[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6330387B2 - Sintered body and manufacturing method thereof - Google Patents

Sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP6330387B2
JP6330387B2 JP2014050453A JP2014050453A JP6330387B2 JP 6330387 B2 JP6330387 B2 JP 6330387B2 JP 2014050453 A JP2014050453 A JP 2014050453A JP 2014050453 A JP2014050453 A JP 2014050453A JP 6330387 B2 JP6330387 B2 JP 6330387B2
Authority
JP
Japan
Prior art keywords
phase
sintered body
content
hard particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014050453A
Other languages
Japanese (ja)
Other versions
JP2014208889A (en
Inventor
夏生 辰巳
夏生 辰巳
久木野 暁
暁 久木野
将史 常包
将史 常包
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014050453A priority Critical patent/JP6330387B2/en
Publication of JP2014208889A publication Critical patent/JP2014208889A/en
Application granted granted Critical
Publication of JP6330387B2 publication Critical patent/JP6330387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)

Description

本発明は、焼結体およびその製造方法に関する。   The present invention relates to a sintered body and a method for producing the same.

切削加工などに用いられる切削工具の材料として、炭化タングステン(WC)や立法晶窒化ホウ素(cBN)などの硬質粒子をCoやNiを主体とした金属で結合した焼結体が市販されている。これらの焼結体は、耐欠損性は高いものの、結合金属相が高温で軟化するため、切削工具として使用した場合、耐摩耗性が低下したり、被削材金属が工具に溶着して工具が損傷するなどの問題があった。特に近年は、耐熱合金など、難削材に対する切削工具性能の向上の要求が強まっている。   As a material for a cutting tool used for cutting or the like, a sintered body in which hard particles such as tungsten carbide (WC) and cubic boron nitride (cBN) are bonded with a metal mainly containing Co or Ni is commercially available. Although these sintered bodies have high fracture resistance, the bonded metal phase softens at high temperatures, so when used as a cutting tool, the wear resistance decreases or the work material metal is welded to the tool and the tool There were problems such as damage. Particularly in recent years, there has been an increasing demand for improvement of cutting tool performance for difficult-to-cut materials such as heat-resistant alloys.

cBNやサーメットなどの焼結体の切削性能を改善するために、TiNやAlなどのコーティングが行われてきた(特許文献1:特開昭59−8679号公報)。 In order to improve the cutting performance of sintered bodies such as cBN and cermet, coatings such as TiN and Al 2 O 3 have been performed (Patent Document 1: JP 59-8679 A).

特開昭59−8679号公報JP 59-8679 A

しかし、高温での硬度の維持と耐欠損性を十分に維持することは困難であった。特に近年は、耐熱合金など、難削材に対する切削工具性能の向上の要求が強まっている。   However, it has been difficult to maintain sufficient hardness at a high temperature and to maintain sufficient fracture resistance. Particularly in recent years, there has been an increasing demand for improvement of cutting tool performance for difficult-to-cut materials such as heat-resistant alloys.

上記の事情に鑑みて、本発明は、工具材料として用いた場合に、優れた高温硬度と耐欠損性とを有する焼結体およびその製造方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a sintered body having excellent high-temperature hardness and fracture resistance when used as a tool material, and a method for producing the same.

本願1の発明は、
(1)硬質粒子として立方晶窒化ホウ素(cBN)、Al、AlON、SiAlON、TiC、TiCN、TiN、WCおよびダイヤモンドからなる群から選択される1種類以上よりなる硬質粒子と、(Co,Ni)(Al,W,V,Ti)で表される金属相とを含むことを特徴とする焼結体である。
The invention of this application 1
(1) Hard particles composed of one or more kinds selected from the group consisting of cubic boron nitride (cBN), Al 2 O 3 , AlON, SiAlON, TiC, TiCN, TiN, WC and diamond as hard particles; , Ni) 3 (Al, W, V, Ti), and a sintered body characterized by including a metal phase.

本発明によれば、工具材料として用いた場合に、優れた高温硬度と耐欠損性を有する焼結体を得ることができる。   According to the present invention, when used as a tool material, a sintered body having excellent high temperature hardness and fracture resistance can be obtained.

[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
[Description of Embodiment of Present Invention]
First, the contents of the embodiments of the present invention will be listed and described.

本願の実施形態に係る発明は、(1)硬質粒子として立方晶窒化ホウ素(cBN)、Al、AlON、SiAlON、TiC、TiCN、TiN、WCおよびダイヤモンドからなる群から選択される1種類以上よりなる硬質粒子と、(Co,Ni)(Al,W,V,Ti)で表される金属相とを含むことを特徴とする焼結体である。このような焼結体は、工具材料として用いた場合に、優れた高温硬度と耐欠損性を有する。 The invention according to the embodiment of the present application is (1) one type selected from the group consisting of cubic boron nitride (cBN), Al 2 O 3 , AlON, SiAlON, TiC, TiCN, TiN, WC and diamond as hard particles. It is a sintered body characterized by including hard particles composed of the above and a metal phase represented by (Co, Ni) 3 (Al, W, V, Ti). Such a sintered body has excellent high-temperature hardness and fracture resistance when used as a tool material.

(2)前記硬質粒子と、(Co,Ni)(Al,W,V,Ti)の金属相との両者は、焼結体中に分散された状態で含まれることが好ましい。これにより、高温硬度と耐欠損性を両立させた焼結体を得ることができる。 (2) It is preferable that both the hard particles and the metal phase of (Co, Ni) 3 (Al, W, V, Ti) are contained in a dispersed state in the sintered body. Thereby, the sintered compact which made high temperature hardness and defect resistance compatible can be obtained.

(3)前記金属相中において、Coの含有率が0〜90質量%であり、Niの含有率が0〜90質量%であり、Alの含有率が0.1〜15質量%であり、Wの含有率が0〜45質量%であり、Vの含有量が0〜25質量%であり、Tiの含有率が0〜25質量%であり、Al、W、VおよびTiの合計量の比率が50質量%以下であることが好ましい。これにより、時効処理後に高温硬度の高い強化相((Co,Ni)(Al,W,V,Ti)の析出相)が析出し、焼結体の高温硬度を上げることができる。 (3) In the metal phase, the Co content is 0 to 90 mass%, the Ni content is 0 to 90 mass%, and the Al content is 0.1 to 15 mass%, The W content is 0 to 45% by mass, the V content is 0 to 25% by mass, the Ti content is 0 to 25% by mass, and the total content of Al, W, V and Ti is The ratio is preferably 50% by mass or less. Thereby, the strengthening phase (precipitation phase of (Co, Ni) 3 (Al, W, V, Ti)) having a high temperature hardness is precipitated after the aging treatment, and the high temperature hardness of the sintered body can be increased.

(4)前記金属相が、CoおよびNiからなるマトリックス相であるγ相と、(Co,Ni)(Al,W,V,Ti)の析出相である強化相とを含むことが好ましい。これにより、焼結体の高温硬度を上げることができる。ここで強化相とは、NiAlなどに代表されるL1構造(γ’相)、NiVなどに代表されるD022相(γ”相)、NiTiなどに代表されるD024構造など、優れた高温強度特性を持つ析出相のことである。 (4) It is preferable that the metal phase includes a γ phase that is a matrix phase composed of Co and Ni and a strengthening phase that is a precipitated phase of (Co, Ni) 3 (Al, W, V, Ti). Thereby, the high temperature hardness of a sintered compact can be raised. Here reinforcing phase A, L1 2 structure (gamma 'phase) typified by Ni 3 Al, D0 22 phase typified Ni 3 V (γ "phase), typified by Ni 3 Ti D0 It is a precipitated phase having excellent high temperature strength characteristics such as 24 structure.

(5)前記強化相の平均結晶粒径は、30〜1000nmであることが好ましい。この範囲である場合、得られる焼結体の高温硬度がより高くなるからである。   (5) The average crystal grain size of the reinforcing phase is preferably 30 to 1000 nm. This is because the high-temperature hardness of the obtained sintered body becomes higher in this range.

(6)前記硬質粒子の平均粒径が0.1〜10μmであり、焼結体中の前記硬質粒子の含有率が50〜99体積%であることが好ましい。このような粒径範囲と組成範囲である場合、得られる焼結体の硬度がより高くなるからである。   (6) It is preferable that the average particle diameter of the said hard particle is 0.1-10 micrometers, and the content rate of the said hard particle in a sintered compact is 50-99 volume%. This is because the hardness of the obtained sintered body is higher when the particle diameter is within such a range and composition range.

(7)前記硬質粒子にcBNを含む場合に、前記金属相中のCr、Mo、VおよびZrのそれぞれの含有量は0.1質量%以下であることが好ましい。Cr、Mo、V、Zrのいずれかの添加量が0.1質量%を超えると、Cr、Mo、VおよびZrの触媒反応により、時効処理の際にcBNが柔らかい六方晶窒化ホウ素(hBN)に変化してしまう畏れがあるためである。   (7) When cBN is contained in the hard particles, the contents of Cr, Mo, V and Zr in the metal phase are preferably 0.1% by mass or less. When the added amount of any of Cr, Mo, V, and Zr exceeds 0.1% by mass, hexagonal boron nitride (hBN) having a soft cBN during aging treatment is caused by the catalytic reaction of Cr, Mo, V, and Zr. This is because there is a fear of changing.

(8)本発明は、上記の焼結体の製造方法であって、Co、Ni、Al、W、VおよびTiを含む金属間化合物を合成する工程と、前記金属間化合物を粉砕して、金属間化合物粉末を得る工程と、前記金属間化合物粉末と前記硬質粒子の粉末とを混合して、混合粉末を得る工程と、前記混合粉末を10MPa〜16GPa、1000〜1800℃の条件で焼結する工程と、焼結後に500〜1100℃で時効処理を行う工程とを含む、製造方法にも関する。10MPa〜16GPaの圧力と、1000〜1800℃の温度で焼結することにより、硬質粒子と金属間化合物の緻密な焼結体を形成できる。また、時効化処理を行うことにより、γ相(高靭性のCoおよびNiからなるマトリクス相)中に高温硬度の高い強化相((Co、Ni)(Al、W、V、Ti)の析出相)が形成され、高温硬度の高い焼結体を形成することができる。 (8) The present invention is a method for producing the above sintered body, comprising a step of synthesizing an intermetallic compound containing Co, Ni, Al, W, V and Ti, and pulverizing the intermetallic compound. A step of obtaining an intermetallic compound powder, a step of mixing the intermetallic compound powder and the powder of the hard particles to obtain a mixed powder, and sintering the mixed powder under conditions of 10 MPa to 16 GPa and 1000 to 1800 ° C. And a manufacturing method including a step of performing an aging treatment at 500 to 1100 ° C. after sintering. By sintering at a pressure of 10 MPa to 16 GPa and a temperature of 1000 to 1800 ° C., a dense sintered body of hard particles and an intermetallic compound can be formed. Further, by performing an aging treatment, precipitation of a strengthening phase ((Co, Ni) 3 (Al, W, V, Ti) having a high temperature hardness in a γ phase (a matrix phase composed of highly tough Co and Ni). Phase) is formed, and a sintered body having high high-temperature hardness can be formed.

[本願発明の実施形態の詳細]
本発明の焼結体は、立方晶窒化ホウ素、Al、AlON、SiAlON、TiC、TiCN、TiN、WCおよびダイヤモンドからなる群から選択される1種類以上よりなる硬質粒子と、(Co,Ni)(Al,W,V,Ti)で表される金属相とを含むことを特徴とする。(Co,Ni)(Al,W,V,Ti)の金属相とは、CoおよびNiの合計と、Al,W,VおよびTiの合計との比が3:1となるような元素比率組成を主として構成される、強化相を意味する。ここで、(Co,Ni)(Al,W,V,Ti)と表現しているが、強化相として最適な金属相を示しているのであり、このうちCo,W,V,Tiについては含有しなくても良い。
[Details of the embodiment of the present invention]
The sintered body according to the present invention includes one or more hard particles selected from the group consisting of cubic boron nitride, Al 2 O 3 , AlON, SiAlON, TiC, TiCN, TiN, WC and diamond, and (Co, And a metal phase represented by Ni) 3 (Al, W, V, Ti). The metal phase of (Co, Ni) 3 (Al, W, V, Ti) is an element ratio such that the ratio of the sum of Co and Ni to the sum of Al, W, V and Ti is 3: 1. It means a reinforcing phase mainly composed of a composition. Here, it is expressed as (Co, Ni) 3 (Al, W, V, Ti), but shows an optimum metal phase as a strengthening phase. Among these, Co, W, V, Ti It does not need to contain.

前記硬質粒子と、(Co,Ni)(Al,W,V,Ti)の金属相との両者は、CoおよびNiからなるマトリックス相であるγ相と共に焼結体中に分散された状態で含まれることが好ましい。これにより、高温硬度と耐欠損性を両立させた焼結体を得ることができる。両者は、焼結体中に均一に分散された状態で含まれていることが、より好ましい。 Both the hard particles and the metal phase of (Co, Ni) 3 (Al, W, V, Ti) are dispersed in the sintered body together with the γ phase which is a matrix phase composed of Co and Ni. It is preferably included. Thereby, the sintered compact which made high temperature hardness and defect resistance compatible can be obtained. It is more preferable that both are contained in a uniformly dispersed state in the sintered body.

本発明の一実施の形態においては、まず、Co、Ni、Al、W、VおよびTiを原料として使用し、アトマイズ、アーク溶解、またはプラズマ処理などにより、金属間化合物を作製する。この金属間化合物を用いて、(Co,Ni)(Al,W,V,Ti)の金属相が構成される。 In one embodiment of the present invention, first, an intermetallic compound is produced by using atomization, arc melting, plasma treatment or the like using Co, Ni, Al, W, V and Ti as raw materials. Using this intermetallic compound, a metal phase of (Co, Ni) 3 (Al, W, V, Ti) is formed.

(Co,Ni)(Al,W,V,Ti)の金属相の全量に対して、Coの含有率が0〜90質量%であり、Niの含有率が0〜90質量%であり、Alの含有率が0.1〜15質量%であり、Wの含有率が0〜45質量%であり、Vの含有量が0〜25質量%であり、Tiの含有率が0〜25質量%であり、Al、W、VおよびTiの合計量の比率が50質量%以下であることが好ましい。これにより、時効処理後に高温硬度の高い強化相((Co,Ni)(Al,W,V,Ti)の析出相)が析出し、焼結体の高温硬度を上げることができる。より好ましくは、Coの含有率が1〜50質量%、Niの含有率が1〜50質量%、Alの含有率が0.1〜10質量%、Wの含有率が3〜45質量%の組成である。 The Co content is 0 to 90% by mass and the Ni content is 0 to 90% by mass with respect to the total amount of the metal phase of (Co, Ni) 3 (Al, W, V, Ti), The Al content is 0.1 to 15% by mass, the W content is 0 to 45% by mass, the V content is 0 to 25% by mass, and the Ti content is 0 to 25% by mass. %, And the ratio of the total amount of Al, W, V and Ti is preferably 50% by mass or less. Thereby, the strengthening phase (precipitation phase of (Co, Ni) 3 (Al, W, V, Ti)) having a high temperature hardness is precipitated after the aging treatment, and the high temperature hardness of the sintered body can be increased. More preferably, the Co content is 1 to 50 mass%, the Ni content is 1 to 50 mass%, the Al content is 0.1 to 10 mass%, and the W content is 3 to 45 mass%. Composition.

なお、金属間化合物粉末を作製する際には、Co、Ni、Al、W、VおよびTi以外に、Nb、Ta、B、Cなどを添加しても良い。ただし、硬質粒子にcBNを用いる場合、金属相の全量に対するCr、Mo、V、Zrのそれぞれの添加量は0.1質量%以下とすることが好ましい。Cr、Mo、V、Zrのいずれかの添加量が0.1質量%を超えると、Cr、Mo、VおよびZrの触媒反応により、時効処理の際にcBNが柔らかい六方晶窒化ホウ素(hBN)に変化してしまう畏れがあるためである。ここで、時効処理(時効硬化処理、析出熱処理)とは、硬さ、強さ又は耐食性などを増進させるために適切な温度、又はある種類の合金や質別に対しては室温で、溶体化処理(固溶化熱処理)した製品を均熱保持する処理(JIS W 1103 参照)を意味する。   In addition, when producing intermetallic compound powder, Nb, Ta, B, C, etc. may be added in addition to Co, Ni, Al, W, V and Ti. However, when cBN is used for the hard particles, the addition amount of Cr, Mo, V, and Zr with respect to the total amount of the metal phase is preferably 0.1% by mass or less. When the added amount of any of Cr, Mo, V, and Zr exceeds 0.1% by mass, hexagonal boron nitride (hBN) having a soft cBN during aging treatment is caused by the catalytic reaction of Cr, Mo, V, and Zr. This is because there is a fear of changing. Here, aging treatment (age hardening treatment, precipitation heat treatment) is a solution treatment at a temperature suitable for increasing hardness, strength, corrosion resistance, etc., or at a room temperature for a certain type of alloy or quality. (Solution heat treatment) This means a treatment (see JIS W 1103) for keeping the product soaked.

また、前記硬質粒子にcBNを用いる場合には、前記強化相が硬質粒子周辺において高いB濃度を含有することが好ましい。   In addition, when cBN is used for the hard particles, the reinforcing phase preferably contains a high B concentration around the hard particles.

また、前記硬質粒子にAl,AlON,SiAlONを用いる場合には、前記強化相が硬質粒子周辺においてその他の領域より高いAl濃度を含有することが好ましい。 Further, when Al 2 O 3 , AlON, or SiAlON is used for the hard particles, it is preferable that the strengthening phase contains an Al concentration higher than other regions around the hard particles.

また、前記硬質粒子にTiC,TiCN,TiNを用いる場合には、前記強化相が硬質粒子周辺においてその他の領域より高いTi濃度を含有することが好ましい。   In addition, when TiC, TiCN, or TiN is used for the hard particles, it is preferable that the reinforcing phase contains a higher Ti concentration in the periphery of the hard particles than in other regions.

また、前記硬質粒子にWCを用いる場合には、前記強化相が硬質粒子周辺においてその他の領域より高いW濃度を含有することが好ましい。   Moreover, when using WC for the hard particles, it is preferable that the reinforcing phase contains a higher W concentration than the other regions around the hard particles.

また、硬質粒子として上記以外に、TiAlN、AlCrNなどを用いても良い。TiAlNの場合は、前記強化相が硬質粒子周辺において他の領域より高いAl、Ti濃度を含有することが好ましい。AlCrNの場合は、前記強化相が硬質粒子周辺において他の領域より高いAl、Cr濃度を含有し、(Co,Ni,Cr)(Al,W,V,Ti)を形成することが好ましい。 In addition to the above, TiAlN, AlCrN, or the like may be used as the hard particles. In the case of TiAlN, it is preferable that the strengthening phase contains Al and Ti concentrations higher than other regions around the hard particles. In the case of AlCrN, it is preferable that the reinforcing phase contains Al and Cr concentrations higher than other regions around the hard particles to form (Co, Ni, Cr) 3 (Al, W, V, Ti).

さらに、焼結プロセスもしくは時効化処理プロセスによって、焼結体中にNi20Alなどに代表される金属のアルミホウ化物を生成しても良い。このようなアルミホウ化物を形成することにより、金属相とcBNとの結合力が強化され、耐欠損性の優れた焼結体が得られる。 Furthermore, a metal aluminum boride typified by Ni 20 Al 3 B 6 or the like may be generated in the sintered body by a sintering process or an aging treatment process. By forming such an aluminum boride, the bonding strength between the metal phase and cBN is strengthened, and a sintered body having excellent fracture resistance is obtained.

得られた金属間化合物は、例えばビーズミルやボールミル、ジェットミルなどによって粉砕されて、金属間化合物粉末となる。金属間化合物粉末の平均粒径は、0.3〜3μmであることが好ましい。ビーズミル/ボールミルに用いるビーズ/ボールとしては、例えば粒径0.1〜3mmのアルミナ製、窒化ケイ素製、超硬合金製ビーズ/ボールが挙げられ、分散媒としては、例えばエタノールやアセトン、液体窒素が挙げられる。ビーズミル/ボールミルによる処理時間は、例えば30分〜10時間である。ビーズミル/ボールミルにより得られたスラリーは、例えばN中で乾燥させる。 The obtained intermetallic compound is pulverized by, for example, a bead mill, a ball mill, a jet mill or the like to form an intermetallic compound powder. The average particle size of the intermetallic compound powder is preferably 0.3 to 3 μm. Examples of the beads / balls used for the bead mill / ball mill include alumina, silicon nitride, and cemented carbide beads / balls having a particle diameter of 0.1 to 3 mm. Examples of the dispersion medium include ethanol, acetone, and liquid nitrogen. Is mentioned. The processing time by the bead mill / ball mill is, for example, 30 minutes to 10 hours. The slurry obtained by the bead mill / ball mill is dried, for example, in N 2 .

次に、得られた金属間化合物粉末と硬質粒子粉末を、ボールミルや乳鉢等によって混合する。cBNは極めて硬度が高く、工具として高い切削性能を示す。また、Al、AlON、TiC、TiCN、TiN、TiAlN、AlCrNはFeに対して反応摩耗しにくい物性を持っているため、Feを含む鋳鉄、鋼、焼入鋼などの被削材に好適である。また、SiAlON(α、β、立方晶のいずれの結晶構造も含む)はNiに対して反応摩耗しにくい物性を持っているため、インコネルなど耐熱合金に好適である。またこれらの硬質粒子に加えて、MoC、Cr、TaC、NbC、VC、HfC、ZrC、AlN、CrN、TaN、NbN、VN、HfN、ZrNなどの硬質粒子を添加しても良い。なお、TiC、TiCN、TiNを硬質粒子として用いる場合は、CoよりNiが多い方が硬質粒子と金属結合材との結合力が強くなり、耐欠損性が増加するため望ましい。ボールミルに用いるボールとしては、例えばアルミナ製、窒化ケイ素製もしくは超硬合金製の直径3mmのボールが挙げられ、分散媒としては例えばエタノールやアセトン、液体窒素が挙げられる。処理時間は、例えば3〜20時間である。混合により得られたスラリーを、例えばN中で乾燥させることにより混合粉末が得られる。 Next, the obtained intermetallic compound powder and hard particle powder are mixed by a ball mill, a mortar or the like. cBN has extremely high hardness and exhibits high cutting performance as a tool. In addition, Al 2 O 3 , AlON, TiC, TiCN, TiN, TiAlN, and AlCrN have physical properties that do not easily react with Fe, so they can be used as work materials such as cast iron, steel, and hardened steel containing Fe. Is preferred. SiAlON (including any crystal structure of α, β, and cubic) is suitable for heat-resistant alloys such as Inconel because it has physical properties that are difficult to react with Ni. In addition to these hard particles, hard particles such as Mo 2 C, Cr 3 C 2 , TaC, NbC, VC, HfC, ZrC, AlN, CrN, TaN, NbN, VN, HfN, and ZrN may be added. good. When TiC, TiCN, or TiN is used as the hard particles, it is preferable that Ni is more than Co because the bonding force between the hard particles and the metal binder is increased and the fracture resistance is increased. Examples of the balls used in the ball mill include balls made of alumina, silicon nitride, or cemented carbide and having a diameter of 3 mm. Examples of the dispersion medium include ethanol, acetone, and liquid nitrogen. The processing time is, for example, 3 to 20 hours. The slurry obtained by mixing is dried in, for example, N 2 to obtain a mixed powder.

得られた混合粉末を、Taカプセルに入れ、プレスによって焼結体を形成する。圧力は10MPa〜16GPa、温度は1000〜1800℃で焼結することが好ましい。これにより硬質粒子と金属間化合物の緻密な焼結体を形成できる。   The obtained mixed powder is put into a Ta capsule, and a sintered body is formed by pressing. It is preferable to sinter at a pressure of 10 MPa to 16 GPa and a temperature of 1000 to 1800 ° C. Thereby, a dense sintered body of hard particles and an intermetallic compound can be formed.

焼結後に、500〜1100℃で1〜24時間で時効化処理を行う。これにより、γ相(高靭性のCoおよびNiからなるマトリクス相)中に高温硬度の高い強化相((Co、Ni)(Al、W、V、Ti)の析出相)が形成され、高温硬度の高い焼結体を形成することができる。強化相単体では、粒界脆性を起こしやすい欠点を持っている。 After sintering, an aging treatment is performed at 500 to 1100 ° C. for 1 to 24 hours. Thereby, a strengthening phase (precipitation phase of (Co, Ni) 3 (Al, W, V, Ti)) having a high temperature hardness is formed in the γ phase (matrix phase composed of high toughness Co and Ni), and the high temperature A sintered body having high hardness can be formed. The reinforced phase alone has a defect that easily causes grain boundary brittleness.

しかしながら本発明により、例えばcBNと焼結した状態で時効処理することにより、粒界へのホウ素添加効果が表れ、従来工具と比べてcBNとの焼結体は特に粒界破壊が起こりにくいため、高温硬度と耐欠損性を両立させた焼結体を得ることができる。   However, according to the present invention, for example, by performing an aging treatment in a sintered state with cBN, an effect of adding boron to the grain boundary appears, and the sintered body with cBN is less susceptible to grain boundary fracture than conventional tools. A sintered body having both high-temperature hardness and fracture resistance can be obtained.

また、Al、AlON、SiAlONを硬質粒子として用いた場合は、硬質粒子と金属相との間に他の場所より高濃度Al領域が形成された(Co、Ni)(Al、W,V,Ti)の析出相が多数形成されるため、硬質粒子と金属相の結合力が増加し、耐欠損性の高い焼結体を得ることが出来る。 When Al 2 O 3 , AlON, or SiAlON is used as the hard particles, a high concentration Al region is formed between the hard particles and the metal phase from other locations (Co, Ni) 3 (Al, W , V, Ti), a large number of precipitated phases are formed, the bonding force between the hard particles and the metal phase is increased, and a sintered body with high fracture resistance can be obtained.

また、TiC、TiCN、TiNを硬質粒子として用いた場合は、硬質粒子と金属相との間に高濃度Ti領域が形成された(Co、Ni)(Al、W、V、Ti)の析出相が形成され、硬質粒子と金属相の結合力が増加し、耐欠損性の高い焼結体を得ることが出来る。 Further, when TiC, TiCN, or TiN is used as hard particles, precipitation of (Co, Ni) 3 (Al, W, V, Ti) in which a high concentration Ti region is formed between the hard particles and the metal phase A phase is formed, the bonding strength between the hard particles and the metal phase is increased, and a sintered body having high fracture resistance can be obtained.

また、WCを硬質粒子として用いた場合は、硬質粒子と金属相との間に他の場所より高濃度W領域が形成された(Co、Ni)(Al、W,V,Ti)の析出相が多数形成されるため、硬質粒子と金属相の結合力が増加し、耐欠損性の高い焼結体を得ることが出来る。 When WC is used as hard particles, precipitation of (Co, Ni) 3 (Al, W, V, Ti) in which a higher concentration W region is formed between the hard particles and the metal phase than other places. Since a large number of phases are formed, the bonding force between the hard particles and the metal phase is increased, and a sintered body with high fracture resistance can be obtained.

また、TiAlNを硬質粒子として用いた場合は、硬質粒子と金属相との間に他の場所より高いAl、Ti濃度を含有し、(Co,Ni)(Al,W,V,Ti)を形成されるため、硬質粒子と金属相の結合力が増加し、耐欠損性の高い焼結体を得ることが出来る。 Further, when TiAlN is used as hard particles, it contains higher Al and Ti concentrations than other places between the hard particles and the metal phase, and (Co, Ni) 3 (Al, W, V, Ti) is contained. As a result, the bonding force between the hard particles and the metal phase is increased, and a sintered body having high fracture resistance can be obtained.

また、AlCrNを硬質粒子として用いた場合は、硬質粒子と金属相との間に他の場所より高いAl、Cr濃度を含有し、(Co,Ni,Cr)(Al,W,V,Ti)を形成されるため、硬質粒子と金属相の結合力が増加し、耐欠損性の高い焼結体を得ることが出来る。 Further, when AlCrN is used as hard particles, it contains higher Al and Cr concentrations than other places between the hard particles and the metal phase, and (Co, Ni, Cr) 3 (Al, W, V, Ti ) Is increased, the bonding force between the hard particles and the metal phase is increased, and a sintered body having high fracture resistance can be obtained.

また、ダイヤモンドを硬質粒子として用いた場合は、硬質粒子と金属相との間において、C濃度が他の場所より高く、(CO,Ni)(Al,W,C)が形成されるため、硬質粒子と金属相の結合力が増加し、耐欠損性の高い焼結体を得ることが出来る。 When diamond is used as the hard particles, the C concentration is higher between the hard particles and the metal phase than other places, and (CO, Ni) 3 (Al, W, C) is formed. The bonding force between the hard particles and the metal phase is increased, and a sintered body having high fracture resistance can be obtained.

強化相の平均結晶粒径は30〜1000nmであることが好ましい。この範囲である場合、得られる焼結体の高温硬度がより高くなるからである。   The average crystal grain size of the reinforcing phase is preferably 30 to 1000 nm. This is because the high-temperature hardness of the obtained sintered body becomes higher in this range.

硬質粒子の平均粒径は0.1〜10μmであることが好ましく、焼結体中の硬質粒子の含有率は50〜99体積%であることが好ましい。このような粒径範囲と組成範囲である場合、得られる焼結体の硬度がより高くなるからである。なお、硬質粒子の平均粒径は、マイクロトラックなどの粒度分布測定機により測定することができる。   The average particle size of the hard particles is preferably 0.1 to 10 μm, and the content of the hard particles in the sintered body is preferably 50 to 99% by volume. This is because the hardness of the obtained sintered body is higher when the particle diameter is within such a range and composition range. The average particle size of the hard particles can be measured with a particle size distribution measuring machine such as Microtrac.

なお、本発明の焼結体は、不可避不純物としてB、N、O等を本発明の効果を損なわない範囲で含んでいてもよい。   In addition, the sintered compact of this invention may contain B, N, O, etc. as an inevitable impurity in the range which does not impair the effect of this invention.

以下に、本発明を実施例を用いて詳細に説明するが、これらの実施例は例示的なものであり、本発明の範囲はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, these examples are illustrative, and the scope of the present invention is not limited thereto.

[実施例1〜37]
(粉末の作製)
表1〜4の「金属間化合物組成(体積%)」欄に記載の割合となるようにCo、Ni、Al、W、VおよびTiを混合し、アトマイズ法により金属間化合物を作製した。これを粒径0.5mmのアルミナビーズを用い、ビーズミルによって粉砕した。得られたスラリーをN雰囲気中で乾燥させ、金属間化合物粉末を得た。
[Examples 1-37]
(Preparation of powder)
Co, Ni, Al, W, V, and Ti were mixed so as to have the ratio described in the “intermetallic compound composition (volume%)” column of Tables 1 to 4, and an intermetallic compound was prepared by an atomizing method. This was ground by a bead mill using alumina beads having a particle diameter of 0.5 mm. The obtained slurry was dried in an N 2 atmosphere to obtain an intermetallic compound powder.

次に、該金属間化合物粉末と表1〜3に記載の硬質粒子粉末とを超硬合金製の直径3mmのボールとエタノールと共にボールミルに投入し、5時間混合した。得られたスラリーをN雰囲気中で乾燥させ、混合粉末を得た。 Next, the intermetallic compound powder and the hard particle powders shown in Tables 1 to 3 were charged into a ball mill together with a 3 mm diameter ball made of cemented carbide and ethanol, and mixed for 5 hours. The obtained slurry was dried in an N 2 atmosphere to obtain a mixed powder.

(焼結体の作製)
次に、得られた混合粉末をタンタル製のカプセルに充填し、プレス機を用いて、表1〜4の「焼結条件」欄に記載の圧力および温度で焼結処理を行い、焼結体を作製した。
(Production of sintered body)
Next, the obtained mixed powder is filled into a tantalum capsule, and using a press machine, a sintering process is performed at the pressure and temperature described in the “sintering conditions” column of Tables 1 to 4 to obtain a sintered body. Was made.

(時効処理)
得られた焼結体をアルゴン雰囲気炉で表1〜4の「時効処理条件」欄に記載の温度と時間で時効処理を行い、強化相を析出させた。
(Aging treatment)
The obtained sintered body was subjected to an aging treatment at the temperature and time described in the “Aging treatment conditions” column of Tables 1 to 4 in an argon atmosphere furnace to precipitate a strengthening phase.

(焼結体の測定)
強化相の平均結晶粒径は、焼結体を研磨した後、SEMによる撮影像を基にして測定した。具体的には、SEM撮影像の測定範囲内にある結晶粒数Nを数え、測定範囲の全面積Aを結晶粒数Nで除して結晶粒1個あたりの面積Aを求めた。結晶粒の形状を円と仮定して,Aから半径を算出して、その値を平均結晶粒径dAVEとした。
(Measurement of sintered body)
The average crystal grain size of the reinforcing phase was measured on the basis of an image taken by SEM after polishing the sintered body. Specifically, it counted grain numbers N that are within the measuring range of the SEM photographic image to determine the area A g of the crystal grains per unit by dividing by the total area A M grain number N of the measurement range. Assuming circular grain shape, to calculate the radius from the A g, and the value as the average crystal grain size d AVE.

また、硬質粒子にcBN、Al、AlON、SiAlON、TiC、TiCN、TiNまたはWCを用いた試料については、常温における焼結体の硬度、および、800℃における焼結体の硬度(高温硬度)を、アルゴン雰囲気下で、ビッカース硬度計によって測定した。なお、硬質粒子にダイヤモンドを用いた試料については、硬度測定は不可能であった。また、硬質粒子にcBNを用いた試料については、XRD強度を測定することにより、時効処理後の際にcBNが低硬度の六方晶窒化ホウ素(hBN)に変換されていないことを確認した。 For samples using hard particles of cBN, Al 2 O 3 , AlON, SiAlON, TiC, TiCN, TiN or WC, the hardness of the sintered body at room temperature and the hardness of the sintered body at 800 ° C. (high temperature Hardness) was measured with a Vickers hardness tester under an argon atmosphere. In addition, hardness measurement was impossible for a sample using diamond as the hard particles. Moreover, about the sample which used cBN for the hard particle | grains, it was confirmed by measuring XRD intensity | strength that cBN was not converted into the hexagonal boron nitride (hBN) of low hardness after the aging treatment.

(切削工具の作製)
得られた焼結体を、ワイヤー放電加工により切断して仕上げ加工し、先端ノーズR0.8mmの切削工具を作製した。
(Manufacture of cutting tools)
The obtained sintered body was cut and finished by wire electric discharge machining to produce a cutting tool having a tip nose R of 0.8 mm.

比較例1〜4として、表2に示すようにCr、Mo、V、Zr濃度が高いcBN焼結体を作製し、XRD測定と切削工具の作製を行った。また、表2および3に示すように、比較例5として、80体積%のWC(炭化タングステン)および20体積%のCoからなる超硬合金を、比較例6として、80体積%のTiC(炭化チタン)および20体積%のNiからなるサーメットを用いて、上記と同様の切削工具を作製した。また、表4に示すように、比較例7〜8として、90体積%のダイヤモンドおよび10体積%のCoからなるダイヤモンド焼結体を用いて、上記と同様の切削工具を作製した。   As Comparative Examples 1 to 4, cBN sintered bodies having high Cr, Mo, V, and Zr concentrations were prepared as shown in Table 2, and XRD measurement and cutting tools were prepared. Further, as shown in Tables 2 and 3, as Comparative Example 5, a cemented carbide composed of 80% by volume of WC (tungsten carbide) and 20% by volume of Co was used, and as Comparative Example 6, 80% by volume of TiC (carbonized). A cutting tool similar to the above was prepared using a cermet made of titanium) and 20% by volume of Ni. Further, as shown in Table 4, as Comparative Examples 7 to 8, the same cutting tool as described above was produced using a diamond sintered body composed of 90% by volume of diamond and 10% by volume of Co.

(切削試験1)
得られた切削工具を用いて、実施例1〜28と比較例1〜5については以下の切削条件でインコネル(登録商標)718(商品名、インコネル社製)を被削材としてNC旋盤で切削試験を行い、0.7km切削後の各切削工具の逃げ面の摩耗量(μm)を測定した。
(Cutting test 1)
Using Examples 1 to 28 and Comparative Examples 1 to 5, the obtained cutting tool was cut with an NC lathe using Inconel (registered trademark) 718 (trade name, manufactured by Inconel) as a work material under the following cutting conditions. A test was performed, and the wear amount (μm) of the flank of each cutting tool after 0.7 km cutting was measured.

切削速度:200m/min.
切込み量:0.2mm
送り量:0.1mm/rev
切削油:あり
結果を表1および2に示す。
Cutting speed: 200 m / min.
Cutting depth: 0.2mm
Feed amount: 0.1mm / rev
Cutting oil: yes The results are shown in Tables 1 and 2.

Figure 0006330387
Figure 0006330387

Figure 0006330387
Figure 0006330387

(評価結果1)
実施例1〜28の焼結体および切削工具は、比較例1〜5の焼結体および切削工具よりも、耐熱合金に対する耐摩耗性が優れていた。
(Evaluation result 1)
The sintered bodies and cutting tools of Examples 1 to 28 were superior to the sintered bodies and cutting tools of Comparative Examples 1 to 5 in wear resistance against the heat-resistant alloy.

(切削試験2)
得られた切削工具を用いて、実施例29〜37と比較例6については以下の切削条件で焼入鋼SCM415を被削材としてNC旋盤で切削試験を行い、3.0km切削後の各切削工具の逃げ面の摩耗量(μm)を測定した。
(Cutting test 2)
Using the obtained cutting tools, Examples 29 to 37 and Comparative Example 6 were subjected to a cutting test with an NC lathe using the hardened steel SCM415 as a work material under the following cutting conditions, and each cutting after 3.0 km cutting The amount of wear (μm) on the flank of the tool was measured.

切削速度:100m/min.
切込み量:0.1mm
送り量:0.1mm/rev
切削油:あり
結果を表3に示す。
Cutting speed: 100 m / min.
Cutting depth: 0.1 mm
Feed amount: 0.1mm / rev
Cutting oil: yes The results are shown in Table 3.

Figure 0006330387
Figure 0006330387

(評価結果2)
実施例29〜37の焼結体および切削工具は、比較例6の焼結体および切削工具よりも、焼入鋼に対する耐摩耗性が優れていた。
(Evaluation result 2)
The sintered bodies and cutting tools of Examples 29 to 37 were superior to the sintered body and cutting tool of Comparative Example 6 in wear resistance against hardened steel.

(切削試験3)
得られた切削工具を用いて、実施例38〜47と比較例7〜8については以下の切削条件でアルミニウム合金A390(17%Si−Al合金)を被削材としてNC旋盤で切削試験を行い、5.0km切削後の各切削工具の逃げ面の摩耗量(μm)を測定した。
(Cutting test 3)
Using the obtained cutting tools, Examples 38 to 47 and Comparative Examples 7 to 8 were subjected to a cutting test on an NC lathe using the aluminum alloy A390 (17% Si-Al alloy) as a work material under the following cutting conditions. The amount of wear (μm) on the flank face of each cutting tool after 5.0 km cutting was measured.

切削速度:500m/min.
切込み量:0.5mm
送り量:0.12mm/rev
切削油:あり
結果を表4に示す。
Cutting speed: 500 m / min.
Cutting depth: 0.5mm
Feed amount: 0.12mm / rev
Cutting oil: yes The results are shown in Table 4.

Figure 0006330387
Figure 0006330387

(評価結果3)
実施例38〜47の焼結体および切削工具は、比較例7〜8の焼結体および切削工具よりも、アルミニウム合金に対する耐摩耗性が優れていた。
(Evaluation result 3)
The sintered bodies and cutting tools of Examples 38 to 47 were superior in wear resistance to the aluminum alloy than the sintered bodies and cutting tools of Comparative Examples 7 to 8.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明による焼結体は、切削工具に広く利用することができ、長距離にわたって、被削材の表面に平滑な切削表面を形成することができる。特に、高温での硬度の高い被削材、耐熱合金からなる被削材、鉄系材料を含む被削材を切削するための切削工具に好適に利用することができる。   The sintered body according to the present invention can be widely used for a cutting tool, and can form a smooth cutting surface on the surface of a work material over a long distance. In particular, it can be suitably used for a cutting tool for cutting a work material having high hardness at high temperatures, a work material made of a heat-resistant alloy, and a work material containing an iron-based material.

Claims (8)

立方晶窒化ホウ素、Al、AlON、SiAlON、TiC、TiCN、TiN、WCおよびダイヤモンドからなる群から選択される1種類以上よりなる硬質粒子と、(Co,Ni)(Al,W,V,Ti)で表される金属相とを含み、
前記金属相中において、Coの含有率が1〜50質量%であり、Wの含有率が3〜45質量%である、焼結体。
Hard particles made of one or more kinds selected from the group consisting of cubic boron nitride, Al 2 O 3 , AlON, SiAlON, TiC, TiCN, TiN, WC and diamond, and (Co, Ni) 3 (Al, W, V, and a metallic phase represented by Ti) seen including,
The sintered compact whose Co content rate is 1-50 mass% and whose W content rate is 3-45 mass% in the said metal phase .
前記硬質粒子と、前記(Co,Ni)(Al,W,V,Ti)の金属相との両者が、焼結体中に分散された状態で含まれる、請求項1に記載の焼結体。 The sintering according to claim 1, wherein both the hard particles and the metal phase of (Co, Ni) 3 (Al, W, V, Ti) are contained in a dispersed state in the sintered body. body. 前記金属相中において、iの含有率が0〜90質量%であり、Alの含有率が0.1〜15質量%であり、の含有量が0〜25質量%であり、Tiの含有率が0〜25質量%であり、Al、W、VおよびTiの合計量の比率が50質量%以下である、請求項1または請求項2に記載の焼結体。 In the metal phase, a content of N i is 0 to 90 wt%, the content of Al is 0.1 to 15 wt%, a is 0 to 25 wt% content and V, the Ti The sintered body according to claim 1 or 2, wherein the content is 0 to 25 mass%, and the ratio of the total amount of Al, W, V, and Ti is 50 mass% or less. 前記金属相が、CoおよびNiからなるマトリックス相であるγ相と、(Co,Ni)(Al,W,V,Ti)の析出相である強化相とを含む、請求項1〜請求項3のいずれか1項に記載の焼結体。 The said metal phase contains the gamma phase which is a matrix phase which consists of Co and Ni, and the reinforcement | strengthening phase which is a precipitation phase of (Co, Ni) 3 (Al, W, V, Ti). 4. The sintered body according to any one of 3 above. 前記強化相の平均結晶粒径が30〜1000nmである、請求項に記載の焼結体。 The sintered compact according to claim 4 whose average crystal grain size of said strengthening phase is 30-1000 nm. 前記硬質粒子の平均粒径が0.1〜10μmであり、焼結体中の前記硬質粒子の含有率が50〜99体積%である、請求項1〜請求項5のいずれか1項に記載の焼結体。   The average particle diameter of the said hard particle is 0.1-10 micrometers, The content rate of the said hard particle in a sintered compact is 50-99 volume%, Any one of Claims 1-5. Sintered body. 前記硬質粒子にcBNを含む場合に、前記金属相中のCr、Mo、VおよびZrのそれぞれの含有量は0.1質量%以下である、請求項1〜請求項6のいずれか1項に記載の焼結体。   The content of Cr, Mo, V, and Zr in the metal phase when the hard particles include cBN is 0.1% by mass or less, according to any one of claims 1 to 6. The sintered body described. Co、Ni、Al、W、VおよびTiを含む金属間化合物を合成する工程と、
前記金属間化合物を粉砕して、金属間化合物粉末を得る工程と、
前記金属間化合物粉末と前記硬質粒子の粉末とを混合して、混合粉末を得る工程と、
前記混合粉末を10MPa〜16GPa、1000〜1800℃の条件で焼結する工程と、
焼結後に500〜1800℃で時効処理を行う工程とを含む、
請求項1に記載の焼結体の製造方法。
Synthesizing an intermetallic compound containing Co, Ni, Al, W, V and Ti;
Crushing the intermetallic compound to obtain an intermetallic compound powder;
Mixing the intermetallic compound powder and the hard particle powder to obtain a mixed powder;
Sintering the mixed powder under conditions of 10 MPa to 16 GPa and 1000 to 1800 ° C .;
Aging treatment at 500-1800 ° C. after sintering,
The manufacturing method of the sintered compact of Claim 1.
JP2014050453A 2013-03-22 2014-03-13 Sintered body and manufacturing method thereof Active JP6330387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014050453A JP6330387B2 (en) 2013-03-22 2014-03-13 Sintered body and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013060066 2013-03-22
JP2013060066 2013-03-22
JP2014050453A JP6330387B2 (en) 2013-03-22 2014-03-13 Sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014208889A JP2014208889A (en) 2014-11-06
JP6330387B2 true JP6330387B2 (en) 2018-05-30

Family

ID=51903274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050453A Active JP6330387B2 (en) 2013-03-22 2014-03-13 Sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6330387B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190076920A1 (en) * 2015-10-30 2019-03-14 Sumitomo Electric Industries, Ltd. Sintered material and method of manufacturing the same
CN105834417B (en) * 2015-11-27 2018-04-13 唐明强 A kind of preparation method of the ultra-fine high-flexural strength alloy powder of diamond tool
US10287824B2 (en) 2016-03-04 2019-05-14 Baker Hughes Incorporated Methods of forming polycrystalline diamond
WO2017199752A1 (en) * 2016-05-16 2017-11-23 株式会社タンガロイ Tool
JP6378717B2 (en) * 2016-05-19 2018-08-22 株式会社日本製鋼所 Iron-based sintered alloy and method for producing the same
CN105922295B (en) * 2016-06-01 2017-10-31 山东大学 The vertical orientated high-strength wearable cutter of primary hardening constituent fiber
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
CN108218437B (en) * 2018-01-18 2020-04-28 北京中材人工晶体研究院有限公司 Layered aluminum oxynitride ceramic composite material and preparation method thereof
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
WO2020090280A1 (en) 2018-11-01 2020-05-07 住友電気工業株式会社 Cemented carbide alloy, cutting tool, and method for manufacturing cemented carbide alloy
CN111549269A (en) * 2020-05-19 2020-08-18 马鞍山市恒泰重工机械有限公司 Coating for improving hardness of surface of metallurgical roller and production process thereof
WO2024181015A1 (en) * 2023-03-02 2024-09-06 京セラ株式会社 Cemented carbide, coated tool, and cutting tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618068B2 (en) * 1973-04-11 1981-04-25
JPS5441978B2 (en) * 1973-06-29 1979-12-11
US5271758A (en) * 1990-10-10 1993-12-21 Valenite Inc. Alumina ceramic-metal articles
JP2852407B2 (en) * 1993-07-15 1999-02-03 工業技術院長 High-strength diamond-metal composite sintered body and its manufacturing method
JP2852406B2 (en) * 1993-07-15 1999-02-03 工業技術院長 High strength high pressure type boron nitride / metal composite sintered body and method for producing the same
EP1874972A4 (en) * 2005-04-01 2010-03-24 Univ Southern Illinois Intermetallic bonded diamond composite composition and methods of forming articles from same

Also Published As

Publication number Publication date
JP2014208889A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6330387B2 (en) Sintered body and manufacturing method thereof
JPWO2017073712A1 (en) Sintered body and manufacturing method thereof
JP5732663B2 (en) Cubic boron nitride sintered tool
JP6439975B2 (en) Cermet manufacturing method
CN105283570B (en) Cermet and cutting tool
JP2010234519A (en) Cermet and coated cermet
JP6064549B2 (en) Sintered body and method of manufacturing the sintered body
JP7392714B2 (en) Cemented carbide and cutting tools containing it as a base material
EP3109220A1 (en) Sintered body and cutting tool
WO2018074275A1 (en) Composite sintered material
JP6908713B2 (en) Composite sintered body
JP7517483B2 (en) Cemented carbide and cutting tools containing it as a substrate
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2006144089A (en) Hard metal made of superfine particle
JP6775694B2 (en) Composite sintered body
JP5008789B2 (en) Super hard sintered body
JPS5941445A (en) Cubic boron nitride base high pressure sintered material for cutting tool
WO2018088174A1 (en) Composite sintered body
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP5799969B2 (en) Ceramic crystal particles, ceramic sintered body, and method for producing them
JP7161677B2 (en) WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance
JP2009226512A (en) Tungsten carbide based sintered body
JP7087596B2 (en) Cutting tools
JPS6372843A (en) Manufacture of sintered compact containing high density phase boron nitride for cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250