[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6320117B2 - Heat source equipment - Google Patents

Heat source equipment Download PDF

Info

Publication number
JP6320117B2
JP6320117B2 JP2014070187A JP2014070187A JP6320117B2 JP 6320117 B2 JP6320117 B2 JP 6320117B2 JP 2014070187 A JP2014070187 A JP 2014070187A JP 2014070187 A JP2014070187 A JP 2014070187A JP 6320117 B2 JP6320117 B2 JP 6320117B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
passage
temperature
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014070187A
Other languages
Japanese (ja)
Other versions
JP2015190736A (en
Inventor
翼 内山
翼 内山
佐藤 徹哉
徹哉 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2014070187A priority Critical patent/JP6320117B2/en
Publication of JP2015190736A publication Critical patent/JP2015190736A/en
Application granted granted Critical
Publication of JP6320117B2 publication Critical patent/JP6320117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、主熱源からの湯を補助熱源装置に通して給湯する機能を備えた熱源装置に関するものである。   The present invention relates to a heat source device having a function of supplying hot water from a main heat source through an auxiliary heat source device.

図2には、開発中の熱源装置が模式的なシステム構成図により示されている。同図において、主熱源である貯湯槽2と湯の通路9とを備えたタンクユニット4が、熱回収用通路3を介して燃料電池(FC)1と熱的に接続されている。燃料電池1は、例えば固体高分子型燃料電池(PEFC)等により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。   FIG. 2 shows a schematic system configuration diagram of a heat source device under development. In the figure, a tank unit 4 having a hot water storage tank 2 and a hot water passage 9 which are main heat sources is thermally connected to a fuel cell (FC) 1 via a heat recovery passage 3. The fuel cell 1 is formed of, for example, a polymer electrolyte fuel cell (PEFC) or the like, and reacts hydrogen extracted from fuel such as city gas with oxygen in the air by reverse reaction of water electrolysis. It is a power generation device that generates electricity.

熱回収用通路3は、燃料電池1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる通路であり、熱回収用通路3には、熱回収用通路3内に液体を循環させる図示されていないポンプが設けられている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して燃料電池1に導入して冷却水とし、この水を燃料電池1の発電時に生じる廃熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば60℃といった温度の湯として貯湯槽2に蓄積する。なお、熱回収用通路3には、三方弁6を介してバイパス通路7が設けられ、燃料電池1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに燃料電池1に戻すことができるように形成されている。   The heat recovery passage 3 is a passage that circulates liquid (here, hot water) between the fuel cell 1 and the hot water tank 2 as indicated by arrows A and A ′ in the figure. Is provided with a pump (not shown) for circulating the liquid in the heat recovery passage 3. Then, by driving the pump, the water in the hot water tank 2 is introduced into the fuel cell 1 through the heat recovery passage 3 as shown by an arrow A ′ in the figure to be cooling water, and this water is used when the fuel cell 1 generates power. After being heated by the generated waste heat, it passes through the heat recovery passage 3 as indicated by an arrow A in the figure, and accumulates in the hot water tank 2 as hot water having a temperature of 60 ° C., for example. The heat recovery passage 3 is provided with a bypass passage 7 through a three-way valve 6 so that the liquid flowing from the fuel cell 1 side to the hot water tank 2 side can be passed through the fuel cell without passing through the hot water tank 2 as necessary. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯の温度を検出する貯湯槽内湯水温検出手段5が、貯湯槽2の上下方向に互いに間隔を介して複数(図2では5個)設けられている。なお、最上位に設けられている貯湯槽内湯水温検出手段5aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。   In the hot water tank 2, hot water temperature detecting means 5 in the hot water tank 2 for detecting the temperature of the hot water in the hot water tank 2 is provided in the hot water tank 2 or on the outer wall of the hot water tank 2 with a space therebetween in the vertical direction of the hot water tank 2. A plurality (five in FIG. 2) are provided. The hot water temperature detection means 5a in the hot water tank provided at the top is filled with hot water up to a position lower than the upper end of the hot water tank 2 by a predetermined set length, that is, for example, to the upper end of the hot water tank 2. The amount of hot water 20 liters less than that of the hot water is provided at the position of the hot water surface when the hot water tank 2 is introduced.

貯湯槽2の上部側に接続されている湯の通路9は、貯湯槽2で形成された湯を出湯する(送水する)出湯通路と成しており、湯の通路9には、湯の通路9を通る湯の温度を検出する貯湯槽出湯水温検出手段11と、湯の通路9を通して送水される湯の量を可変するタンク湯水混合器12と、湯の通路9を通しての湯の送水の有無を弁の開閉により切り替える貯湯槽出側湯水電磁弁としてのパイロット方式のタンク側電磁弁13とが設けられている。なお、同図には示されていないが、貯湯槽2を備えた熱源装置には、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁が適宜の位置(例えば湯の通路9に接続された圧力逃がし用の通路等)に設けられている。   The hot water passage 9 connected to the upper side of the hot water storage tank 2 is formed as a hot water outlet passage for supplying (watering) hot water formed in the hot water storage tank 2, and the hot water passage 9 includes a hot water passage 9. The hot water tank outlet hot water temperature detecting means 11 for detecting the temperature of hot water passing through the water 9, the tank hot water / water mixer 12 for changing the amount of hot water fed through the hot water passage 9, and the presence / absence of hot water delivery through the hot water passage 9 A pilot-type tank-side electromagnetic valve 13 is provided as a hot-water tank outlet-side hot water electromagnetic valve that is switched by opening and closing the valve. Although not shown in the figure, the heat source device having the hot water tank 2 has an overpressure relief valve for releasing the pressure to the outside when the pressure in the hot water tank 2 exceeds the allowable pressure. It is provided at an appropriate position (for example, a pressure relief passage connected to the hot water passage 9).

また、この熱源装置への給水通路8は給水通路8aと給水通路8bとに分岐され、一方側の給水通路8(8a)が貯湯槽2の下部側に接続されて、他方側の給水通路8(8b)は、合流部10で湯の通路9に合流するように形成されている。給水通路8bには、給水通路8bから合流部10側へ流れる水の量を可変するための水混合器14が設けられている。この熱源装置においては、前記合流部10で合流される湯と水とを混合するミキシング手段が、水混合器14と前記タンク湯水混合器12とを有して形成されており、図2はシステム構成図であるために水混合器14とタンク湯水混合器12とが離れた位置に記されているが、これらは、合流部10の付近に設けられていてもよいものである。   Further, the water supply passage 8 to the heat source device is branched into a water supply passage 8a and a water supply passage 8b, one water supply passage 8 (8a) is connected to the lower side of the hot water tank 2, and the other water supply passage 8 is connected. (8b) is formed so as to join the hot water passage 9 at the joining portion 10. The water supply passage 8b is provided with a water mixer 14 for changing the amount of water flowing from the water supply passage 8b to the merging portion 10 side. In this heat source device, the mixing means for mixing the hot water and water merged at the merge section 10 is formed with a water mixer 14 and the tank hot water mixer 12, and FIG. Since it is a block diagram, the water mixer 14 and the tank hot water mixer 12 are shown at positions separated from each other, but these may be provided in the vicinity of the junction 10.

なお、図2において、前記燃料電池1から貯湯槽2側に送られる湯の流路と貯湯槽2から湯の通路9を通して合流部10側に流れる湯の流路にはドットを記している。また、合流部10には、補助熱源装置としての給湯器16の湯水導入側が、湯水導入通路15を介して接続されており、湯水導入通路15には混合サーミスタ28(28a,28b)が設けられている。そして、図2の矢印Bに示されるように貯湯槽2から湯の通路9を通して送水される(タンクユニット4から送水される)湯は、同図の矢印B”に示されるように湯水導入通路15を介して給湯器16の給湯回路62に導入される。   In FIG. 2, dots are marked on the flow path of hot water sent from the fuel cell 1 to the hot water storage tank 2 side and the flow path of hot water flowing from the hot water storage tank 2 to the junction 10 side through the hot water passage 9. Further, a hot water introduction side of a water heater 16 as an auxiliary heat source device is connected to the junction 10 via a hot water introduction passage 15, and a mixed thermistor 28 (28 a, 28 b) is provided in the hot water introduction passage 15. ing. Then, the hot water fed from the hot water tank 2 through the hot water passage 9 as shown by the arrow B in FIG. 2 (water fed from the tank unit 4) is passed through the hot water introduction passage as shown by the arrow B ″ in FIG. 15 is introduced into the hot water supply circuit 62 of the hot water heater 16.

給湯器16の給湯回路62は、通水する水を例えばガスバーナの給湯バーナ61の燃焼熱により加熱する加熱手段としての給湯熱交換器17を備えており、給湯回路62の入口側には流量検出手段42が設けられ、給湯熱交換器17の出側の通路には、給湯熱交換器17の出側の温度(出側の通路を通る湯温)を検出する給湯熱交出側温度検出手段67が設けられている。給湯回路62の出側の通路18は接続手段20を介して給湯通路19に接続されており、流量検出手段62は、通路18と給湯通路19を通して給湯される給湯流量を検出する。   The hot water supply circuit 62 of the hot water heater 16 includes a hot water supply heat exchanger 17 as a heating means for heating the water to be passed by, for example, the combustion heat of the hot water supply burner 61 of the gas burner. Means 42 is provided, and the hot water supply heat exchanger side temperature detecting means for detecting the outlet temperature of the hot water heat exchanger 17 (hot water temperature passing through the outlet passage) is provided in the outlet passage of the hot water heat exchanger 17. 67 is provided. The outlet passage 18 of the hot water supply circuit 62 is connected to the hot water supply passage 19 through the connection means 20, and the flow rate detection means 62 detects the flow rate of hot water supplied through the passage 18 and the hot water supply passage 19.

また、給湯回路62には、給湯回路62に導入される湯水を給湯熱交換器17に通さずに通路18側に導出するためのバイパス通路68が設けられ、バイパス通路68にはバイパス電磁弁(バイパス弁)69が設けられている。このバイパス電磁弁69の開閉によって、バイパス通路68側を通る湯水と給湯熱交換器17側を通る湯水との割合が可変されるものであり、例えばバイパス電磁弁69を完全に閉じると給湯回路62に導入された湯水を100%給湯熱交換器17側に通すことができる。一方、イパス電磁弁69を完全に開いた場合には、例えば給湯回路62に導入された湯水を給湯熱交換器17側とバイパス通路68側との比が1:3になるような割合で通すように形成されている。 Further, the hot water supply circuit 62 is provided with a bypass passage 68 for leading hot water introduced into the hot water supply circuit 62 to the passage 18 side without passing through the hot water supply heat exchanger 17, and the bypass passage 68 has a bypass solenoid valve ( Bypass valve) 69 is provided. By opening / closing the bypass electromagnetic valve 69, the ratio of hot water passing through the bypass passage 68 and hot water passing through the hot water heat exchanger 17 is varied. For example, when the bypass electromagnetic valve 69 is completely closed, the hot water supply circuit 62 is changed. The hot water introduced in can be passed through the 100% hot water supply heat exchanger 17 side. On the other hand, if the fully open bypass solenoid valve 69, for example, the hot water introduced into the hot water supply circuit 62 is the ratio of the hot water supply heat exchanger 17 side and the bypass passage 68 side 1: in proportions such that 3 It is formed to pass through.

この熱源装置は、湯の通路9側から給湯器16の給湯回路62に導入される湯を給湯熱交換器17で加熱して給湯する追い加熱給湯機能と、湯の通路9から給湯回路62に導入される湯を非加熱のまま給湯回路62を通して給湯先に給湯する非追い加熱給湯機能とを有している。給湯器16は、例えば追い加熱給湯機能の動作時にはバイパス電磁弁69を閉じて給湯回路62に導入された湯を給湯熱交換器17側に通して加熱し、非追い加熱給湯機能の動作時にはバイパス電磁弁69を開き、給湯回路62に導入された湯を主にバイパス通路68に通して給湯する。 This heat source device has a follow-up hot water supply function in which hot water introduced from the hot water passage 9 side to the hot water supply circuit 62 of the hot water heater 16 is heated by the hot water supply heat exchanger 17 and supplied from the hot water passage 9 to the hot water supply circuit 62. It has a non-following heating hot water supply function of supplying hot water to the hot water supply destination through the hot water supply circuit 62 without heating the introduced hot water. For example, the hot water heater 16 closes the bypass solenoid valve 69 during operation of the additional heating hot water supply function and heats hot water introduced into the hot water supply circuit 62 through the hot water supply heat exchanger 17 side, and bypasses during operation of the non-following hot water supply function. The solenoid valve 69 is opened, and hot water introduced into the hot water supply circuit 62 is mainly supplied through the bypass passage 68 to supply hot water.

また、給湯器16には、給湯器16に接続される暖房装置(ここでは温水マット)31に熱媒体を供給するための暖房回路30と、暖房回路30に設けられた暖房用熱交換器63を加熱するバーナであるガスバーナの暖房用バーナ64と、暖房用バーナ64の給排気用のファン65とが設けられている。暖房用熱交換器63と給湯熱交換器17、暖房用バーナ64、給湯バーナ61は、いずれも給湯器16の器具ケース内(同図では燃焼室66内)に配置されており、ファン65は給湯バーナ61の給排気用としても機能する。なお、給湯バーナ61の給排気用のファンと暖房用バーナ64の給排気用のファンとを別々に設けることもできる。このように別々のファンを設けた場合には、給湯バーナ61と暖房用バーナ64のいずれかの燃焼運転時に両方のファンを駆動させて、一方が燃焼している時の燃焼排ガスが他方の燃焼室とファンを経由して逆流する、排気再循環を防止している。   The water heater 16 includes a heating circuit 30 for supplying a heat medium to a heating device (here, a hot water mat) 31 connected to the water heater 16, and a heating heat exchanger 63 provided in the heating circuit 30. A heating burner 64 for a gas burner, which is a burner for heating the gas, and a fan 65 for supplying / exhausting the heating burner 64 are provided. The heating heat exchanger 63, the hot water supply heat exchanger 17, the heating burner 64, and the hot water supply burner 61 are all arranged in the appliance case of the hot water heater 16 (inside the combustion chamber 66 in the figure), and the fan 65 is It also functions for supplying and exhausting the hot water supply burner 61. In addition, the fan for supply / exhaust of the hot water supply burner 61 and the fan for supply / exhaust of the heating burner 64 can be provided separately. When separate fans are provided in this way, both the fans are driven during the combustion operation of either the hot water supply burner 61 or the heating burner 64, and the combustion exhaust gas when one of them is burning is burned by the other It prevents exhaust gas recirculation that flows back through the chamber and fan.

前記追い加熱給湯機能により加熱されながら給湯回路62を通った湯も、前記非追い加熱給湯機能により非加熱のまま給湯回路62を通った湯も、通路18と給湯通路19とを順に通って一つ以上の給湯先に給湯される。なお、同図には図示されていないが、給湯通路19の先端側には給湯栓が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯が給水圧を受けて湯の通路9を通り、前記の如く、必要に応じて給水通路8bからの水と混合されたり、給湯器16により追い加熱されたり、あるいは水の混合や追い加熱なしにそのまま給湯される。   Hot water that has passed through the hot water supply circuit 62 while being heated by the follow-up hot water supply function and hot water that has passed through the hot water supply circuit 62 while being unheated by the non-follow-up hot water supply function are passed through the passage 18 and the hot water supply passage 19 in order. Hot water is supplied to more than one hot water supply destination. Although not shown in the figure, a hot water tap is provided at the distal end side of the hot water passage 19, and the hot water stored in the hot water storage tank 2 receives the hot water pressure by opening the hot water tap. As described above, the hot water passes through the hot water passage 9 and is mixed with water from the water supply passage 8b as necessary, or is heated by the hot water heater 16, or the hot water is supplied without being mixed or heated.

また、図2の図中、符号25は入水温度サーミスタ、符号26は燃料電池1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号27は貯湯槽2から燃料電池1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号29は給水流量センサ、符号50は減圧弁、をそれぞれ示している。   In FIG. 2, reference numeral 25 denotes an incoming water temperature thermistor, reference numeral 26 denotes an FC high temperature thermistor for detecting hot water temperature introduced from the fuel cell 1 to the hot water tank 2, and reference numeral 27 denotes the hot water tank 2 to the fuel cell 1 side. The FC low temperature thermistors for detecting the hot and cold water temperatures are respectively shown. Reference numeral 29 denotes a feed water flow sensor, and reference numeral 50 denotes a pressure reducing valve.

図3には、図2に示したシステム構成における配管および構成要素の一部を省略または破線で示したシステム構成図が示されており、図3に示されるように、前記通路18には接続手段20を介して接続通路21の一端側が接続され、接続通路21の他端側は、熱回収用通路3において湯水を燃料電池1側から貯湯槽2側に通す通路の途中部に接続されている。また、熱回収用通路3において湯水を貯湯槽2側から燃料電池1側に通す通路の途中部と前記湯の通路9の先端側とを接続する接続通路22が設けられ、接続通路22には、湯水を循環させる循環ポンプ23と、水電磁弁24とが設けられている。   FIG. 3 shows a system configuration diagram in which some of the piping and components in the system configuration shown in FIG. 2 are omitted or shown by broken lines. As shown in FIG. One end side of the connection passage 21 is connected via the means 20, and the other end side of the connection passage 21 is connected to a middle portion of the passage through which the hot water passes from the fuel cell 1 side to the hot water tank 2 side in the heat recovery passage 3. Yes. In addition, a connection passage 22 is provided in the heat recovery passage 3 to connect a middle portion of a passage for passing hot water from the hot water storage tank 2 side to the fuel cell 1 side and a front end side of the hot water passage 9. A circulating pump 23 for circulating hot water and a water electromagnetic valve 24 are provided.

そして、通路18、接続通路21、熱回収用通路3のうちの通路3a、3b(接続通路21との接続部および接続通路22との接続部よりも貯湯槽2側の領域の一部)と、バイパス通路7、接続通路22、湯水導入通路15を有して、同図の矢印Cに示されるように湯水を循環させる湯水循環通路40が形成されている。水電磁弁24は、循環ポンプ23の駆動による湯水循環通路40への水の循環の有無を弁の開閉により切り替える電磁弁であり、水電磁弁24を開いた状態で循環ポンプ23を駆動させて湯水循環通路40を循環する湯水を、給湯器16が給湯熱交換器17により加熱する循環湯水加熱機能を有している。この循環湯水加熱機能の動作も、給湯器16の前記構成要素を制御することにより行われる。   Of the passage 18, the connection passage 21, and the heat recovery passage 3, the passages 3 a and 3 b (part of the region closer to the hot water tank 2 than the connection portion to the connection passage 21 and the connection portion to the connection passage 22) Further, a hot water circulation passage 40 that has the bypass passage 7, the connection passage 22, and the hot water introduction passage 15 and circulates the hot water as shown by an arrow C in the figure is formed. The water electromagnetic valve 24 is an electromagnetic valve that switches the presence or absence of water circulation to the hot water circulation passage 40 by driving the circulation pump 23 by opening and closing the valve. The water electromagnetic valve 24 is opened to drive the circulation pump 23. The hot water supply device 16 has a circulating hot water heating function in which the hot water supply device 16 heats the hot water circulating through the hot water circulation passage 40 by the hot water supply heat exchanger 17. The operation of the circulating hot water heating function is also performed by controlling the components of the water heater 16.

なお、図3において、加熱により温められた湯水が主に通る通路部分にはドットを記しており、湯水循環通路40においては温められた湯の温度が湯水循環通路40内を通るときに徐々に冷めていくが、湯水循環通路40のうち給湯器16の湯水導出側の通路18からバイパス通路7の入口までの領域にドットを記している。また、図3においては、貯湯槽2側から出湯される湯の通路9(合流部10に至る通路)にもドットを記している。   In FIG. 3, dots are marked in a passage portion through which hot water heated by heating mainly passes, and gradually in the hot water circulation passage 40, the temperature of the heated hot water gradually passes through the hot water circulation passage 40. Although it cools, dots are marked in the hot water circulation passage 40 in the region from the hot water outlet side passage 18 of the water heater 16 to the inlet of the bypass passage 7. In FIG. 3, dots are also marked on the hot water passage 9 (passage leading to the junction 10) discharged from the hot water tank 2 side.

また、図2、図3に示す熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器12を制御して湯の通路9から合流部10側に流れる湯の流量を制御すると共に、水混合器14を制御して給水通路8bから合流部10側に流れる水の流量を制御し、合流部10で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。   The heat source device shown in FIGS. 2 and 3 is provided with a control device (not shown). The control device controls the tank hot / cold water mixer 12 from the hot water passage 9 to the junction 10 side. In addition to controlling the flow rate of flowing hot water, the water mixer 14 is controlled to control the flow rate of water flowing from the water supply passage 8b to the merging portion 10 so that mixed hot water having an appropriate temperature is formed at the merging portion 10. Mixing flow rate control means is provided.

このミキシング流量制御手段は、給湯停止時には例えばタンク側電磁弁13を閉じて湯の通路9から合流部10側に流れる湯(貯湯槽2から出湯される湯)の流量がゼロとなる状態にする。そして、給湯通路19の先端側に設けられている給湯栓が開かれると水の流れが給水流量センサ29により検出されるので、ミキシング流量制御手段は、その検出信号を受けてタンク側電磁弁13を開け、タンク湯水混合器12の制御により、図2の矢印Bに示されるように湯の通路9から合流部10側に流れる湯の流量を調節すると共に、水混合器14の制御により、図2の矢印B’に示されるように給水通路8bから合流部10側に流れる水の流量を調節し、合流部10で形成される混合湯水の温度が例えば給湯設定温度と同じ温度の混合設定温度になるようにする。   This mixing flow rate control means closes the tank side solenoid valve 13 when hot water supply is stopped, for example, so that the flow rate of hot water (hot water discharged from the hot water storage tank 2) flowing from the hot water passage 9 to the junction 10 side becomes zero. . Then, when the hot water tap provided at the front end side of the hot water supply passage 19 is opened, the flow of water is detected by the water supply flow rate sensor 29, so that the mixing flow rate control means receives the detection signal and receives the detection signal. 2, the flow rate of hot water flowing from the hot water passage 9 to the junction 10 side is adjusted by the control of the tank hot water mixer 12 as shown by the arrow B in FIG. 2, the flow rate of the water flowing from the water supply passage 8b to the merging portion 10 side is adjusted, and the mixed hot water temperature formed at the merging portion 10 is the same as the hot water set temperature, for example. To be.

なお、貯湯槽2内に貯湯されている湯水には、例えば図5の模式図に示されるような温度の層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには燃料電池1の発電時に生じる廃熱によって加熱された高温Ta(例えば60℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。したがって、層Waの湯が無くなると湯の代わりに冷たい水が湯の通路9から送水されることがあるが、説明の都合上、特に断らない限り、湯の通路9からは湯が出湯されて前記合流部10に合流されるという表現を用いる。   Note that the hot water stored in the hot water tank 2 is formed with layers Wa, Wb, and Wc having temperatures as shown in the schematic diagram of FIG. (High temperature layer) Wa stores hot water of high temperature Ta (for example, 60 ° C.) heated by waste heat generated during power generation of the fuel cell 1, and a lower layer (low temperature layer) Wc of the hot water tank 2 stores a hot water tank. Water having the same temperature Tc (for example, 15 ° C.) as the temperature of the water supplied in 2 is stored, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from temperature Ta to temperature Tc. . Therefore, when there is no hot water in the layer Wa, cold water may be sent from the hot water passage 9 instead of hot water. However, for convenience of explanation, hot water is discharged from the hot water passage 9 unless otherwise specified. The expression “merge to the junction 10” is used.

例えば図5に示されるように、貯湯槽2内の湯水において、例えば層Waと層Wbとの境界が貯湯槽内湯水温検出手段5aの配設領域よりも下にあり、貯湯槽内湯水温検出手段5aの検出温度が給湯設定温度より例えば5℃高く設定される閾値より高い温度のときには、貯湯槽2から出湯される湯の温度は例えば60℃といったほぼ一定の値である。   For example, as shown in FIG. 5, in the hot water in the hot water tank 2, for example, the boundary between the layer Wa and the layer Wb is below the area where the hot water temperature detecting means 5a in the hot water tank is provided, and the hot water temperature detecting means in the hot water tank When the detected temperature 5a is higher than a threshold value set higher than the hot water supply set temperature by 5 ° C., for example, the temperature of the hot water discharged from the hot water tank 2 is a substantially constant value such as 60 ° C., for example.

そこで、前記ミキシング流量制御手段は、混合サーミスタ28(28a,28b)の検出温度と混合設定温度との差に基づいて(偏差に応じ)、混合サーミスタ28(28a,28b)の検出温度が混合設定温度になるようにタンク湯水混合器12と水混合器14を制御することによって、湯の通路9から合流部10側に流れる湯の流量と給水通路8bから合流部10側に流れる水の流量とを調節する制御を行う。なお、ミキシング流量制御手段は、ミキシング流量制御に際し、フィードフォワード制御を行わずにフィードバック制御のみを行うようにしてもよい。   Therefore, the mixing flow rate control means sets the detected temperature of the mixed thermistor 28 (28a, 28b) based on the difference between the detected temperature of the mixed thermistor 28 (28a, 28b) and the set mixing temperature (according to the deviation). By controlling the tank hot water mixer 12 and the water mixer 14 so as to reach a temperature, the flow rate of hot water flowing from the hot water passage 9 to the merge portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merge portion 10 side Control to adjust. Note that the mixing flow rate control means may perform only the feedback control without performing the feedforward control in the mixing flow rate control.

そして、このようなキシング流量制御手段による制御によって、合流部10で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度またはその近傍温度)とされると、その混合湯水は、図2の矢印B”に示されるように、合流部10から湯水導入通路15を通して給湯器16に導入されるが、このとき、給湯器16において給湯熱交換器17による加熱は行われずに(前記非加熱給湯機能の動作によって)、通路18と給湯通路19を通して給湯先に給湯される。   When the temperature of the mixed hot water formed in the merging portion 10 is set to the mixed set temperature (for example, the same temperature as the hot water supply set temperature or a temperature close thereto) by the control by the kissing flow rate control means, the mixed hot water is As shown by an arrow B ″ in FIG. 2, the hot water is introduced into the hot water heater 16 from the junction 10 through the hot water introduction passage 15. At this time, the hot water heater 16 is not heated by the hot water heat exchanger 17 ( Hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19 by the operation of the non-heating hot water supply function.

一方、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下であり、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができない場合には、例えば混合設定温度を給湯設定温度より低い温度に設定する。例えば混合設定温度を、給湯設定温度から給湯器16のMIN号数(最小燃焼号数)で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで下げ、その混合湯水が給湯器16の前記追い加熱給湯機能の動作によって給湯熱交換器17により加熱されて給湯設定温度の湯が作り出され、この湯が通路18と給湯通路19を通して給湯先に給湯される。   On the other hand, the detected temperature of the hot water temperature detecting means 5a in the hot water tank is below the threshold value, and hot water having a mixed set temperature set to a temperature equivalent to the hot water set temperature can be supplied only by the flow rate control by the mixing flow rate control means. If it is not possible, for example, the mixing set temperature is set to a temperature lower than the hot water supply set temperature. For example, the mixing set temperature is lowered to a value obtained by subtracting the temperature that rises when water at the hot water supply flow rate is heated at the MIN number (minimum combustion number) of the hot water heater 16 from the hot water supply set temperature, and the mixed hot water becomes the water heater. 16 is heated by the hot water supply heat exchanger 17 by the operation of the additional heating hot water supply function 16 to produce hot water having a hot water supply set temperature, and this hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19.

なお、従来の貯湯槽2を備えた熱源装置(例えば特許文献1、参照)においては、タンクユニット4と給湯器16とが隣接配置されたタイプ(一体型)の熱源装置が用いられていたが、開発中の熱源装置は、タンクユニット4と給湯器16と燃料電池1とをそれぞれ個別に配置し、互いに配管により接続する個別配置型の熱源装置も可能とするものである。このようにすると、例えば複数種あるタンクユニット4のうち、利用者が必要な容量の貯湯槽2を備えたタンクユニット4を選択し、そのタンクユニット4と、複数種ある給湯器16のうち選択された給湯器16と、複数種ある燃料電池1のうち選択された燃料電池1とを組み合わせるといったことができ、バリエーションを増やすことができる。   In addition, in the heat source apparatus (for example, refer patent document 1) provided with the conventional hot water storage tank 2, the type (integrated type) heat source apparatus with which the tank unit 4 and the water heater 16 were adjacently used was used. The heat source device under development also enables an individually arranged heat source device in which the tank unit 4, the water heater 16, and the fuel cell 1 are individually arranged and connected to each other by piping. If it does in this way, the tank unit 4 provided with the hot water storage tank 2 of the capacity | capacitance which a user requires among several types of tank units 4 will be selected, for example, and it will select among the tank units 4 and multiple types of water heaters 16 The water heater 16 thus made and the fuel cell 1 selected from the plural types of fuel cells 1 can be combined, and variations can be increased.

また、前記のような個別配置型の熱源装置は、既設の給湯器16にタンクユニット4等を接続して熱源装置を形成することもできるといったメリットもある。この場合、例えば給湯器16は建物の北側に配置されてタンクユニット4は建物の東側や西側に配置されるといったように、タンクユニット4と給湯器16とが離れて配置されることも想定されるが、そのような場合には、冬場等に、湯水導入通路15および接続通路21内の水が、給湯停止中に凍結することを防止するため等に、水電磁弁24を開いて循環ポンプ23を駆動させ、図3の矢印Cに示したように、湯水循環通路40に湯水を循環させながら給湯熱交換器17により加熱する前記循環湯水加熱機能の動作が適宜行われるような構成が必要になると考えられる。   Further, the individual arrangement type heat source device as described above has an advantage that the heat source device can be formed by connecting the tank unit 4 or the like to the existing water heater 16. In this case, it is assumed that the tank unit 4 and the water heater 16 are arranged apart from each other, for example, the water heater 16 is arranged on the north side of the building and the tank unit 4 is arranged on the east side or the west side of the building. However, in such a case, the water solenoid valve 24 is opened to prevent the water in the hot water introduction passage 15 and the connection passage 21 from freezing during the hot water supply stop in winter and the like. As shown by an arrow C in FIG. 3, a configuration is required in which the operation of the circulating hot water heating function of heating by the hot water supply heat exchanger 17 while circulating hot water in the hot water circulation passage 40 is appropriately performed. It is thought that it becomes.

特許第3728265号公報Japanese Patent No. 3728265

ところで、図2に示した開発中の熱源装置において、非追い加熱給湯機能の動作時には湯の通路9から給湯器16に導入される湯を非加熱のまま給湯回路62を通して給湯先から給湯するが、例えば非加熱給湯機能の動作による給湯が停止されてから例えば1分といった短い時間経過後に再出湯が行われたときや、非加熱給湯機能の動作継続中に、暖房装置31の運転に伴い暖房回路30側の暖房用バーナ64の燃焼が行われてファン65が駆動すると、暖房用熱交換器17と同じ器具ケース内(ここでは同一燃焼室66内)に配置されている給湯熱交換器17もファン65からの送風により熱を奪われることになり、給湯回路62から出湯される湯の温度が低下してしまうことがあるといった問題が生じることが分かった。   In the heat source device under development shown in FIG. 2, hot water introduced from the hot water passage 9 to the hot water heater 16 is supplied from the hot water supply circuit 62 through the hot water supply circuit 62 without heating when the non-following hot water supply function is operated. For example, when the hot water supply is performed after a short period of time such as one minute has elapsed since the hot water supply function is stopped, for example, when the non-heated hot water supply function is stopped, or during the operation of the non-heated hot water supply function, When the heating burner 64 on the circuit 30 side is combusted and the fan 65 is driven, the hot water supply heat exchanger 17 disposed in the same appliance case as the heating heat exchanger 17 (here, in the same combustion chamber 66). However, it has been found that heat is taken away by the air blown from the fan 65 and the temperature of the hot water discharged from the hot water supply circuit 62 may be lowered.

なお、このような問題は、タンクユニット4と給湯器16とが隣接されたタイプの熱源装置においても生じるものであり、また、前記の如く、給湯バーナ61の給排気用のファンと暖房用バーナ64の給排気用のファンとを別々に設けた場合にも、暖房用バーナ64の燃焼時に暖房用バーナ64の給排気用のファンを駆動する際には給湯バーナ61の給排気用のファンも駆動させるため、同様の問題が生じる。   Such a problem also occurs in a heat source device of a type in which the tank unit 4 and the water heater 16 are adjacent to each other. As described above, the supply / exhaust fan and the heating burner of the hot water supply burner 61 are also provided. 64, when the heating / burning fan of the heating burner 64 is driven during combustion of the heating burner 64, the supply / exhaust fan of the hot water supply burner 61 is also provided. Similar problems arise because of the drive.

本発明は、上記課題を解決するためになされたものであり、その目的は、例えば貯湯槽等の主熱源から例えば給湯器等の補助熱源装置に導入される湯を、補助熱源装置を通して非加熱で給湯する場合に、補助熱源装置が暖房運転を行っても安定した温度の湯を給湯できる熱源装置を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to non-heat hot water introduced into an auxiliary heat source device such as a water heater from a main heat source such as a hot water tank through the auxiliary heat source device. It is to provide a heat source device that can supply hot water at a stable temperature even when the auxiliary heat source device performs a heating operation.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、主熱源から出湯される湯の通路の下流側に、給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続され、該給湯回路には、該給湯回路に前記湯の通路から導入される湯水を前記給湯熱交換器に通さずに給湯先側に向けて導出するためのバイパス通路と、前記給湯回路に前記湯の通路から導入される湯水の前記バイパス通路側に通す割合と前記給湯熱交換器側に通す割合とを可変するバイパス弁とが設けられ、前記補助熱源装置には該補助熱源装置に接続される暖房装置に熱媒体を供給するための暖房回路と、該暖房回路に設けられた暖房用熱交換器を加熱するバーナと、該バーナの給排気用のファンとが設けられていて前記暖房用熱交換器と前記給湯熱交換器とは前記補助熱源装置の器具ケース内に配置され、前記バイパス通路は前記ファンの駆動により生じる風を受ける前記給湯熱交換器をバイパスして配置されており、前記湯の通路から前記補助熱源装置の前記給湯回路に導入される湯を前記給湯熱交換器により加熱して給湯先に給湯する追い加熱給湯機能と前記湯の通路から前記補助熱源装置に導入される湯を非加熱のまま前記給湯回路を通して給湯先に給湯する非追い加熱給湯機能とを有し、非追い加熱給湯機能の動作時に前記ファンが駆動されたときに該ファン駆動による送風が前記給湯熱交換器に当たることによって該給湯熱交換器が熱を奪われることによる給湯温度の低下を防ぐために、前記非追い加熱給湯機能の動作時の前記ファンの駆動時には前記主熱源側から前記補助熱源装置側に送られる湯の温度を予め定められる給湯設定温度よりも予め定められる下駄上げ温度高い温度とする暖房時下駄上げ出湯制御手段と、前記非追い加熱給湯機能の動作時の前記ファンの駆動時には前記給湯熱交換器よりも前記バイパス通路側に通す湯水の割合を大きくするように前記バイパス弁を制御する手段とを有する構成をもって課題を解決するための手段としている。 In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention is, on the downstream side of the hot water passage which is tapped from the main heat source, hot water introduction side of the hot water supply circuit of the auxiliary heat source apparatus equipped with a hot water supply heat exchanger is connected to the fed-water circuit, fed-yu A bypass passage for deriving hot water introduced into the circuit from the hot water passage toward the hot water supply side without passing through the hot water heat exchanger, and the hot water introduced into the hot water supply circuit from the hot water passage A bypass valve is provided for varying a ratio of passing through the bypass passage and a ratio of passing through the hot water heat exchanger, and the auxiliary heat source device supplies a heat medium to a heating device connected to the auxiliary heat source device. A heating circuit, a burner for heating a heating heat exchanger provided in the heating circuit, and a fan for supplying and exhausting the burner, the heating heat exchanger and the hot water supply heat exchanger, Is placed in the instrument case of the auxiliary heat source device. Is, the bypass passage is arranged to bypass the hot water supply heat exchanger which receives the wind generated by driving the fan, the hot water introduced from the passage of the hot water to the hot water supply circuit of the auxiliary heat source equipment Water A follow-up hot water supply function that heats by a heat exchanger and supplies hot water to the hot water supply destination and a non-follow-up hot water supply function that supplies hot water introduced from the hot water passage to the auxiliary heat source device through the hot water supply circuit without heating. has the door, hot water temperature due to the on operation of the non-chase heating hot water feature fan fed-water heat exchanger by blowing by the fan drive hits the hot water supply heat exchanger when driven is deprived of heat to prevent a decrease in is predetermined temperature of the hot water to be sent to the auxiliary heat source apparatus side from the main heat source side is the during the driving of the fan during operation of the non-chase heating hot water function And heating time clogs up tapping control means for the shoe up temperature higher temperatures to be determined in advance than hot water set temperature, the non-chase heating the fan the bypass passage side than the hot water supply heat exchanger during the operation of operation of the hot water supply function The means for controlling the bypass valve so as to increase the ratio of hot water passing through the apparatus is a means for solving the problem.

また、第2の発明は、前記第1の発明の構成に加え、前記主熱源から出湯される湯の通路と給水通路とが合流する合流部が設けられて、該合流部で合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有し、暖房時下駄上げ出湯制御手段は、前記補助熱源装置の非追い加熱給湯機能の動作時にバーナの給排気用のファンが駆動されたときに前記ミキシング流量制御手段の制御により前記主熱源側から前記合流部を介して前記補助熱源装置側に送られる湯の温度が給湯設定温度よりも下駄上げ温度高い温度となるようにすることを特徴とする。   In addition to the configuration of the first invention, the second invention is provided with a joining portion where a passage of hot water discharged from the main heat source and a water supply passage are joined, and hot water joined at the joining portion. Mixing means for mixing water with water, a hot water introduction passage for introducing hot water mixed by the mixing means into the auxiliary heat source device, and a flow rate of hot water flowing through the junction by controlling the mixing means, A mixing flow rate control means for controlling the flow rate of water, and the heating clogging hot water control means is provided when the fan for supplying / exhausting the burner is driven during the operation of the non-following heating hot water supply function of the auxiliary heat source device. The temperature of the hot water sent from the main heat source side to the auxiliary heat source device side through the junction is controlled to be higher than the hot water supply set temperature by the control of the mixing flow rate control means. And butterflies.

本発明は、主熱源から出湯される湯を、その下流側に設けられた補助熱源装置に導入して非加熱のまま補助熱源装置の給湯回路を通して給湯先に給湯する非追い加熱給湯機能を有しているが、補助熱源装置に接続される暖房装置に補助熱源装置から熱媒体を供給するために暖房用熱交換器をバーナで加熱し、バーナの給排気用のファンを駆動させると、暖房用熱交換器のみならず暖房用熱交換器と同じ器具ケース内に設けられた給湯熱交換器にもファンの風が当たるため、加熱されていない状態の給湯熱交換器の熱が奪われることになる。   The present invention has a non-following heating hot water supply function in which hot water discharged from a main heat source is introduced into an auxiliary heat source device provided downstream thereof and hot water is supplied to a hot water supply destination through a hot water supply circuit of the auxiliary heat source device without heating. However, in order to supply a heat medium from the auxiliary heat source device to the heating device connected to the auxiliary heat source device, the heating heat exchanger is heated with the burner, and the fan for supplying and exhausting the burner is driven. Because the fan's wind also hits the hot water supply heat exchanger installed in the same appliance case as the heating heat exchanger as well as the heat exchanger for heating, the heat of the hot water supply heat exchanger in an unheated state is deprived become.

しかしながら、本発明においては、前記ファンの駆動時に該ファン駆動による送風が前記給湯熱交換器に当たることによって該給湯熱交換器が熱を奪われることによる給湯温度の低下を防ぐために、前記非追い加熱給湯機能の動作時の前記ファンの駆動時には主熱源側から補助熱源装置側に送られる湯の温度を予め定められる給湯設定温度よりも予め定められる下駄上げ(嵩上げ)温度高い温度とすることにより、この湯が給湯熱交換器を通るときに前記ファンの風により多少熱を奪われても、湯の温度が給湯設定温度より低くなることが防止され、結果的に、給湯温度が給湯設定温度より低下することを抑制でき、給湯設定温度またはその近傍温度の湯を安定して給湯することができる。また、補助熱源装置の給湯回路には、該給湯回路に前記湯の通路から導入される湯水を前記給湯熱交換器に通さずに給湯先側に向けて導出するためのバイパス通路が設けられ、該バイパス通路は前記ファンの駆動により生じる風を受ける前記給湯熱交換器をバイパスして配置され、前記非追い加熱給湯機能の動作時に前記ファンが駆動されたときには前記給湯熱交換器よりも前記バイパス通路側に通す湯水の割合を大きくするように制御するので、非追い加熱給湯機能の動作時に前記給湯回路に導入される湯水をバイパス通路側に多く流すことで前記ファンの風の影響を受けにくくして、給湯設定温度またはその近傍温度の湯をより一層安定して給湯することができる。 However, in the present invention, in order to prevent the hot water supply heat exchanger from depriving the hot water supply temperature due to the air blown by the fan driving hitting the hot water supply heat exchanger when the fan is driven, By setting the temperature of hot water sent from the main heat source side to the auxiliary heat source device side at a predetermined hot water raising (bulking) temperature higher than a predetermined hot water supply set temperature when the fan is driven during operation of the hot water supply function Even if the hot air is deprived of heat by the wind of the fan when passing through the hot water heat exchanger, it is prevented that the hot water temperature becomes lower than the hot water set temperature. It can suppress that it falls more and can supply hot water of the hot water supply preset temperature or its vicinity temperature stably. Further, the hot water supply circuit of the auxiliary heat source device is provided with a bypass passage for deriving hot water introduced from the hot water passage into the hot water supply circuit toward the hot water supply side without passing through the hot water supply heat exchanger, The bypass passage is disposed to bypass the hot water supply heat exchanger that receives wind generated by driving the fan, and when the fan is driven during the operation of the non-following hot water supply function, the bypass passage is more than the hot water supply heat exchanger. Since the ratio of hot water passing through the passage side is controlled to be increased, it is difficult to be affected by the wind of the fan by flowing a large amount of hot water introduced into the hot water supply circuit to the bypass passage side during the operation of the non-following hot water supply function. Thus, the hot water at the hot water supply set temperature or a temperature in the vicinity thereof can be further stably supplied.

また、主熱源から出湯される湯の通路と給水通路とが合流する合流部が設けられて、該合流部で合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有する発明においては、ミキシング流量制御手段による湯の流量と水の流量の制御によって、所望の温度の湯を形成して補助熱源装置側に送ることができる。   Further, there is provided a joining portion where the passage of hot water discharged from the main heat source and the water supply passage join together, mixing means for mixing the hot water and water joined at the joining portion, and mixing by the mixing means In the invention having a hot water introduction passage for introducing the formed hot water into the auxiliary heat source device, and a mixing flow rate control means for controlling the flow rate of hot water flowing through the merging portion and the flow rate of water by controlling the mixing means, By controlling the flow rate of hot water and the flow rate of water by the mixing flow rate control means, hot water having a desired temperature can be formed and sent to the auxiliary heat source device side.

そして、この構成の本発明において、暖房時下駄上げ出湯制御手段が、補助熱源装置の非追い加熱給湯機能の動作時にバーナの給排気用のファンが駆動されたときに、ミキシング流量制御手段の制御により前記主熱源側から前記合流部を介して前記補助熱源装置側に送られる湯の温度が給湯設定温度よりも下駄上げ温度高い温度となるようにすることにより、主熱源側から補助熱源装置側に送られる湯の温度を的確に制御して、前記効果を発揮することができる。   And in this invention of this structure, when the fan for hot water supply / exhaust of the burner is driven during the operation of the non-follow-up hot water supply function of the auxiliary heat source device, the mixing flow rate control means controls Thus, the temperature of hot water sent from the main heat source side to the auxiliary heat source device side via the junction is set to a temperature higher than the hot water supply set temperature, so that the auxiliary heat source device side is changed from the main heat source side to the auxiliary heat source device side. The temperature of the hot water sent to can be precisely controlled, and the above effect can be exhibited.

本発明に係る熱源装置の一実施例の制御構成を示すブロック図である。It is a block diagram which shows the control structure of one Example of the heat-source apparatus which concerns on this invention. 実施例および開発中の熱源装置のシステム構成例を説明するための説明図である。It is explanatory drawing for demonstrating the system configuration example of the heat source apparatus in an Example and development. 図2に示す熱源装置に設けられている湯水循環通路と貯湯槽の湯の通路とを説明するために、図2の一部構成を簡略化して示すシステム構成図である。FIG. 3 is a system configuration diagram showing, in a simplified manner, a partial configuration of FIG. 2 in order to explain a hot water circulation passage and a hot water passage of a hot water tank provided in the heat source device shown in FIG. 2. 熱源装置に与えられる制御データの一例を示すグラフである。It is a graph which shows an example of the control data given to a heat source device. 貯湯槽内の温度層の分布例を模式的に示す説明図である。It is explanatory drawing which shows typically the example of distribution of the temperature layer in a hot water storage tank.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same constituent elements as those in the above-described examples, and the duplicate description is omitted or simplified.

図1には、本発明に係る熱源装置の一実施例の要部制御構成がブロック図により示されている。本実施例は、図2に示した熱源装置と同様のシステム構成を有し、さらに、図1に示されるように、タンクユニット60内の制御装置33に、ミキシング流量制御手段35、混合設定温度設定手段36、メモリ部37、暖房時下駄上げ出湯制御手段39を設けている。また、制御装置33には給湯器16の制御装置46とリモコン装置43とが信号接続されているので、制御装置33がリモコン装置43と送受信する情報は取得できる。リモコン装置43には給湯設定温度設定操作手段45が設けられ、給湯器16の制御装置46には給湯燃焼制御手段47が設けられている。なお、リモコン装置43は、屋内において、リビングや、浴室、台所、洗面所等の適宜の場所に設置されている。   FIG. 1 is a block diagram showing a main part control configuration of an embodiment of a heat source device according to the present invention. This embodiment has the same system configuration as that of the heat source device shown in FIG. 2, and further, as shown in FIG. 1, the controller 33 in the tank unit 60 includes a mixing flow rate control means 35, a mixing set temperature. A setting unit 36, a memory unit 37, and a hot water taking-out hot water control unit 39 are provided. In addition, since the control device 46 of the water heater 16 and the remote control device 43 are signal-connected to the control device 33, information transmitted and received by the control device 33 with the remote control device 43 can be acquired. The remote control device 43 is provided with a hot water supply set temperature setting operation means 45, and the control device 46 of the water heater 16 is provided with a hot water supply combustion control means 47. The remote control device 43 is installed indoors at an appropriate place such as a living room, a bathroom, a kitchen, or a washroom.

給湯設定温度設定操作手段45は、利用者等により給湯設定温度を設定するための操作手段であり、例えばリモコン装置43の表面側に設けられている操作ボタン等により形成されている。この給湯設定温度設定操作手段45により設定された給湯設定温度の値は、制御装置33の混合設定温度設定手段36と暖房時下駄上げ出湯制御手段39と、給湯器16の燃焼制御手段47とに加えられる。   The hot water supply set temperature setting operation means 45 is an operation means for setting a hot water supply set temperature by a user or the like, and is formed by an operation button or the like provided on the surface side of the remote control device 43, for example. The value of the hot water supply set temperature set by the hot water supply set temperature setting operation means 45 is sent to the mixed set temperature setting means 36 of the control device 33, the hot water discharge hot water control means 39, and the combustion control means 47 of the water heater 16. Added.

混合設定温度設定手段36は、混合湯水の設定温度(混合設定温度)を設定するものであり、例えば貯湯槽内湯水温検出手段5aの検出温度が前記閾値よりも高い温度のときの給湯時の前記混合設定温度を給湯設定温度に対応させて、給湯設定温度の値と同じ値に設定する。また、混合設定温度設定手段36は、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下の時には、混合設定温度を給湯設定温度よりも低い適宜の温度に設定する。   The mixed set temperature setting means 36 sets a set temperature (mixed set temperature) of the mixed hot water. For example, the hot water supply temperature when the detected temperature of the hot water temperature detecting means 5a in the hot water tank is higher than the threshold value. The mixing set temperature is set to the same value as the hot water supply set temperature in correspondence with the hot water supply set temperature. Further, the mixed set temperature setting means 36 sets the mixed set temperature to an appropriate temperature lower than the hot water supply set temperature when the detected temperature of the hot water tank internal hot water temperature detecting means 5a is equal to or lower than the threshold value.

なお、タンクユニット4の合流部10と給湯器16とを接続する湯水導入通路15が冷えているときに給湯が行われるコールドスタート時には、混合設定温度設定手段36は、混合サーミスタ28の検出温度に対応させて給湯設定温度の設定を特有の設定としてもよい。混合設定温度設定手段36によって設定された混合設定温度は、ミキシング流量制御手段35に加えられる。   At the time of cold start in which hot water is supplied when the hot water introduction passage 15 that connects the junction 10 of the tank unit 4 and the water heater 16 is cold, the mixing set temperature setting means 36 sets the detected temperature of the mixing thermistor 28. Correspondingly, the hot water supply set temperature may be set as a specific setting. The mixed set temperature set by the mixed set temperature setting means 36 is applied to the mixing flow rate control means 35.

ミキシング流量制御手段35は、合流部10側に湯の通路9から流れる湯の流量と給水通路8bから合流部10側に流れる水の流量を制御し、混合設定温度設定手段36により設定される設定混合温度の混合湯水が合流部10で形成されるようにするものである。ミキシング流量制御手段35は、前記の如く、タンク側電磁弁13の開閉制御とタンク湯水混合器12および水混合器14の制御による湯の流量と水の流量との制御により、合流部10で形成される混合湯水の温度が混合設定温度となるように制御する。なお、ミキシング流量制御手段35は、前記の如く、例えば給水流量センサ29の検出信号を受けて、給湯栓が開かれたときにタンク側電磁弁13を開き給湯栓が閉じられたときにタンク側電磁弁13を閉じる制御を行う。   The mixing flow rate control means 35 controls the flow rate of hot water flowing from the hot water passage 9 to the merging portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merging portion 10 side, and is set by the mixing set temperature setting means 36. The mixed hot and cold water at the mixing temperature is formed at the junction 10. As described above, the mixing flow rate control means 35 is formed in the junction 10 by controlling the opening and closing of the tank side electromagnetic valve 13 and the flow rate of hot water and the flow rate of water by the control of the tank hot water mixer 12 and the water mixer 14. Control is performed so that the temperature of the mixed hot water to be set becomes the mixing set temperature. The mixing flow rate control means 35 receives the detection signal of the feed water flow rate sensor 29, for example, as described above, and opens the tank side solenoid valve 13 when the hot water tap is opened, and closes the tank side when the hot water tap is closed. Control to close the solenoid valve 13 is performed.

給湯器16の燃焼制御手段47は、例えば混合サーミスタ28の検出温度に基づき、混合サーミスタ28の検出温度がほぼ給湯設定温度であれば(例えば前回の出湯から短時間後の再出湯時)給湯バーナ61の燃焼を行わないようにし、給湯設定温度よりも予め定められている許容範囲を超えて低いときには給湯バーナ61の燃焼とその燃焼制御を行う。この燃焼制御は、例えば給湯熱交換出側温度検出手段67により検出される検出温度と、流量検出手段42により検出される流量と、給湯熱交換器17の熱効率等に従い、予め与えられる給湯バーナ61の燃焼制御用データ(例えば演算式等)に基づいて行われるものであり、様々な方法があるが周知であるので、その詳細説明は省略するが、様々な方法を適用することができる。   The combustion control means 47 of the hot water heater 16 is based on the detected temperature of the mixed thermistor 28, for example, if the detected temperature of the mixed thermistor 28 is substantially the preset hot water supply temperature (for example, at the time of re-heating hot water a short time after the previous hot water). The combustion of the hot water supply burner 61 and the combustion control of the hot water supply burner 61 are performed when the temperature of the hot water supply 61 is lower than the preset allowable range. This combustion control is performed, for example, in accordance with the detected temperature detected by the hot water supply heat exchange outlet temperature detecting means 67, the flow rate detected by the flow rate detecting means 42, the thermal efficiency of the hot water supply heat exchanger 17, and the like. This method is performed based on the combustion control data (e.g., an arithmetic expression), and there are various methods, which are well-known, so that detailed description thereof is omitted, but various methods can be applied.

暖房時下駄上げ出湯制御手段39は、給湯器16による非追い加熱給湯機能の動作時(例えば非加熱給湯機能の動作による給湯が停止されてから例えば1分といった短い時間経過後に再出湯が行われたときや、非加熱給湯機能の動作継続中)に暖房回路30による暖房運転が行われてファン65が駆動されたときには、貯湯槽2側から給湯器16側に送られる湯の温度を給湯設定温度よりも予め定められる下駄上げ温度高い温度とするものである。本実施例において、暖房時下駄上げ出湯制御手段39は、給湯器16の非追い加熱給湯機能の動作時にファン65が駆動されたときには、その情報を燃焼制御手段47から得てミキシング流量制御手段35に指令を加え、ミキシング流量制御手段35の制御により貯湯槽2側から合流部10を介して給湯器16側に送られる湯の温度が給湯設定温度よりも下駄上げ温度高い温度となるように混合設定温度を設定する(混合設定温度設定手段36による混合設定温度を給湯設定温度よりも下駄上げ温度高い温度となるようにする)。   The heating clogging hot water control means 39 performs re-hot water after a short time elapses, for example, 1 minute after the hot water supply function is stopped by the hot water heater 16 (for example, after the hot water supply is stopped by the operation of the non-heating hot water supply function). And when the fan 65 is driven when the heating operation is performed by the heating circuit 30 during the operation of the non-heating hot water supply function), the temperature of the hot water sent from the hot water tank 2 side to the hot water heater 16 side is set to hot water supply. The temperature is higher than the temperature by a predetermined clogging temperature. In the present embodiment, when the fan 65 is driven during the operation of the non-following heating hot water supply function of the hot water heater 16, the clogging hot water supply control means 39 during heating obtains the information from the combustion control means 47 and the mixing flow rate control means 35. Is mixed so that the temperature of the hot water sent from the hot water storage tank 2 side to the hot water heater 16 side through the junction 10 is higher than the hot water supply set temperature by the control of the mixing flow rate control means 35. A set temperature is set (the mix set temperature by the mix set temperature setting means 36 is set to a temperature higher than the hot water supply set temperature).

例えば、下駄上げ温度をTu℃とすると、この温度Tuは、例えば給湯設定温度(本体設定温度)と、給湯熱交換出側温度検出手段67の検出温度と、給湯熱交換器17とバイパス通路68とのバイパス比と、以下の式(1)とにより決定される。   For example, if the clogging temperature is Tu ° C., this temperature Tu is, for example, the hot water supply set temperature (main body set temperature), the detected temperature of the hot water supply heat exchange outlet side temperature detecting means 67, the hot water supply heat exchanger 17 and the bypass passage 68. And the following equation (1).

Tu=〔給湯設定温度−(給湯熱交換器17の出側温度×給湯熱交換器17側のバイパス比)÷バイパス通路68側のバイパス比〕−給湯設定温度・・・(1)   Tu = [hot water supply set temperature− (outlet temperature of hot water heat exchanger 17 × bypass ratio on hot water heat exchanger 17 side) ÷ bypass ratio on bypass passage 68 side] −hot water set temperature (1)

なお、式(1)はメモリ部37に格納されている。本実施例において、給湯器16の非加熱給湯機能の動作時はバイパス電磁弁69を全開とし給湯熱交換器17側のバイパス比とバイパス通路68側のバイパス比とを1:3とすることから、給湯熱交換器17側のバイパス比とバイパス通路68側のバイパス比とは1:3となり、給湯設定温度が40℃、給湯熱交換出側温度検出手段67により検出される給湯熱交換器17の出側温度が34℃の場合は、Tu=(40−34×0.25)÷0.75−40=2℃となる。   Expression (1) is stored in the memory unit 37. In the present embodiment, when the non-heating hot water supply function of the water heater 16 is in operation, the bypass solenoid valve 69 is fully opened, and the bypass ratio on the hot water heat exchanger 17 side and the bypass ratio on the bypass passage 68 side are set to 1: 3. The bypass ratio on the hot water supply heat exchanger 17 side and the bypass ratio on the bypass passage 68 side are 1: 3, the hot water set temperature is 40 ° C., and the hot water supply heat exchanger 17 is detected by the hot water heat exchange outlet temperature detection means 67. Is 34 ° C., Tu = (40−34 × 0.25) ÷ 0.75−40 = 2 ° C.

また、暖房時下駄上げ出湯制御手段39によって、給湯設定温度よりも下駄上げ温度高い温度となるようにする(本実施例ではミキシング流量制御手段35による混合設定温度を給湯設定温度よりも下駄上げ温度高い温度に設定する)タイミングは、例えば給湯器16の非加熱給湯機能の動作時にファン65が行われたときとし、混合設定温度を給湯設定温度に戻すタイミングはファン65の駆動が停止したときとすることができる。また、図1の破線に示されるように、例えば給湯熱交換出側温度検出手段67による検出温度をモニタしておき、この温度が給湯器16の非加熱給湯機能の動作時に許容範囲(例えば2℃)を超えて下がったときに給湯設定温度よりも下駄上げ温度高い温度となるようにし、混合設定温度を給湯設定温度に戻すタイミングは給湯設定温度から給湯熱交換出側温度検出手段67による検出温度を差し引いた値が前記許容範囲以内となったときとしてもよい。   Further, the clogging hot water control means 39 at the time of heating is set to a temperature higher than the hot water supply setting temperature (in this embodiment, the mixing set temperature by the mixing flow rate control means 35 is set higher than the hot water supply setting temperature. The timing for setting the high temperature) is, for example, when the fan 65 is operated during the operation of the non-heating hot water supply function of the water heater 16, and the timing for returning the mixed set temperature to the hot water set temperature is when the driving of the fan 65 is stopped. can do. Further, as shown by a broken line in FIG. 1, for example, the temperature detected by the hot water supply heat exchange outlet side temperature detection means 67 is monitored, and this temperature is within an allowable range (for example, 2 when operating the non-heating hot water supply function of the water heater 16. The temperature at which the mixed set temperature is returned to the hot water supply set temperature is detected by the hot water supply heat exchange outlet temperature detection means 67 from the hot water set temperature. The value obtained by subtracting the temperature may be within the allowable range.

なお、本発明は、前記実施例に限定されるものでなく、適宜設定されるものである。例えば前記実施例では、下駄上げ温度を、前記式(1)および、給湯設定温度、給湯熱交換出側温度(給湯熱交換出側温度検出手段67による検出温度)、給湯回路62における給湯熱交換器17側とバイパス通路68側とのバイパス比に基づいて決定したが、下駄上げ温度の決定方法は特に限定されるものでなく、適宜設定されるものである。   In addition, this invention is not limited to the said Example, It sets suitably. For example, in the above-described embodiment, the clogging temperature is determined by changing the hot water supply temperature in the hot water supply circuit 62 by using the above formula (1), the hot water supply set temperature, the hot water heat exchange outlet temperature (the temperature detected by the hot water heat exchanger outlet temperature detecting means 67). The determination method is based on the bypass ratio between the container 17 side and the bypass passage 68 side, but the method for determining the clogging temperature is not particularly limited, and is appropriately set.

例えば、給湯器16が配置されている場所の外気温度を検出する温度センサを設け、この検出温度とファン65の駆動電流(または、この駆動電流に応じた風量)に基づく給湯熱交換器17の温度低下割合データを予め実験等により求め、そのデータに基づいて、例えば図4の特性線a〜cに示されるような、外気温度とファン65の駆動電流(または風量)に基づく下駄上げ温度の値をメモリ部37に格納しておき、この格納データと外気温度とファン65の駆動電流(風量)とに基づいて下駄上げ温度を決定してもよい。なお、図4に示されている特性線a、b、cは、それぞれ、外気温度t、t、t(t<t<t)に対応するデータである。 For example, a temperature sensor for detecting the outside air temperature at the place where the water heater 16 is disposed is provided, and the hot water supply heat exchanger 17 based on the detected temperature and the driving current of the fan 65 (or the air volume corresponding to the driving current) is provided. The temperature decrease rate data is obtained in advance by experiments or the like, and on the basis of the data, for example, as shown in the characteristic lines a to c in FIG. 4, the clogging temperature based on the outside air temperature and the driving current (or air volume) of the fan 65 is obtained. The value may be stored in the memory unit 37, and the clogging temperature may be determined based on the stored data, the outside air temperature, and the driving current (air volume) of the fan 65. Characteristic lines a, b, and c shown in FIG. 4 are data corresponding to the outside air temperatures t a , t b , and t c (t a <t b <t c ), respectively.

また、前記実施例では、混合設定温度を給湯設定温度と同じ値としたが、例えば合流部10から給湯先まで給湯される間に湯の温度が冷えること等を考慮して、混合設定温度を給湯設定温度より常に例えば0.5℃といった割り増し温度だけ高めに設定するようにしてもよい。この場合、下駄上げ出湯制御手段39は、ファン65が駆動されたときに、その混合設定温度(給湯設定温度+割り増し温度)に下駄上げ温度を加えた温度の湯が貯湯槽2から出湯されるようにミキシング流量制御手段35に指令を加えるようにする。   Moreover, in the said Example, although mixing mixing temperature was made into the same value as hot water supply setting temperature, considering that the temperature of hot water cools, for example during hot water supply from the junction 10 to a hot water supply destination, mixing mixing temperature is set. For example, it may be set higher than the hot water supply set temperature by an extra temperature such as 0.5 ° C. In this case, when the fan 65 is driven, the clogging hot water control means 39 discharges hot water at a temperature obtained by adding the clogging temperature to the set mixing temperature (hot water supply setting temperature + additional temperature) from the hot water storage tank 2. Thus, a command is added to the mixing flow rate control means 35.

さらに、本発明の熱源装置の詳細なシステム構成は適宜設定されるものである。例えば、前記実施例では、タンクユニット4において、タンク湯水混合器12と水混合器14も共に2方弁として、これらの混合器12,14で2カ所で混合比を調整したが、例えば2方弁を用いる代わりに、1カ所に3方弁を設けて混合比を調整するようにしてもよい。   Furthermore, the detailed system configuration of the heat source device of the present invention is set as appropriate. For example, in the above-described embodiment, in the tank unit 4, the tank hot water mixer 12 and the water mixer 14 are both two-way valves, and the mixing ratio is adjusted at two locations in these mixers 12, 14. Instead of using a valve, a three-way valve may be provided at one place to adjust the mixing ratio.

また、前記実施例では、貯湯槽2は燃料電池1に熱的に接続されていたが、燃料電池1の代わりに、太陽熱の集熱機やヒートポンプ等を接続してもよいし、貯湯槽2を設けない主熱源としてもよい。   Moreover, in the said Example, although the hot water tank 2 was thermally connected to the fuel cell 1, instead of the fuel cell 1, you may connect a solar-heat collector, a heat pump, etc. It is good also as a main heat source which does not provide.

さらに、前記実施例では、給水流量センサ29と流量検出手段42を別々のものとして両方を熱源装置に設けたが、どちらか1つで兼用してもよい。例えば流量検出手段42のみ設ける場合には、流量検出手段42を、通路18と給湯通路19を通して給湯される給湯流量を検出する給湯流量検出手段として機能するものとし、流量検出手段42の検出信号を、流量割合検出手段38とミキシング流量制御手段35の混合比レベル決定手段39に加えるようにする。なお、給水流量センサ29と流量検出手段42の両方を設ける場合にも、流量検出手段42の検出信号をミキシング流量制御手段35等に加えてもよいが、ミキシング流量制御手段35等には給水流量センサ29の検出信号を加えるようにする方が、給湯器16等の補助熱源装置とタンクユニット4間の情報融通を行わずにすみ、制御構成を簡略化できる。   Furthermore, in the said Example, although the water supply flow rate sensor 29 and the flow rate detection means 42 were provided separately, and both were provided in the heat-source apparatus, you may share in any one. For example, when only the flow rate detection means 42 is provided, the flow rate detection means 42 functions as a hot water supply flow rate detection means for detecting the hot water flow rate supplied through the passage 18 and the hot water supply passage 19. The flow rate ratio detection means 38 and the mixing flow rate control means 35 are added to the mixing ratio level determination means 39. Even when both the water supply flow rate sensor 29 and the flow rate detection unit 42 are provided, the detection signal of the flow rate detection unit 42 may be applied to the mixing flow rate control unit 35 and the like. Adding the detection signal from the sensor 29 eliminates the need for information interchange between the auxiliary heat source device such as the water heater 16 and the tank unit 4, and can simplify the control configuration.

さらに、図2、図3において、接続通路21,22を省略したシステム(循環ポンプ23、電磁弁24もなし)においても本発明は有効である。   2 and 3, the present invention is also effective in a system (without the circulation pump 23 and the electromagnetic valve 24) in which the connection passages 21 and 22 are omitted.

さらに、図2の破線で示されるようなバイパス路79とバイパス電磁弁80を設けて熱源装置を形成してもよい。このような構成においては、バイパス路79と通路18との合流部で合流した後の温度が給湯設定温度となるように、必要に応じてバイパス電磁弁80の開閉制御やミキシング流量制御手段35等による温度制御、燃焼制御手段47による燃焼制御等が適宜行われる。   Furthermore, a heat source device may be formed by providing a bypass path 79 and a bypass electromagnetic valve 80 as shown by a broken line in FIG. In such a configuration, the opening / closing control of the bypass solenoid valve 80, the mixing flow rate control means 35, and the like are performed as necessary so that the temperature after joining at the joining portion of the bypass passage 79 and the passage 18 becomes the hot water supply set temperature. The temperature control by the combustion control, the combustion control by the combustion control means 47, etc. are appropriately performed.

また、このようにバイパス路79を設ける場合は、貯湯槽2側から湯水導入通路15を通って流れてきた湯水が給湯回路62の湯水導入側とバイパス路79側とに分岐して流れた後に通路18で合流することになるため、給湯通路62側とバイパス路79側との分岐比(バイパス比)(例えば8:2としたり5:5としたり適宜設定される値)を考慮して前記下駄上げ温度が予め定められることになる。   Further, when the bypass passage 79 is provided in this way, after the hot water flowing through the hot water introduction passage 15 from the hot water storage tank 2 side branches and flows into the hot water introduction side and the bypass passage 79 side of the hot water supply circuit 62. In order to merge in the passage 18, the branching ratio (bypass ratio) between the hot water supply passage 62 side and the bypass passage 79 side (for example, 8: 2 or 5: 5 is set as appropriate) is considered. The clogging temperature is determined in advance.

さらに、給湯器16等の補助熱源装置は、給湯熱交換器17を例えば石油燃焼式のバーナ装置により加熱するタイプの装置としてもよい。また、給湯器16等の補助熱源装置に接続される暖房装置31は温水マットとは限らず、浴室乾燥機等としてもよいし、様々な暖房装置を必要に応じて1つ以上設けて形成することができる。   Further, the auxiliary heat source device such as the water heater 16 may be a type of device that heats the hot water heat exchanger 17 by, for example, an oil combustion type burner device. The heating device 31 connected to the auxiliary heat source device such as the water heater 16 is not limited to the hot water mat, and may be a bathroom dryer or the like, and may be provided with one or more various heating devices as necessary. be able to.

さらに、補助熱源装置に、給湯熱交換器17と同じ器具内(例えば同じ燃焼室66内)に、浴槽湯水の追い焚き用の追い焚き熱交換器と給湯熱交換器17と追い焚き用バーナと給湯バーナ61を設け、例えば前記実施例において暖房運転時に主熱源側から補助熱源装置側に送られる湯の温度を下駄上げ温度高い温度とした制御と同様に、浴槽湯水の追い焚き運転時(動作時)に、主熱源側から補助熱源装置側に送られる湯の温度を下駄上げ温度高い温度としてもよい。   Further, in the auxiliary heat source device, in the same appliance as the hot water supply heat exchanger 17 (for example, in the same combustion chamber 66), a reheating heat exchanger for reheating the bath water, a hot water heat exchanger 17 and a reheating burner are provided. The hot water supply burner 61 is provided, for example, in the above embodiment, the hot water sent from the main heat source side to the auxiliary heat source device side during the heating operation is controlled to increase the temperature of the hot water, and the hot water bathing operation (operation) ), The temperature of the hot water sent from the main heat source side to the auxiliary heat source device side may be set to a higher temperature.

本発明の熱源装置は、主熱源からの湯を補助熱源装置に通して非加熱で給湯する装置において、補助熱源装置側で暖房運転が行われてファン駆動が行われても、給湯温度の変動を抑制できるので、使い勝手が良好であり、例えば家庭用の熱源装置として利用できる。   The heat source device of the present invention is a device in which hot water from the main heat source is passed through the auxiliary heat source device to supply hot water without heating, even if the heating operation is performed on the auxiliary heat source device side and the fan drive is performed, Therefore, it can be used as a heat source device for home use.

1 燃料電池
2 貯湯槽
3 熱回収用通路
4 タンクユニット
5 貯湯槽内湯水温検出手段
6 三方弁
7 バイパス通路
8,8a,8b 給水通路
9 湯の通路
10 合流部
11 貯湯槽出湯水温検出手段
12 タンク湯水混合器
13 タンク側電磁弁
14 水混合器
15 湯水導入通路
16 給湯器
17 給湯熱交換器
23 循環ポンプ
24 電磁弁
28 混合サーミスタ
29 給水流量センサ
31 暖房装置
33 制御装置
35 ミキシング流量制御手段
36 混合設定温度設定手段
37 メモリ部
39 暖房時下駄上げ出湯制御手段
42 流量検出手段
45 給湯設定温度設定操作手段
47 燃焼制御手段
61 給湯バーナ
62 給湯回路
63 暖房用熱交換器
64 暖房用バーナ
65 ファン
66 燃焼室
67 給湯熱交出側温度検出手段
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Hot water storage tank 3 Heat recovery passage 4 Tank unit 5 Hot water temperature detection means in hot water storage tank 6 Three-way valve 7 Bypass passage 8, 8a, 8b Water supply passage 9 Hot water passage 10 Junction section 11 Hot water storage hot water temperature detection means 12 Tank Hot water mixer 13 Tank side solenoid valve 14 Water mixer 15 Hot water introduction passage 16 Water heater 17 Hot water heat exchanger 23 Circulating pump 24 Solenoid valve 28 Mixing thermistor 29 Feed water flow sensor 31 Heating device 33 Control device 35 Mixing flow rate control means 36 Mixing Set temperature setting means 37 Memory unit 39 Hot water taking-out hot water control means 42 Flow rate detection means 45 Hot water supply set temperature setting operation means 47 Combustion control means 61 Hot water supply burner 62 Hot water supply circuit 63 Heat exchanger for heating 64 Heating burner 65 Fan 66 Combustion Room 67 Hot water supply heat exchange side temperature detection means

Claims (2)

主熱源から出湯される湯の通路の下流側に、給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続され、該給湯回路には、該給湯回路に前記湯の通路から導入される湯水を前記給湯熱交換器に通さずに給湯先側に向けて導出するためのバイパス通路と、前記給湯回路に前記湯の通路から導入される湯水の前記バイパス通路側に通す割合と前記給湯熱交換器側に通す割合とを可変するバイパス弁とが設けられ、前記補助熱源装置には該補助熱源装置に接続される暖房装置に熱媒体を供給するための暖房回路と、該暖房回路に設けられた暖房用熱交換器を加熱するバーナと、該バーナの給排気用のファンとが設けられていて前記暖房用熱交換器と前記給湯熱交換器とは前記補助熱源装置の器具ケース内に配置され、前記バイパス通路は前記ファンの駆動により生じる風を受ける前記給湯熱交換器をバイパスして配置されており、前記湯の通路から前記補助熱源装置の前記給湯回路に導入される湯を前記給湯熱交換器により加熱して給湯先に給湯する追い加熱給湯機能と前記湯の通路から前記補助熱源装置に導入される湯を非加熱のまま前記給湯回路を通して給湯先に給湯する非追い加熱給湯機能とを有し、非追い加熱給湯機能の動作時に前記ファンが駆動されたときに該ファン駆動による送風が前記給湯熱交換器に当たることによって該給湯熱交換器が熱を奪われることによる給湯温度の低下を防ぐために、前記非追い加熱給湯機能の動作時の前記ファンの駆動時には前記主熱源側から前記補助熱源装置側に送られる湯の温度を予め定められる給湯設定温度よりも予め定められる下駄上げ温度高い温度とする暖房時下駄上げ出湯制御手段と、前記非追い加熱給湯機能の動作時の前記ファンの駆動時には前記給湯熱交換器よりも前記バイパス通路側に通す湯水の割合を大きくするように前記バイパス弁を制御する手段とを有することを特徴とする熱源装置。 The hot water introduction side of the hot water supply circuit of the auxiliary heat source device provided with the hot water supply heat exchanger is connected to the downstream side of the hot water passage discharged from the main heat source, and the hot water supply circuit is introduced into the hot water supply circuit from the hot water passage. A bypass passage for deriving the hot water to be directed toward the hot water supply side without passing through the hot water supply heat exchanger, a ratio of passing the hot water introduced into the hot water supply circuit from the hot water passage to the bypass passage side, and A bypass valve for changing a ratio of passing through the hot water supply heat exchanger side, a heating circuit for supplying a heat medium to a heating device connected to the auxiliary heat source device, and the heating circuit A heating burner for heating the heating heat exchanger, and a fan for supplying and exhausting the burner, the heating heat exchanger and the hot water supply heat exchanger being an appliance case of the auxiliary heat source device disposed within said bypass passage Wherein is disposed so as to bypass the hot water supply heat exchanger which receives the wind generated by driving of the fan, the hot water introduced from the passage of the hot water to the hot water supply circuit of the auxiliary heat source unit is heated by the hot water supply heat exchanger and a non-chase heating hot water supply function of hot water to the hot water destination through the hot water supply circuit remains the non-heated hot water is introduced to follow the heating hot water supply function for hot water supply to the hot water destination from the passage of the hot water to the auxiliary heat source apparatus Te, the In order to prevent a decrease in hot water supply temperature due to the hot water supply heat exchanger being deprived of heat by blowing air from the fan drive against the hot water supply heat exchanger when the fan is driven during the operation of the non-following hot water supply function , the previously constant than the non-chase heating the fan predefined be hot water set temperature the temperature of the hot water at the time of driving to be sent to the auxiliary heat source apparatus side from the main heat source side during the operation of the hot water supply function And heating time clogs up tapping control means for the shoe up temperature higher temperatures for the during driving of the fan during operation of the non-chase heating hot water functions increase the hot water fraction of passage through the bypass passage side than the hot water supply heat exchanger And a means for controlling the bypass valve . 主熱源から出湯される湯の通路と給水通路とが合流する合流部が設けられて、該合流部で合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有し、暖房時下駄上げ出湯制御手段は前記補助熱源装置の非追い加熱給湯機能の動作時にバーナの給排気用のファンが駆動されたときには前記ミキシング流量制御手段の制御により前記主熱源側から前記合流部を介して前記補助熱源装置側に送られる湯の温度が給湯設定温度よりも下駄上げ温度高い温度となるようにすることを特徴とする請求項1記載の熱源装置。   A joining portion where the passage of hot water discharged from the main heat source and the water supply passage merge is provided, and mixing means for mixing the hot water and water joined at the joining portion, and mixing by the mixing means are formed. A hot water introduction passage for introducing hot water into the auxiliary heat source device, and a mixing flow rate control means for controlling the flow rate of the hot water flowing through the merging portion and the flow rate of the water by controlling the mixing means. The hot water control means is configured to control the mixing heat flow control means from the main heat source side through the junction portion when the burner supply / exhaust fan is driven during operation of the non-following hot water supply function of the auxiliary heat source device. 2. The heat source device according to claim 1, wherein the temperature of the hot water sent to the heat source device side is set to a temperature higher than the hot water supply set temperature.
JP2014070187A 2014-03-28 2014-03-28 Heat source equipment Active JP6320117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070187A JP6320117B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070187A JP6320117B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Publications (2)

Publication Number Publication Date
JP2015190736A JP2015190736A (en) 2015-11-02
JP6320117B2 true JP6320117B2 (en) 2018-05-09

Family

ID=54425362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070187A Active JP6320117B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Country Status (1)

Country Link
JP (1) JP6320117B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011967A (en) * 2002-06-05 2004-01-15 Hitachi Housetec Co Ltd Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe
JP3966839B2 (en) * 2003-08-01 2007-08-29 大阪瓦斯株式会社 Waste heat utilization heat source device
JP4077419B2 (en) * 2004-03-25 2008-04-16 リンナイ株式会社 Cogeneration system
JP5421848B2 (en) * 2010-04-28 2014-02-19 大阪瓦斯株式会社 Heat supply system
JP5836794B2 (en) * 2011-12-26 2015-12-24 株式会社ガスター Hot water storage system
JP5597669B2 (en) * 2012-04-20 2014-10-01 リンナイ株式会社 Thermal equipment

Also Published As

Publication number Publication date
JP2015190736A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP2018031520A (en) Storage water heater
JP6858621B2 (en) Heat source device
JP6055356B2 (en) Heat source equipment
JP6209117B2 (en) Heat source equipment
JP5613039B2 (en) Heat source equipment
JP4880312B2 (en) Hot water storage hot water source
JP6320117B2 (en) Heat source equipment
JP6228881B2 (en) Heat source equipment
JP2013257091A (en) Heat source device
JP6147541B2 (en) Heat source equipment
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP6498133B2 (en) Hot water storage type water heater and hot water supply method with hot water storage type water heater
JP6088771B2 (en) Heat source equipment
JP6125877B2 (en) Heat source equipment
JP5567947B2 (en) Heat source equipment
JP4223499B2 (en) Cogeneration system
JP5470422B2 (en) Thermal equipment
JP6088889B2 (en) Heat source equipment
JP6403631B2 (en) Hot water storage unit
JP2014089027A (en) Heat source apparatus
JP6800795B2 (en) Heat source device
JP6320118B2 (en) Heat source equipment
JP6062787B2 (en) Heat source equipment
JP6228880B2 (en) Heat source equipment
KR101424404B1 (en) Thermal apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250