[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6334366B2 - 直流き電システム - Google Patents

直流き電システム Download PDF

Info

Publication number
JP6334366B2
JP6334366B2 JP2014225030A JP2014225030A JP6334366B2 JP 6334366 B2 JP6334366 B2 JP 6334366B2 JP 2014225030 A JP2014225030 A JP 2014225030A JP 2014225030 A JP2014225030 A JP 2014225030A JP 6334366 B2 JP6334366 B2 JP 6334366B2
Authority
JP
Japan
Prior art keywords
current
voltage
rectifier
inverter
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014225030A
Other languages
English (en)
Other versions
JP2016088289A (ja
Inventor
誠 瀬戸
誠 瀬戸
孝史 米田
孝史 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2014225030A priority Critical patent/JP6334366B2/ja
Publication of JP2016088289A publication Critical patent/JP2016088289A/ja
Application granted granted Critical
Publication of JP6334366B2 publication Critical patent/JP6334366B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

この発明は、直流き電システムに関し、特に、電気車の回生電力を交流電力に変換して交流電源に回生する回生インバータの制御に関する。
直流き電システムには、たとえば特開2004−351952号公報(特許文献1)に開示されるように、交流入力を整流器で整流して電気車に力行電流を供給する力行用電源と、定電圧制御したインバータ装置によって電気車からの回生電流を交流電力に変換して交流入力側に回生する回生用電源とを備えたものがある。
上記の特許文献1には、インバータ装置の定電圧制御方式として、整流器の直流電圧変動範囲よりも高い電圧に設定しておき、き電線電圧が設定電圧を保つようにインバータ装置を制御する構成が開示されている。
特開2004−351952号公報
上記のような直流き電システムにおいては、整流器の出力電圧とインバータ装置の設定電圧との電位差が大きい場合には、整流器とインバータ装置との間を過大な循環電流が流れる虞がある。循環電流は回路損失を発生させるため、直流き電システムのランニングコストの増大を招いてしまう。したがって、力行と回生との切り換え時における循環電流の増大を抑制するためには、整流器の出力電圧がインバータ装置の設定電圧よりも高くならないようにする必要がある。
一方、整流器の出力電圧は交流入力側の電圧変動に連動して変動するため、交流入力の電圧変動を受けて、整流器の出力電圧と設定電圧との電位差も変動する。このため、整流器の出力電圧が設定電圧よりも高くなり、過大な循環電流が生じる可能性がある。
このような電圧変動時の循環電流の発生を抑制するための対策として、従来より、交流入力側の電圧変動を考慮したインバータ装置の制御を行なうことが検討されている。しかしながら、交流入力電圧を検出するためには、特別高圧電圧を検出するための計器用変圧器を設置する必要がある。このような計器用変圧器は大型なものであるため、システムの大型化を招くという課題がある。特に、地下変電所などのように、システムの設置スペースが制限される場合には、上記の課題が顕著となる。
この発明は、上記のような課題を解決するためになされたものであり、その目的は、小型な構成で、循環電流の発生を抑制することができる直流き電システムを提供することである。
この発明のある局面によれば、直流き電システムは、交流電源から受けた交流電力を直流電力に変換してき電線を介して電気車に供給する整流器と、電気車の回生運転時に発生する回生電力を交流電力に変換する回生インバータと、回生インバータに流れるインバータ電流を検出する第1の電流検出部と、整流器に流れる整流器電流を検出する第2の電流検出部と、回生インバータを制御するための制御装置とを備える。制御装置は、き電線の電圧を検出する電圧検出部と、電圧指令を予め設定された固定値とし、電圧検出部により検出されるき電線電圧が電圧指令に一致するように回生インバータを制御するための電圧制御部と、第1の電流検出部により検出されるインバータ電流および第2の電流検出部により検出される整流器電流に基づいて、整流器から回生インバータに流入する循環電流を検出する循環電流検出部と、循環電流検出部により検出される循環電流が設定値となるように、少なくとも電気車の無負荷時に電圧指令を補正するための補正部とを含む。
この発明によれば、循環電流の発生を抑制することが可能な直流き電システムを、小型な構成で構築することができる。
この発明の実施の形態1による直流き電システムの全体構成図である。 図1における回生インバータの回路図である。 直流き電システムにおける負荷電流に対するき電線の出力特性を示す図である。 従来技術における回生インバータの制御構造を説明する図である。 実施の形態1による回生インバータの制御装置の構成を示す機能ブロック図である。 実施の形態3による回生インバータの制御装置の構成を示す機能ブロック図である。 実施の形態3の変形例による回生インバータの制御装置における補正量演算部の構成を示す回路図である。 実施の形態4による回生インバータの制御装置の構成を示す機能ブロック図である。 実施の形態5による回生インバータの制御装置の構成を示す機能ブロック図である。 実施の形態1の変形例による直流き電システムの全体構成図である。 図10における回生インバータの回路図である。
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。
[実施の形態1]
(直流き電システムの全体構成)
図1は、この発明の実施の形態1による直流き電システムの全体構成図である。
図1を参照して、実施の形態1による直流き電システムは、交流電源1から供給される三相交流電力を直流電力に変換してき電線3を介して電気車5に供給する。
直流き電システムは、整流器10と、整流器用変圧器20と、回生インバータ12と、回生インバータ用変圧器22と、制御装置14とを備える。
整流器用変圧器20は、一次側が遮断器CBを介して送電線2に接続され、二次側が整流器10に接続される。整流器用変圧器20は、送電線2より受電する三相交流の特別高圧電圧(たとえば三相交流77kV、以下「系統電圧」と称す)をき電に適した電圧(直流1500Vの場合は、三相交流1200V)に降圧する。
整流器10は、たとえばダイオード整流器から構成される。整流器10は、整流器用変圧器20から受ける三相交流電力を直流電力に整流する。直流電力は、図1中に点線矢印で示されるように、き電線3を介して電気車5へ供給される。整流器10に対する電流帰路としてレール4が利用される。き電線3およびレール4には複数の整流器が接続されている。図1では1つの整流器10を例示する。
回生インバータ12は、電気車5の回生時に発生する回生電力を交流電力に変換するための装置である。回生インバータ12の交流側は回生インバータ用変圧器22および遮断器CBを介して送電線2に接続される。
回生インバータ12は、たとえば他励式変換器から構成される。図2は、図1における回生インバータ12の回路図である。図2を参照して、回生インバータ12は、12パルス整流器であり、サイリスタから成るスイッチング素子Q1〜Q12を含む。スイッチング素子Q1〜Q12の各々は、制御装置14からの駆動信号(ゲートパルス信号)に応じてスイッチング動作を行なう。
回生インバータ用変圧器22は、回生インバータ12から出力される交流電圧を系統電圧に変換して送電線2側に回生する。これにより、図1中に実線矢印で示されるように、電気車5の回生時に生じる回生電力を送電線2に回生できるため、安定したブレーキ動作や電力の有効利用が実現される。
制御装置14は、代表的には、CPU(Central Processing Unit)と、RAM(Random Access Memory)やROM(Read Only Memory)などのメモリ領域と、入出力インターフェイスとを主体として構成される。そして、制御装置14は、予めROMなどに格納されたプログラムをCPUがRAMに読み出して実行することによって、回生インバータ12の制御を実行する。
(回生インバータの制御構造)
次に、回生インバータ12の制御構造について詳細に説明する。
図1に示されるように、回生インバータ12と整流器10とは、き電線3およびレール4の間に並列に接続されている。そのため、電気車5の力行時における整流器10による給電と、電気車5の回生時における回生インバータ12による回生との切り換えは、スイッチ等を用いることなく、自動的かつ連続的にスムーズに行なうことができる。
図3を参照して、回生インバータ12の制御パターンについて説明する。図3は、直流き電システムにおける負荷電流(電気車5の走行電流)に対するき電線3の出力特性を示す図である。図3において横軸は負荷電流Idを示し、縦軸はき電線3およびレール4間の電圧であるき電線電圧Edを示す。負荷電流Idの極性は、力行側を正とし、回生側を負とする。
図3を参照して、領域Iは、整流器10が動作する順変換領域(力行領域)を示す。き電線電圧Edは、整流器10の出力電圧に相当する。領域Iでは、負荷電流(力行電流)の増加に伴ない、整流器10の内部インピーダンス等の影響を受けてき電線電圧Edが低下する。
領域IIIは、回生インバータ12が動作する逆変換領域(回生領域)を示す。き電線電圧Edは、回生インバータ12の直流側電圧(出力電圧)に相当する。領域IIIでは、負荷電流(回生電流)の増加に伴ない、回生インバータ12の内部インピーダンス等の影響を受けてき電線電圧Edが増加する。制御装置14は、後述する制御構造を用いて、回生インバータ12におけるサイリスタの点弧位相を制御する。
領域IVは、回生インバータ12が定電圧動作する領域を示す。回生電流の増加に伴なってき電線電圧Edが上昇して所定電圧Ediを超過したときには、き電線電圧Edが所定電圧Ediを超えないように回生インバータ12における回生動作を制御する。所定電圧Ediは、たとえば回生インバータ12の定格電圧に設定される。
領域IIは、回生インバータ12の動作と整流器10の動作とが切り換わる遷移領域である。以下の説明では、負荷電流Idが0近傍となる無負荷状態のときの整流器10の出力電圧Edr0を「整流器無負荷電圧」と称し、無負荷状態のときの回生インバータ12の直流側電圧Edi0を「インバータ無負荷電圧」とも称する。
領域IIにおいて、整流器無負荷電圧Edr0がインバータ無負荷電圧Edi0よりも高くなると、整流器10から回生インバータ12に向けて過大な循環電流が流れる。この不要な循環電流が流れることによって回路損失が発生するため、結果的に直流き電システムのランニングコストの増大を招いてしまう。したがって、循環電流の増大を抑制するためには、図3に示すように、インバータ無負荷電圧Edi0が整流器無負荷電圧Edr0よりも高くなるように、回生インバータ12を制御する必要がある。
まず、図4を用いて、従来技術における回生インバータの制御構造を説明する。図4には、従来技術における回生インバータ12の制御装置の機能ブロック図が示される。
図4を参照して、従来技術における回生インバータ12の制御構造は、電圧指令生成回路30と、電圧制御部(VC)50と、ゲートパルス発生部(GPG)52と、電圧検出部(VS)54とから構成される。
電圧指令生成回路30は、交流電源1から受電する三相交流の特別高圧電圧(系統電圧)に基づいて、回生インバータ14が出力すべき直流電圧を指令するための電圧指令を生成する。具体的には、電圧指令生成回路30は、計器用変圧器(PT:Potential Transformer)32と、整流器34とを有する。計器用変圧器32は、系統電圧を検出する。計器用変圧器32は、検出された系統電圧を電圧制御部50での処理に適した電圧に変換する。整流器32は、計器用変圧器32から受ける交流電圧を直流電圧に整流することにより電圧指令を生成する。電圧指令生成回路30は、生成した電圧指令を電圧制御部50へ出力する。
電圧検出部54は、き電線3とレール4との間の電圧(き電線電圧)を検出し、検出値を電圧制御部50へ出力する。
電圧制御部50は、電圧指令生成回路30から指示された電圧指令に従って、回生インバータ12の出力電圧を制御する。具体的には、電圧制御部50は、電圧検出部54によって検出されたき電線電圧と、電圧指令との比較に基づいて、き電線電圧を増減するフィードバック制御を実行する。電圧制御部50は、電圧指令に対するき電線電圧の偏差を増幅することにより、当該偏差に応じて回生インバータ12におけるサイリスタの点弧位相指令を生成する。
ゲートパルス発生部52は、電圧制御部50から指示される点弧位相指令に基づいてサイリスタに与えるゲートパルス信号を生成する。回生インバータ12の各サイリスタは、ゲートにゲートパルス発生部52からのゲートパルス信号を受ける。複数のサイリスタを所定のタイミングでオンさせることにより、直流電力を交流電力に変換することができる。
なお、回生電流が増加することによって、き電線電圧が所定電圧Ediを超えた場合には、回生インバータ12は、定電圧動作領域(図3の領域IV)に入る。これにより、き電線電圧の上昇を抑制し、電気車5の回生失効を防止する。
回生インバータ12の制御構造を図4に示される構成とすることにより、系統電圧が変動すると、これに対応して電圧指令も変化する。そして、電圧制御部50は、電圧指令の変化に追従するようにき電線電圧を制御する。したがって、力行と回生とが切り換わる遷移領域(図3の領域II)において、インバータ無負荷電圧Edi0は系統電圧の変化に連動して変化する。一方、整流器10の出力電圧は系統電圧の変化に連動して変化するため、整流器無負荷電圧Edr0も変化する。すなわち、系統電圧が変化した場合には、インバータ無負荷電圧Edi0および整流器無負荷電圧Edr0がともに系統電圧の変化に連動して変化する。その結果、系統電圧の変動によって、整流器無負荷電圧Edr0がインバータ無負荷電圧Edi0よりも高くなることが抑制される。これにより、系統電圧の変動時においても循環電流が増大するのを回避することができる。
しかしながら、図4に示される従来の回生インバータ12の制御構造においては、系統電圧に基づいて電圧指令を生成するため、系統電圧を検出するための専用の計器用変圧器(図4の計器用変圧器32)を設置する必要がある。系統電圧は三相交流77kVと高いため、計器用変圧器32の体格(特に、変圧器の入出力端子を覆う碍子の体格)が大型なものとなってしまう。そのため、地下変電所などのように、システムの設置スペースが制限される場合には、制御構造を実現することが難しいという問題があった。また、系統電圧を検出するためには高価な計器用変圧器が必要となるため、システムがコストアップするという課題があった。
そこで、実施の形態1による回生インバータ12の制御構造においては、電気車5の無負荷時に、電圧指令を予め設定された固定値とし、き電線電圧が電圧指令に一致するように回生インバータ12を制御する手法を採用する。これにより、図4に示した計器用変圧器32の設置を不要とする。さらに、上記の構成において、整流器10から回生インバータ12に流れる循環電流を検出し、循環電流の検出値が、設定される目標値(あるいは「設定値」とも称す)と一致するように電圧指令を補正する。
図5は、実施の形態1による回生インバータ12の制御装置14の構成を示す機能ブロック図である。なお、図5に記載された各機能ブロックについては、予め設定されたプログラムに従って制御装置14がソフトウェア処理を実行することにより実現することができる。あるいは、制御装置14内部に当該機能ブロックに相当する回路(ハードウェア)を構成することも可能である。
図5を参照して、制御装置14は、電流検出部である計器用変流器(CT:Current Transformer)6,16と、整流器8,18と、循環電流検出部(CD)40と、電圧指令補正部42と、電圧制御部(VC)50と、ゲートパルス発生部(GPG)52と、電圧検出部(VS)54とを含む。
実施の形態1に係る制御装置14は、図4に示した従来の制御構造と比較して、電圧指令生成回路30に代えて、循環電流検出部40および電圧指令補正部42を有している。制御装置14は、電圧指令Vrefを予め設定された固定値として有している。電圧指令Vrefは、整流器10の出力電圧(たとえば直流1500V)よりも高い電圧(たとえば直流1600V)に設定されている。そして、制御装置14は、循環電流Icが設定値Ithに一致するように電圧指令Vrefを補正するように構成されている。
計器用変流器6(第2の電流検出部)は、整流器10に流れる電流(以下「整流器電流」と称す)Irを検出する。整流器8は、計器用変流器6により検出される整流器電流Irを整流して循環電流検出部40に出力する。計器用変流器16(第1の電流検出部)は、回生インバータ12に流れる電流(以下「インバータ電流」と称す)Iiを検出する。整流器18は、計器用変流器16により検出されるインバータ電流Iiを整流して循環電流検出部40に出力する。
循環電流検出部40は、整流器8から整流器電流Irを受け、整流器18からインバータ電流Iiを受けると、整流器電流Irおよびインバータ電流Iiに基づいて循環電流Icを検出する。具体的には、整流器電流Irとインバータ電流Iiとが等しい場合(Ir=Ii)には、循環電流検出部40は、電気車5が無負荷状態であると判定する。この場合、循環電流検出部40は、インバータ電流Ii(または整流器電流Ir)を循環電流Icとして検出する(Ic=Ii=Ir)。なお、循環電流検出部40は、図示しない電流検出部によって負荷電流Idを検出し、負荷電流Idの検出値に基づいて電気車5が無負荷状態であるか否かを判定する構成としてもよい。
電圧指令補正部42は、スイッチSW1,SW2と、補正量設定部44と、加算部45とを含む。スイッチSW1は、整流器8と補正量設定部44の入力端子T1との間に接続される。スイッチSW2は、整流器18と補正量設定部44の入力端子T1との間に接続される。スイッチSW1,SW2には、たとえば電磁リレーや半導体リレーなどのオンオフ制御可能な任意の開閉器が適用される。スイッチSW1,SW2の各々は、循環電流検出部40からの制御信号に応答してオンオフされる。
循環電流検出部40は、電気車5が無負荷状態であると判定された場合には、スイッチSW2(またはスイッチSW1)をオンする。スイッチSW2がオンされることにより、整流器18から出力されるインバータ電流Iiが循環電流Icとして補正量設定部44の入力端子T1に入力される。一方、スイッチSW1がオンされた場合には、整流器8から出力される整流器電流Irが循環電流Icとして補正量設定部44の入力端子T1に入力される。
補正量設定部44は、入力端子T1に循環電流Icを受けると、設定値Ithに対する循環電流Icとの偏差に基づいて、電圧指令Vrefの補正量ΔVを設定する。具体的には、補正量設定部44は、抵抗素子R1,R2と、オペアンプOP1と、容量素子C1とを含んで構成される。抵抗素子R1およびR2は、入力端子T1とオペアンプOP1の反転入力端子(−端子)との間に接続される。オペアンプOP1の反転入力端子には抵抗素子R1を介して循環電流Icが入力されるとともに、抵抗素子R2を介して、循環電流Icの設定値Ithが入力される。なお、設定値Ithは、循環電流Icの目標値に対応しており、たとえば循環電流Icの定格値の6%程度に設定される。オペアンプOP1の非反転入力端子(+端子)には接地電圧が入力される。
オペアンプOP1の反転入力端子と出力端子との間には容量素子C1が接続される。すなわち、オペアンプOP1および容量素子C1は積分回路を構成する。設定値Ithに対する循環電流Icの偏差を入力電流Iinとして表わすと、積分回路の出力電圧Voutは、式(1)で表される。ここで、容量素子C1の容量値をCとする。
Vout=1/C∫Iindt …(1)
積分回路の出力電圧Voutは、電圧指令Vrefに対する補正量ΔVとして加算部45に与えられる。加算部45は、電圧指令Vref(固定値)と、補正量設定部44により設定された補正量ΔVとを加算することにより、電圧指令Vref♯を生成する。
電圧制御部50には、電圧指令補正部42によって補正された電圧指令Vref♯が入力される。電圧制御部50は、電圧検出部54によって検出されたき電線電圧と、補正された電圧指令Vref♯との比較に基づいて、き電線電圧を増減するフィードバック制御を実行する。
図5に示される回生インバータ12の制御構造によれば、系統電圧が上昇したことに連動して整流器無負荷電圧Edr0が上昇し、インバータ無負荷電圧Edi0よりも大きくなった場合には、設定値Ithに対する循環電流Icの上昇分に基づいて設定される、電圧指令Vrefに対する補正量ΔVが増加する。その結果、系統電圧の上昇に連動して電圧指令Vref♯も上昇することになり、この電圧指令Vref♯の上昇に追従するように電圧制御部50によってき電線電圧が制御される。したがって、力行と回生とが切り換わる遷移領域(図3の領域II)において、インバータ無負荷電圧Edi0は系統電圧の上昇に連動して上昇する。
このように、系統電圧が上昇した場合には、インバータ無負荷電圧Edi0および整流器無負荷電圧Edr0がともに系統電圧の上昇に連動して上昇するため、系統電圧の上昇によって整流器無負荷電圧Edr0がインバータ無負荷電圧Edi0よりも大きくなることを防止することができる。この結果、系統電圧の変動時においても循環電流Icが増大するのを抑制することができる。
以上説明したように、この発明の実施の形態1によれば、電圧指令を予め設定された固定値とし、き電線電圧が電圧指令に一致するように回生インバータを制御する構成において、循環電流の検出値が設定値と一致するように電圧指令を補正することにより、従来の制御構造(図4)と比較して、システムの大型化およびコストアップを招くことなく、循環電流の増大を抑制することができる。
[実施の形態2]
上記の実施の形態1では、電気車5の無負荷状態において循環電流の増大を抑制するための回生インバータ12の制御構造について説明したが、上記の制御構造によれば、電気車5の力行時および回生時においても循環電流の増大を抑制することができる。実施の形態2では、力行時および回生時における回生インバータ12の制御構造を説明する。
図5に示す制御構造において、循環電流検出部40は、整流器8から整流器電流Irを受け、整流器18からインバータ電流Iiを受けると、整流器電流Irとインバータ電流Iiとを比較する。整流器電流Irがインバータ電流Iiよりも大きい場合(Ir>Ii)には、循環電流検出部40は、電気車5が力行時であると判定する。この場合、循環電流検出部40は、電流値が小さい方のインバータ電流Iiを循環電流Icとして検出する(Ic=Ii)。
循環電流検出部40は、電気車5が力行時であると判定された場合には、スイッチSW2をオンする。スイッチSW2がオンされることにより、整流器18から出力されるインバータ電流Iiが循環電流Icとして補正量設定部44の入力端子T1に入力される。したがって、補正量設定部44では、循環電流Ic(インバータ電流Ii)と設定値Ithとの偏差に基づいて、電圧指令Vrefに対する補正量ΔVが設定される。そして、設定された補正量ΔVを用いて補正された電圧指令Vref♯に従って、回生インバータ12の出力電圧が制御される。
電気車5の力行時に循環電流が増大すると、整流器10には、負荷電流(力行電流)に循環電流が重畳した電流が流れることになり、整流器10が過負荷状態となる可能性がある。実施の形態2によれば、電気車5の力行時においても循環電流が設定値Ithに抑えられるため、整流器10が過負荷状態に至るのを防止することができる。
これに対して、インバータ電流Iiが整流器電流Irよりも大きい場合(Ii>Ir)には、循環電流検出部40は、電気車5が回生時であると判定する。この場合、循環電流検出部40は、電流値が小さい方の整流器電流Irを循環電流Icとして検出する(Ic=Ir)。
循環電流検出部40は、電気車5が回生時であると判定された場合には、スイッチSW1をオンする。スイッチSW1がオンされることにより、整流器8から出力される整流器電流Irが循環電流Icとして補正量設定部44の入力端子T1に入力される。したがって、補正量設定部44では、循環電流Ic(整流器電流Ir)と設定値Ithとの偏差に基づいて、電圧指令Vrefに対する補正量ΔVが設定される。そして、設定された補正量ΔVを用いて補正された電圧指令Vref♯に従って、回生インバータ12の出力電圧が制御される。
電気車の回生時に循環電流が増大すると、回生インバータ12には、負荷電流(回生電流)に循環電流が重畳した電流が流れることになり、回生インバータ12が過負荷状態になる可能性がある。実施の形態2によれば、電気車5の回生時においても循環電流が設定値Ithに抑えられるため、回生インバータ12が過負荷状態に至るのを防止することができる。
[実施の形態3]
実施の形態1および2では、電圧指令Vrefに対する補正量ΔVを、循環電流Icと設定値Ithとの偏差に応じて設定する構成について説明したが、この構成によれば、系統電圧の変動に連動して回生インバータ12の電圧指令Vref♯を変動させるため、電力系統が不安定であるために系統電圧の変動が激しくなる場合には、電圧指令Vref♯も時間的に激しく変化することになる。
しかしながら、系統電圧が定格電圧よりも低下した場合には、循環電流Icが設定値Ithよりも十分に小さい値を示すことに起因して、電圧指令Vref♯が電圧指令Vrefよりも低い電圧に補正されることがある。このような場合において、系統電圧が低下した後に急激に上昇すると、系統電圧に追従して電圧指令Vref♯を直ちに上昇させることが困難となる。その結果、系統電圧の上昇に伴なって整流器10の出力電圧が回生インバータ12の出力電圧を大きく上回ることになり、却って循環電流Icを増大させてしまう可能性がある。
実施の形態3では、系統電圧の変動が激しい場合においても循環電流Icの増大を抑制可能な制御構造について説明する。なお、実施の形態3による直流き電システムは、制御装置14Aを除いて図1の直流き電システムと同様の構成であるため、その図示および説明を省略する。
図6は、実施の形態3による回生インバータ12の制御装置14Aの構成を示す機能ブロック図である。図6を参照して、実施の形態3による制御装置14Aは、図5に示した実施の形態1による制御装置14と比較して、電圧指令補正部42に代えて、電圧指令補正部42Aを設けたものである。
電圧指令補正部42Aは、スイッチSW1,SW2と、補正量設定部44Aと、加算部45とを含む。補正量設定部44Aは、図5に示す補正量設定部44に比較して、リミッタ回路46をさらに加えたものである。
リミッタ回路46は、オペアンプOP1および容量素子C1からなる積分回路の出力端子と加算部45との間に接続される。リミッタ回路46は、積分回路から出力される補正量ΔVが上限値および下限値を超えないように制限する。具体的には、リミッタ回路46は、たとえば上限値を電圧指令Vref(たとえば直流1600V)の+5%とし、下限値を電圧指令Vrefの0%とする。上限値および下限値の各々は、通常時の系統電圧の変動範囲(たとえば±5%以内)に応じて設定される。リミッタ回路46によって一定範囲内に制限された補正量ΔVは、加算部45において電圧指令Vrefに加算されることにより、電圧指令Vref♯が生成される。
上記のように、リミッタ回路46を用いて補正量ΔVを一定範囲内に制限したことにより、系統電圧の変動に応じて電圧指令Vref♯は一定範囲内で変動することになる。これによれば、系統電圧が定格電圧よりも低下したとき、電圧指令Vref♯には下限値を下回らないように制限がかけられるため、その後に系統電圧が急激に上昇しても、電圧指令Vref♯の追従性を高めることができる。これにより、整流器10の出力電圧が回生インバータ12の出力電圧を大きく上回るのを防止することができるため、系統電圧が急激に上昇した際に循環電流Icが増大するのを抑制することができる。
なお、図6に示される制御構造では、電圧指令Vrefに対する補正量ΔVをリミッタ回路46によって一定範囲内に制限する構成について説明したが、循環電流Icが所定の設定範囲から外れる場合には、循環電流Icの大きさによらず補正量ΔVを一定値に固定する構成としても、図6と同様の作用効果を得ることができる。
図7は、実施の形態3による回生インバータ12の制御装置14Aにおける補正量設定部44Aの変形例の構成を示す回路図である。図7を参照して、本変形例による補正量設定部44Aは、比較器CP1,CP2と、増幅器AP1,AP2と、電流源60,61と、電圧源62,63と、スイッチSW4,SW5と、抵抗素子R1,R3と、オペアンプOP1と、容量素子C1とを含んで構成される。
オペアンプOP1および容量素子C1は積分回路を構成する。オペアンプOP1の反転入力端子(−端子)と接地端子との間には、抵抗素子R1および抵抗素子R3が直列に接続されている。オペアンプOP1の非反転入力端子(+端子)は接地端子に接続されている。
抵抗素子R1および抵抗素子R3の接続点には電圧源62および電圧源63が並列に接続されている。電圧源62は正の一定電圧V1(たとえば+1V)を出力する。電圧源63は負の一定電圧−V1(たとえば−1V)を出力する。
電圧源62と接続点との間にはスイッチSW4が接続されている。スイッチSW4は、比較器OP1からアンプAP1を経由して入力される制御信号に応答してオンオフされる。電圧源63と接続点との間にはスイッチSW5が接続されている。スイッチSW5は、比較器CP2からアンプAP2を経由して入力される制御信号に応答してオンオフされる。
比較器CP1は、非反転入力端子(+端子)に循環電流Icが入力され、反転入力端子(−端子)に電流源60から一定電流I1が入力される。比較器CP1は、循環電流Icと電流I1とを比較し、比較結果を出力する。電流I1は、設定値Ithよりも高い電流値に設定される。設定値Ithがたとえば循環電流Icの定格値の10%程度に設定されている場合、電流I1は、たとえば循環電流Icの定格値の10%程度に設定される。循環電流Icが電流I1を超えているとき、比較器CP1の出力信号はH(論理ハイ)レベルとなる。比較器CP1からのHレベルの制御信号を受けてスイッチSW4がオンされることにより、抵抗素子R1と抵抗素子R3との接続点には正の一定電圧V1(+1V)が与えられる。
比較器CP2は、非反転入力端子(+端子)に電流源61から一定電流I2が入力され、反転入力端子(−端子)に循環電流Icが入力される。比較器CP2は、循環電流Icと電流I2とを比較し、比較結果を出力する。電流I2は、設定値Ithよりも低い電流値に設定される。設定値Ithがたとえば循環電流Icの定格値の10%程度に設定されている場合、電流I2は、たとえば循環電流Icの定格値の2%程度に設定される。循環電流Icが電流I2よりも小さいとき、比較器CP2の出力信号はHレベルとなる。比較器CP2からのHレベルの制御信号を受けてスイッチSW5がオンされることにより、抵抗素子R1と抵抗素子R3との接続点には負の一定電圧−V1(−1V)が与えられる。
積分回路は、接続点に入力される電圧に応じて抵抗素子R1に流れる電流を積分し、その積分値を出力する。積分値は、電圧指令Vrefに対する補正量ΔVとして、加算部45(図6)において電圧指令Vrefに加算される。
上記のような構成とすることにより、補正量設定部44Aは、循環電流Icが電流値I1よりも大きい場合には、正の一定値を補正量ΔVに設定する一方で、循環電流Icが電流値I2よりも小さい場合には、負の一定値を補正量ΔVに設定する。すなわち、正側の補正量ΔVおよび負側の補正量ΔVがそれぞれ一定値に固定されるため、電圧指令Vref♯は、系統電圧の変動に応じて一定範囲内で変動することになる。したがって、系統電圧が定格電圧よりも低下したとき、電圧指令Vref♯には下限値を下回らないように制限がかけられるため、その後に系統電圧が急激に上昇しても、電圧指令Vref♯の追従性を高めることができる。この結果、整流器10の出力電圧が回生インバータ12の出力電圧を大きく上回ることによって循環電流Icが増大するのを抑制することができる。
[実施の形態4]
図8は、実施の形態4による回生インバータ12の制御装置14Bの構成を示す機能ブロック図である。なお、実施の形態4による直流き電システムは、制御装置14Bを除いて図1の直流き電システムと同様の構成であるため、その図示および説明を省略する。
図8を参照して、実施の形態4による制御装置14Bは、図5に示した実施の形態1による制御装置14と比較して、電圧指令補正部42に代えて、電圧指令補正部42B、計器用変圧器24および整流器25を設けたものである。
電圧指令補正部42Bは、スイッチSW1,SW2と、補正量設定部44と、加算部45と、比較器CP3と、スイッチSW3とを含む。電圧指令補正部42Bは、図5に示す電圧指令補正部42に比較して、比較器CP3およびスイッチSW3をさらに加えたものである。
計器用変圧器24は、整流器用変圧器20の二次側の電圧を検出する。計器用変圧器24は、検出された二次側の電圧を電圧指令補正部42Bでの処理に適した電圧に変換する。整流器25は、計器用変圧器24から受ける交流電圧を直流電圧に整流して比較器CP3の非反転入力端子(+端子)に入力する。比較器CP3の反転入力端子(−端子)には閾値電圧Vthが入力される。閾値電圧Vthは、たとえば系統電圧が定格電圧に等しいときの整流器用変圧器20の二次側の電圧に設定される。
比較器CP3は、整流器用変圧器20の二次側の電圧と閾値電圧Vthとを比較する。整流器用変圧器20の二次側の電圧が閾値電圧Vthより大きいとき、すなわち、系統電圧が定格電圧より大きいとき、比較器CP3の出力信号はHレベルとなる。一方、整流器用変圧器20の二次側の電圧が閾値電圧Vth以下となるとき、すなわち、系統電圧が定格電圧以下となるとき、比較器CP3の出力信号はLレベルとなる。
スイッチSW3は、補正量設定部44と加算部45との間に接続される。スイッチSW3は、比較器CP3からのHレベルの制御信号に応答してオンし、Lレベルの制御信号に応答してオフする。
整流器用変圧器20の二次側の電圧が閾値電圧Vthより大きい場合(系統電圧が定格電圧より大きい場合)には、スイッチSW3がHレベルの制御信号に応答してオンすることにより、補正量設定部44により設定された補正量ΔVが加算部45に入力される。加算部45において補正量ΔVが電圧指令Vrefに加算されることにより、電圧指令Vref♯が生成される。
一方、整流器用変圧器20の二次側の電圧が閾値電圧Vth以下となる場合(系統電圧が定格電圧以下となる場合)には、スイッチSW3がLレベルの制御信号に応答してオフすることにより、補正量設定部44により設定された補正量ΔVは加算部45に入力されない。したがって、電圧指令Vrefは補正されず、電圧指令Vref♯は電圧指令Vrefと等しい値となる。
図8に示される回生インバータ12の制御構造によれば、整流器用変圧器20の二次側の電圧と閾値電圧Vthとが比較され、その比較結果に応じて電圧指令Vrefを補正するか否かを切り換えることができる。整流器用変圧器20の二次側の電圧が閾値電圧Vthより大きくなる場合、すなわち、系統電圧が閾値(たとえば定格電圧)よりも大きくなる場合には、電圧指令Vrefが補正される。その一方で、系統電圧が閾値(定格電圧)以下に低下したときには電圧指令Vrefが補正されない。これにより、実質的に、回生インバータ12の出力電圧は電圧指令Vrefを下回らないように制限がかけられることになる。したがって、系統電圧が閾値以下に低下した後に系統電圧が急激に上昇しても、電圧指令Vref♯の追従性を高めることができる。これにより、整流器10の出力電圧が回生インバータ12の出力電圧を大きく上回るのを防止することができるため、系統電圧が急激に上昇した際に循環電流Icが増大するのを抑制することができる。
[実施の形態5]
図9は、実施の形態5による回生インバータ12の制御装置14Cの構成を示す機能ブロック図である。なお、実施の形態5による直流き電システムは、制御装置14Cを除いて図1の直流き電システムと同様の構成であるため、その図示および説明を省略する。
図9を参照して、実施の形態5による制御装置14Cは、図5に示した実施の形態1による制御装置14と比較して、電圧指令補正部42に代えて、電圧指令補正部42Cを設けたものである。
電圧指令補正部42Cは、スイッチSW1,SW2と、補正量設定部44と、加算部45と、判定部47と、スイッチSW3とを含む。電圧指令補正部42BC、図5に示す電圧指令補正部42に比較して、判定部47およびスイッチSW3をさらに加えたものである。
判定部47は、整流器8から整流器電流Irを受け、整流器18からインバータ電流Iiを受ける。判定部47は、整流器電流Irおよびインバータ電流Iiに基づいて、負荷電流(力行電流または回生電流)を算出する。具体的には、整流器電流Irがインバータ電流Iiよりも大きい場合には、インバータ電流Iiが循環電流Icに相当するため、整流器電流Irからインバータ電流Iiを減算することにより、力行電流を求めることができる。一方、インバータ電流Iiが整流器電流Irよりも大きい場合には、整流器電流Irが循環電流Icに相当するため、インバータ電流Iiから整流器電流Irを減算することにより、回生電流を求めることができる。
判定部47は、負荷電流が算出されると、負荷電流と予め設定された電流範囲とを比較し、比較結果に基づいてスイッチSW3のオンオフを制御する。具体的には、電流範囲は、力行領域(図3の領域I)に上限値を有し、かつ、回生領域(図3の領域III)に下限値を有するように設定されている。判定部47は、負荷電流Idが当該電流範囲内にある場合には、Hレベルの制御信号を出力する。一方、負荷電流Idは当該電流範囲内にない場合には、Lレベルの制御信号を出力する。
スイッチSW3は、補正量設定部44と加算部45との間に接続される。スイッチSW3は、判定部47からのHレベルの制御信号に応答してオンする一方で、Lレベルの制御信号に応答してオフする。
図9に示す構成において、負荷電流が予め設定された電流範囲内にある場合には、判定部47からのHレベルの制御信号に応答してスイッチSW3がオンする。これにより、補正量設定部44により設定された補正量ΔVが加算部45に入力される。そして、加算部45において補正量ΔVが電圧指令Vrefに加算されることにより、電圧指令Vref♯が生成される。
一方、負荷電流Idが電流範囲内にない場合には、判定部47からのLレベルの制御信号に応答してスイッチSW3がオフする。これにより、補正量設定部44により設定された補正量ΔVは加算部45に入力されない。したがって、電圧指令Vrefは補正されず、電圧指令Vref♯は電圧指令Vrefと等しい値となる。すなわち、判定部47は、負荷電流Idと電流範囲とを比較し、その比較結果に応じて電圧指令Vrefを補正するか否かを判定するように構成される。
ここで、系統電圧が定格電圧を超えている場合において電気車5が回生から力行に遷移するときには、回生と力行とが切り換わる遷移領域(図3の領域II)近傍において、循環電流Icの増加が顕著となる一方で、回生電流または力行電流の絶対値が大きくなるに従って循環電流Icは減少する。これは、き電線電圧は力行電流が大きくなるに従って低下し、かつ、回生電流が大きくなるに従って増加することによる。
図9に示される回生インバータ12の制御構造では、循環電流Icの増加が顕著となるときの負荷電流Idの領域に対応させて電流範囲を設定する。そして、負荷電流Idがこの電流範囲内にある場合に、電圧指令Vrefを補正する。
たとえば、電気車5の回生時には、循環電流Icが設定値Ithよりも十分に小さい値を示すことに起因して、電圧指令Vref♯が電圧指令Vrefよりも低い電圧に補正されることがある。このような場合において、電気車5が回生から力行に切り換わると、循環電流Icが増加する一方で、電圧指令Vref♯を電圧指令Vrefよりも高い電圧に直ちに上昇させることが難しい。このように、循環電流Icが設定値Ithよりも十分に小さい場合においても電圧指令Vrefを補正することで、電気車5が回生から力行に切り換わる際(または力行から回生に切り換わる際)に、却って循環電流Icを増大させてしまう可能性がある。
実施の形態5によれば、循環電流Icの増加が顕著となる負荷電流の領域内において電圧指令Vrefの補正が実行される一方で、当該領域外では電圧指令Vrefの補正が行なわれない。したがって、電気車5が回生と力行との間で切り換わる際に、循環電流Icが増大するのを抑制することができる。
なお、上記の実施の形態1から5による直流き電システムでは、回生インバータに他励式変換器を用いる構成について説明したが、回生インバータに自励式変換器を用いた構成においても、本発明による回生インバータの制御構造を適用することが可能である。図10は、実施の形態1の変形例による直流き電システムの全体構成図である。
図10を参照して、実施の形態1の変形例による直流き電システムは、整流器10と、整流器用変圧器20と、回生インバータ70と、回生インバータ用変圧器26と、制御装置72とを備える。
回生インバータ70は、電気車5の回生時に発生する回生電力を交流電力に変換するための装置である。回生インバータ70の交流側は回生インバータ用変圧器26および遮断器CBを介して送電線2に接続される。
回生インバータ70は、自励式変換器から構成される。図11は、図10における回生インバータ70の回路図である。図11を参照して、回生インバータ70は、スイッチング素子Q11〜Q16と、ダイオードD11〜D16とを含む。スイッチング素子Q11〜Q16は、たとえばサイリスタであるが、自己消弧型のスイッチング素子であればこれに限定されるものではない。ダイオードD11〜D16はスイッチング素子Q11〜Q16にそれぞれ逆並列接続される。スイッチング素子Q11〜Q16の各々には制御装置72からのゲートパルス信号が与えられる。スイッチング素子Q11〜Q16は、ゲートパルス信号に基づいてスイッチング動作を行ない、電気車5の回生時に生じる回生電力を交流電力に変換して送電線2側に回生する。
図10に示す直流き電システムにおいて、回生インバータ70の制御装置72には、上記の実施の形態1〜5による制御装置14,14A〜14Cのいずれかを適用することが可能である。
今回開示された実施の形態は例示であって、上記内容のみに限定されるものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
1 交流電源、2 送電線、3 き電線、4 レール、5 電気車、6,16 計器用変流器、8,10,18,34 整流器、12,70 回生インバータ、14,14A,14B,14C,72 制御装置、20 整流器用変圧器、22,26 回生インバータ用変圧器、30 電圧指令生成回路、32 計器用変圧器、40 循環電流検出部、42 電圧指令補正部、44 補正量設定部、45 加算部、46 リミッタ回路、47 判定部、50 電圧制御部、52 ゲートパルス信号発生部、54 電圧検出部、60,61 電流源、62,63 電圧源、C1 容量素子、OP1 オペアンプ、CP1〜CP3 比較器、AP1,AP2 アンプ、R1〜R3 抵抗素子、SW1〜SW4 スイッチ。

Claims (5)

  1. 交流電源から受けた交流電力を直流電力に変換してき電線を介して電気車に供給する整流器と、
    前記電気車の回生運転時に発生する回生電力を交流電力に変換する回生インバータと、
    前記回生インバータに流れるインバータ電流を検出する第1の電流検出部と、
    前記整流器に流れる整流器電流を検出する第2の電流検出部と、
    前記回生インバータを制御するための制御装置とを備え、
    前記制御装置は、
    前記き電線の電圧を検出する電圧検出部と、
    電圧指令を予め設定された固定値とし、前記電圧検出部により検出される前記き電線電圧が前記電圧指令に一致するように前記回生インバータを制御するための電圧制御部と
    前記整流器から前記回生インバータに流入する循環電流が設定値となるように、少なくとも前記電気車の無負荷時に前記電圧指令を補正するための補正部とを含み、
    前記補正部は、前記第1の電流検出部により検出される前記インバータ電流および前記第2の電流検出部により検出される前記整流器電流に基づいて、前記電気車の力行電流および回生電流を検出するとともに、検出された前記力行電流または前記回生電流の大きさに基づいて前記電圧指令を補正するか否かを判定するための判定部を含み、
    前記判定部は、前記力行電流または前記回生電流が、力行領域に上限値を有し、かつ回生領域に下限値を有するように設定された電流範囲内にない場合には、前記電圧指令の補正を行なわない、直流き電システム。
  2. 前記制御装置は、前記第1の電流検出部により検出される前記インバータ電流および前記第2の電流検出部により検出される前記整流器電流に基づいて、前記整流器から前記回生インバータに流入する循環電流を検出する循環電流検出部をさらに含み、
    前記補正部は、前記電気車の無負荷時および前記電気車の負荷時において、前記循環電流検出部により検出される前記循環電流と前記設定値との偏差に基づいて前記電圧指令の補正量を設定するための補正量設定部を含む、請求項1に記載の直流き電システム。
  3. 前記補正部は、前記補正量設定部により設定された前記電圧指令の補正量の上限値および下限値を制限するためのリミッタ回路をさらに含む、請求項2に記載の直流き電システム。
  4. 前記制御装置は、前記第1の電流検出部により検出される前記インバータ電流および前記第2の電流検出部により検出される前記整流器電流に基づいて、前記整流器から前記回生インバータに流入する循環電流を検出する循環電流検出部をさらに含み、
    前記補正部は、前記設定値よりも大きい電流値を上限値とし、かつ、前記設定値よりも小さい電流値を下限値とする電流範囲を有し、前記循環電流検出部により検出される前記循環電流が前記上限値より大きい場合には、前記電圧指令の補正量を正の一定電圧に設定する一方で、前記循環電流検出部により検出される前記循環電流が前記下限値より小さい場合には、前記電圧指令の補正量を負の一定電圧に設定するための補正量設定部を含む、請求項1に記載の直流き電システム。
  5. 交流電源から受けた交流電力を直流電力に変換してき電線を介して電気車に供給する整流器と、
    前記電気車の回生運転時に発生する回生電力を交流電力に変換する回生インバータと、
    前記回生インバータに流れるインバータ電流を検出する第1の電流検出部と、
    前記整流器に流れる整流器電流を検出する第2の電流検出部と、
    前記回生インバータを制御するための制御装置とを備え、
    前記制御装置は、
    前記き電線の電圧を検出する電圧検出部と、
    電圧指令を予め設定された固定値とし、前記電圧検出部により検出される前記き電線電圧が前記電圧指令に一致するように前記回生インバータを制御するための電圧制御部と、
    前記第1の電流検出部により検出される前記インバータ電流および前記第2の電流検出部により検出される前記整流器電流に基づいて、前記整流器から前記回生インバータに流入する循環電流を検出する循環電流検出部と、
    前記循環電流検出部により検出される前記循環電流が設定値となるように、少なくとも前記電気車の無負荷時に前記電圧指令を補正するための補正部とを含み
    前記補正部は、
    前記交流電源から受ける系統電圧と閾値電圧とを比較するための比較器と、
    前記比較器の比較結果に応じて、前記電圧指令を補正するか否かを切り換えるためのスイッチとを含み、
    前記スイッチは、前記系統電圧が前記閾値電圧よりも大きい場合に前記電圧指令を補正するように構成される、直流き電システム。
JP2014225030A 2014-11-05 2014-11-05 直流き電システム Active JP6334366B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014225030A JP6334366B2 (ja) 2014-11-05 2014-11-05 直流き電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014225030A JP6334366B2 (ja) 2014-11-05 2014-11-05 直流き電システム

Publications (2)

Publication Number Publication Date
JP2016088289A JP2016088289A (ja) 2016-05-23
JP6334366B2 true JP6334366B2 (ja) 2018-05-30

Family

ID=56017317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014225030A Active JP6334366B2 (ja) 2014-11-05 2014-11-05 直流き電システム

Country Status (1)

Country Link
JP (1) JP6334366B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107839548B (zh) * 2017-09-20 2019-01-29 北京市轨道交通建设管理有限公司 城市轨道交通牵引供电环流处理方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688508B2 (ja) * 1985-02-28 1994-11-09 株式会社明電舍 電鉄用回生インバ−タの制御方法とその装置
JPH0667217B2 (ja) * 1985-06-29 1994-08-24 株式会社明電舍 直流変電所の制御装置
JPS6237241A (ja) * 1985-08-10 1987-02-18 Meidensha Electric Mfg Co Ltd 直流変電所の制御装置
JPS63306941A (ja) * 1987-06-09 1988-12-14 Meidensha Electric Mfg Co Ltd 電鉄用回生インバ−タの制御装置
JP4175178B2 (ja) * 2003-05-27 2008-11-05 株式会社明電舎 直流き電システム
ES2334628B1 (es) * 2008-09-11 2011-01-07 Ingeteam Technology, S.A Dispositivo y procedimiento de control para recuperacion de energia cinetica en sistemas ferroviarios.

Also Published As

Publication number Publication date
JP2016088289A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
JP6207730B2 (ja) 直流送電電力変換装置および直流送電電力変換方法
US10734916B2 (en) Power conversion device
US9941782B2 (en) Power supply device and method for limiting an output current of a power supply device
US11218084B2 (en) Power supply device for electric vehicle
US9197139B2 (en) Rectifier charge rate controller
EP3098952A2 (en) Low capacitance drive with improved immunity
US11722050B2 (en) Current limiting circuit for multilevel power converter cell
JP6942269B2 (ja) 電力変換装置
JP6312558B2 (ja) 直流き電システム
JP6334366B2 (ja) 直流き電システム
US12113395B2 (en) Power converter
US7724546B2 (en) Converter
CN109643909B (zh) 用于控制无中断供电的方法和用于无中断供电的设备
JP2004088862A (ja) 自励式電力変換装置
US11716008B2 (en) Power conversion device
US11177662B2 (en) Monitoring of a high-voltage DC transmission
KR101437202B1 (ko) 복전시 인버터의 전압보상지령 보정방법 및 그 방법을 이용한 인버터
JP5264287B2 (ja) 瞬時電圧低下補償装置
JP6669434B2 (ja) 電力変換装置
JP7379395B2 (ja) 電力変換装置および直流送電システム
JP6958387B2 (ja) 直流電源装置および直流電源装置の制御方法
WO2023243115A1 (ja) 電力変換装置
JP2019062660A (ja) 電圧調整装置
JP2005168162A (ja) コンバータ
JPH01311819A (ja) 半導体電力変換装置の過電流保護回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180426

R150 Certificate of patent or registration of utility model

Ref document number: 6334366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250