[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6319618B2 - 重合性化合物及び光学異方体 - Google Patents

重合性化合物及び光学異方体 Download PDF

Info

Publication number
JP6319618B2
JP6319618B2 JP2013253012A JP2013253012A JP6319618B2 JP 6319618 B2 JP6319618 B2 JP 6319618B2 JP 2013253012 A JP2013253012 A JP 2013253012A JP 2013253012 A JP2013253012 A JP 2013253012A JP 6319618 B2 JP6319618 B2 JP 6319618B2
Authority
JP
Japan
Prior art keywords
formula
oco
coo
group
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013253012A
Other languages
English (en)
Other versions
JP2015110532A (ja
Inventor
雅弘 堀口
雅弘 堀口
林 正直
正直 林
楠本 哲生
哲生 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2013253012A priority Critical patent/JP6319618B2/ja
Publication of JP2015110532A publication Critical patent/JP2015110532A/ja
Application granted granted Critical
Publication of JP6319618B2 publication Critical patent/JP6319618B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

本発明は重合性基を有する化合物、当該化合物を含有する重合性組成物、重合性液晶組成物及び当該重合性液晶組成物を用いた光学異方体に関する。
重合性基を有する化合物(重合性化合物)は種々の光学材料に使用される。例えば、重合性化合物を含む重合性組成物を液晶状態で配列させた後、重合させることにより、均一な配向を有する重合体を作製することが可能である。このような重合体は、ディスプレイに必要な偏光板、位相差板、3D表示を行うために必要なレンチキュラーレンズ等に使用することができる。多くの場合、要求される光学特性、重合速度、溶解性、融点、ガラス転移温度、重合体の透明性、機械的強度、表面硬度、耐熱性及び耐光性を満たすために、2種類以上の重合性化合物を含む重合性組成物が使用される。その際、使用する重合性化合物には、他の特性に悪影響を及ぼすことなく、重合性組成物に良好な物性をもたらすことが求められる。
人間は左右の各々の目から入った映像が脳内で一体化する際に、奥行きや立体感を感じる。3D表示は、右目用及び左目用に別々の角度で撮影した映像を各々右目及び左目に送ることにより、奥行きや立体感を感じさせる仕組みである。右目用及び左目用の各々の映像を各々の目に送る方法として、レンチキュラーレンズを使用したものが知られている。
重合性化合物をレンチキュラーレンズ用に使用する場合には、重合前の重合性組成物を調製した際に、長時間保管しても重合性組成物から、その成分中の重合性化合物が析出することが無いことが重要である。析出が発生しやすい重合性組成物を使用した場合、重合性組成物を調製した後、顧客生産ラインにおいて重合物を製造する工程に至るまでの保管又は輸送時に析出が発生する可能性が高くなる。その場合、加熱等の操作によって再度溶解させなければならず、プロセス上不利である。また、3Dディスプレイ用途にレンチキュラーレンズを使用する場合には、ディスプレイの内部部品のレイアウト自由度やディスプレイそのもののデザイン自由度の観点から、レンチキュラーレンズの膜厚がなるべく小さいことが好ましい。そのため、使用する重合性化合物には他の特性に悪影響を及ぼすことなく、屈折率異方性が大きいことが望まれる。また、ディスプレイ製品を長期間使用した場合に、レンチキュラーレンズの変色が起こりにくいことが好ましい。変色の原因としては、バックライト、室内光、太陽光等に含まれる紫外光による、レンチキュラーレンズに使用した重合性化合物の劣化が挙げられる。レンチキュラーレンズの変色は、重合させ得られたレンチキュラーレンズの耐熱性を安定化させるために、後工程として紫外線照射を行う場合にも発生する。変色が生じたレンチキュラーレンズ又は変色が生じやすいレンチキュラーレンズを、例えば3Dディスプレイに使用した場合、ディスプレイの明るさ及び/又はコントラストが低下したり、ディスプレイの使用時間とともに映像の色味が変化したりしてしまい、ディスプレイ製品の品質を大きく低下させてしまう問題がある。
当該分野において屈折率異方性の大きな化合物として種々の重合性化合物が知られているが、それらの重合性化合物は、重合性組成物に添加した場合に結晶の析出が起こり、保存安定性が不十分であった(特許文献1、2)。また、重合性組成物を重合させ得られたレンズ形状の重合物に対し、後工程として紫外線照射を行った場合に重合物の変色が起こりやすい問題があった(特許文献2)。
特表2002−521354号公報 US6514578B1号公報
本発明が解決しようとする課題は、大きな屈折率異方性と、重合性液晶組成物に添加した際に結晶の析出等が起こらず高い保存安定性を有する重合性化合物を提供し、当該重合性化合物を含有する重合性液晶組成物を重合して得られるレンズ状の重合物を作製した際に変色が発生しにくい重合性液晶組成物を提供することである。更に、当該重合性液晶組成物を重合させることで得られる重合体及び当該重合体を用いた光学異方体を提供することである。
本願発明は一般式(I)
Figure 0006319618
(式中、Pは重合性基を表し、Sはスペーサー基又は単結合を表すが、Sが複数存在する場合それらは同一であっても異なっていても良く、X−O−、−S−、−OCH−、−CHO−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CH=CH−、−CF=CF−又は単結合を表すが、Xが複数存在する場合それらは同一であっても異なっていても良く、A、A及びAは各々同一であっても異なっていても良く1,4−フェニレン又はナフタレン−2,6−ジイルを表すが、これらの基は無置換又は1つ以上のLによって置換されても良く、Rは水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、若しくは、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−S−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−CH=CH−、−CF=CF−又は−C≡C−によって置換されても良い炭素原子数1から20の直鎖又は分岐アルキル基を表し、lは0から8の整数を表し、Lはフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ヒドロキシル基、メルカプト基、ニトロ基、シアノ基、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−S−、−CO−、−COO−、−OCO−又は−OCO−O−に置き換えられても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、A、A及びAのうち少なくとも1つは無置換又は1つ以上のLによって置換されても良いナフタレン−2,6−ジイルを表す。)で表される化合物を提供し、併せて当該化合物を含有する重合性組成物、重合性液晶組成物、当該重合性液晶組成物を重合させることにより得られる重合体及び当該重合体を用いた光学異方体を提供する。
本願発明の化合物は、重合性組成物を構成した場合に保存安定性が高く、重合性組成物の構成部材として有用である。また、本願発明の化合物を含有する重合性液晶組成物を用いた光学異方体は、変色が起こりにくいことからレンチキュラーレンズ等の光学材料の用途に有用である。
本願発明は一般式(I)で表される化合物を提供し、併せて当該化合物を含有する重合性組成物、重合性液晶組成物、当該重合性液晶組成物を重合させることにより得られる重合体及び当該重合体を用いた光学異方体を提供する。
一般式(I)においてPは重合性基を表すが、下記の式(P−1)から式(P−20)
Figure 0006319618
から選ばれる基を表すことが好ましく、これらの重合性基はラジカル重合、ラジカル付加重合、カチオン重合及びアニオン重合により重合する。特に重合方法として紫外線重合を行う場合には、式(P−1)、式(P−2)、式(P−3)、式(P−4)、式(P−5)、式(P−7)、式(P−11)、式(P−13)、式(P−15)又は式(P−18)が好ましく、式(P−1)、式(P−2)、式(P−7)、式(P−11)又は式(P−13)がより好ましく、式(P−1)、式(P−2)又は式(P−3)がさらに好ましく、式(P−1)又は式(P−2)が特に好ましい。
Sはスペーサー基又は単結合を表すが、Sが複数現れる場合は各々同一であっても異なっていても良い。また、スペーサー基としては、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−S−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−CH=CH−、−CF=CF−又は−C≡C−に置き換えられても良い炭素原子数1から20のアルキレン基を表すことが好ましい。Sは、液晶性、原料の入手容易さ及び合成の容易さの観点から、複数存在する場合は各々同一であっても異なっていても良く、各々独立して、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−COO−、−OCO−に置き換えられても良い炭素原子数1から12のアルキレン基又は単結合を表すことが好ましく、複数存在する場合は各々同一であっても異なっていても良く、各々独立して、炭素原子数1から12のアルキレン基又は単結合を表すことがより好ましく、複数存在する場合は各々同一であっても異なっていても良く、各々独立して、炭素原子数1から12のアルキレン基を表すこと、更には、炭素原子数1〜8のアルキレン基を表すことが特に好ましい。
Xは−O−、−S−、−OCH−、−CHO−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CH=CH−、−CF=CF−又は単結合を表すが、Xが複数存在する場合それらは同一であっても異なっていても良い。また、原料の入手容易さ及び合成の容易さの観点から、複数存在する場合は各々同一であっても異なっていても良く、各々独立して−O−、−OCH−、−CHO−、−COO−、−OCO−、−O−CO−O−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−又は単結合を表すことが好ましく、複数存在する場合は各々同一であっても異なっていても良く、各々独立して−O−、−COO−、−OCO−又は単結合を表すことが特に好ましい。
、A及びAは各々独立して無置換又は1つ以上のLによって置換されても良い1,4−フェニレン、又は無置換又は1つ以上のLによって置換されても良いナフタレン−2,6−ジイルを表す。また、A、A及びAのうち少なくとも1つは、無置換又は1つ以上のLによって置換されても良いナフタレン−2,6−ジイルを表すが、化合物の安定保存濃度及び、化合物を重合し重合体とした場合の変色(黄変度)の観点から、A、A及びAのうちのいずれか1つまたは2つが、無置換又は1つ以上のLによって置換されても良いナフタレン−2,6−ジイルを表すことが好ましく、A、A及びAのうちのいずれか1つが、無置換又は1つ以上のLによって置換されても良いナフタレン−2,6−ジイルを表すことが特に好ましい。なお、Lが複数存在する場合それらは同一であっても異なっていても良い。
無置換又は1つ以上のLによって置換されても良い1,4−フェニレン、及び、無置換又は1つ以上のLによって置換されても良いナフタレン−2,6−ジイルとしては、原料の入手容易さ、及び、合成の容易さの観点から、各々独立して下記の式(A−1)から式(A−6)
Figure 0006319618
又は式(B−1)から式(B−9)
Figure 0006319618
から選ばれる基を表すことが好ましく、各々独立して式(A−1)から式(A−6)又は式(B−1)から式(B−3)から選ばれる基を表すことがより好ましく、各々独立して式(A−1)から式(A−6)又は式(B−1)から選ばれる基を表すことが特に好ましい。
さらに溶液の安定保存濃度の観点から、Aが式(B−1)で表される基を表し、A及びAの両方が式(A−2)から式(A−6)で表される基のいずれかを表すか、Aが式(B−1)で表される基を表し、A及びAのうち一方が式(A−1)で表される基を表し他方が式(A−2)から式(A−6)で表される基のいずれかを表すか、Aが式(B−1)で表される基を表し、Aが式(A−1)で表される基を表しAが式(A−2)、式(A−4)、式(A−6)で表される基のいずれかを表すことが好ましい。
Lはフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ヒドロキシル基、メルカプト基、ニトロ基、シアノ基、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−S−、−CO−、−COO−、−OCO−又は−OCO−O−に置き換えられても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、合成の容易さ及び液晶性の観点からフッ素原子、塩素原子、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−COO−又は−OCO−に置き換えられても良い炭素原子数1から8の直鎖状又は分岐状アルキル基を表すことが好ましく、フッ素原子、塩素原子、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−COO−又は−OCO−に置き換えられても良い炭素原子数1から8の直鎖状アルキル基を表すことがより好ましく、フッ素原子、塩素原子、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基を表すことがさらにより好ましく、フッ素原子、メチル基、メトキシ基を表すことが特に好ましい。
Rは水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、若しくは、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−S−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−CH=CH−、−CF=CF−又は−C≡C−によって置換されても良い炭素原子数1から20の直鎖又は分岐アルキル基を表すが、液晶性及び合成の容易さの観点から水素原子、フッ素原子、塩素原子、シアノ基、若しくは、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−COO−、−OCO−、−O−CO−O−によって置換されても良い炭素原子数1から12の直鎖又は分岐アルキル基を表すことが好ましく、水素原子、フッ素原子、塩素原子、シアノ基若しくは炭素原子数1から12の直鎖アルキル基を表すことがより好ましく、フッ素原子若しくは炭素原子数1から8の直鎖アルキル基を表すことが特に好ましい。
lは0から8の整数を表すが、液晶性、原料の入手容易さ及び合成の容易さの観点から0から4の整数を表すことが好ましく、0から2の整数を表すことがより好ましく、0又は1を表すことがさらに好ましく、1を表すことが特に好ましい。
一般式(I)で表される化合物として具体的には、下記の式(I−1)から式(I−99)で表される化合物が好ましい。
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
本願発明の化合物は以下の製法で製造することができる。
(製法1)下記式(S−9)で表される化合物の製造
Figure 0006319618
(式中、P、S、L、Rは各々独立して一般式(I)で定義されたものと同一のものを表し、rは各々独立して0から4の整数、sは各々独立して0から3の整数を表し、halogenはハロゲン原子又はハロゲン等価体を表す。)
一般式(S−1)で表される化合物を例えば塩基存在下トリフルオロメタンスルホン酸無水物(TfO)と反応させることにより一般式(S−2)で表される化合物を得る。塩基としては例えばトリエチルアミン、ピリジン等が挙げられる。
式(S−2)で表される化合物を式(S−3)で表される化合物と反応させることにより式(S−4)で表される化合物を得ることができる。反応例として例えば金属触媒及び塩基存在下、クロスカップリングさせる方法が挙げられる。金属触媒としては例えば、ビス(ジベンジリデンアセトン)パラジウム(0)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)等のパラジウム触媒が挙げられる。塩基としては例えばトリエチルアミン等が使用可能である。さらに前記アミンの他、例えば炭酸カリウム、炭酸セシウム等が使用可能である。反応条件としては例えばMetal−Catalyzed Cross−Coupling Reactions(Armin de Meijere、Francois Diedrich共著、Wiley−VCH)、Palladium Reagents and Catalysts:New Perspectives for the 21st Century(Jiro Tsuji著、Wiley & Sons,Ltd.)、Cross−Coupling Reactions:A Practical Guide(Topics in Current Chemistry)(S.L.Buchwald、K.Fugami、T.Hiyama、M.Kosugi、M.Miura、N.Miyaura、A.R.Muci、M.Nomura、E.Shirakawa、K.Tamao著、Springer)等の文献に記載の方法が挙げられる。
一般式(S−4)で表される化合物を例えば塩基存在下トリフルオロメタンスルホン酸無水物(TfO)と反応させることにより一般式(S−5)で表される化合物を得る。塩基としては前記のものが挙げられる。
式(S−5)で表される化合物を式(S−6)で表される化合物と反応させることにより式(S−7)で表される化合物を得ることができる。反応例として例えば金属触媒及び塩基存在下、クロスカップリングさせる方法が挙げられる。金属触媒、塩基及び反応条件としては前記のものが挙げられる。
一般式(S−7)で表される化合物を例えば塩基存在下一般式(S−8)で表される化合物と反応させることにより一般式(S−9)で表される化合物を得る。塩基としては例えば前記のものが使用可能である。
前記各工程において記載した以外の反応条件として、例えば実験化学講座(日本化学会編、丸善株式会社発行)、Organic Syntheses(A John Wiley & Sons,Inc.,Publication)、Beilstein Handbook of Organic Chemistry(Beilstein−Institut fuer Literatur der Organischen Chemie、Springer−Verlag Berlin and Heidelberg GmbH & Co.K)、Fiesers’ Reagents for Organic Synthesis(John Wiley & Sons,Inc.)等の文献に記載の条件又はSciFinder(Chemical Abstracts Service,American Chemical Society)又はReaxys(Elsevier Ltd.)等のオンライン検索サービスから提供される条件が挙げられる。
また、各工程において適宜反応溶媒を用いることができる。溶媒としては目的の化合物を与えるものであれば制限は無いが、例えばtert−ブチルアルコール、イソブチルアルコール、イソプロピルアルコール、イソペンチルアルコール、シクロヘキサノール、1−ブタノール、2−ブタノール、1−オクタノール、2−メトキシエタノール、エチレングリコール、ジエチレングリコール、メタノール、メチルシクロヘキサノール、エタノール、プロパノール、クロロホルム、四塩化炭素、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロエチレン、1,1,2,2−テトラクロロエタン、トリクロロエチレン、1−クロロブタン、二硫化炭素、アセトン、アセトニトリル、ベンゾニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、1,3−ジメチル−2−イミダゾリジノン、ジエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、o−ジクロロベンゼン、キシレン、o−キシレン、p−キシレン、m−キシレン、クロロベンゼン、酢酸イソブチル、酢酸イソプロピル、酢酸イソアミル、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸ペンチル、酢酸メチル、酢酸2−メトキシエチル、ヘキサメチルリン酸トリアミド、トリス(ジメチルアミノ)ホスフィン、シクロヘキサノン、1,4−ジオキサン、ジクロロメタン、スチレン、テトラクロロエチレン、テトラヒドロフラン、ピリジン、1−メチル−2−ピロリジノン、1,1,1−トリクロロエタン、トルエン、ヘキサン、ペンタン、シクロヘキサン、シクロペンタン、ヘプタン、ベンゼン、メチルイソブチルケトン、tert−ブチルメチルエーテル、メチルエチルケトン、メチルシクロヘキサノン、メチルブチルケトン、ジエチルケトン、ガソリン、コールタールナフサ、石油エーテル、石油ナフサ、石油ベンジン、テレビン油、ミネラルスピリット等が挙げられる。有機溶媒及び水の二相系で反応を行う場合、相間移動触媒を添加することも可能である。相間移動触媒としては、例えば、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ポリオキシエチレン(10)オクチルフェニルエーテル[Triton X−100]、ポリオキシエチレン(20)ソルビタンモノパルミタート[Tween 40]、ソルビタンモノパルミタート[Span 40]等が挙げられる。
また、各工程において必要に応じて精製を行うことができる。精製方法としてはクロマトグラフィー、再結晶、蒸留、昇華、再沈殿、吸着、分液処理等が挙げられる。精製剤を用いる場合、精製剤としてシリカゲル、アルミナ、活性炭、活性白土、セライト、ゼオライト、メソポーラスシリカ、カーボンナノチューブ、カーボンナノホーン、備長炭、木炭、グラフェン、イオン交換樹脂、酸性白土、二酸化ケイ素、珪藻土、パーライト、セルロース、有機ポリマー、多孔質ゲル等が挙げられる。
(製法2)下記式(S−17)で表される化合物の製造
Figure 0006319618
(式中、P、S、L、Rは各々独立して一般式(I)で定義されたものと同一のものを表し、rは各々独立して0から4の整数を表し、sは各々独立して0から3の整数を表し、halogenはハロゲン原子又はハロゲン等価体を表す。)
式(S−10)で表される化合物を式(S−11)で表される化合物と反応させることにより式(S−12)で表される化合物を得ることができる。反応例として例えば金属触媒及び塩基存在下、クロスカップリングさせる方法が挙げられる。金属触媒、塩基及び反応条件としては例えば製法1記載のものが挙げられる。
一般式(S−12)で表される化合物をホウ酸化することにより一般式(S−13)で表される化合物を得る。方法として例えば一般式(S−12)で表される化合物の芳香環上のプロトンを強塩基により引き抜き、ホウ酸エステルと反応させた後、加水分解する方法が挙げられる。強塩基としては例えばブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、フェニルリチウム等が挙げられる。プロトン引き抜きを促進させるために、テトラメチルエチレンジアミン等の添加剤を使用してもよい。ホウ酸エステルとしては例えばホウ酸トリイソプロピル、ホウ酸トリメチル等が挙げられる。又は、一般式(S−12)で表される化合物をハロゲン化した化合物からハロゲンリチウム交換反応によりリチオ化体へと誘導し、ホウ酸エステルと反応させた後、加水分解する方法が挙げられる。若しくは、一般式(S−12)で表される化合物をハロゲン化した化合物からグリニャール試薬へと誘導し、ホウ酸エステルと反応させた後、加水分解する方法が挙げられる。
式(S−13)で表される化合物を式(S−14)で表される化合物と反応させることにより式(S−15)で表される化合物を得ることができる。反応例として例えば金属触媒及び塩基存在下、クロスカップリングさせる方法が挙げられる。金属触媒、塩基及び反応条件としては製法1記載のものが使用可能である。
一般式(S−15)で表される化合物を一般式(S−16)で表される化合物と反応させることにより式(S−17)で表される化合物を得る。反応条件としては例えば、光延反応又は、一般式(S−16)で表される化合物をスルホン酸等と反応させスルホン酸エステルとするか、ハロゲン化試薬と反応させハロゲン化合物とした後、一般式(S−15)で表される化合物と塩基存在下反応させる方法が挙げられる。光延反応を用いる場合、アゾジカルボン酸としては例えばアゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル等が挙げられる。ホスフィンとしては例えばトリフェニルホスフィンが挙げられる。また、シアノメチレントリブチルホスホラン等の角田試薬を用いてもよい。スルホン酸エステルを経由する場合、スルホン酸としてメタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸等が挙げられる。塩基としては例えば製法1記載のものが挙げられる。
前記各工程において記載した以外の反応条件として、例えば製法1に挙げた文献に記載の条件又は製法1に挙げたオンライン検索サービスから提供される条件が使用可能である。
また、各工程において適宜反応溶媒を用いることができる。溶媒としては目的の化合物を与えるものであれば制限は無いが、例えば製法1記載のものが使用可能である。
また、各工程において必要に応じて精製を行うことができる。精製方法としては例えば製法1記載のものが挙げられる。
(製法3)下記式(S−27)で表される化合物の製造
Figure 0006319618
(式中、P、S、L、Rは各々独立して一般式(I)で定義されたものと同一のものを表し、rは各々独立して0から4の整数を表し、sは各々独立して0から3の整数を表し、halogenはハロゲン原子又はハロゲン等価体を表す。)
一般式(S−18)で表される化合物をホウ酸化することにより一般式(S−19)で表される化合物を得る。方法として例えば製法2記載のものが挙げられる。
式(S−19)で表される化合物を式(S−20)で表される化合物と反応させることにより式(S−21)で表される化合物を得ることができる。反応例として例えば金属触媒及び塩基存在下、クロスカップリングさせる方法が挙げられる。金属触媒、塩基及び反応条件としては製法1記載のものが使用可能である。
一般式(S−21)で表される化合物を例えば塩基存在下トリフルオロメタンスルホン酸無水物(TfO)と反応させることにより一般式(S−22)で表される化合物を得る。塩基としては製法1記載のものが挙げられる。
一般式(S−22)で表される化合物を金属触媒及び塩基下ビス(ピナコラート)ジボロン又はピナコールボラン等と反応させることにより式(S−23)で表される化合物を得る。金属触媒、塩基及び反応条件としては製法1記載のものが使用可能である。
式(S−23)で表される化合物を式(S−24)で表される化合物と反応させることにより式(S−25)で表される化合物を得ることができる。反応例として例えば金属触媒及び塩基存在下、クロスカップリングさせる方法が挙げられる。金属触媒、塩基及び反応条件としては製法1記載のものが使用可能である。
一般式(S−25)で表される化合物を例えば塩基存在下一般式(S−26)で表される化合物と反応させることにより一般式(S−27)で表される化合物を得る。塩基としては例えば製法1記載のものが使用可能である。
前記各工程において記載した以外の反応条件として、例えば製法1に挙げた文献に記載の条件又は製法1に挙げたオンライン検索サービスから提供される条件が使用可能である。
また、各工程において適宜反応溶媒を用いることができる。溶媒としては目的の化合物を与えるものであれば制限は無いが、例えば製法1記載のものが使用可能である。
また、各工程において必要に応じて精製を行うことができる。精製方法としては例えば製法1記載のものが挙げられる。
本願発明の化合物は、ネマチック液晶組成物、スメクチック液晶組成物、キラルスメクチック液晶組成物及びコレステリック液晶組成物に使用することが好ましい。本願発明の反応性化合物を用いる液晶組成物において本願発明以外の化合物を添加しても構わない。
本願発明の反応性化合物と混合して使用される他の反応性化合物としては、具体的には一般式(II)
Figure 0006319618
(式中、P及びPは各々独立して一般式(I)におけるPと同じ意味を表し、S及びSは各々独立して単結合又は炭素原子数1〜20個のアルキレン基を表すが、1個の−CH−又は隣接していない2個以上の−CH−は−O−、−COO−、−OCO−、−OCOO−に置き換えられても良く、X及びXは各々独立して−O−、−S−、−OCH−、−CHO−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CH=CH−、−CF=CF−、−C≡C−又は単結合を表し、Zは各々独立して単結合、−O−、−S−、−OCH−、−CHO−、−COO−、−OCO−、−CO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−CHCH−、−CHCF−、−CFCH−、−CFCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CH=CH−、−CF=CF−又は−C≡C−を表し、A及びAは各々独立して、1,4−フェニレン基、1,4−シクロヘキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ナフタレン−2,6−ジイル基、テトラヒドロナフタレン−2,6−ジイル基又は1,3−ジオキサン−2,5−ジイル基を表すが、A及びAは各々独立して無置換であるか又はハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素原子数1から20のアルキル基、ハロゲン化アルキル基、アルコキシ基、ハロゲン化アルコキシ基、シアノ基又はニトロ基に置換されていても良く、mは0、1、2又は3を表すが、mが2又は3を表す場合、2個あるいは3個存在するA及び、Zは、それぞれ、同一であっても異なっていても良い。)で表される化合物が好ましく、一般式(II)のP及びPがアクリル基又はメタクリル基である場合が特に好ましい。具体的には、一般式(II−A)
Figure 0006319618
(式中、R及びRは各々独立して水素又はメチル基を表し、S及びSは各々独立して炭素原子数2から18のアルキレン基、X及びXは各々独立して−O−、−COO−、−OCO−又は単結合を表し、Z及びZは各々独立して−COO−又は−OCO−を表し、A、A及びAは各々独立して無置換或いはフッ素原子、塩素原子又は炭素原子数1から4のアルキル基又はアルコキシ基によって置換された1,4−フェニレン基を表す。)で表される化合物が好ましく、下記式(II−A−1)から式(II−A−8)で表される化合物が特に好ましい。
Figure 0006319618
(式中、R及びRは各々独立して水素又はメチル基を表し、Sは一般式(II−A)におけるSと同じ意味を表し、Sは一般式(II−A)におけるSと同じ意味を表す。)上記式(II−A−1)から式(II−A−8)において、S及びSが各々独立して炭素原子数2から8のアルキレン基である化合物がさらに好ましい。
また、一般式(II−B)
Figure 0006319618
(式中、R及びRは各々独立して水素又はメチル基を表し、S及びSは各々独立して炭素原子数2から18のアルキレン基、X及びXは各々独立して−O−、−COO−、−OCO−又は単結合を表し、Zは−COO−又は−OCO−を表し、A、A10及びA11は各々独立して無置換或いはフッ素原子、塩素原子又は炭素原子数1から4のアルキル基又はアルコキシ基によって置換された1,4−フェニレン基を表す。)で表される化合物が好ましく、下記式(II−B−1)から式(II−B−8)で表される化合物が特に好ましい。
Figure 0006319618
(式中、R及びRは各々独立して水素又はメチル基を表し、Sは一般式(II−B)におけるSと同じ意味を表し、Sは一般式(II−B)におけるSと同じ意味を表す。)上記式(II−B−1)から式(II−B−8)において、耐熱性及び耐久性の観点から、式(II−B−2)、式(II−B−5)、式(II−B−6)、式(II−B−7)及び式(II−B−8)で表される化合物が好ましく、式(II−B−2)で表される化合物がさらに好ましく、S及びSが各々独立して炭素原子数2から8のアルキレン基である化合物が特に好ましい。
この他、好ましい2官能重合性化合物としては下記一般式(II−C−1)から式(II−C−8)で表される化合物が挙げられる。
Figure 0006319618
(式中、R及びRは各々独立して水素又はメチル基を表し、S及びSは各々独立して炭素原子数2から18のアルキレン基を表す。)上記式(II−C−1)から式(II−C−8)において、式(II−C−2)、式(II−C−3)、式(II−C−4)、式(II−C−6)、式(II−C−7)及び式(II−C−8)で表される化合物が好ましく、S及びSが各々独立して炭素原子数2から8のアルキレン基である化合物が特に好ましい。
好ましい単官能重合性化合物としては下記一般式(III−1)から式(III−9)で表される化合物が挙げられる。
Figure 0006319618
(式中、Pは一般式(I)におけるPと同じ意味を表し、Sは単結合又は炭素原子数1から20個のアルキレン基を表すが、1個の−CH−又は隣接していない2個以上の−CH−は−O−、−COO−、−OCO−、−OCOO−に置き換えられても良く、Xは単結合、−O−、−COO−、−OCO−を表し、Zは単結合、−COO−、−OCO−、−CH=CH−COO−、−OCO−CH=CH−、−CH=CH−、−CF=CF−又は−C≡C−を表し、A12は1,4−フェニレン基又はナフタレン−2,6−ジイル基を表すが、A12は無置換であるか又はハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素原子数1から20のアルキル基、ハロゲン化アルキル基、アルコキシ基、ハロゲン化アルコキシ基、シアノ基又はニトロ基に置換されていても良く、Lはフッ素原子、塩素原子、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−COO−、−OCO−に置き換えられても良い炭素原子数1から10の直鎖状又は分岐状アルキル基を表し、rは0から4の整数を表し、Rは水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−COO−、−OCO−、−OCO−O−に置き換えられても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表す。)
本願発明の化合物を含有する重合性液晶組成物には、当該組成物の液晶性を大きく損なわない程度に、液晶性を示さない重合性化合物を添加することも可能である。具体的には、この技術分野で高分子形成性モノマーあるいは高分子形成性オリゴマーとして認識される化合物であれば特に制限なく使用可能である。具体例として例えば「光硬化技術データブック、材料編(モノマー,オリゴマー,光重合開始剤)」(市村國宏、加藤清視監修、テクノネット社)記載のものが挙げられる。
また、本願発明の化合物は光重合開始剤を使用しなくても重合させることが可能であるが、目的により光重合開始剤を添加しても構わない。その場合は光重合開始剤の濃度は、本願発明の化合物に対し0.1質量%から15質量%が好ましく、0.2質量%から10質量%がより好ましく、0.4質量%から8質量%がさらに好ましい。光重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。光重合開始剤としては、具体的には2−メチル−1−(4−メチルチオフェニル)−2−モルホリノプロパン−1−オン(IRGACURE 907)等が挙げられる。熱重合開始剤としては、アゾ化合物、過酸化物等が挙げられる。熱重合開始剤としては、具体的には2,2’−アゾビス(イソブチロニトリル)が挙げられる。また、1種類の重合開始剤を用いても良く、2種類以上の重合開始剤を併用して用いても良い。
また、本発明の重合性液晶組成物には、その保存安定性を向上させるために、安定剤を添加することもできる。使用できる安定剤としては、例えば、ヒドロキノン類、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β−ナフチルアミン類、β−ナフトール類、ニトロソ化合物等が挙げられる。安定剤を使用する場合の添加量は、組成物に対して0.005質量%から1質量%の範囲が好ましく、0.02質量%から0.8質量%がより好ましく、0.03質量%から0.5質量%がさらに好ましい。また、1種類の安定剤を用いても良く、2種類以上の安定剤を併用して用いても良い。安定剤としては、具体的には式(IV−1)から式(IV−36)
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
(式中、nは0から20の整数を表す。)で表される化合物が好ましい。
また、本願発明の化合物を含有する重合性液晶組成物をフィルム類、光学素子類、機能性顔料類、医薬品類、化粧品類、コーティング剤類、合成樹脂類等の用途に利用する場合には、その目的に応じて金属、金属錯体、染料、顔料、色素、蛍光材料、燐光材料、界面活性剤、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物等を添加することもできる。
本願発明の化合物を含有する重合性液晶組成物を重合することにより得られるポリマーは種々の用途に利用できる。例えば、本願発明の化合物を含有する重合性液晶組成物を、配向させずに重合することにより得られるポリマーは、光散乱板、偏光解消板、モアレ縞防止板として利用可能である。また、配向させた後に重合することにより得られるポリマーは、光学異方性を有しており有用である。このような光学異方体は、例えば、本願発明の化合物を含有する重合性液晶組成物を、布等でラビング処理した基板、有機薄膜を形成した基板又はSiOを斜方蒸着した配向膜を有する基板に担持させるか、基板間に挟持させた後、当該重合性液晶組成物を重合することによって製造することができる。
重合性液晶組成物を基板上に担持させる際の方法としては、スピンコーティング、ダイコーティング、エクストルージョンコーティング、ロールコーティング、ワイヤーバーコーティング、グラビアコーティング、スプレーコーティング、ディッピング、プリント法等を挙げることができる。またコーティングの際、重合性液晶組成物に有機溶媒を添加しても良い。有機溶媒としては、炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エーテル系溶媒、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、非プロトン性溶媒等を使用することができるが、例えば炭化水素系溶媒としてはトルエン又はヘキサンを、ハロゲン化炭化水素系溶媒としては塩化メチレンを、エーテル系溶媒としてはテトラヒドロフラン、アセトキシ−2−エトキシエタン又はプロピレングリコールモノメチルエーテルアセテートを、アルコール系溶媒としてはメタノール、エタノール又はイソプロパノールを、ケトン系溶媒としてはアセトン、メチルエチルケトン、シクロヘキサノン、γ−ブチルラクトン又はN−メチルピロリジノン類を、エステル系溶媒としては酢酸エチル又はセロソルブを、非プロトン性溶媒としてはジメチルホルムアミド又はアセトニトリルを挙げることができる。これらは単独でも、組み合わせて用いても良く、その蒸気圧と重合性液晶組成物の溶解性を考慮し、適宜選択すれば良い。添加した有機溶媒を揮発させる方法としては、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥を用いることができる。重合性液晶材料の塗布性をさらに向上させるためには、基板上にポリイミド薄膜等の中間層を設けることや、重合性液晶材料にレベリング剤を添加する事も有効である。基板上にポリイミド薄膜等の中間層を設ける方法は、重合性液晶材料を重合することにより得られるポリマーと基板との密着性を向上させるために有効である。
上記以外の配向処理としては、液晶材料の流動配向の利用、電場又は磁場の利用を挙げることができる。これらの配向手段は単独で用いても、また組み合わせて用いても良い。さらに、ラビングに代わる配向処理方法として、光配向法を用いることもできる。基板の形状としては、平板の他に、曲面を構成部分として有していても良い。基板を構成する材料は、有機材料、無機材料を問わずに用いることができる。基板の材料となる有機材料としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリアリレート、ポリスルホン、トリアセチルセルロース、セルロース、ポリエーテルエーテルケトン等が挙げられ、また、無機材料としては、例えば、シリコン、ガラス、方解石等が挙げられる。
本願発明の化合物を含有する重合性液晶組成物を重合させる際、迅速に重合が進行することが望ましいため、紫外線又は電子線等の活性エネルギー線を照射することにより重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良く、非偏光光源を用いても良い。また、液晶組成物を2枚の基板間に挟持させて状態で重合を行う場合、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性を有していなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、さらに活性エネルギー線を照射して重合させるという手段を用いても良い。また、照射時の温度は、本発明の重合性液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。特に、光重合によって光学異方体を製造しようとする場合には、意図しない熱重合の誘起を避ける意味からも可能な限り室温に近い温度、即ち、典型的には25℃での温度で重合させることが好ましい。活性エネルギー線の強度は、0.1mW/cm〜2W/cmが好ましい。強度が0.1mW/cm以下の場合、光重合を完了させるのに多大な時間が必要になり生産性が悪化してしまい、2W/cm以上の場合、重合性液晶化合物又は重合性液晶組成物が劣化してしまう危険がある。
重合によって得られた当該光学異方体は、初期の特性変化を軽減し、安定的な特性発現を図ることを目的として熱処理を施すこともできる。熱処理の温度は50〜250℃の範囲であることが好ましく、熱処理時間は30秒〜12時間の範囲であることが好ましい。
このような方法によって製造される当該光学異方体は、基板から剥離して単体で用いても、剥離せずに用いても良い。また、得られた光学異方体を積層しても、他の基板に貼り合わせて用いてもよい。
以下、実施例を挙げて本発明を更に記述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
(実施例1)式(I−1)で表される化合物の製造
Figure 0006319618
反応容器に式(I−1−1)で表される化合物50.0g(0.227モル)、3−クロロプロパノール27.9g(0.295モル)、炭酸カリウム47.1g(0.341モル)、2−プロパノール200mLを加え、50時間加熱還流させた。塩を濾過し、濾液を留去した。カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−2−9)で表される化合物63.1g(0.227モル)を得た。
滴下ロートを備えた反応容器に式(I−1−3)で表される化合物50.0g(0.268モル)、ピリジン31.8g(0.403モル)、ジクロロメタン200mLを加えた。氷冷しながらトリフルオロメタンスルホン酸無水物90.9g(0.322モル)を滴下した。室温で10時間撹拌した後、塩酸、食塩水で洗浄した。カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−1−4)で表される化合物78.8g(0.248モル)を得た。
反応容器に式(I−1−4)で表される化合物35.0g(0.110モル)、式(I−1−5)で表される化合物16.9g(0.121モル)、炭酸カリウム22.8g(0.165モル)、テトラヒドロフラン150mL、水150mLを加えた。系内を窒素置換した後、テトラキス(トリフェニルホスフィン)パラジウム(0)1.27g(1.10ミリモル)を加え、9時間加熱還流させた。トルエンで希釈した後、塩酸、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−1−6)で表される化合物19.6g(0.0740モル)を得た。
滴下ロートを備えた反応容器に式(I−1−6)で表される化合物19.6g(0.0740モル)、テトラヒドロフラン120mLを加えた。sec−ブチルリチウム溶液(1.0モル/L)92mLを−70℃で滴下した。そのまま2時間撹拌した後、ホウ酸トリメチル10.0g(0.0962モル)を滴下した。そのまま2時間撹拌した後、10%塩酸300mLを0℃で滴下した。室温で1時間撹拌した後、食塩水で洗浄した。濃縮、乾燥させることにより式(I−1−7)で表される化合物22.8(0.0740モル)を得た。
反応容器に式(I−1−7)で表される化合物11.0g(0.0357モル)、式(I−1−2)で表される化合物9.02g(0.0324モル)、炭酸カリウム6.72g(0.0486モル)、テトラヒドロフラン100mL、水100mLを加えた。系内を窒素置換した後、テトラキス(トリフェニルホスフィン)パラジウム(0)0.37g(0.320ミリモル)を加え、5時間加熱還流させた。反応液を濃縮し水を加え、析出物を濾過した。カラムクロマトグラフィー(アルミナ)及び再結晶により精製を行い、式(I−1−8)で表される化合物10.5g(0.0253モル)を得た。
滴下ロートを備えた反応容器に式(I−1−8)で表される化合物2.64g(0.00637モル)、ジイソプロピルエチルアミン1.15g(0.00890モル)、ジクロロメタン20mLを加えた。氷冷しながら塩化アクリロイル0.69g(0.00762モル)を滴下した。室温で5時間撹拌した後、5%塩酸、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−1)で表される化合物2.30gを得た。
転移温度(昇温5℃/分): C 108 S 171 N >200 I
H NMR(CDCl)δ 0.99(t,3H),1.75(sex,2H),2.20(quin,2H),2.77(t,2H),4.13(t,2H),4.39(t,2H),5.84(dd,1H),6.14(dd,1H),6.43(dd,1H),7.00(d,2H),7.37(dd,1H),7.48−7.56(m,5H),7.64(s,1H),7.72(dd,1H),7.85(dd,2H),8.03(s,1H)ppm.
13C NMR(CDCl)δ 13.85,24.42,28.69,38.22,61.37,64.41,114.58,114.82,123.02,123.05,125.03,125.51,126.20,127.20,127.34,128.11,128.16,128.40,130.11,130.14,130.70,130.74,130.84,132.13,133.07,136.04,136.06,140.79,141.79,141.87,158.48,158.86,161.31,166.18ppm.
(実施例2)式(I−2)で表される化合物の製造
Figure 0006319618
反応容器に式(I−1−4)で表される化合物35.0g(0.110モル)、式(I−2−1)で表される化合物19.1g(0.121モル)、炭酸カリウム22.8g(0.165モル)、テトラヒドロフラン100mL、水100mLを加え、系内を窒素置換した。テトラキス(トリフェニルホスフィン)パラジウム(0)1.27g(1.10ミリモル)を加え、5時間加熱還流させた。トルエンを加え、水、食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル)により精製を行い式(I−2−2)で表される化合物26.0g(0.0921モル)を得た。
滴下ロートを備えた反応容器にジイソプロピルアミン14.0g(0.138モル)、テトラヒドロフラン70mLを加えた。系内を窒素置換した後、1.58Mブチルリチウム/ヘキサン溶液81.6mL(0.129モル)を−30℃で滴下した。そのまま1時間撹拌した後、式(I−2−2)で表される化合物26.0g(0.0921モル)及びホウ酸トリイソプロピル26.0g(0.138モル)をテトラヒドロフラン130mLに溶解させた溶液を−30℃で滴下した。そのまま1時間撹拌した後、塩酸を加えた。水、食塩水で洗浄した後、溶媒を留去することにより式(I−2−3)で表される化合物19.2g(0.0589モル)を得た。
反応容器に式(I−2−3)で表される化合物15.0g(0.0460モル)、式(I−1−2)で表される化合物11.6g(0.0418モル)、炭酸カリウム8.67g(0.0627モル)、テトラヒドロフラン80mL、水80mLを加え、系内を窒素置換した。テトラキス(トリフェニルホスフィン)パラジウム(0)0.48g(0.415ミリモル)を加え、5時間加熱還流させた。水を加え析出物を濾過した。カラムクロマトグラフィー(アルミナ)及び再結晶により精製を行い式(I−2−4)で表される化合物10.1g(0.0234モル)を得た。
滴下ロートを備えた反応容器に式(I−2−4)で表される化合物10.1g(0.0234モル)、ジイソプロピルエチルアミン4.23g(0.0327モル)、ジクロロメタン50mLを加えた。氷冷しながら塩化アクリロイル2.54g(0.0281モル)を滴下した。室温で5時間撹拌した後、5%塩酸、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−2)で表される化合物8.65gを得た。
転移温度(昇温5℃/分): C 102 N >200 I
H NMR(CDCl)δ 0.99(t,3H),1.75(sex,2H),2.20(quin,2H),2.78(t,2H),4.13(t,2H),4.39(t,2H),5.84(dd,1H),6.14(dd,1H),6.43(dd,1H),7.01(d,2H),7.26(td,1H),7.35(dd,2H),7.55(d,2H),7.66(m,2H),7.84(dd,2H),8.02(s,1H)ppm.
13C NMR(CDCl)δ 13.84,24.43,28.67,38.24,61.35,64.44,114.69,124.42,124.46,124.50,124.83,124.87,124.91,126.21,126.56,126.59,127.23,127.72,127.85,127.88,128.10,128.15,128.38,129.33,129.38,129.44,129.48,130.08,130.11,130.87,131.32,131.86,133.07,141.07,147.22,147.34,147.58,149.67,149.80,149.92,158.82,166.18ppm.
(実施例3)式(I−3)で表される化合物の製造
Figure 0006319618
反応容器に式(I−3−1)で表される化合物20.0g(0.0881モル)、式(I−2−1)で表される化合物15.3g(0.0969モル)、炭酸カリウム18.3g(0.132モル)、テトラヒドロフラン120mL、水120mLを加え、系内を窒素置換した。テトラキス(トリフェニルホスフィン)パラジウム(0)1.02g(0.881ミリモル)を加え、5時間加熱還流させた。トルエンを加え、水、食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル)により精製を行い式(I−3−2)で表される化合物19.7g(0.0757モル)を得た。
滴下ロートを備えた反応容器にジイソプロピルアミン9.96g(0.0984モル)、テトラヒドロフラン40mLを加えた。系内を窒素置換した後、1.58Mブチルリチウム/ヘキサン溶液57.5mL(0.0909モル)を−30℃で滴下した。そのまま1時間撹拌した後、式(I−3−2)で表される化合物19.7g(0.0757モル)及びホウ酸トリイソプロピル18.5g(0.0984モル)をテトラヒドロフラン100mLに溶解させた溶液を−30℃で滴下した。そのまま1時間撹拌した後、塩酸を加えた。水、食塩水で洗浄した後、溶媒を留去することにより式(I−3−3)で表される化合物20.7g(0.0682モル)を得た。
反応容器に式(I−3−3)で表される化合物10.0g(0.0329モル)、式(I−3−4)で表される化合物6.67g(0.0299モル)、炭酸カリウム6.20g(0.0448モル)、テトラヒドロフラン60mL、水60mLを加え、系内を窒素置換した。テトラキス(トリフェニルホスフィン)パラジウム(0)0.35g(0.299ミリモル)を加え、5時間加熱還流させた。トルエンを加え塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い式(I−3−5)で表される化合物9.62g(0.0239モル)を得た。
反応容器に式(I−3−5)で表される化合物9.62g(0.0239モル)、式(I−3−6)で表される化合物5.93g(0.0311モル)、炭酸セシウム11.7g(0.0359モル)、ジメチルスルホキシド100mLを加え、65℃で12時間加熱撹拌した。ジクロロメタンで希釈し、水、食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−3)で表される化合物9.31gを得た。
IR:3060−3030,2975−2920,1725,1630,1200,1160,1130,750,690cm−1
LRMS:556
(実施例4)式(I−4)で表される化合物の製造
Figure 0006319618
滴下ロートを備えた反応容器にマグネシウム3.42g(0.140モル)、テトラヒドロフラン9mLを加えた。系内を窒素置換した後、式(I−4−1)で表される化合物20.0g(0.108モル)をテトラヒドロフラン60mLに溶解させた溶液を滴下し、グリニャール試薬を調製した。2時間撹拌した後、ホウ酸トリメチル14.6g(0.140モル)を滴下した。2時間撹拌した後、塩酸を加え1時間撹拌した。分液処理し有機層を食塩水で洗浄し溶媒を留去することにより、式(I−4−2)で表される化合物15.4g(0.103モル)を得た。
反応容器に式(I−4−2)で表される化合物15.4g(0.103モル)、式(I−4−3)で表される化合物29.0g(0.103モル)、炭酸カリウム21.3g(0.154モル)、テトラヒドロフラン100mL、水100mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)1.19g(1.03ミリモル)を加え、5時間加熱還流させた。トルエンで希釈し、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−4−4)で表される化合物22.8g(0.0873モル)を得た。
滴下ロートを備えた反応容器にマグネシウム2.76g(0.113モル)、テトラヒドロフラン9mLを加えた。系内を窒素置換した後、式(I−4−4)で表される化合物22.8g(0.0873モル)をテトラヒドロフラン60mLに溶解させた溶液を滴下し、グリニャール試薬を調製した。2時間撹拌した後、ホウ酸トリメチル11.8g(0.113モル)を滴下した。2時間撹拌した後、塩酸を加え1時間撹拌した。分液処理し有機層を食塩水で洗浄し溶媒を留去することにより、式(I−4−5)で表される化合物18.7g(0.0829モル)を得た。
反応容器に式(I−4−5)で表される化合物18.7g(0.0829モル)、式(I−3−4)で表される化合物18.5g(0.0829モル)、炭酸カリウム17.2g(0.124モル)、テトラヒドロフラン100mL、水100mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.96g(0.829ミリモル)を加え、5時間加熱還流させた。酢酸エチルで希釈し、塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−4−6)で表される化合物21.5g(0.0663モル)を得た。
反応容器に式(I−4−6)で表される化合物10.0g(0.0308モル)、4−クロロブタノール4.35g(0.0401モル)、炭酸セシウム15.1g(0.0462モル)、ジメチルスルホキシド50mLを加え、60℃で8時間加熱撹拌した。ジクロロメタンで希釈し、塩酸、水、食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−4−7)で表される化合物10.4g(0.0262モル)を得た。
滴下ロートを備えた反応容器に式(I−4−7)で表される化合物10.4g(0.0262モル)、ジイソプロピルエチルアミン4.40g(0.0341モル)、ジクロロメタン60mLを加えた。氷冷しながら塩化メタクリロイル3.29g(0.0314モル)を滴下した。室温で5時間撹拌した後、5%塩酸、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−4)で表される化合物8.51gを得た。
IR:3060−3030,2975−2920,1725,1630,1200,1160,1130,750,690cm−1
LRMS:464
(実施例5)式(I−5)で表される化合物の製造
Figure 0006319618
反応容器に式(I−1−4)で表される化合物15.0g(0.0471モル)、式(I−5−1)で表される化合物7.44g(0.0471モル)、炭酸カリウム9.77g(0.0707モル)、テトラヒドロフラン100mL、水100mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.54g(0.471ミリモル)を加え、5時間加熱還流させた。トルエンで希釈し、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−5−2)で表される化合物11.3g(0.0400モル)を得た。
滴下ロートを備えた反応容器に式(I−5−2)で表される化合物11.3g(0.0400モル)、テトラヒドロフラン60mLを加えた。ブチルリチウム溶液(1.6モル/L)32.5mLを−60℃で滴下した。そのまま2時間撹拌した後、ホウ酸トリイソプロピル9.79g(0.0520モル)を滴下した。そのまま2時間撹拌した後、10%塩酸300mLを0℃で滴下した。室温で1時間撹拌した後、食塩水で洗浄した。濃縮、乾燥させることにより式(I−5−3)で表される化合物11.7g(0.0360モル)を得た。
反応容器に式(I−5−3)で表される化合物11.7g(0.0360モル)、式(I−1−2)で表される化合物10.0g(0.0360モル)、炭酸カリウム7.47g(0.0540モル)、テトラヒドロフラン100mL、水100mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.42g(0.360ミリモル)を加え、5時間加熱還流させた。ジクロロメタンで希釈し、塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−5−4)で表される化合物12.5g(0.0288モル)を得た。
滴下ロートを備えた反応容器に式(I−5−4)で表される化合物12.5g(0.0288モル)、ジイソプロピルエチルアミン4.84g(0.0375モル)、ジクロロメタン60mLを加えた。氷冷しながら塩化アクリロイル3.13g(0.0346モル)を滴下した。室温で5時間撹拌した後、5%塩酸、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−5)で表される化合物9.80gを得た。
IR:3060−3030,2975−2920,1725,1630,1200,1160,1130,750,690cm−1
LRMS:486
(実施例6)式(I−6)で表される化合物の製造
Figure 0006319618
反応容器に式(I−6−1)で表される化合物10.0g(0.0569モル)、式(I−6−2)で表される化合物17.1g(0.0569モル)、炭酸カリウム11.8g(0.0853モル)、テトラヒドロフラン100mL、水100mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.66g(0.569ミリモル)を加え、5時間加熱還流させた。トルエンで希釈し、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−6−3)で表される化合物13.9g(0.0455モル)を得た。
滴下ロートを備えた反応容器にマグネシウム0.52g(0.0213モル)、テトラヒドロフラン2mLを加えた。系内を窒素置換した後、式(I−6−3)で表される化合物5.00g(0.0164モル)をテトラヒドロフラン20mLに溶解させた溶液を滴下し、グリニャール試薬を調製した。2時間撹拌した後、ホウ酸トリメチル2.21g(0.0213モル)を滴下した。2時間撹拌した後、塩酸を加え1時間撹拌した。分液処理し有機層を食塩水で洗浄し溶媒を留去することにより、式(I−6−4)で表される化合物3.98g(0.0148モル)を得た。
反応容器に式(I−6−4)で表される化合物3.98g(0.0148モル)、式(I−3−4)で表される化合物3.29g(0.0148モル)、炭酸カリウム3.06g(0.0221モル)、テトラヒドロフラン20mL、水20mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.17g(0.148ミリモル)を加え、5時間加熱還流させた。酢酸エチルで希釈し、塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−6−5)で表される化合物4.35g(0.0118モル)を得た。
反応容器に式(I−6−5)で表される化合物4.35g(0.0118モル)、式(I−6−6)で表される化合物2.93g(0.0153モル)、炭酸セシウム5.77g(0.0177モル)、ジメチルスルホキシド40mLを加え、65℃で12時間加熱撹拌した。ジクロロメタンで希釈し、水、食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−6)で表される化合物4.31gを得た。
IR:3060−3030,2975−2920,1725,1630,1200,1160,1130,750,690cm−1
LRMS:522
(実施例7)式(I−7)で表される化合物の製造
Figure 0006319618
反応容器に式(I−3−4)で表される化合物10.0g(0.0448モル)、6−クロロヘキサノール7.96g(0.0583モル)、炭酸カリウム9.29g(0.0672モル)、2−プロパノール100mLを加え、60時間加熱還流させた。塩を濾過し、濾液を留去した。カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−7−1)で表される化合物10.1g(0.0314モル)を得た。
反応容器に式(I−7−2)で表される化合物7.00g(0.0374モル)、式(I−5−1)で表される化合物5.91g(0.0374モル)、炭酸カリウム7.76g(0.0561モル)、テトラヒドロフラン30mL、水30mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.43g(0.374ミリモル)を加え、5時間加熱還流させた。トルエンで希釈し、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−7−3)で表される化合物6.59g(0.0299モル)を得た。
滴下ロートを備えた反応容器に式(I−7−3)で表される化合物6.59g(0.0299モル、テトラヒドロフラン30mLを加えた。ブチルリチウム溶液(1.6モル/L)24.3mLを−60℃で滴下した。そのまま2時間撹拌した後、ホウ酸トリイソプロピル7.32g(0.0389モル)を滴下した。そのまま2時間撹拌した後、10%塩酸50mLを0℃で滴下した。室温で1時間撹拌した後、食塩水で洗浄した。濃縮、乾燥させることにより式(I−7−4)で表される化合物7.11g(0.0269モル)を得た。
反応容器に式(I−7−4)で表される化合物3.00g(0.0114モル)、式(I−7−1)で表される化合物3.67g(0.0114モル)、炭酸カリウム2.36g(0.0170モル)、テトラヒドロフラン20mL、水20mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.13g(0.114ミリモル)を加え、5時間加熱還流させた。酢酸エチルで希釈し、塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−7−5)で表される化合物4.20g(9.09ミリモル)を得た。
滴下ロートを備えた反応容器に式(I−7−5)で表される化合物4.20g(9.09ミリモル)、3−エチル−3−オキセタンメタノール1.27g(0.0109モル)、トリフェニルホスフィン2.86g(0.0109モル)、テトラヒドロフラン30mLを加えた。氷冷しながらアゾジカルボン酸ジイソプロピル2.21g(0.0109モル)を滴下した。室温で5時間撹拌した後、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−7)で表される化合物3.57gを得た。
LRMS:560
(実施例8)式(I−8)で表される化合物の製造
Figure 0006319618
反応容器に式(I−1−1)で表される化合物10.0g(0.0455モル)、6−クロロヘキサノール13.0g(0.0591モル)、炭酸カリウム9.42g(0.0682モル)、2−プロパノール100mLを加え、60時間加熱還流させた。塩を濾過し、濾液を留去した。カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−8−1)で表される化合物11.6g(0.0364モル)を得た。
滴下ロートを備えた反応容器に式(I−8−1)で表される化合物11.6g(0.0364モル)、パラトルエンスルホン酸ピリジニウム0.74g(1.82ミリモル)、ジクロロメタン100mLを加えた。氷冷しながら3,4−ジヒドロ−2H−ピラン3.98g(0.0473モル)を滴下した。室温で10時間撹拌した後、飽和重曹水、食塩水で洗浄し、カラムクロマトグラフィー(アルミナ)により精製を行い、式(I−8−2)で表される化合物14.0g(0.0345モル)を得た。
滴下ロートを備えた反応容器にマグネシウム0.39g(0.0161モル)、テトラヒドロフラン1mLを加えた。系内を窒素置換した後、式(I−8−2)で表される化合物5.00g(0.0124モル)をテトラヒドロフラン20mLに溶解させた溶液を滴下し、グリニャール試薬を調製した。2時間撹拌した後、ホウ酸トリメチル1.67g(0.0161モル)を滴下した。2時間撹拌した後、塩化アンモニウム水溶液を加え1時間撹拌した。分液処理し有機層を食塩水で洗浄し溶媒を留去することにより、式(I−8−3)で表される化合物3.59g(0.0111モル)を得た。
反応容器に式(I−8−3)で表される化合物3.59g(0.0111モル)、式(I−3−4)で表される化合物2.48g(0.0111モル)、炭酸カリウム2.31g(0.0167モル)、テトラヒドロフラン30mL、水30mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.13g(0.111ミリモル)を加え、5時間加熱還流させた。酢酸エチルで希釈し、塩化アンモニウム水溶液、水、食塩水で洗浄し、カラムクロマトグラフィー(アルミナ)により精製を行い、式(I−8−4)で表される化合物3.74g(8.90ミリモル)を得た。
滴下ロートを備えた反応容器に式(I−8−4)で表される化合物3.74g(8.90ミリモル)、ピリジン0.92g(0.0116モル)、ジクロロメタン30mLを加えた。氷冷しながらトリフルオロメタンスルホン酸無水物3.01g(0.0107モル)を滴下した。室温で10時間撹拌した後、塩酸、食塩水で洗浄した。カラムクロマトグラフィー(アルミナ)により精製を行い、式(I−8−5)で表される化合物4.43g(8.01ミリモル)を得た。
反応容器に式(I−8−5)で表される化合物4.43g(8.01ミリモル)、ビス(ピナコラート)ジボロン2.24g(8.82ミリモル)、酢酸カリウム2.36g(0.0240モル)、ジメチルスルホキシド40mLを加えた。系内を窒素置換した後、ジクロロ[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロロメタン付加物0.20g(0.240ミリモル)を加え80℃で20時間加熱撹拌した。水、ジクロロメタンを加え分液処理した後、食塩水で洗浄した。カラムクロマトグラフィー(アルミナ)により精製を行い、式(I−8−6)で表される化合物3.40g(6.41ミリモル)を得た。
反応容器に式(I−8−6)で表される化合物3.40g(6.41ミリモル)、式(I−8−7)で表される化合物1.28g(6.41ミリモル)、炭酸カリウム1.33g(9.62ミリモル)、テトラヒドロフラン20mL、水20mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.0741g(0.0641ミリモル)を加え、10時間加熱還流させた。ジクロロメタンで希釈し、水、食塩水で洗浄し、カラムクロマトグラフィー(アルミナ)及び再結晶により精製を行い、式(I−8−8)で表される化合物2.69g(5.13ミリモル)を得た。
反応容器に式(I−8−8)で表される化合物2.69g(5.13ミリモル)、テトラヒドロフラン20mL、メタノール20mL、濃塩酸1mLを加え、室温で10時間撹拌した。酢酸エチルで希釈し食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−8−9)で表される化合物2.14g(4.87ミリモル)を得た。
滴下ロートを備えた反応容器に式(I−8−9)で表される化合物2.14g(4.87ミリモル)、2−フルオロアクリル酸0.48g(5.36ミリモル)、N,N−ジメチルアミノピリジン0.0595g(0.487ミリモル)、ジクロロメタン10mLを加えた。氷冷しながらN,N−ジイソプロピルカルボジイミド0.74g(5.85ミリモル)を滴下した。室温で5時間撹拌した後、濾過し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−8)で表される化合物1.74gを得た。
LRMS:511
(実施例9)式(I−9)で表される化合物の製造
Figure 0006319618
反応容器に式(I−3−4)で表される化合物5.00g(0.0224モル)、1−ブロモペンタン4.40g(0.0291モル)、炭酸セシウム11.0g(0.0336モル)、ジメチルスルホキシド50mLを加え、60℃で5時間時間撹拌した。トルエンを加え、水、食塩水で洗浄した後、カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−9−1)で表される化合物5.26g(0.0179モル)を得た。
滴下ロートを備えた反応容器にマグネシウム0.57g(0.0233モル)、テトラヒドロフラン2mLを加えた。系内を窒素置換した後、式(I−9−1)で表される化合物5.26g(0.0179モル)をテトラヒドロフラン20mLに溶解させた溶液を滴下し、グリニャール試薬を調製した。2時間撹拌した後、ホウ酸トリメチル2.42g(0.0233モル)を滴下した。2時間撹拌した後、10%塩酸を加え1時間撹拌した。分液処理し有機層を食塩水で洗浄し溶媒を留去することにより、式(I−9−2)で表される化合物4.17g(0.0161モル)を得た。
反応容器に式(I−9−2)で表される化合物4.17g(0.0161モル)、式(I−3−4)で表される化合物3.60g(0.0161モル)、炭酸カリウム3.35g(0.0242モル)、テトラヒドロフラン20mL、水20mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.19g(0.161ミリモル)を加え、10時間加熱還流させた。酢酸エチルで希釈し、塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−9−3)で表される化合物4.60g(0.0129モル)を得た。
滴下ロートを備えた反応容器に式(I−9−3)で表される化合物4.60g(0.0129モル)、ピリジン1.53g(0.0194モル)、ジクロロメタン30mLを加えた。氷冷しながらトリフルオロメタンスルホン酸無水物4.37g(0.0155モル)を滴下した。室温で10時間撹拌した後、塩酸、食塩水で洗浄した。カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−9−4)で表される化合物5.99g(0.0123モル)を得た。
反応容器に式(I−9−4)で表される化合物5.99g(0.0123モル)、ビス(ピナコラート)ジボロン3.43g(0.0135モル)、酢酸カリウム3.61g(0.0368モル)、ジメチルスルホキシド40mLを加えた。系内を窒素置換した後、ジクロロ[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロロメタン付加物0.30g(0.368ミリモル)を加え80℃で20時間加熱撹拌した。水、ジクロロメタンを加え分液処理した後、食塩水で洗浄した。カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−9−5)で表される化合物4.00g(8.59ミリモル)を得た。
反応容器に式(I−9−5)で表される化合物4.00g(8.59ミリモル)、式(I−9−6)で表される化合物1.49g(8.59ミリモル)、炭酸カリウム1.78g(0.0129モル)、テトラヒドロフラン30mL、水30mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)99.2mg(0.0859ミリモル)を加え、10時間加熱還流させた。酢酸エチルで希釈し、塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−9−7)で表される化合物2.97g(6.87ミリモル)を得た。
滴下ロートを備えた反応容器に式(I−9−7)で表される化合物2.97g(6.87ミリモル)、ジイソプロピルエチルアミン1.15g(8.93ミリモル)、ジクロロメタン30mLを加えた。氷冷しながら塩化メタクリロイル0.86g(8.24ミリモル)を滴下した。室温で5時間撹拌した後、5%塩酸、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−9)で表される化合物2.41gを得た。
IR:3060−3030,2975−2920,1725,1630,1200,1160,1130,750,690cm−1
LRMS:500
(実施例10)式(I−10)で表される化合物の製造
Figure 0006319618
滴下ロートを備えた反応容器に式(I−3−4)で表される化合物50.0g(0.224モル)、1,2−ジクロロエタン150mL加えた。塩化スルフリル33.3g(0.247モル)を滴下し、8時間撹拌した後、酢酸エチルに溶解させ、水、食塩水で洗浄した。カラムクロマトグラフィー(シリカゲル)により精製を行うことにより式(I−10−1)で表される化合物52.7g(0.205モル)を得た。
滴下ロートを備えた反応容器にマグネシウム0.67g(0.0274モル)、テトラヒドロフラン2mLを加えた。系内を窒素置換した後、式(I−10−2)で表される化合物5.00g(0.0211モル)をテトラヒドロフラン20mLに溶解させた溶液を滴下し、グリニャール試薬を調製した。2時間撹拌した後、ホウ酸トリメチル2.85g(0.0274モル)を滴下した。2時間撹拌した後、10%塩酸を加え1時間撹拌した。分液処理し有機層を食塩水で洗浄し溶媒を留去することにより、式(I−10−3)で表される化合物3.83g(0.0190モル)を得た。
反応容器に式(I−10−3)で表される化合物3.83g(0.0190モル)、式(I−10−1)で表される化合物4.89g(0.0190モル)、炭酸カリウム3.93g(0.0285モル)、テトラヒドロフラン30mL、水30mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.22g(0.190ミリモル)を加え、10時間加熱還流させた。酢酸エチルで希釈し、塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−10−4)で表される化合物5.08g(0.0152モル)を得た。
滴下ロートを備えた反応容器に式(I−10−4)で表される化合物5.08g(0.0152モル)、ピリジン1.80g(0.0228モル)、ジクロロメタン30mLを加えた。氷冷しながらトリフルオロメタンスルホン酸無水物5.14g(0.0182モル)を滴下した。室温で10時間撹拌した後、塩酸、食塩水で洗浄した。カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−10−5)で表される化合物6.73g(0.0144モル)を得た。
反応容器に式(I−10−5)で表される化合物6.73g(0.0144モル)、ビス(ピナコラート)ジボロン4.03g(0.0159モル)、酢酸カリウム4.25g(0.0433モル)、ジメチルスルホキシド70mLを加えた。系内を窒素置換した後、ジクロロ[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロロメタン付加物0.35g(0.433ミリモル)を加え80℃で20時間加熱撹拌した。水、ジクロロメタンを加え分液処理した後、食塩水で洗浄した。カラムクロマトグラフィー(シリカゲル)により精製を行い、式(I−10−6)で表される化合物4.49g(0.0101モル)を得た。
反応容器に式(I−10−6)で表される化合物4.49g(0.0101モル)、式(I−10−1)で表される化合物2.60g(0.0101モル)、炭酸カリウム2.09g(0.0151モル)、テトラヒドロフラン20mL、水20mLを加えた。系内を窒素置換した後テトラキス(トリフェニルホスフィン)パラジウム(0)0.12g(0.101ミリモル)を加え、10時間加熱還流させた。酢酸エチルで希釈し、塩酸、水、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−10−7)で表される化合物4.00g(8.08ミリモル)を得た。
滴下ロートを備えた反応容器に式(I−10−7)で表される化合物4.00g(8.08ミリモル)、トリエチレングリコール1.21g(8.08ミリモル)、トリフェニルホスフィン2.75g(0.0105モル)、テトラヒドロフラン100mLを加えた。氷冷しながらアゾジカルボン酸ジイソプロピル2.12g(0.0105モル)をテトラヒドロフラン20mLに溶解させた溶液を滴下した。室温で50時間撹拌した後、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−10−8)で表される化合物2.79g(4.44ミリモル)を得た。
滴下ロートを備えた反応容器に式(I−10−8)で表される化合物2.79g(4.44ミリモル)、ジイソプロピルエチルアミン0.75g(5.78ミリモル)、ジクロロメタン20mLを加えた。氷冷しながら塩化アクリロイル0.52g(5.78ミリモル)を滴下した。室温で5時間撹拌した後、5%塩酸、食塩水で洗浄し、カラムクロマトグラフィー(シリカゲル)及び再結晶により精製を行い、式(I−10)で表される化合物2.12gを得た。
IR:3060−3030,2975−2920,1725,1630,1200,1160,1130,750,690cm−1
LRMS:680
(実施例11)式(I−99)で表される化合物の製造
Figure 0006319618
実施例1において、式(I−1−1)で表される化合物を式(I−99−1)で表される化合物に置き換えた以外は同様の方法によって式(I−99−2)で表される化合物を得た。
実施例9と同様にして式(I−99)で表される化合物を得た。
IR:3060−3030,2975−2920,1725,1630,1200,1160,1130,750,690cm−1
LRMS:450
実施例1から実施例11と同様の方法、公知の方法に準拠した方法を用いて、下記式(I−11)から式(I−98)で表される化合物を製造した。
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
(実施例12〜22、比較例1〜3)
実施例1から実施例10記載の式(I−1)から式(I−10)で表される化合物及び、本願発明の化合物類似の分子構造を有する特許文献1記載の化合物(R−1)、大きな屈折率異方性を有することが報告されているトラン構造を有する特許文献2記載の化合物(R−2)並びに当該分野において汎用的に使用されている屈折率異方性が大きい化合物(R−3)を評価対象の化合物とした。
Figure 0006319618
Figure 0006319618
Figure 0006319618
Figure 0006319618
保存安定性を評価するために、評価対象の化合物の安定保存濃度を測定した。安定保存濃度は、母体液晶に評価対象となる化合物を5%から25%まで5%刻みで添加した組成物を各々調製し、調製した組成物を18.5℃で12週間放置した後に、結晶の析出が起こらない当該化合物の最大添加濃度と定義する。最大添加濃度が大きい化合物は安定保存濃度が大きく、長期間の保存によっても結晶の析出が発生しないことを意味する。
安定保存濃度を測定するために、下記化合物(X−1):20%、化合物(X−2):25%、化合物(X−3):25%及び化合物(X−4):30%からなる液晶組成物を母体液晶(X)とした。また、評価対象の化合物の屈折率異方性を測定した。測定結果を表1に示す。
Figure 0006319618
Figure 0006319618
表より、実施例12〜実施例22の本願発明の式(I−1)から式(I−10)及び式(I−99)で表される化合物はいずれも比較例1〜比較例3の比較化合物(R−1)から比較化合物(R−3)と比較して、結晶の析出の起こらない最大添加濃度が同等若しくはより高いことから、高い保存安定性を示すことがわかる。また、実施例12〜実施例22の本願発明の式(I−1)から式(I−10)、式(I−99)で表される化合物はいずれも比較例1〜比較例3の比較化合物(R−1)から比較化合物(R−3)と比較して、ほぼ同等若しくはそれ以上の屈折率異方性を有することがわかる。
(実施例23〜33、比較例4〜6)
配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。
母体液晶(X)に評価対象となる化合物を20%添加することにより調製した組成物各々に対し、光重合開始剤Irgacure907(BASF社製)を1%及び4−メトキシフェノールを0.1%添加した。この組成物をラビングしたガラス基材に70℃でスピンコート法により塗布した。得られた塗布膜の上に配向処理が施された樹脂金型をラビングしたガラス基材の配向方向と樹脂金型の配向方向が並行になるように配置した後、室温まで冷却した。その後、高圧水銀ランプを用いて、紫外線を40mW/cmの強度で25秒間照射した。次に樹脂金型をゆっくり取り外すことによりレンチキュラーレンズを得た。(図1参照)
得られたレンチキュラーレンズの変色の起こりやすさについて評価するために、評価対象のレンチキュラーレンズを85℃のホットプレートに載せ、LEDランプ(365nm)で60mWの光を50時間照射した。照射前と照射後のフィルムの黄色度(YI)を各々測定し、黄変度(ΔYI)を求めた。黄色度はJASCO UV/VIS Spectrophotometer V−560で重合体の吸収スペクトルを測定し、付属のカラー診断プログラムで黄色度(YI)を計算した。計算式は、
YI=100(1.28X−1.06Z)/Y
(式中、YIは黄色度、X、Y、ZはXYZ表色系における三刺激値を表す(JIS K7373)。)である。また、黄変度(ΔYI)は初期の黄色度と暴露後の黄色度の差を意味する(JIS K7373)。評価結果を表2に示す。
Figure 0006319618
表より、実施例23〜実施例33の本願発明の式(I−1)から式(I−10)及び式(I−99)で表される化合物はいずれも比較例4〜比較例6の比較化合物(R−1)から比較化合物(R−3)と比較して、黄変度(ΔYI)が低く、変色が起こりにくいことがわかる。
以上の結果から、式(I−1)から式(I−10)及び式(I−99)で表される本願発明の化合物は、重合性液晶組成物を構成した場合に保存安定性が高く、屈折率異方性が高く、本願発明の化合物を含有する重合性液晶組成物を用いた光学異方体は、変色が起こりにくいことがわかる。従って、本願発明の化合物は、重合性組成物の構成部材として有用である。また、本願発明の化合物を含有する重合性液晶組成物を用いた光学異方体は光学フィルム等の用途に有用である。
レンチキュラーレンズの構成を模式図で示す。
1:樹脂金型
2:樹脂金型を取り外した後の重合体
3:ガラス基材

Claims (12)

  1. 一般式(I)
    Figure 0006319618
    (式中、Pは下記の式(P−1)から式(P−3)式(P−16及び式(P−18
    Figure 0006319618
    から選ばれる基を表し、Sは炭素原子数1から12のアルキレン基又は単結合を表すが、Sが複数存在する場合それらは同一であっても異なっていても良く、Xは−O−、−S−、−OCH−、−CHO−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CH=CH−、−CF=CF−又は単結合を表すが、Xが複数存在する場合それらは同一であっても異なっていても良く、A、A及びAは各々同一であっても異なっていても良く1,4−フェニレン又はナフタレン−2,6−ジイルを表すが、これらの基は無置換又は1つ以上のLによって置換されても良く、Rは水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、若しくは、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−S−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−又は−O−CO−O−によって置換されても良い炭素原子数1から20の直鎖又は分岐アルキル基を表し、lは0から8の整数を表し、Lはフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ヒドロキシル基、メルカプト基、ニトロ基、シアノ基、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−S−、−CO−、−COO−、−OCO−又は−OCO−O−に置き換えられても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表し、Lが複数存在する場合それらは同一であっても異なっていても良いが、A、A及びAのうち少なくとも1つは無置換又は1つ以上のLによって置換されても良いナフタレン−2,6−ジイルを表す。)で表される化合物。
  2. 一般式(I)においてP、S、X、A、A、A、R、L及びlは請求項1で定義されたものと同一のものを表し、Xは−O−、−COO−、−OCO−又は単結合を表すが、Xが複数存在する場合それらは同一であっても異なっていても良い、請求項1記載の化合物。
  3. 一般式(I)においてP、S、X、R、L及びlは請求項1又は請求項2で定義されたものと同一のものを表し、A、A及びAは各々独立して下記の式(A−1)から式(A−6)
    Figure 0006319618
    又は式(B−1)から式(B−9)
    Figure 0006319618
    から選ばれる基を表す請求項1又は請求項2に記載の化合物。
  4. 一般式(I)においてP、S、X、A、A、A、L及びlは請求項1から請求項3のいずれかで定義されたものと同一のものを表し、Rは水素原子、フッ素原子、塩素原子、シアノ基、若しくは、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−COO−、−OCO−、−O−CO−O−によって置換されても良い炭素原子数1から12の直鎖又は分岐アルキル基を表す請求項1から請求項3のいずれか一項に記載の化合物。
  5. 一般式(I)においてP、S、X、A、A、A、R及びlは請求項1から請求項4のいずれかで定義されたものと同一のものを表し、Lはフッ素原子、塩素原子、1個の−CH−又は隣接していない2個以上の−CH−が各々独立して−O−、−COO−又は−OCO−に置き換えられても良い炭素原子数1から8の直鎖状又は分岐状アルキル基を表す請求項1から請求項4のいずれか一項に記載の化合物。
  6. 一般式(I)においてP、S、X、A、A、A、R及びLは請求項1から請求項6のいずれかで定義されたものと同一のものを表し、lは0又は1を表す請求項1から請求項のいずれか一項に記載の化合物。
  7. 請求項1から請求項のいずれか一項に記載の化合物を含有する重合性組成物。
  8. 請求項1から請求項のいずれか一項に記載の化合物を含有する重合性液晶組成物。
  9. 重合性液晶組成物が更に、一般式(II)
    Figure 0006319618
    (式中、P及びPは各々独立して一般式(I)におけるPと同じ意味を表し、S及びSは各々独立して単結合又は炭素原子数1〜20個のアルキレン基を表すが、1個の−CH−又は隣接していない2個以上の−CH−は−O−、−COO−、−OCO−、−OCOO−に置き換えられても良く、X及びXは各々独立して−O−、−S−、−OCH−、−CHO−、−CO−、−COO−、−OCO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CH=CH−、−CF=CF−、−C≡C−又は単結合を表し、Zは各々独立して単結合、−O−、−S−、−OCH−、−CHO−、−COO−、−OCO−、−CO−、−CO−S−、−S−CO−、−O−CO−O−、−CO−NH−、−NH−CO−、−SCH−、−CHS−、−CFO−、−OCF−、−CFS−、−SCF−、−CHCH−、−CHCF−、−CFCH−、−CFCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CH=CH−、−CF=CF−又は−C≡C−を表し、A及びAは各々独立して、1,4−フェニレン基、1,4−シクロヘキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ナフタレン−2,6−ジイル基、テトラヒドロナフタレン−2,6−ジイル基又は1,3−ジオキサン−2,5−ジイル基を表すが、A及びAは各々独立して無置換であるか又はアルキル基、ハロゲン化アルキル基、アルコキシ基、ハロゲン化アルコキシ基、ハロゲン原子、シアノ基又はニトロ基に置換されていても良く、mは0、1、2又は3を表すが、mが2又は3を表す場合、2個あるいは3個存在するA及びZは、それぞれ、同一であっても異なっていても良い。)で表される化合物からなる群から選ばれる1種類以上を含む請求項記載の重合性液晶組成物。
  10. 請求項から請求項のいずれか一項に記載の重合性液晶組成物を重合することにより得られる重合体。
  11. 請求項1記載の重合体を用いた光学異方体。
  12. 請求項1から請求項のいずれかに記載の化合物を含有する樹脂、樹脂添加剤、オイル、フィルター、接着剤、粘着剤、油脂、インキ、医薬品、化粧品、洗剤、建築材料、包装材、液晶材料、農薬及び食品並びにそれらを使用した製品。
JP2013253012A 2013-12-06 2013-12-06 重合性化合物及び光学異方体 Expired - Fee Related JP6319618B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013253012A JP6319618B2 (ja) 2013-12-06 2013-12-06 重合性化合物及び光学異方体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013253012A JP6319618B2 (ja) 2013-12-06 2013-12-06 重合性化合物及び光学異方体

Publications (2)

Publication Number Publication Date
JP2015110532A JP2015110532A (ja) 2015-06-18
JP6319618B2 true JP6319618B2 (ja) 2018-05-09

Family

ID=53525744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013253012A Expired - Fee Related JP6319618B2 (ja) 2013-12-06 2013-12-06 重合性化合物及び光学異方体

Country Status (1)

Country Link
JP (1) JP6319618B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337497B2 (ja) * 2014-02-18 2018-06-06 Dic株式会社 重合性化合物及び光学異方体
US11046889B2 (en) 2015-12-08 2021-06-29 Dic Corporation Polymerizable compound and optically anisotropic body
CN108291148B (zh) * 2015-12-09 2022-03-01 默克专利股份有限公司 用于液晶混合物的萘化合物
JP2019065143A (ja) * 2017-09-29 2019-04-25 Dic株式会社 液晶組成物及びそれを使用した液晶表示素子
JPWO2019221267A1 (ja) * 2018-05-18 2021-06-17 Eneos株式会社 液晶性化合物、イオン伝導体、電解質フィルム及び二次電池
WO2021230300A1 (ja) * 2020-05-15 2021-11-18 三菱瓦斯化学株式会社 化合物、(共)重合体、組成物、レジストパターン形成方法、並びに化合物及び(共)重合体の製造方法
CN115477951B (zh) * 2021-05-31 2024-07-02 江苏和成显示科技有限公司 一种液晶组合物及液晶显示器件
CN115960615B (zh) * 2021-05-31 2024-06-21 江苏和成显示科技有限公司 一种可聚合的液晶组合物及其应用
CN115926808B (zh) * 2021-05-31 2023-09-15 江苏和成显示科技有限公司 一种液晶组合物及包含其的液晶显示器件
CN117642483A (zh) * 2021-09-02 2024-03-01 Dic株式会社 化合物、液晶组合物及使用其的液晶显示元件、传感器、液晶镜头、光通信机器及天线
CN115745758B (zh) * 2022-12-07 2024-10-22 Tcl华星光电技术有限公司 有机化合物、液晶组合物以及液晶显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258038B2 (ja) * 1998-08-14 2009-04-30 Dic株式会社 フッ素置換−2−フェニルナフタレン誘導体
JP4608852B2 (ja) * 2002-10-15 2011-01-12 チッソ株式会社 液晶性ビニルケトン誘導体およびその重合体
JP5087260B2 (ja) * 2006-11-21 2012-12-05 富士フイルム株式会社 重合性液晶化合物並びにそれを用いた位相差フィルムおよび液晶表示装置
EP2181174B1 (de) * 2007-08-30 2012-01-25 Merck Patent GmbH Flüssigkristallanzeige
JP5834489B2 (ja) * 2011-05-18 2015-12-24 Dic株式会社 重合性ナフタレン化合物

Also Published As

Publication number Publication date
JP2015110532A (ja) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6319618B2 (ja) 重合性化合物及び光学異方体
CN107108473B (zh) 聚合性化合物和光学各向异性体
JP6164509B2 (ja) 重合性化合物及び光学異方体
JP6402976B2 (ja) 重合性化合物及び光学異方体
JP6217999B2 (ja) 重合性化合物及び光学異方体
CN108349925B (zh) 聚合性化合物和光学各向异性体
JP6241654B2 (ja) 重合性化合物及び光学異方体
JP6323144B2 (ja) 重合性化合物及び光学異方体
JP6531935B2 (ja) 重合性化合物及び光学異方体
JP6634692B2 (ja) 重合性化合物及び光学異方体
JP6337497B2 (ja) 重合性化合物及び光学異方体
JP6769131B2 (ja) 重合性化合物及び光学異方体
JP6304529B2 (ja) 重合性化合物及び光学異方体
JP6418476B1 (ja) 重合性化合物及び光学異方体
JP6550742B2 (ja) 重合性化合物及び光学異方体
JP7078089B2 (ja) 重合性化合物及び光学異方体
JP2019156733A (ja) 混合物及び光学異方体
JP2018035126A (ja) 重合性化合物及び光学異方体
JP6772549B2 (ja) 重合性化合物及び光学異方体
JP2017218391A (ja) 重合性化合物及び光学異方体
JP2014019654A (ja) 重合性アセチレン化合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180321

R151 Written notification of patent or utility model registration

Ref document number: 6319618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees