JP6317878B2 - Manufacturing method of substrate with electrode and substrate with electrode - Google Patents
Manufacturing method of substrate with electrode and substrate with electrode Download PDFInfo
- Publication number
- JP6317878B2 JP6317878B2 JP2012262537A JP2012262537A JP6317878B2 JP 6317878 B2 JP6317878 B2 JP 6317878B2 JP 2012262537 A JP2012262537 A JP 2012262537A JP 2012262537 A JP2012262537 A JP 2012262537A JP 6317878 B2 JP6317878 B2 JP 6317878B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- electrode
- fine particles
- metal fine
- resist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
本発明は、高密度の電極を迅速(短時間)に形成可能な高密度電極付基板の製造方法および該方法で得られた高密度の電極付基板に関する。 The present invention relates to a method for producing a substrate with a high-density electrode capable of forming a high-density electrode quickly (in a short time) and a substrate with a high-density electrode obtained by the method.
シリコン貫通電極(TSV:Through Silicon Via)を用いた三次元実装技術は、小型で高速・低電力でのコンピューティングが可能な高度集積回路(LSI)の実現できることから注目されている。 A three-dimensional mounting technique using a through silicon via (TSV) is attracting attention because it can realize a highly integrated circuit (LSI) that is small, capable of high-speed, low-power computing.
例えば、絶縁基板に配設されたスルーホール内に金属めっきを施し、樹脂または導電性ペーストを充填した後、スルーホールの開口部を塞ぐようにめっき層を形成する方法が開示されている。(特許文献1:特開2003−23251号公報)
しかしながら、上記した方法では、樹脂または導電性樹脂ペースト熱収縮率、熱膨張率が絶縁基板と大きく異なり、樹脂層がスルーホールから剥離したり、空隙が生じ、配線基板の信頼が懸念されている。
For example, a method is disclosed in which a metal plating is applied to a through hole provided in an insulating substrate, a resin or a conductive paste is filled, and then a plated layer is formed so as to close the opening of the through hole. (Patent Document 1: Japanese Patent Laid-Open No. 2003-23251)
However, in the above-described method, the thermal contraction rate and thermal expansion rate of the resin or conductive resin paste are significantly different from those of the insulating substrate, and the resin layer is peeled off from the through hole or a void is generated, so there is a concern about the reliability of the wiring substrate. .
そこで、前記剥離や空隙を抑制するためにスルーホールを有するコア基板の一方の面に下地導電層を形成した後、電解めっきにより下地導電層を成長させて導電材をスルーホール内に充填する方法が開示されている。(特許文献2:特開2006−147971号公報)
しかしながら、上記した方法では、電解めっきにより導電材をスルーホール内に充填した際に導電材充填スルーホール基板の表面に余分の導電材が存在し、これを研磨等の方法で除去するとともに、除去によって生じた導電材微粉末を除去する必要が指摘されている。
Therefore, a method of forming a base conductive layer on one surface of a core substrate having a through hole in order to suppress the peeling and voids, and then growing the base conductive layer by electrolytic plating to fill the through hole with the conductive material. Is disclosed. (Patent Document 2: JP 2006-147971 A)
However, in the above method, when the conductive material is filled in the through hole by electrolytic plating, there is an excess conductive material on the surface of the conductive material filled through hole substrate, which is removed by polishing or the like and removed. It is pointed out that it is necessary to remove the conductive material fine powder generated by the above.
そこで、スルーホールが形成された絶縁基板の少なくとも一方の表面上に、当該絶縁基板に形成されているスルーホールと同心軸を有し、当該スルーホールの孔径よりも小さい孔径の貫通孔を有するレジスト膜を形成し、銅の電解めっきにより前記スルーホール内に導電材を充填した後、前記レジスト膜を除去する配線用基板の製造方法が、開示されている。(特許文献3:特開2012−80002号公報)
一方、メッキ処理による金属の析出速度が遅く、生産性が悪いことから、銀、金、銅等のナノ金属粒子をディスペンス法やインクジェット法で窪みの壁面や貫通孔の側壁面に付着させて熱処理して金属膜とする貫通電極を形成した貫通電極付基板、その製造方法ならびに貫通電極付基板を用いた発光デバイスが開示されている。(特許文献4:特開2010−123606号公報)
Therefore, a resist having a through hole having a concentric axis with the through hole formed in the insulating substrate on the surface of at least one of the insulating substrate in which the through hole is formed, and having a smaller hole diameter than the through hole. A method for manufacturing a wiring substrate is disclosed in which a film is formed, a conductive material is filled in the through hole by electrolytic plating of copper, and then the resist film is removed. (Patent Document 3: JP 2012-80002 A)
On the other hand, since the metal deposition rate by plating treatment is slow and the productivity is poor, heat treatment is performed by attaching nano metal particles such as silver, gold, copper, etc. to the wall surface of the depression or the side wall of the through hole by the dispensing method or the ink jet method. A substrate with a through electrode in which a through electrode as a metal film is formed, a manufacturing method thereof, and a light emitting device using the substrate with a through electrode are disclosed. (Patent Document 4: JP 2010-123606 A)
しかしながら、前記した従来技術において、Viaファースト、Viaミドル、あるいはViaラストプロセスでは、シリコン貫通電極(TSV)への金属埋め込み方法として銅等のメッキ技術が利用されようとしていたが、メッキの堆積速度が遅いためにTSVを完全に埋め込むためには長時間を要し、例えば、平均電流密度1A/cm2で5時間を要するとの例が報告されており、生産性に難があり、コスト高となるためTSVの実用化、普及の障害となっている。 However, in the above-described conventional technology, in the Via first, Via middle, or Via last process, a plating technique such as copper is being used as a method for embedding a metal in the through silicon via (TSV). Since it is slow, it takes a long time to completely embed the TSV. For example, it has been reported that it takes 5 hours at an average current density of 1 A / cm 2. Therefore, it is an obstacle to the practical use and spread of TSV.
また、ナノ金属粒子をディスペンス法やインクジェット法で金属電極を形成する場合、ナノ金属粒子の溶媒分散液を用いるため、一回の塗布ではスルーホールに緻密に電極を形成できず、繰り返し塗布を必要とし、溶媒除去工程を必要とし、電極の充填密度等が不均一となる場合があり、加えて、単位面積当たりの電極数を多くするには限界があり、小型で高速・低電力のコンピューティングが可能な集積回路(LSI)の三次元実装用には限界があった。 Also, when forming metal electrodes with nano metal particles by the dispensing method or ink jet method, since a solvent dispersion of nano metal particles is used, it is not possible to form electrodes precisely in the through-holes with a single application, and repeated application is required. In addition, a solvent removal process is required, and the packing density of the electrodes may be non-uniform. In addition, there is a limit to increasing the number of electrodes per unit area, and small, high-speed, low-power computing However, there has been a limit to three-dimensional mounting of integrated circuits (LSIs) that can be used.
本発明者らは、上記問題点について鋭意検討した結果、超微細な金属コロイド粒子を用いて、電気泳動法を採用することにより、Via内に容易に堆積でき、しかも極めて短時間に高密度の電極を形成できることを見出して本発明を完成するに至った。 As a result of intensive studies on the above-mentioned problems, the present inventors have been able to easily deposit in Via by adopting an electrophoretic method using ultrafine metal colloidal particles, and have a high density in an extremely short time. The inventors have found that an electrode can be formed and have completed the present invention.
本発明は高密度の電極を迅速(短時間)に形成することのできる高密度電極付基板の製造方法および高密度の電極付基板を提供することを目的としている。
[1]基板上に金属シード膜を形成したのち、該金属シード膜上にレジスト膜を形成し、ついで、該レジスト膜を貫通するレジスト孔を形成した後、平均粒子径が1〜50nmの範囲にある金属微粒子を電気泳動法によりレジスト孔に堆積させる電極付基板の製造方法。
[2]直径が0.05〜50μmの範囲にあり、レジスト膜表面からの深さが1〜100μmの範囲にあり、基板単位表面の1〜64,000,000個/mm2の範囲となるようにレジスト孔を形成する[1]の電極付基板の製造方法。
[3]基板上にレジスト膜を形成した後、該レジスト膜を貫通するレジスト孔と、基材を貫通するスルーホールないし基材内部まで削孔した深孔とを一体形成した後、金属シード膜を形成し、ついで平均粒子径が1〜50nmの範囲にある金属微粒子を電気泳動法により少なくともスルーホールもしくは深孔に堆積させることを特徴とする電極付基板の製造方法。
[4]直径が0.05〜50μmの範囲にあり、レジスト膜表面からの深さが1〜100μmの範囲にあり、基板単位表面でのスルーホールもしくは深孔の密度が1〜64,000,000個/mm2の範囲となるように、レジスト孔と、スルーホールもしくは深孔とを一体形成する[3]の電極付基板の製造方法。
[5]ゼータ電位が−80〜−20mVの範囲にある前記金属微粒子を使用する[1]
〜[4]の電極付基板の製造方法。
[6]前記金属微粒子が銀、銅、金、白金、パラジウム、ルテニウム、マンガン、ニッケルから選ばれる少なくとも一種の金属を含む微粒子である[1]〜[5]の電極付基板の製造方法。
[7]電流が0.1〜100mA/cm2の範囲、電圧が1〜100Vの範囲で、電気泳動法により金属微粒子を堆積させる[1]の電極付基板の製造方法。
[8]基板と、基板上の金属シード膜と、金属シード膜上のレジスト膜と電極とからなり、該電極が円柱状であり、かつ直径が0.05〜50μmの範囲にあり、高さが1〜100μmの範囲にあり、電極の密度が1〜64,000,000個/mm2の範囲にあり、平均粒子径が1〜50nmの範囲にある金属微粒子が電気泳動法により堆積した電極である電極付基板。
[9]前記金属微粒子が銀、銅、金、白金、パラジウム、ルテニウム、マンガン、ニッケルから選ばれる少なくとも一種の金属を含む微粒子である[8]の電極付基板。
[10]前記基板に、スルーホールもしくは深孔が形成されてなり、前記電極が該スルーホールもしくは深孔中に形成されている[8]または[9]の電極付基板。
An object of this invention is to provide the manufacturing method of the board | substrate with a high-density electrode which can form a high-density electrode rapidly (short time), and a high-density board | substrate with an electrode.
[1] After forming a metal seed film on the substrate, forming a resist film on the metal seed film, and then forming a resist hole penetrating the resist film, the average particle diameter is in the range of 1 to 50 nm A method for manufacturing a substrate with an electrode, in which metal fine particles in the above are deposited in resist holes by electrophoresis.
[2] The diameter is in the range of 0.05 to 50 μm, the depth from the resist film surface is in the range of 1 to 100 μm, and the substrate unit surface is in the range of 1 to 64,000,000 pieces / mm 2. [1] The method for manufacturing a substrate with an electrode according to [1].
[3] After forming a resist film on the substrate, a resist hole penetrating the resist film and a through hole penetrating the base material or a deep hole drilled into the base material are integrally formed, and then a metal seed film And then depositing metal fine particles having an average particle diameter in the range of 1 to 50 nm in at least through holes or deep holes by electrophoresis.
[4] The diameter is in the range of 0.05 to 50 μm, the depth from the resist film surface is in the range of 1 to 100 μm, and the density of through holes or deep holes in the substrate unit surface is 1 to 64,000, [3] The method for producing a substrate with an electrode according to [3], wherein the resist hole and the through hole or the deep hole are integrally formed so as to be in a range of 000 pieces / mm 2 .
[5] The metal fine particles having a zeta potential in the range of −80 to −20 mV are used [1]
The manufacturing method of a substrate with electrodes of [4].
[6] The method for producing a substrate with an electrode according to [1] to [5], wherein the metal fine particles are fine particles containing at least one metal selected from silver, copper, gold, platinum, palladium, ruthenium, manganese and nickel.
[7] The method for producing a substrate with an electrode according to [1], wherein metal fine particles are deposited by electrophoresis in a current range of 0.1 to 100 mA / cm 2 and a voltage range of 1 to 100V.
[8] A substrate, a metal seed film on the substrate, a resist film on the metal seed film, and an electrode, the electrode being cylindrical and having a diameter in the range of 0.05 to 50 μm and a height In which metal fine particles having an average particle diameter in the range of 1 to 50 nm are deposited by electrophoretic method in a range of 1 to 100 μm, an electrode density in the range of 1 to 64,000,000 pieces / mm 2 A substrate with electrodes.
[9] The substrate with an electrode according to [8], wherein the metal fine particles are fine particles containing at least one metal selected from silver, copper, gold, platinum, palladium, ruthenium, manganese and nickel.
[10] The substrate with an electrode according to [8] or [9], wherein a through hole or a deep hole is formed in the substrate, and the electrode is formed in the through hole or the deep hole.
本発明によれば、高密度の電極を迅速(短時間)に形成することのできる高密度電極付基板の製造方法および高密度の電極付基板を提供することができる。
また、金属メッキ法、ナノ金属微粒子塗布法に比べて生産性、生産効率に優れている。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the board | substrate with a high density electrode which can form a high density electrode rapidly (short time), and a high density board | substrate with an electrode can be provided.
Moreover, it is excellent in productivity and production efficiency compared with the metal plating method and the nano metal fine particle coating method.
以下、まず、本発明に係る電極付基板の製造方法について説明する。
電極付基板の製造方法
基板
本発明に用いる基板としては、絶縁性を有し、三次元実装(技術)に用いることのできる基板であれば特に制限は無く、従来公知の基板を用いることができる。
Hereinafter, first, the manufacturing method of the board | substrate with an electrode concerning this invention is demonstrated.
Manufacturing method of substrate with electrode
Substrate The substrate used in the present invention is not particularly limited as long as it has an insulating property and can be used for three-dimensional mounting (technology), and a conventionally known substrate can be used.
例えば、ガラス基板、シリコン基板、炭化ケイ素基板、ダイヤモンド基板、α−アルミナ基板、エポキシ樹脂基板、ポリエステル樹脂基板、フッ素樹脂基板等が挙げられる。
本発明では、強度に優れ、膨張・収縮率が小さいので、シリコン基板が好適に用いられる。
For example, a glass substrate, a silicon substrate, a silicon carbide substrate, a diamond substrate, an α-alumina substrate, an epoxy resin substrate, a polyester resin substrate, a fluororesin substrate, and the like can be given.
In this invention, since it is excellent in intensity | strength and expansion / contraction rate is small, a silicon substrate is used suitably.
金属シード膜の形成
前記基板上に金属シード膜を形成する。
金属としては、銀、銅、金、白金、パラジウム、ニッケル、マンガン等が用いられる。これらのなかでも、本発明では、電極形成用金属微粒子の種類によっても異なるが、金、銀、銅が好ましい。さらに、P、W等を含んでいても良い。
Formation of metal seed film A metal seed film is formed on the substrate.
As the metal, silver, copper, gold, platinum, palladium, nickel, manganese or the like is used. Among these, gold, silver, and copper are preferable in the present invention, although they vary depending on the type of metal fine particles for electrode formation. Furthermore, P, W, etc. may be included.
金属シード膜の形成方法は、スパッタ法、化学蒸着(CVD)法、電解メッキ法、無電解メッキ法等が挙げられる。
本発明では、迅速かつ均一な厚みを容易に得やすいのでスパッタ法を用いることが好ましい。
Examples of the method for forming the metal seed film include a sputtering method, a chemical vapor deposition (CVD) method, an electrolytic plating method, and an electroless plating method.
In the present invention, it is preferable to use a sputtering method because a quick and uniform thickness can be easily obtained.
金属シード膜の厚みは0.5〜500nm、さらには1〜400nmの範囲にあることが好ましい。
金属シード膜の厚みが前記範囲にあれば、電極金属の基板への拡散を抑制できる他、基板との密着性に優れ、さらに、後述する電気泳動法で高密度の電極を迅速(短時間)に形成することができる。
The thickness of the metal seed film is preferably in the range of 0.5 to 500 nm, more preferably 1 to 400 nm.
If the thickness of the metal seed film is within the above range, it is possible to suppress the diffusion of the electrode metal to the substrate, and it has excellent adhesion to the substrate. Can be formed.
この金属シード膜を形成することで、この金属シード膜を形成することで、電気泳動法で高密度の電極を迅速に形成することができる。
レジスト膜の形成
ついで、金属シード膜上にレジスト膜を形成する。レジスト膜の厚みは、後述する電極の所要の高さ、あるいは孔の深さと概ね同程度とし、1〜100μm、さらには2〜80μmの範囲にあることが好ましい。なお、レジスト孔は、レジスト膜を貫通させて金属シード膜へ到達する孔であり、金属シード膜を貫通させて基板に到達するものであってもよく、さらに基板を貫通させてもよい。
By forming this metal seed film, a high-density electrode can be rapidly formed by electrophoresis by forming this metal seed film.
Forming a resist film Then, a resist film on the metal seed layer. The thickness of the resist film is preferably approximately the same as the required height of the electrode described later or the depth of the hole, and is preferably in the range of 1 to 100 μm, more preferably 2 to 80 μm. The resist hole is a hole that penetrates the resist film and reaches the metal seed film, and may penetrate the metal seed film and reach the substrate, or may further penetrate the substrate.
レジスト膜の厚みが薄いと、形成される電極層とレジスト膜の密着が不十分で信頼性の高い電極が得られない場合がある。また レジスト膜の厚みが厚いと、電極の厚みが厚くなり、電極付基板の積層数が減少したり、経済性が低下することがある。 When the thickness of the resist film is thin, the electrode layer to be formed and the resist film are not sufficiently adhered, and an electrode with high reliability may not be obtained. Further, if the resist film is thick, the thickness of the electrode is increased, and the number of stacked substrates with electrodes may be reduced or the economy may be lowered.
レジスト膜を構成するレジストとしては、アクリル系樹脂、エポキシ系樹脂等の有機樹脂が挙げられる。レジスト膜の形成方法としては、公知の手段を特に制限なく採用することが可能であり、スピンコート法等を採用できる。
(第1の態様)
第1の態様では、基板上に金属シード膜を形成したのち、該金属シード膜上にレジスト膜を形成し、ついで、該レジスト膜を貫通するレジスト孔を形成する。
Examples of the resist constituting the resist film include organic resins such as acrylic resins and epoxy resins. As a method for forming the resist film, known means can be employed without particular limitation, and a spin coating method or the like can be employed.
(First aspect)
In the first aspect, after forming a metal seed film on the substrate, a resist film is formed on the metal seed film, and then a resist hole penetrating the resist film is formed.
レジスト孔形成
形成されたレジスト膜に、孔の直径が0.05〜50μm、好ましくは2〜30μmのレジスト孔を形成する。この範囲にあれば、均一で精度の高い孔を作成することは可能であり、高速応答の集積回路を得るには充分な大きさである。レジスト孔の直径が小さすぎるものは、均一で精度の高いレジスト孔を形成することが困難であり、電極を形成しても目的の導電性が得られず高速応答性を有する集積回路が得られない場合がある。レジスト孔の直径が大きすぎると、電極密度が低下し、高集積回路に用いるには不向きである。
A resist hole having a hole diameter of 0.05 to 50 μm, preferably 2 to 30 μm is formed in the resist film in which the resist hole is formed. Within this range, it is possible to create a uniform and highly accurate hole, which is large enough to obtain a high-speed integrated circuit. If the diameter of the resist hole is too small, it is difficult to form a uniform and highly accurate resist hole, and even if an electrode is formed, the desired conductivity cannot be obtained, and an integrated circuit having high-speed response can be obtained. There may not be. If the diameter of the resist hole is too large, the electrode density is lowered and it is not suitable for use in a highly integrated circuit.
レジスト孔は、レジスト膜の単位面積に対して1〜64,000,000個/mm2、好ましくは10〜50,000,000個/mm2で形成されることが望ましい。
レジスト孔の密度が低いと、電極個数が少なく高密度高集積回路には不向きである。レジスト孔の密度が高すぎると、孔自体が多くなりすぎてしまい、単離した孔を形成することが困難となり、十分な導通性、強度を有する電極が形成できない場合がある。
Resist holes, 1~64,000,000 pieces / mm 2 with respect to the unit area of the resist film, preferably is preferably formed by 10~50,000,000 pieces / mm 2.
If the density of the resist holes is low, the number of electrodes is small and it is not suitable for a high-density highly integrated circuit. If the density of resist holes is too high, the number of holes themselves will increase, making it difficult to form isolated holes, and an electrode having sufficient electrical conductivity and strength may not be formed.
レジスト孔の深さは、レジスト膜を貫通すれば、レジスト膜の厚さなどに応じて適宜変更可能であるものの、レジスト膜表面から深さが1〜100μmの範囲にある。
レジスト孔の形成方法は、特に制限はないものの、孔となる部分にマスキングを行いフォトリソグラフィー法にて形成するのが最適である。
The depth of the resist hole can be appropriately changed according to the thickness of the resist film as long as it penetrates the resist film, but the depth is in the range of 1 to 100 μm from the resist film surface.
The method of forming the resist hole is not particularly limited, but it is optimal to mask the hole portion and form it by photolithography.
こうし形成されたレジスト孔に金属微粒子を堆積させる。金属微粒子の堆積方法については後述する。
(第2の態様)
第2の態様では、基板上にレジスト膜を形成した後、該レジスト膜を貫通するレジスト孔と、基材を貫通するスルーホールないし基材内部まで削孔した深孔とを一体形成した後、金属シード膜を形成したのち、金属微粒子を堆積させる。レジスト膜の形成方法は前記と同様である。
Metal fine particles are deposited in the resist holes thus formed. A method for depositing metal fine particles will be described later.
(Second aspect)
In the second aspect, after a resist film is formed on the substrate, a resist hole penetrating the resist film and a through hole penetrating the base material or a deep hole drilled to the inside of the base material are integrally formed. After forming the metal seed film, metal fine particles are deposited. The method for forming the resist film is the same as described above.
スルーホール・深孔の形成
第2の態様では、ついで、必要に応じてレジスト膜の厚さをも薄くすることができる。
ついで、基板とレジスト膜に、孔の直径が0.05〜50μm、好ましくは2〜30μm、孔の密度が1〜64,000,000個/mm2、好ましくは10〜50,000,000個/mm2の孔を形成する。なお、孔は、レジスト膜を貫通し、基板をも貫通するスルーホールであっても、貫通せずに基材内部まで削孔した深孔であってもよい。
Formation of Through Holes / Deep Holes In the second aspect, the thickness of the resist film can be reduced as required.
Next, the hole diameter is 0.05 to 50 μm, preferably 2 to 30 μm, and the hole density is 1 to 64,000,000 holes / mm 2 , preferably 10 to 50,000,000 holes on the substrate and the resist film. / Mm 2 hole is formed. The hole may be a through hole that penetrates the resist film and also penetrates the substrate, or a deep hole that is drilled to the inside of the base material without penetrating.
なお、基板にスルーホールやあらかじめ深孔が形成されたものを用いた場合は、スルーホールや深孔と一致したレジスト孔を形成すればよい。場合によっては、レジスト膜の形成、レジスト孔の形成を省略することができる。 Note that when a through-hole or a deep hole previously formed on the substrate is used, a resist hole corresponding to the through-hole or deep hole may be formed. In some cases, the formation of the resist film and the formation of the resist hole can be omitted.
スルーホール・深孔およびレジスト孔の直径は0.05〜50μm、さらには2〜30μmの範囲にあることが好ましい。
スルーホール・深孔およびレジスト孔が小さいと、均一で精度の高いスルーホール(レジスト孔)を形成することが困難であり、電極を形成しても目的の導電性が得られず高速応答性を有する集積回路が得られない場合がある。スルーホール・深孔およびレジスト孔が大きすぎると、電極密度が不充分となる場合がある。
The diameter of the through hole / deep hole and the resist hole is preferably 0.05 to 50 μm, more preferably 2 to 30 μm.
If through-holes / deep holes and resist holes are small, it is difficult to form uniform and accurate through-holes (resist holes). Even if electrodes are formed, the desired conductivity cannot be obtained, resulting in high-speed response. An integrated circuit having the same may not be obtained. If the through hole / deep hole and the resist hole are too large, the electrode density may be insufficient.
また、スルーホールおよびレジスト孔・深孔の各々の深さは、レジスト膜や金属シード膜、基板の厚さによって適宜選択され、各表面から1〜100μm、さらには2〜80μmの範囲にあることが好ましい。スルーホールおよびレジスト孔・深孔の深さが浅いと、形成される電極層との密着が不十分で信頼性の高い電極が得られない場合がある。スルーホール・深孔およびレジスト孔の深さが深すぎても、電極の厚みが厚くなり、電極付基板の積層数が減少したり、経済性が低下する。なお深さの基準は、基板上面、レジスト膜上面などからである。 The depth of each of the through hole and the resist hole / deep hole is appropriately selected according to the thickness of the resist film, the metal seed film, and the substrate, and is in the range of 1 to 100 μm, and further 2 to 80 μm from each surface. Is preferred. If the depth of the through hole and the resist hole / deep hole is shallow, there is a case where the electrode layer is insufficiently adhered and a highly reliable electrode cannot be obtained. Even if the depth of the through hole / deep hole and resist hole is too deep, the thickness of the electrode is increased, the number of laminated substrates with electrodes is reduced, and the economy is lowered. The reference for the depth is from the upper surface of the substrate, the upper surface of the resist film, and the like.
つぎに、基材単位表面あたりの、スルーホール・深孔およびレジスト孔の密度は1〜64,000,000/mm2、好ましくは10〜50,000,000/mm2の範囲にあることが好ましい。孔密度が高すぎると、単離した孔を形成することが困難であり、このため単離した電極が形成できない場合がある。 Next, the density of through-holes / deep holes and resist holes per surface of the substrate unit is in the range of 1 to 64,000,000 / mm 2 , preferably 10 to 50,000,000 / mm 2. preferable. If the pore density is too high, it is difficult to form an isolated hole, and thus an isolated electrode may not be formed.
こうして、形成されたレジスト孔、スルーホール・深孔に金属微粒子を堆積させる。
金属微粒子の堆積
本発明に用いる金属微粒子は、後述する電気泳動法によって電極を形成できれば特に制限はないが、銀、銅、金、白金、パラジウム、ルテニウム、マンガン、ニッケルから選ばれる少なくとも一種の金属を含む微粒子であることが好ましい。
In this way, metal fine particles are deposited in the formed resist holes, through holes and deep holes.
Deposition of metal fine particles The metal fine particles used in the present invention are not particularly limited as long as an electrode can be formed by electrophoresis described later, but at least one metal selected from silver, copper, gold, platinum, palladium, ruthenium, manganese, nickel It is preferable that the fine particles contain.
具体的には、単成分の金属微粒子であっても、複合金属微粒子(合金微粒子)であっても良い。複合金属微粒子(合金微粒子)としては、Pd・Ag、Pd・Cu、Ag・Pd、Ru・Au、Au・Ag、Ag・Cu、Ag・Sn、Cu・Sn、Pt・Au、Pt・Pd、Pt・Cu、Pt・Ag等が挙げられる。 Specifically, it may be a single component metal fine particle or a composite metal fine particle (alloy fine particle). As composite metal fine particles (alloy fine particles), Pd · Ag, Pd · Cu, Ag · Pd, Ru · Au, Au · Ag, Ag · Cu, Ag · Sn, Cu · Sn, Pt · Au, Pt · Pd, Pt.Cu, Pt.Ag, etc. are mentioned.
金属微粒子の平均粒子径は1〜50nm、さらには2〜20nmの範囲にあることが好ましい。
金属微粒子の平均粒子径が1nm未満の金属微粒子は得ることが困難であり、得られたとしても容易に酸化物やイオンとなる場合があり、電極としての性能、耐久性等が不充分となる場合がある。
The average particle diameter of the metal fine particles is preferably in the range of 1 to 50 nm, more preferably 2 to 20 nm.
It is difficult to obtain metal fine particles having an average particle diameter of less than 1 nm, and even if obtained, they may easily become oxides or ions, resulting in insufficient performance and durability as electrodes. There is a case.
金属微粒子の平均粒子径が大きすぎると、後述する電気泳動の際に粒子が沈降したり、粒子間空隙が大きくなるためか電極密度が低くなりその導電性が不充分となる場合がある。 If the average particle size of the metal fine particles is too large, the particles may settle during electrophoresis, which will be described later, or the interparticle voids may increase, leading to a decrease in electrode density and insufficient conductivity.
本発明での金属微粒子の平均粒子径は、金属としての濃度が0.1重量%の金属微粒子分散液を用い、粒子径分布測定装置(日機装(株)製:マイクロトラックUPA)で測定し、その体積換算粒子径のD50の頻度の粒子径を平均粒子径とした。 The average particle size of the metal fine particles in the present invention is measured with a particle size distribution measuring device (manufactured by Nikkiso Co., Ltd .: Microtrac UPA) using a metal fine particle dispersion having a metal concentration of 0.1% by weight. The particle diameter at the frequency D50 of the volume conversion particle diameter was defined as the average particle diameter.
このような金属微粒子は、ゼータ電位が−80〜−20mV、さらには−70〜−30mVの範囲にあることが好ましい。
金属微粒子のゼータ電位が−80mV未満(マイナスが大きい)の場合は、電気泳動の際に金属微粒子の堆積速度が速くなりすぎて均一で緻密な電極が得られない場合がある。
Such metal fine particles preferably have a zeta potential in the range of −80 to −20 mV, more preferably −70 to −30 mV.
When the zeta potential of the metal fine particles is less than −80 mV (minus is large), the deposition rate of the metal fine particles becomes too fast during electrophoresis, and a uniform and dense electrode may not be obtained.
金属微粒子のゼータ電位が−20mVを超える(0に近づく)と、電気泳動の際に金属微粒子の体積速度が遅くなり、本発明の迅速な電極形成効果が充分得られない場合がある。 When the zeta potential of the metal fine particles exceeds −20 mV (approaching 0), the volume velocity of the metal fine particles becomes slow during electrophoresis, and the rapid electrode forming effect of the present invention may not be sufficiently obtained.
なお、電気泳動法では、堆積速度を上げるために電圧を上げると、金属微粒子の種類によってはイオン化する場合がある。金属微粒子のゼータ電位が前記範囲にあれば、短時間で均一で高密度の電極を形成することができる。 In the electrophoresis method, when the voltage is increased to increase the deposition rate, ionization may occur depending on the type of metal fine particles. If the zeta potential of the metal fine particles is within the above range, a uniform and high-density electrode can be formed in a short time.
上記において、ゼータ電位は金属微粒子の種類、粒子径等によっても異なるが、ゼータ電位を調整するには、金属微粒子を表面処理剤で表面処理したり、調製時に残存することのある金属微粒子分散液中のイオン性不純分を調整する等の方法があり、例えば、カルボン酸、アニオン系界面活性剤、高分子樹脂等を吸着させたり、電解質を添加するとゼータ電位は高くなり、カルボン酸、アニオン系界面活性剤、高分子樹脂等を吸着させたり、電解質をイオン交換樹脂等で低減するとゼータ電位を低くする(マイナスが大きい)ことができる。また、用いる金属微粒子の粒子径が小さいとゼータ電位は低い傾向(マイナスが大きい)にある。 In the above, the zeta potential varies depending on the type and particle diameter of the metal fine particles, but in order to adjust the zeta potential, the metal fine particle dispersion liquid may be subjected to surface treatment with a surface treatment agent or may remain during preparation. There are methods such as adjusting the ionic impurity content, for example, adsorbing carboxylic acid, anionic surfactant, polymer resin, etc., or adding electrolyte increases the zeta potential, carboxylic acid, anionic When a surfactant, a polymer resin, or the like is adsorbed or the electrolyte is reduced with an ion exchange resin or the like, the zeta potential can be lowered (minus is large). Further, when the particle size of the metal fine particles used is small, the zeta potential tends to be low (minus is large).
本発明では、ゼータ電位は、金属微粒子の0.1重量%分散液を用い、Malvern製ゼータサイザーナノZS90を用いて測定した。
前記した金属微粒子は、前記平均粒子径範囲にあり、好ましくは前記範囲のゼータ電位を有していれば、従来公知の金属微粒子を用いることができる。
In the present invention, the zeta potential was measured using a Zetasizer Nano ZS90 manufactured by Malvern using a 0.1 wt% dispersion of metal fine particles.
The metal fine particles described above are in the average particle diameter range, and conventionally known metal fine particles can be used as long as they have a zeta potential in the above range.
金属微粒子の堆積は、前記金属微粒子分散液を入れた絶縁性容器に、前記基板上に所定のレジスト孔を形成したもの、あるいは前記所定のスルーホール・深孔を有する基板を陽極、これと所定の距離で離間した陰極(炭素電極)を対向して配置し、これに、所定の電圧をかけ、所定の電流が流れるように調整して、金属微粒子の電気泳動により、金属微粒子をレジスト孔、あるいはスルーホールに堆積させる。 The metal fine particles are deposited by forming a predetermined resist hole on the substrate in an insulating container containing the metal fine particle dispersion, or a substrate having the predetermined through-hole / deep hole as an anode, A cathode (carbon electrode) spaced apart by a distance of 2 mm is disposed oppositely, and a predetermined voltage is applied to the cathode (carbon electrode) and adjusted so that a predetermined current flows. Alternatively, it is deposited in the through hole.
分散媒としては、特に制限されず水などが挙げられる。また固形分濃度としては0.1〜20重量%、好ましくは0.5〜15重量%である。
離間距離は電圧、電流等によって変えることができるが、概ね0.5〜20cm、さらには1〜10cmの範囲にあることが好ましい。
The dispersion medium is not particularly limited and includes water. Moreover, as solid content concentration, it is 0.1 to 20 weight%, Preferably it is 0.5 to 15 weight%.
The separation distance can be changed by voltage, current, etc., but is preferably in the range of about 0.5 to 20 cm, more preferably 1 to 10 cm.
本発明では、前記電圧は1〜100V、さらには2〜20Vの範囲にあることが好ましい。
前記電圧が弱いと、充分な電流が流れずに金属微粒子の堆積速度が不充分となり、前記電圧が強すぎても、堆積速度が速いもの均一で緻密な電極が得られない場合がある。
In this invention, it is preferable that the said voltage exists in the range of 1-100V, Furthermore, 2-20V.
If the voltage is weak, sufficient current does not flow and the deposition rate of the metal fine particles is insufficient, and even if the voltage is too strong, a uniform and dense electrode may not be obtained although the deposition rate is high.
また、電流は0.1〜100mA/cm2、さらには0.3〜50mA/cm2の範囲にあることが好ましい。
前記電流が低いと、金属微粒子の堆積速度が不充分となり、前記電流が大きすぎても、堆積速度が速く均一で緻密な電極が得られない場合がある。
Further, current 0.1~100mA / cm 2, more preferably in the range of 0.3~50mA / cm 2.
If the current is low, the deposition rate of the metal fine particles becomes insufficient, and even if the current is too large, the deposition rate is high and a uniform and dense electrode may not be obtained.
なお、電気泳動時間は、電極の形成量、電圧、電流等によって異なるが、概ね数分から1時間以内であり、従来のメッキ法に比して極めて短時間である。
形成された電極は、通常、乾燥され、そのまま使用してもよいし、必要に応じて原子状水素還元もしくは焼成、大気もしくは不活性ガス下で、焼成、UV照射、プラズマ焼成などを行っても良い。これらの処理を行うと、粒子のシンタリングが促進され、導電性が向上する。
The electrophoresis time varies depending on the amount of electrode formation, voltage, current, etc., but is generally within a few minutes to 1 hour, and is extremely short compared with the conventional plating method.
The formed electrode is usually dried and may be used as it is, or may be subjected to atomic hydrogen reduction or baking, baking, UV irradiation, plasma baking, etc. in the atmosphere or under an inert gas as necessary. good. When these treatments are performed, the sintering of the particles is promoted and the conductivity is improved.
つぎに、本発明に係る電極付基板について説明する。
[電極付基板]
本発明に係る電極付基板は、基板と、基板上の金属シード膜と、金属シード膜上の電極とからなり、該電極の直径が1〜50μmの範囲にあり、高さが1〜100μmの範囲にあり、電極密度が1〜64,000,000個/mm2、の範囲にあり、平均粒子径が1〜50nmの範囲にある金属微粒子が電気泳動法により堆積した電極であることを特徴としている。
Next, the substrate with electrode according to the present invention will be described.
[Substrate with electrode]
The substrate with an electrode according to the present invention comprises a substrate, a metal seed film on the substrate, and an electrode on the metal seed film, and the diameter of the electrode is in the range of 1 to 50 μm and the height is 1 to 100 μm. The electrode has an electrode density in the range of 1 to 64,000,000 / mm 2 , and an electrode in which metal fine particles having an average particle diameter in the range of 1 to 50 nm are deposited by electrophoresis. It is said.
基板
基板としては、前記した基板を用いることができる。前記したように、本発明では、三次元実装技術に用いることができ、強度に優れ、膨張・収縮率が小さいので、シリコン基板が好適に用いられる。
The substrate described above can be used as the substrate substrate. As described above, in the present invention, a silicon substrate can be suitably used because it can be used for a three-dimensional mounting technique, has excellent strength, and has a small expansion / contraction rate.
金属シード膜
基板上には金属シード膜が形成されている。 金属としては、銀、銅、金、白金、パラジウム等が用いられる。 本発明では、電極形成用金属微粒子の種類によっても異なるが、金、銀、銅、が好ましい。 金属シード膜の厚みは0.5〜500nm、さらには1〜400nmの範囲にあることが好ましい。
A metal seed film is formed on the metal seed film substrate. As the metal, silver, copper, gold, platinum, palladium or the like is used. In the present invention, gold, silver, and copper are preferable, although they vary depending on the type of electrode-forming metal fine particles. The thickness of the metal seed film is preferably in the range of 0.5 to 500 nm, more preferably 1 to 400 nm.
電極
電極は前記した金属微粒子から構成される。電極は、直径が0.05〜50μm、好ましくは2〜30μmの範囲にあることが好ましい。
The electrode electrode is composed of the metal fine particles described above. The electrode preferably has a diameter in the range of 0.05 to 50 μm, preferably 2 to 30 μm.
電極の直径がこの範囲を外れて小さいものは、均一で精度の高いスルーホール(レジスト孔)を形成することが困難であり、このため電極を形成しても目的の導電性が得られず高速応答性を有する集積回路が得られない場合がある。 If the diameter of the electrode is small outside this range, it is difficult to form a uniform and accurate through hole (resist hole). In some cases, an integrated circuit having responsiveness cannot be obtained.
電極の直径が大きすぎると、均一で精度の高い孔を作成することは可能であるが、高速応答の集積回路を得るには充分な大きさである。
電極の高さは1〜100μm、さらには2〜80μmの範囲にあることが好ましい。
電極の高さが低すぎると、導電性が不充分となり、高集積化には好ましくない場合がある。
電極の高さが高すぎても、金属微粒子分散液と金属メッキ膜との距離が遠くなるため電流が均一に流れない場合があり、金属粒子の堆積の均一性が悪く、均一な膜となる電極が得られにくくなる場合がある。
If the diameter of the electrode is too large, it is possible to create a uniform and highly accurate hole, but it is large enough to obtain a high-speed response integrated circuit.
The height of the electrode is preferably in the range of 1 to 100 μm, more preferably 2 to 80 μm.
If the height of the electrode is too low, the conductivity becomes insufficient, which may not be preferable for high integration.
Even if the height of the electrode is too high, the current may not flow uniformly because the distance between the metal fine particle dispersion and the metal plating film is long, and the uniformity of metal particle deposition is poor, resulting in a uniform film. An electrode may be difficult to obtain.
このような電極の密度は、1〜64,000,000個/mm2、好ましくは10〜50,000,000個/mm2の範囲にあることが好ましい。密度が高すぎると、単離した電極を形成することができない場合がある。
[実施例]
以下に示す実施例により、本発明を更に具体的に説明するが、本発明はこれら実施例に限定するものではない。
[実施例1]
金属微粒子(1)分散液の調製
純水100gにクエン酸3ナトリウム水和物(関東化学(株)製:特級)30gを溶解した。
別途、純水に100gに硫酸第一鉄(関東化学(株)製:特級)20gを溶解し、上記クエン酸3ナトリウム水溶液と混合した。ついで、純水100gと硝酸銀(関東化学(株)製)10gを溶解した水溶液を混合し、10時間撹拌後、遠心分離を行ない上澄み液を除去し沈降物を回収した。
The density of such electrodes is preferably in the range of 1 to 64,000,000 pieces / mm 2 , preferably 10 to 50,000,000 pieces / mm 2 . If the density is too high, an isolated electrode may not be formed.
[Example]
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[Example 1]
Preparation of metal fine particle (1) dispersion 30 g of trisodium citrate hydrate (manufactured by Kanto Chemical Co., Inc .: special grade) was dissolved in 100 g of pure water.
Separately, 20 g of ferrous sulfate (manufactured by Kanto Chemical Co., Ltd .: special grade) was dissolved in 100 g of pure water, and mixed with the above-mentioned trisodium citrate aqueous solution. Next, an aqueous solution in which 100 g of pure water and 10 g of silver nitrate (manufactured by Kanto Chemical Co., Ltd.) were dissolved was mixed, stirred for 10 hours, centrifuged, and the supernatant was removed to collect the sediment.
沈降物に純水を加えて銀として濃度15重量%の分散液を調製し、イオン交換樹脂(三菱化学(株)製:SMNUPB)を用いて電気電導度が50μS/cm以下になるように不純分除去を行った。その後遠心分離機(10000G)にて10分間遠心分離し、上澄みを回収し、銀としての濃度が10.4重量%の銀からなる金属微粒子(1)分散液を調製した。このとき、分散液のpHは4.5であった。 Pure water is added to the sediment to prepare a dispersion liquid having a concentration of 15% by weight as silver, and impure so that the electric conductivity becomes 50 μS / cm or less using an ion exchange resin (manufactured by Mitsubishi Chemical Corporation: SMUPB). Minute removal was performed. Thereafter, the mixture was centrifuged for 10 minutes with a centrifuge (10000G), and the supernatant was collected to prepare a dispersion of metal fine particles (1) composed of silver having a concentration of 10.4% by weight as silver. At this time, the pH of the dispersion was 4.5.
得られた銀からなる金属微粒子(1)について、平均粒子径、ゼータ電位を測定し結果を表に示す。
電極付基板(1)の製造
シリコン基板(フジミ電子(株)製:シリコンウエハー、6インチφ)を1cm×2cmにカットし、この上にスパッタ法で厚さ350nmの金シード膜を形成した。
With respect to the obtained metal fine particles (1) made of silver, the average particle diameter and the zeta potential were measured, and the results are shown in the table.
Production of Substrate with Electrode (1) A silicon substrate ( manufactured by Fujimi Electronics Co., Ltd .: silicon wafer, 6 inches φ) was cut into 1 cm × 2 cm, and a gold seed film having a thickness of 350 nm was formed thereon by sputtering.
ついで、金シード膜上に、アクリル樹脂からなるレジスト膜を、スピンコート法で塗布し、ついで、硬化することで、形成し、ついで、直径10μm、深さ5μmの孔を110行×110列形成した。このとき、孔数は12100個(密度は60.5個/mm2)である。 Next, a resist film made of an acrylic resin is applied on the gold seed film by spin coating, and then cured to form, and then holes having a diameter of 10 μm and a depth of 5 μm are formed in 110 rows × 110 columns. did. At this time, the number of holes is 12100 (density is 60.5 / mm 2 ).
ついで、ガラスビーカーに金属微粒子(1)分散液を、シリコン基板を浸せる程度添加し、これに、上記で調製したシリコン基板上に金シード膜、レジスト膜を形成した基板を陽極とし、炭素電極を陰極とし、3cm離間させて浸漬した。 Next, the metal fine particle (1) dispersion is added to a glass beaker to such an extent that the silicon substrate can be immersed, and a gold seed film and a resist film formed on the silicon substrate prepared above are used as an anode, and a carbon electrode Was used as a cathode, and was immersed 3 cm apart.
ついで、電極を直流電源に接続し、電圧が4.3V、電流が1mA/cm2の条件で1分間、電気泳動を行った。このときの装置のモデル図を図1に示す。
ついで、陽極基板を取り出し、純水で充分に洗浄し、N2ガス気流中で乾燥して電極付基板(1)を製造した。
Next, the electrode was connected to a direct current power source, and electrophoresis was performed for 1 minute under conditions of a voltage of 4.3 V and a current of 1 mA / cm 2 . A model diagram of the apparatus at this time is shown in FIG.
Next, the anode substrate was taken out, thoroughly washed with pure water, and dried in an N 2 gas stream to produce a substrate (1) with electrode.
得られた電極付基板(1)について、電極の直径、高さを測定し、また、以下の基準で電極の均一性を評価し、結果を表に示す。また、SEM写真を図2に示す。
なお、電極の直径、高さ、レジスト膜の深さ等は走査型電子顕微鏡(日立製作所(株)製:S-2000)を使用し表面及び断面観察を行ない測定した。
For the obtained substrate with electrode (1), the diameter and height of the electrode were measured, the uniformity of the electrode was evaluated according to the following criteria, and the results are shown in the table. An SEM photograph is shown in FIG.
The diameter and height of the electrode, the depth of the resist film, and the like were measured by observing the surface and cross section using a scanning electron microscope (manufactured by Hitachi, Ltd .: S-2000).
電極の均一性の評価は、上記の測定時に電極の表面観察を行ない以下の判定基準で測定した。
電極の表面が平滑である : ○
電極表面にムラ、クラックがある : ×
[実施例2]
電極付基板(2)の製造
実施例1において、電圧が10.7V、電流が3mA/cm2の条件で0.5分間、電気泳動を行った以外は同様にして電極付基板(2)を製造した。
The uniformity of the electrode was evaluated according to the following criteria by observing the surface of the electrode during the above measurement.
The surface of the electrode is smooth: ○
There are unevenness and cracks on the electrode surface: ×
[Example 2]
Production of substrate with electrode (2) In Example 1, the substrate with electrode (2) was prepared in the same manner except that electrophoresis was carried out for 0.5 minutes under the conditions of a voltage of 10.7 V and a current of 3 mA / cm 2. Manufactured.
得られた電極付基板(2)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[実施例3]
電極付基板(3)の製造
実施例1において、電圧が2.5V、電流が0.5mA/cm2の条件で1分間、電気泳動を行った以外は同様にして電極付基板(3)を製造した。
With respect to the obtained substrate with electrode (2), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
[Example 3]
Production of substrate with electrode (3) In Example 1, the substrate with electrode (3) was prepared in the same manner except that electrophoresis was performed for 1 minute under the conditions of a voltage of 2.5 V and a current of 0.5 mA / cm 2. Manufactured.
得られた電極付基板(3)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[実施例4]
金属微粒子(2)分散液の調製
実施例1において、クエン酸3ナトリウム水和物(関東化学(株)製:特級)40gを用いた以外は同様にして、銀としての濃度が10.4重量%の銀からなる金属微粒子(2)分散液を調製した。このとき、分散液のpHは4.0であった。
For the obtained substrate with electrodes (3), the diameter, height and uniformity of the electrodes were measured, and the results are shown in the table.
[Example 4]
Preparation of metal fine particle (2) dispersion In Example 1, except that 40 g of trisodium citrate hydrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was used, the concentration as silver was 10.4 wt. A dispersion of metal fine particles (2) composed of% silver was prepared. At this time, the pH of the dispersion was 4.0.
得られた銀からなる金属微粒子(2)について、平均粒子径、ゼータ電位を測定し結果を表に示す。
電極付基板(4)の製造
実施例1において金属微粒子(2)分散液を用いた以外は同様にして電極付基板(4)を製造した。
With respect to the obtained metal fine particles (2) made of silver, the average particle diameter and the zeta potential were measured, and the results are shown in the table.
Production of Substrate with Electrode (4) A substrate with electrode (4) was produced in the same manner as in Example 1 except that the metal fine particle (2) dispersion was used.
得られた電極付基板(4)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[実施例5]
金属微粒子(3)分散液の調製
実施例1において、クエン酸3ナトリウム水和物(関東化学(株)製:特級)20gを用いた以外は同様にして、銀としての濃度が10.4重量%の銀からなる金属微粒子(3)分散液を調製した。このとき、分散液のpHは5.0であった。
For the obtained substrate with electrode (4), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
[Example 5]
Preparation of metal fine particle (3) dispersion In Example 1, except that 20 g of trisodium citrate hydrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was used, the concentration as silver was 10.4 wt. A dispersion of metal fine particles (3) composed of% silver was prepared. At this time, the pH of the dispersion was 5.0.
得られた銀からなる金属微粒子(3)について、平均粒子径、ゼータ電位を測定し結果を表に示す。
電極付基板(5)の製造
実施例1において、金属微粒子(3)分散液を用いた以外は同様にして電極付基板(5)を製造した。
With respect to the obtained metal fine particles (3) composed of silver, the average particle diameter and the zeta potential were measured, and the results are shown in the table.
Production of Substrate with Electrode (5) A substrate with electrode (5) was produced in the same manner as in Example 1 except that the dispersion of metal fine particles (3) was used.
得られた電極付基板(5)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[実施例6]
金属微粒子(4)分散液の調製
純水に100gにポリビニルピロリドン(Mw1500)10gを溶解させた。
For the obtained substrate with electrodes (5), the diameter, height and uniformity of the electrodes were measured, and the results are shown in the table.
[Example 6]
Preparation of metal fine particle (4) dispersion 10 g of polyvinylpyrrolidone (Mw 1500) was dissolved in 100 g of pure water.
別途、純水に100gに硫酸銅水和物(関東化学(株)製:特級)20gを溶解させ、上記リビニルピロリドン水溶液と混合した。その後、水素気流下で19時間混合した後、イオン交換樹脂(三菱化学製SMNUPB)を用いて電気電導度が50μS/cm以下になるように不純分除去を行った。次いでロータリーエバポレーターにて濃縮し、銅として濃度10.4重量%になるように純水にて希釈して、銅としての濃度が10.4重量%の銅からなる金属微粒子(4)分散液を調製した。このとき、分散液のpHは3.5であった。 Separately, 20 g of copper sulfate hydrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was dissolved in 100 g of pure water and mixed with the above-mentioned aqueous solution of revinyl pyrrolidone. Then, after mixing for 19 hours under a hydrogen stream, impurities were removed using an ion exchange resin (SMUNUPB manufactured by Mitsubishi Chemical Corporation) so that the electric conductivity was 50 μS / cm or less. Next, it is concentrated on a rotary evaporator, diluted with pure water to a concentration of 10.4% by weight as copper, and a dispersion of metal fine particles (4) made of copper with a concentration of 10.4% by weight as copper is obtained. Prepared. At this time, the pH of the dispersion was 3.5.
得られた銅からなる金属微粒子(4)について、平均粒子径、ゼータ電位を測定し結果を表に示す。
電極付基板(6)の製造
実施例1において金属微粒子(4)分散液を用いた以外は同様にして電極付基板(6)を製造した。
The obtained copper metal fine particles (4) were measured for average particle diameter and zeta potential, and the results are shown in the table.
Production of Substrate with Electrode (6) A substrate with electrode (6) was produced in the same manner as in Example 1 except that the metal fine particle (4) dispersion was used.
得られた電極付基板(6)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[実施例7]
電極付基板(7)の製造
実施例1において、Ag-Pdコロイド溶液(日揮触媒化成(株)製:標準Ag-Pdコロイド、平均粒子径3nm、Ag-Pd濃度3.0重量%、ゼータ電位−50mV)を用いた以外は同様にして電極付基板(7)を製造した。
For the obtained substrate with electrodes (6), the diameter, height and uniformity of the electrodes were measured, and the results are shown in the table.
[Example 7]
Production Example 1 of Electrode Substrate (7) In Example 1, Ag-Pd colloid solution (manufactured by JGC Catalysts & Chemicals Co., Ltd .: standard Ag-Pd colloid, average particle diameter 3 nm, Ag-Pd concentration 3.0 wt%, zeta potential) A substrate with electrode (7) was produced in the same manner except that -50 mV) was used.
得られた電極付基板(7)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[実施例8]
金属微粒子(5)分散液の調製
実施例1と同様にして調製した金属微粒子(1)分散液100gにイオン交換樹脂(三菱化学製SMNUPB)10gを入れて攪拌し、電気電導度が30μS/cm以下になるまで不純分及び表面処理剤(クエン酸)を除去して銀としての濃度10.4重量%の金属微粒子(5)分散液を調製した。このとき、分散液のpHは3.8であった。
For the obtained substrate with electrode (7), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
[Example 8]
Preparation of Metal Fine Particle (5) Dispersion 10 g of ion exchange resin (MMNUPB manufactured by Mitsubishi Chemical) was added to 100 g of the metal fine particle (1) dispersion prepared in the same manner as in Example 1, and the electric conductivity was 30 μS / cm. Impurities and the surface treatment agent (citric acid) were removed until the following concentration was obtained, thereby preparing a metal fine particle (5) dispersion having a concentration of 10.4% by weight as silver. At this time, the pH of the dispersion was 3.8.
得られた銀からなる金属微粒子(5)について、平均粒子径、ゼータ電位を測定し結果を表に示す。
電極付基板(8)の製造
実施例1において、金属微粒子(5)分散液を用いた以外は同様にして電極付基板(8)を製造した。
With respect to the obtained metal fine particles (5) composed of silver, the average particle diameter and the zeta potential were measured, and the results are shown in the table.
Production of Substrate with Electrode (8) A substrate with electrode (8) was produced in the same manner as in Example 1 except that the metal fine particle (5) dispersion was used.
得られた電極付基板(8)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[実施例9]
金属微粒子(6)分散液の調製
実施例1と同様にして調製した金属微粒子(1)分散液100gに表面処理剤としてポリビニルピロリドン(分子量:55,000 )を1g添加し、一昼夜攪拌して 銀としての濃度10.3重量%の金属微粒子(6)分散液を調製した。このとき、分散液のpHは4.5であった。
For the obtained substrate with electrode (8), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
[Example 9]
Preparation of metal fine particle (6) dispersion 1 g of polyvinylpyrrolidone (molecular weight: 55,000) as a surface treating agent was added to 100 g of metal fine particle (1) dispersion prepared in the same manner as in Example 1, and stirred for a whole day and night. A metal fine particle (6) dispersion having a concentration of 10.3 wt% was prepared. At this time, the pH of the dispersion was 4.5.
得られた銀からなる金属微粒子(6)について、平均粒子径、ゼータ電位を測定し結果を表に示す。
電極付基板(9)の製造
実施例1において、金属微粒子(6)分散液を用いた以外は同様にして電極付基板(9)を製造した。
With respect to the obtained metal fine particles (6) comprising silver, the average particle diameter and the zeta potential were measured, and the results are shown in the table.
Production of Substrate with Electrode (9) A substrate with electrode (9) was produced in the same manner as in Example 1 except that the metal fine particle (6) dispersion was used.
得られた電極付基板(9)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[実施例10]
電極付基板(10)の製造
シリコン基板(フジミ電子(株)製:シリコンウエハー、6インチφ)を1cm×2cmにカットし、この上にアクリル樹脂からなる厚さ5μmのレジスト膜を形成し、ついで、プラズマエッチング法で直径10μm、深さ20μmの孔を形成した。この時の密度は60.5個/mm2である。ついでスパッタ法で厚さ350nmの銀シード膜を形成した。
For the obtained substrate with electrode (9), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
[Example 10]
Manufacture of substrate with electrode (10) A silicon substrate ( manufactured by Fujimi Electronics Co., Ltd .: silicon wafer, 6 inch φ) is cut into 1 cm × 2 cm, and a resist film having a thickness of 5 μm made of acrylic resin is formed thereon. Next, holes having a diameter of 10 μm and a depth of 20 μm were formed by plasma etching. The density at this time is 60.5 pieces / mm 2 . Next, a 350 nm thick silver seed film was formed by sputtering.
以下、実施例1において金属微粒子(6)分散液を用い、電気泳動時間を2分間泳動とした以外は同様にして電極付基板(10)を製造した。
得られた電極付基板(10)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[比較例1]
電極付基板(R1)の製造
実施例1と同様にしてシリコン基板上に金シード膜、レジスト膜を形成し、ついで、孔を形成した。
Hereinafter, a substrate with electrode (10) was produced in the same manner as in Example 1 except that the metal fine particle (6) dispersion was used and the electrophoresis time was set to 2 minutes.
For the obtained substrate with electrode (10), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
[Comparative Example 1]
Production of substrate with electrode (R1) In the same manner as in Production Example 1, a gold seed film and a resist film were formed on a silicon substrate, and then a hole was formed.
ついで、Agメッキ液(硫酸50g/L、硝酸銀200g/L及び塩素イオン50mg/L)に浸漬させ1mA/cm2の条件で1分行った。電極付基板(R1)を製造した。
得られた電極付基板(R1)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[比較例2]
電極付基板(R2)の製造
比較例1において、Agメッキ液に2.5時間浸漬した以外は同様にして電極付基板(R2)を製造した。
Subsequently, it was immersed in an Ag plating solution (50 g / L of sulfuric acid, 200 g / L of silver nitrate, and 50 mg / L of chloride ions) for 1 minute under the condition of 1 mA / cm 2 . A substrate with electrodes (R1) was produced.
With respect to the obtained substrate with electrode (R1), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
[Comparative Example 2]
Production of Substrate with Electrode (R2) In Comparative Example 1, a substrate with electrode (R2) was produced in the same manner except that it was immersed in an Ag plating solution for 2.5 hours.
得られた電極付基板(R2)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。
[比較例3]
金属微粒子(R1)分散液の調製
実施例1において、クエン酸3ナトリウム水和物(関東化学(株)製:特級)18gを溶解した以外は同様にしてAgとしての濃度10.4重量%の銀からなる金属微粒子(R1)分散液を調製した。このとき、分散液のpHは5.0であった。
得られた銀からなる金属微粒子(R1)について、平均粒子径、ゼータ電位を測定し結果を表に示す。
With respect to the obtained substrate with electrode (R2), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
[Comparative Example 3]
Preparation of metal fine particle (R1) dispersion In Example 1, except that 18 g of trisodium citrate hydrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was dissolved, the concentration of Ag was 10.4 wt%. A metal fine particle (R1) dispersion made of silver was prepared. At this time, the pH of the dispersion was 5.0.
The obtained metal fine particles (R1) made of silver were measured for average particle diameter and zeta potential, and the results are shown in the table.
電極付基板(R3)の製造
実施例1において、金属微粒子(R1)分散液を用いた以外は同様にして電極付基板(R3)を製造した。
Production of substrate with electrode (R3) A substrate with electrode (R3) was produced in the same manner as in Example 1 except that the metal fine particle (R1) dispersion was used.
得られた電極付基板(R3)について、電極の直径、高さおよび均一性を測定し、結果を表に示す。 For the obtained substrate with electrode (R3), the diameter, height and uniformity of the electrode were measured, and the results are shown in the table.
Claims (6)
前記金属シード膜上にレジスト膜を形成し、前記レジスト膜を貫通するレジスト孔を、直径0.05〜50μm、レジスト膜表面からの深さ1〜100μm、1〜64000000個/mm 2 で形成する工程と、
平均粒子径が1〜50nmの範囲にある金属微粒子の水分散液に、前記レジスト孔が形成された基板を浸漬し、電気泳動法により前記レジスト孔に前記金属微粒子を堆積させる工程と、を備えることを特徴とする電極付基板の製造方法。 Forming a metal seed film on the substrate;
The resist film is formed on the metal seed layer, wherein the resist holes through the resist film, the diameter 0.05 to 50, the depth 1~100μm from the resist film surface to form at 1-64000000 pieces / mm 2 Process,
Immersing the substrate on which the resist holes are formed in an aqueous dispersion of metal fine particles having an average particle diameter in the range of 1 to 50 nm, and depositing the metal fine particles in the resist holes by electrophoresis. A method for producing an electrode-attached substrate.
平均粒子径が1〜50nmの範囲にある金属微粒子の水分散液に、前記加工工程で得られた基板を浸漬し、電気泳動法により前記スルーホールまたは前記深孔に前記金属微粒子を堆積させる工程と、を備え、
前記加工工程において、前記レジスト孔が、直径0.05〜50μmの範囲に、レジスト膜表面からの深さが1〜100μmの範囲に、基板単位表面でのスルーホールもしくは深孔の密度が1〜64000000個/mm 2 の範囲となるように、前記スルーホールもしくは前記深孔と一体形成されることを特徴とする電極付基板の製造方法。 A substrate on which a resist film is formed on a substrate, a resist hole penetrating the resist film and a through hole penetrating the base material or a deep hole drilled to the inside of the base material are integrally formed, and then a metal seed film is formed Machining process,
A step of immersing the substrate obtained in the processing step in an aqueous dispersion of metal fine particles having an average particle diameter in the range of 1 to 50 nm and depositing the metal fine particles in the through holes or the deep holes by electrophoresis. and, with a,
In the processing step, the resist hole has a diameter in the range of 0.05 to 50 μm, a depth from the resist film surface in the range of 1 to 100 μm, and the density of through holes or deep holes in the substrate unit surface is 1 to 1 μm. A method for producing a substrate with an electrode, wherein the substrate is integrally formed with the through hole or the deep hole so as to be in a range of 64000000 pieces / mm 2 .
前記金属微粒子とカルボン酸と水を含む混合液を調製する工程と、
前記混合液を撹拌後、遠心分離により上澄み液を除去し沈降物を回収する工程と、
前記沈降物に純水を加え、電気電導度が50μS/cm以下になるように調整する工程と、 を経て得られることを特徴とする請求項1〜3のいずれかに記載の電極付基板の製造方法。 The aqueous dispersion is
Preparing a mixed solution containing the metal fine particles, carboxylic acid and water;
After stirring the mixed solution, removing the supernatant by centrifugation and collecting the precipitate;
The pure water was added to the sediment, electric conductivity of the electrode with substrate according to any one of claims 1 to 3, characterized in that it is obtained through a step of adjusting to be less than 50 [mu] S / cm, a Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012262537A JP6317878B2 (en) | 2012-11-30 | 2012-11-30 | Manufacturing method of substrate with electrode and substrate with electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012262537A JP6317878B2 (en) | 2012-11-30 | 2012-11-30 | Manufacturing method of substrate with electrode and substrate with electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014110258A JP2014110258A (en) | 2014-06-12 |
JP6317878B2 true JP6317878B2 (en) | 2018-04-25 |
Family
ID=51030740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012262537A Active JP6317878B2 (en) | 2012-11-30 | 2012-11-30 | Manufacturing method of substrate with electrode and substrate with electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6317878B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02253151A (en) * | 1989-03-27 | 1990-10-11 | Ricoh Co Ltd | Suspension decomposing device |
JPH04211193A (en) * | 1990-03-22 | 1992-08-03 | Canon Inc | Conductive circuit member and its manufacture, conductive paste, and electronic equipment |
WO1992006920A1 (en) * | 1990-10-12 | 1992-04-30 | Fuji-Davison Chemical Ltd. | Process for producing silica gel |
JP2005236040A (en) * | 2004-02-19 | 2005-09-02 | Sekisui Chem Co Ltd | Arrangement method for conductive fine particle |
JPWO2010134536A1 (en) * | 2009-05-22 | 2012-11-12 | コニカミノルタホールディングス株式会社 | Conductive film pattern and method for forming conductive film pattern |
KR101300587B1 (en) * | 2009-12-09 | 2013-08-28 | 한국전자통신연구원 | Method for forming semiconductor device |
-
2012
- 2012-11-30 JP JP2012262537A patent/JP6317878B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014110258A (en) | 2014-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI455663B (en) | Circuit board with twinned cu circuit layer and method for manufacturing the same | |
CN104419983B (en) | Single crystal copper, method of preparing the same, and substrate comprising the same | |
US8574418B2 (en) | Electroplating method for coating a substrate surface with a metal | |
US7220370B2 (en) | Plating and production methods for producing a fine metal component using a conductive paste | |
Kao et al. | Electroless copper plating onto printed lines of nanosized silver seeds | |
US20110311800A1 (en) | Microstructure and microstructure production method | |
CN102089833A (en) | Microstructure, and method for production thereof | |
KR20140031875A (en) | Dispersion liquid containing metal nanowires, and conductive film | |
JP6484218B2 (en) | Printed wiring board substrate and printed wiring board | |
US20070275262A1 (en) | Reducing formation of tin whiskers on a tin plating layer | |
JP2021535055A (en) | Metal-CNT complexes, their manufacturing methods and materials | |
TWI454422B (en) | A method for manufacturing a copper nano-wire with high density of twins | |
CN109628968B (en) | TSV rapid filling method and device | |
CN102918937B (en) | Printed circuit board (PCB) and the manufacture method of this printed circuit board (PCB) | |
JP2016058545A (en) | Substrate for printed wiring board, printed wiring board and method of manufacturing printed wiring board | |
JP2007327117A (en) | Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle | |
CN101880025A (en) | Method for implanting one-dimensional nano material into surface of metal electrode | |
CN1250545A (en) | Wiring forming method for semiconductor device and semiconductor device | |
JP6317878B2 (en) | Manufacturing method of substrate with electrode and substrate with electrode | |
KR20100101886A (en) | A structure of circuit layers including cnt and a fabricating method of circuit layers including cnt | |
JP6609153B2 (en) | Substrate for printed wiring board, printed wiring board and electronic component | |
WO2020021800A1 (en) | Method for manufacturing electroconductive pillars using electroconductive paste | |
WO2022014293A1 (en) | Method for producing heteroconductive member | |
CN109576645B (en) | Method for preparing tin-indium nanowire by direct current deposition | |
CN109637975A (en) | The preparation method of CNT and Cu compound wire based on single solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180402 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6317878 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |