6444229B2 (en) 2018-12-26

Family

ID=57069477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056698A Active JP6444229B2 (en) 2015-03-19 2015-03-19 Cryogenic cable termination connection

Country Status (1)

Country Link
JP (1) JP6444229B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284761B (en) * 2021-12-21 2023-09-12 深圳供电局有限公司 Superconducting cable adapter
KR20230123235A (en) * 2022-02-16 2023-08-23 엘에스전선 주식회사 Connecting structure for superconductive cable which has a temperature sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927804B2 (en) * 2007-11-14 2012-05-09 住友電気工業株式会社 Superconducting cable terminal connection structure
CN103004046B (en) * 2011-01-27 2017-09-05 古河电气工业株式会社 The terminal connection part of hyperconductive cable

Also Published As

Publication number Publication date
JP2016178779A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5909799B2 (en) Superconducting cable termination connection
EP1732190B1 (en) Terminal structure of multiphase superconducting cable
KR20040101997A (en) Polymer jacket tube and cable terminal connector employing the same
JP6791782B2 (en) Terminal structure of superconducting equipment
JP6444229B2 (en) Cryogenic cable termination connection
CN103247995A (en) Terminal device of ultralow temperature apparatus
JP6482358B2 (en) Superconducting cable terminal structure
US20080217995A1 (en) Power Cable Line
JP2016195484A (en) Terminal structure of superconducting cable
JP2010068664A (en) Three-core integrated connection box, method of withstand voltage test on test subject cable, and method of assembling three-core integrated connection box
CN107408805B (en) Terminal unit for hyperconductive cable
CN106300216A (en) Insulation terminal assembly
KR101823814B1 (en) Joint part for superconducting cable and joint structure for superconducting cable
JP2017063578A (en) Terminal structure of superconducting cable
JPH06162845A (en) Insulator with built-in optical fiber
JP2016226143A (en) Terminal connector for cryogenic cable
JP5696200B1 (en) Cryogenic cable termination connection
JP5757987B2 (en) Cryogenic cable termination connection
JP5813714B2 (en) Power cable termination connection
JP5757986B2 (en) Cryogenic cable termination connection
WO2015068390A1 (en) Cryogenic cable termination connector
US2871283A (en) Cable termination
AU2015275235B2 (en) High-temperature, high-pressure vacuum relay
JP2020028134A (en) Terminal structure of superconducting cable
JP2017005869A (en) Cryogenic cable end connection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181127

R150 Certificate of patent or registration of utility model

Ref document number: 6444229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350